搜档网
当前位置:搜档网 › 数值计算方法上机实验报告

数值计算方法上机实验报告

数值计算方法上机实验报告
数值计算方法上机实验报告

数值代数实验报告

1.谈谈你对该算法的理解:(简单谈一下你是如何理解该算法的?) 先对84阶矩阵进行LU分解,通过Gauss消元法 对下三角形方程组利用前代法解出y,在对上三角方程组 用回代法解出x…. 2.实验内容 function [ L,U ] = LUfac( A ) for k=1:n-1 A(k+1:n,k)=A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); end L=tril(A,0); for i=1:n L(i,i)=1; end U=triu(A,0); End //进行LU分解 function [ b ] = TSL( L,b ) n=size(L,1); for j=1:n-1 b(j)=b(j)/L(j,j); b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j); end b(n)=b(n)/L(n,n); end //利用前代法解出y function [ b ] = TSU( U,b ) n=size(U,1); for j=n:-1:2 b(j)=b(j)/U(j,j); b(1:j-1)=b(1:j-1)-b(j)*U(1:j-1,j); end b(1)=b(1)/U(1,1); end //利用回代法解出x

主函数程序 A=eye(84); A=6*A; for i=2:84 A(i,i-1)=8; A(i-1,i)=1; End //生成84阶的矩阵A b=ones(84,1); b=b*15; b(1)=7; b(84)=14; [L,U]=LUfac(A);//调用函数LUfac对矩阵A进行分解 y=TSL(L,b);//调用函数TSL求解y x=TSU(U,y); //调用函数TSU求解X 经过matlab…有 x’ ans = 1.0e+008 * Columns 1 through 7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Columns 8 through 14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Columns 15 through 21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Columns 22 through 28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Columns 29 through 35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Columns 36 through 42 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Columns 43 through 49 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Columns 50 through 56 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 Columns 57 through 63

数值分析上机作业

数值分析上机实验报告 选题:曲线拟合的最小二乘法 指导老师: 专业: 学号: 姓名:

课题八曲线拟合的最小二乘法 一、问题提出 从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。 在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量y 与时间t 的拟合曲线。 二、要求 1、用最小二乘法进行曲线拟合; 2、近似解析表达式为()33221t a t a t a t ++=?; 3、打印出拟合函数()t ?,并打印出()j t ?与()j t y 的误差,12,,2,1 =j ; 4、另外选取一个近似表达式,尝试拟合效果的比较; 5、*绘制出曲线拟合图*。 三、目的和意义 1、掌握曲线拟合的最小二乘法; 2、最小二乘法亦可用于解超定线代数方程组; 3、探索拟合函数的选择与拟合精度间的关系。 四、计算公式 对于给定的测量数据(x i ,f i )(i=1,2,…,n ),设函数分布为 ∑==m j j j x a x y 0)()(? 特别的,取)(x j ?为多项式 j j x x =)(? (j=0, 1,…,m )

则根据最小二乘法原理,可以构造泛函 ∑∑==-=n i m j i j j i m x a f a a a H 1 10))((),,,(? 令 0=??k a H (k=0, 1,…,m ) 则可以得到法方程 ???? ??????? ?=????????????????????????),(),(),(),(),(),(),(),(),(),(),(),(1010101111000100m m m m m m m m f f f a a a ????????????????????? 求该解方程组,则可以得到解m a a a ,,,10 ,因此可得到数据的最小二乘解 ∑=≈m j j j x a x f 0)()(? 曲线拟合:实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。 五、结构程序设计 在程序结构方面主要是按照顺序结构进行设计,在进行曲线的拟合时,为了进行比较,在程序设计中,直接调用了最小二乘法的拟合函数polyfit ,并且依次调用了plot 、figure 、hold on 函数进行图象的绘制,最后调用了一个绝对值函数abs 用于计算拟合函数与原有数据的误差,进行拟合效果的比较。

计算方法上机实验报告

《计算方法》上机实验报告 班级:XXXXXX 小组成员:XXXXXXX XXXXXXX XXXXXXX XXXXXXX 任课教师:XXX 二〇一八年五月二十五日

前言 通过进行多次的上机实验,我们结合课本上的内容以及老师对我们的指导,能够较为熟练地掌握Newton 迭代法、Jacobi 迭代法、Gauss-Seidel 迭代法、Newton 插值法、Lagrange 插值法和Gauss 求积公式等六种算法的原理和使用方法,并参考课本例题进行了MATLAB 程序的编写。 以下为本次上机实验报告,按照实验内容共分为六部分。 实验一: 一、实验名称及题目: Newton 迭代法 例2.7(P38):应用Newton 迭代法求 在 附近的数值解 ,并使其满足 . 二、解题思路: 设'x 是0)(=x f 的根,选取0x 作为'x 初始近似值,过点())(,00x f x 做曲线)(x f y =的切线L ,L 的方程为))((')(000x x x f x f y -+=,求出L 与x 轴交点的横坐标) (') (0001x f x f x x - =,称1x 为'x 的一次近似值,过点))(,(11x f x 做曲线)(x f y =的切线,求该切线与x 轴的横坐标) (') (1112x f x f x x - =称2x 为'x

的二次近似值,重复以上过程,得'x 的近似值序列{}n x ,把 ) (') (1n n n n x f x f x x - =+称为'x 的1+n 次近似值,这种求解方法就是牛顿迭代法。 三、Matlab 程序代码: function newton_iteration(x0,tol) syms z %定义自变量 format long %定义精度 f=z*z*z-z-1; f1=diff(f);%求导 y=subs(f,z,x0); y1=subs(f1,z,x0);%向函数中代值 x1=x0-y/y1; k=1; while abs(x1-x0)>=tol x0=x1; y=subs(f,z,x0); y1=subs(f1,z,x0); x1=x0-y/y1;k=k+1; end x=double(x1) K 四、运行结果: 实验二:

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

数值代数上机实验报告

数值代数课程设计实验报告 姓名: 班级: 学号: 实验日期: 一、实验名称 代数的数值解法 二、实验环境 MATLAB7.0 实验一、平方根法与改进平方根法 一、实验要求: 用熟悉的计算机语言将不选主元和列主元Gasuss 消元法编写成通用的子程序,然后用编写的程序求解下列方程组 ?????????? ????????????=????????????????????????? ? ? ? ? ? ? ?? ?????? ???? ?--?1415151515768 168 168 168 1681612321 n n n n n x x x x x x 用所编的程序分别求解40、84、120阶方程组的解。 二、算法描述及实验步骤 GAuss 程序如下: (1)求A 的三角分解:LU A =; (2)求解b y =L 得y ; (3)求解y x =U 得x ; 列主元Gasuss 消元法程序如下: 1求A 的列主元分解:LU PA =; 2求解b y P L =得y ; 3求解y x =U 得x ;

三、调试过程及实验结果: %----------------方程系数---------------- >> A1=Sanduijiaozhen(8,6,1,40); >> A2=Sanduijiaozhen(8,6,1,84); >> A3=Sanduijiaozhen(8,6,1,120); >> b1(1)=7;b2(1)=7;b3(1)=7; >> for i=2:39 b1(i)=15; end >> b1(40)=14; >> for i=2:83 b2(i)=15; end >> b2(40)=14; >> for i=2:119 b1(i)=15; end >> b3(120)=14; %----------------方程解---------------- >> x11=GAuss(A1,b1') >> x12=GAuss Zhu(A1,b1') >> x21=GAuss(A2,b2') >> x22=GAuss Zhu(A3,b3') >> x31=GAuss(A3,b3') >> x32=GAuss Zhu(A3,b3') 运行结果:(n=40) GAuss消元法的解即为 x11 = 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 列主元GAuss消元法的解即为x12 =

数值分析上机题目详解

第一章 一、题目 设∑ =-= N N j S 2 j 2 1 1,其精确值为)11 123(21+--N N 。 1) 编制按从大到小的顺序1 1 13112122 2-+??+-+-=N S N ,计算S N 的通用程序。 2) 编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-= N N S N ,计算S N 的通用程序。 3) 按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) 4) 通过本次上机题,你明白了什么? 二、通用程序 N=input('Please Input an N (N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); Sn1=single(0); for a=2:N; Sn1=Sn1+1/(a^2-1); end Sn2=single(0); for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); end fprintf('The value of Sn (N=%d)\n',N); fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1); fprintf('Caculate from small to large %f\n',Sn2); disp('____________________________________________________')

三、结果 从结果可以看出有效位数是6位。 感想:可以得出,算法对误差的传播有一定的影响,在计算时选一种好的算法可以使结果更为精确。从以上的结果可以看到从大到小的顺序导致大数吃小数的现象,容易产生较大的误差,求和运算从小数到大数所得到的结果才比较准确。

数学实验1

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 数学实验是由于计算机技术和科学计算软件的迅猛发展应运而生的一门较新的数学课程,它改变了数学只靠纸和笔的传统形象,将实验的手段引入到数学的学习和研究中。 本课程为大学二年级数学院的学生开设。它不是讲授新的数学知识,而是让学生利用已有的数学知识去解决一些经简化的实际问题。大多数实验的一般过程是:对于给出的实际问题,建立数学模型、选择适当的数学方法、用科学计算软件MATLAB编程计算、对运算结果进行分析、给出结论。 本课程以MATLAB软件为主要的实验工具,采用以学生动手动脑为主,教师讲授和点评、小组讨论、报告为辅的教学方式。 通过本课程的学习,学生用数学解决实际问题的意识和能力可以得到强化和提高,更切实地体会到数学的用处,增加学习兴趣,提高创造力。 2.设计思路: 本课程旨在训练用数学解决实际问题的能力。实验内容的选取是基于学生具备MATLAB语言的初步编程能力、并学习了数学分析、高等代数、解析几何、运筹学基础(初步)、数学实验基础、常微分方程、数值分析或计算方法、概率论等数学课程的基础之上。课程共分七个基础实验和一个综合实验依次进行。七个基础实验是:MATLAB 基础知识复习、常微分方程(组)、数据建模——插值与拟合、古典密码学、图与网络 - 6 -

优化、动态规划、遗传算法。 基础实验涉及的数学内容较为单一、数学模型和求解方法较简单,是对“用数学”能力的基本训练。 综合实验以三人为一组进行,所涉及到的数学知识范围更广,建模和求解的难度更大。综合实验的题目可以小组自拟或在任课教师拟定的题目中选择。任课教师拟定的题目将于综合实验开始前一周给出。各小组在实验前要上交一份“开题报告”:写出问题的重述、模型建立和求解的思路、可能遇到的主要困难及解决方案。通过认真完成综合实验,“用数学”的能力可以有一个较大的提升。 3.课程与其他课程的关系: 先修课程:高等代数I、高等代数II、空间解析几何、数学分析I、数学分析II、数学实验基础;常微分方程;计算方法(或数值分析、数值代数); 并行课程:概率论等; 后置课程:数学模型;数学建模实践 二、课程目标 本课程的目标是为大二数学类专业学生提供用数学知识解决实际问题的系统训练。 到课程结束时,学生应能: (1)对简单的实际问题建立数学模型; (2)采用适当的数学方法,用MA TLAB软件求解模型,并根据计算结果对模型进行评价和改进; (3)具备初步的科研写作能力:学会如何将问题、模型、解决思路、求解方法、计算结果和结论简洁、清晰、严谨地呈现; (4)针对难度较高的实际问题通过小组成员的独立思考、相互合作与激励,共同解决。提高沟通交流能力,促进相互学习,加深对有关数学知识的理解,进一步提升用数学知识和MATLAB软件解决实际问题的能力。 三、学习要求 要完成所有的课程任务,学生必须: (1)按时上课,认真听讲,积极参与课堂讨论、随堂练习和测试; - 6 -

数值计算方法I上机实验考试题

数值计算方法I 上机实验考试题(两题任选一题) 1.小型火箭初始质量为900千克,其中包括600千克燃料。火箭竖直向上发射时燃料以15千克/秒的速率燃烧掉,由此产生30000牛顿的恒定推力.当燃料用尽时引擎关闭。设火箭上升的整个过程中,空气阻力与速度平方成正比,比例系数为0.4(千克/米).重力加速度取9.8米/秒2. A. 建立火箭升空过程的数学模型(微分方程); B. 求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时间和高度. 2.小型火箭初始质量为1200千克,其中包括900千克燃料。火箭竖直向上发射时燃料以15千克/秒的速率燃烧掉,由此产生40000牛顿的恒定推力.当燃料用尽时引擎关闭。设火箭上升的整个过程中,空气阻力与速度平方成正比,比例系数记作k ,火箭升空过程的数学模型为 0)0(,0,01222==≤≤-+?? ? ??-==t dt dx x t t mg T dt dx k dt x d m 其中)(t x 为火箭在时刻t 的高度,m =1200-15t 为火箭在时刻t 的质量,T (=30000牛顿)为推力,g (=9.8米/秒2)为重力加速度, t 1 (=900/15=60秒)为引擎关闭时刻. 今测得一组数据如下(t ~时间(秒),x ~高度(米),v ~速度(米/秒)): 现有两种估计比例系数k 的方法: 1.用每一个数据(t,x,v )计算一个k 的估计值(共11个),再用它们来估计k 。 2.用这组数据拟合一个k . 请你分别用这两种方法给出k 的估计值,对方法进行评价,并且回答,能否认为空气阻力系数k=0.5(说明理由).

计算方法第二章方程求根上机报告

实验报告名称 班级:学号:姓名:成绩: 1实验目的 1)通过对二分法与牛顿迭代法作编程练习与上级运算,进一步体会二分法与牛顿迭代法的不同特点。 2)编写割线迭代法的程序,求非线性迭代法的解,并与牛顿迭代法。 2 实验内容 用牛顿法和割线法求下列方程的根 x^2-e^x=0; x*e^x-1=0; lgx+x-2=0; 3实验步骤 1)根据二分法和牛顿迭代法,割线法的算法编写相应的求根函数; 2)将题中所给参数带入二分法函数,确定大致区间; 3)用牛顿迭代法和割线法分别对方程进行求解; 3 程序设计 牛顿迭代法x0=1.0; N=100; k=0; eps=5e-6; delta=1e-6; while(1) x1=x0-fc1(x0)/fc2(x0); k=k+1; if k>N disp('Newmethod failed')

break end if(abs(x1-x0)=delta) c=x1; x1=cutnext(x0,x1); x0=c; %x0 x1μYí?μ?μ?x1 x2 è?è?±£′??úx0 x1 end k=k+1; if k>N disp('Cutline method failed') break; end if(abs(x1-x0)

数值分析上机实验报告

数值分析上机实验报告

《数值分析》上机实验报告 1.用Newton 法求方程 X 7-X 4+14=0 在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据: 设函数在有限区间[a ,b]上二阶导数存在,且满足条件 {}α?上的惟一解在区间平方收敛于方程所生的迭代序列 迭代过程由则对任意初始近似值达到的一个中使是其中上不变号 在区间],[0)(3,2,1,0,) (') ()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20 )()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f a b c f x f b a x f b f x f k k k k k k ==- ==∈≤-≠>+ 令 )9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3 2 2 5 333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f 故以1.9为起点 ?? ?? ? ='- =+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码: #include #include main() {double x2,f,f1; double x1=1.9; //取初值为1.9 do {x2=x1; f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;} while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);} 1.3 运行结果: 1.4 MATLAB上机程序 function y=Newton(f,df,x0,eps,M) d=0; for k=1:M if feval(df,x0)==0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e<=eps&&abs(feval(f,x1))<=eps d=1;break end end

偏微分方程数值解课程的思索

科技信息 SCIENCE &TECHNOLOGY INFORMATION 2012年第9期偏微分方程(PDE )是众多描述物理,化学和生物现象的数学模型的基础,其最新应用已经扩展到经济,金融预测,图像处理等很多领域。要通过PDE 模型研究这些问题,就需要求解PDE 方程,但是绝大多数微分方程特别是偏微分方程,很难得到其解析形式的解。我们希望能够借助于计算机采用数值方法求得偏微分方程的近似解,这就是《偏微分方程数值解》课程的主要内容。 《偏微分方程数值解》是信息与计算科学专业的一门专业课,它与《数值代数》,《数值逼近》一起构成信息与计算科学专业信息与计算方向的核心课程,在专业培养中占有非常重要的地位。随着计算机技术的飞速发展,偏微分方程数值解得到了前所未有的发展和应用,与此同时也暴露了《偏微分方程数值解》课程传统教学中的很多不足之处,这使得该门课程在教学上有很多地方需要调整。 笔者长年教授《偏微分方程数值解》课程,在该门课程的教学改革方面做了一些思索和尝试,主要包括改革教学方法,更新教学模式,加强介绍背景知识,融入数学建模思想,教学与科研相结合,教学与计算软件相结合,增设实验课,改革考核方式等。 1改革教学方法,更新教学模式 由于数学课程大多理论性较强,趣味性较弱,为了激发学生学习兴趣,在教学过程中,我们采用启发式、讨论式等多种教学方法,营造良好的课堂气氛,加强师生之间的交流,引导学生独立思考,强化科学思维的训练。在教学内容方面,不光教授公式推导,定理证明,同时注重算法思想的讲解和程序设计的讲解,同时安排一定课时的习题课,讲解典型习题和对每章进行总结。 由于《偏微分方程数值解》涉及较多的概念、公式和定理,大多数老师仍以传统的课堂教学为主,而少数年轻教师则喜欢用多媒体课件教学。传统的教学方法,虽然受到的批评最多,但也是用得最多,最能让大家普遍接受的一种方法,在算法推导、理论分析等方面,采用传统的板书讲解能更好地引导学生去感受和思考数学逻辑的过程以及创造性的思维过程,加深对数学理论的理解和认识,培养学生的逻辑和思维能力。而在讲述背景知识,算法的应用,算法的程序实现时候最好用多媒体课件进行演示。多媒体课件可以让学生更直观,更全面的理解算法的应用,另外使用多媒体课件还可以节省大段公式的板书时间,图示清楚、准确。但是如果全部使用多媒体课件上课,容易加快教学速度,淡化数学公式的推导以及定理的证明过程,不利于培养学生的数学思维能力。所以,我们认为需要将传统的教学方法和现代的教学手段结合起来,充分发挥各自的优势,在传统教学中穿插多媒体课件,根据教学内容选择合适的教学手段。 2加强知识背景的介绍,融入数学建模思想 《偏微分方程数值解》是理论知识与实际应用之间的桥梁,为学生使用计算机解决科学与工程中的实际问题打下良好的理论基础和应用基础。传统教学以分析,证明,推导为主,重理论,轻应用,缺少偏微分方程产生的实际背景的介绍和应用数值解的方法解决实际问题的实例。因此,我们在教授该课程的时候,注重与数学建模思想相结合,从实际问题出发,建立相应的偏微分方程模型,这样,学生就知道为什么要研究偏微分方程,偏微分方程能解决什么样的实际问题。 例如,我们考虑有衰减的扩散问题:有一个扩散源,某物质从此扩散源向四周扩散,沿x,y,z 三个方向的扩散系数分别为常数,衰减使质量的减少与浓度成正比,扩散前周围空间此物质的浓度为0,估计物质的分布。我们引导学生运用所学过的微积分的思想以及相应的物理知识,对这一问题进行建模,可以得到如下的模型: 鄣u =a 2鄣2 u 鄣x +b 2鄣2 u 鄣y +c 2鄣2 u 鄣z -k 2u 上述方程是常系数线性抛物型方程,它就是有衰减的扩散过程的数学模型。有了这样的铺垫,学生知道了扩散问题的数学模型就是抛物型方程,当然类似的环境污染,疾病流行等与扩散有关的实际问题可以用抛物型方程来描述,很自然的,接下来的问题就是如何求解上面的抛物型方程,学生的学习热情自然就提高了。 3教学与科研相结合 随着计算技术和计算机科学的发展,偏微分方程数值解法的内涵也在不断扩大,我们在讲授《偏微分方程数值解》课程中引进近年来最新的理论和最新的方法,这样可以开阔学生的视野,激发学生的学习情趣,锻炼学生的自学能力。例如我们除了介绍有限差分法,有限元法,有限体积法等经典的具有一般性的方法,还介绍了多重网格法。由于近些年来,人们将辛方法应用于哈密顿常微分方程系统以及推广应用于微分方程的兴趣日益增长,我们也简单介绍了这一主题,并且用这个思想去分析逼近波动方程的交错蛙跳格式。在讲授方法的同时,还注意介绍这些方法的发展历史,设计思想和理论依据,并给出了相当丰富的参考文献,让基础好的同学自己去挖掘感兴趣的问题。承担课题的老师,可以把自己课题中与此课程相关的小问题拿出来供有兴趣的同学琢磨,有助于锻炼学生的科研能力。 4教学与计算软件相结合 由Mathworks 公司推出的MATLAB 软件,现在已经发展成功能强大,适合科学和工程计算的软件,使用MATLAB 编程,语言简洁,数据处理方便,具有强大的数值计算功能和图形展示功能,因此,将MATLAB 融入偏微分方程数值解的教学,更能与时俱进,更有效地提高教学质量。 MATLAB 采用有限元的方法求解各种PDE ,它提供了两种方法解决PDE 问题,一是pdepe 函数,它可以求解一般的PDEs ,具有较大的通用性,但只支持命令行形式的调用。二是PDE 工具箱,可以求解特殊PDE 问题,但有较大的局限性。只能求解二阶PDE 问题,不能求解偏微分方程组。PDE 工具箱支持命令行形式求解,但需要记住大量命令及其调用格式。不过好在它提供了GUI 界面,可以把我们从复杂的编程中解脱出来,还有很好的动画演示功能,尤其适合刚入门的学生。 我们在授课过程中精选与生活,生产密切相关的应用实例,鼓励学生自己动手建立模型,应用数学软件和所学的知识求解模型。例如考虑一个带有矩形孔的金属板上的热传导问题。板的左边保持在100℃,板的右边热量从板向环境空气定常流动,其他边及内孔边界保持绝缘。初始t=t 0时板的温度为0。对于这样的一个实际问题,我们先应用所学的数学分析和数学建模知识,对原问题建立如下偏微分方程模型: 鄣u 鄣t -△u =0,u =100, 鄣u =-1,鄣u =0,u|t=t 0 =0△△△△△△△△△△△△△△ △. 不妨设界顶点坐标为(-0.5,-0.8),(0.5,-0.8),(0.5,0.8),(-0.5,0.8)。内边界顶点坐标为(-0.005,-0.4),(0.05,-0.4),(0.05,0.4),(-0.05,0.4)。对于这样的一个抛物型方程,我们设计其数值计算方法,然后分别用 偏微分方程数值解课程的思索 邹永魁 (吉林大学数学与科学学院吉林 长春 130012) 【摘要】探讨《偏微分方程数值解》课程教学改革的思考与体会,主要包括教学方法和教学模式的改革,加强背景知识的介绍,将科研前沿带入课堂,将MATLAB 融入教学以及考核方式的改革等。 【关键词】偏微分方程数值解;教学改革;MATLAB ;综合评价体系○高校讲坛○200

《数值计算方法》上机实验报告

《数值计算方法》上机实验报告华北电力大学 实验名称数值il?算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一. 各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程 *对于非线性方程,若已知根的一个近似值,将在处展开成一阶 xxfx ()0, fx ()xkk 泰勒公式 "f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2! 忽略高次项,有 ,fxfxfxxx 0 ()()(),,, kkk 右端是直线方程,用这个直线方程来近似非线性方程。将非线性方程的 **根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkk fx 0 fx 0 0,

解出 fX 0 *k XX,, k' fx 0 k 水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ik fx ()k 八XX, Ikk* fx()k 这就是牛顿迭代公式。 ,2,计算机程序框图:,见, ,3,输入变量、输出变量说明: X输入变量:迭代初值,迭代精度,迭代最大次数,\0 输出变量:当前迭代次数,当前迭代值xkl ,4,具体算例及求解结果: 2/16 华北电力大学实验报吿 开始 读入 l>k /fx()0?,0 fx 0 Oxx,,01* fx ()0 XX,,,?10 kk, ,1,kN, ?xx, 10 输出迭代输出X输出奇异标志1失败标志

,3,输入变量、输出变量说明: 结束 例:导出计算的牛顿迭代公式,并il ?算。(课本P39例2-16) 115cc (0), 求解结果: 10. 750000 10.723837 10. 723805 10. 723805 2、列主元素消去法求解线性方程组,1,算法原理: 高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角 3/16 华北电力大学实验报告方程组求解。 列选主元是当高斯消元到第步时,从列的以下(包括)的各元素中选出绝 aakkkkkk 对值最大的,然后通过行交换将其交换到的位置上。交换系数矩阵中的 两行(包括常ekk 数项),只相当于两个方程的位置交换了,因此,列选主元不影响求解的结 ,2,计算机程序框图:,见下页, 输入变量:系数矩阵元素,常向量元素baiji 输出变量:解向量元素bbb,,12n

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

数值线性代数二版徐树方高立张平文上机习题第三章实验报告

- 1 - 第三章上机习题 用你所熟悉的的计算机语言编制利用QR 分解求解线性方程组和线性最小二乘问题的 通用子程序,并用你编制的子程序完成下面的计算任务: (1)求解第一章上机习题中的三个线性方程组,并将所得的计算结果与前面的结果相比较,说明各方法的优劣; (2)求一个二次多项式+bt+c y=at 2 ,使得在残向量的2范数下最小的意义下拟合表3.2中的数据; (3)在房产估价的线性模型 111122110x a x a x a x y ++++= 中,1121,,,a a a 分别表示税、浴室数目、占地面积、车库数目、房屋数目、居室数目、房龄、建筑类型、户型及壁炉数目,y 代表房屋价格。现根据表3.3和表3.4给出的28组数据,求出模型中参数的最小二乘结果。 (表3.3和表3.4见课本P99-100) 解 分析: (1)计算一个Householder 变换H : 由于T T vv I ww I H β-=-=2,则计算一个Householder 变换H 等价于计算相应的v 、β。其中)/(2,||||12v v e x x v T =-=β。 在实际计算中, 为避免出现两个相近的数出现的情形,当01>x 时,令2 12221||||) (-x x x x v n +++= ; 为便于储存,将v 规格化为1/v v v =,相应的,β变为)/(221v v v T =β 为防止溢出现象,用∞||||/x x 代替 (2)QR 分解: 利用Householder 变换逐步将n m A n m ≥?,转化为上三角矩阵A H H H n n 11 -=Λ,则有

?? ? ???=0R Q A ,其中n H H H Q 21=,:),:1(n R Λ=。 在实际计算中,从n j :1=,若m j <,依次计算)),:((j m j A x =对应的)1()1()~ (+-?+-k m k m j H 即对应的j v ,j β,将)1:2(+-j m v j 储存到),:1(j m j A +,j β储存到)(j d ,迭代结束 后再次计算Q ,有??? ? ?? ??=-~001 j j j H I H ,n H H H Q 21=(m n =时1-21n H H H Q =) (3)求解线性方程组b Ax =或最小二乘问题的步骤为 i 计算A 的QR 分解; ii 计算b Q c T 11=,其中):1(:,1n Q Q = iii 利用回代法求解上三角方程组1c Rx = (4)对第一章第一个线性方程组,由于R 的结果最后一行为零,故使用前代法时不计最后一行,而用运行结果计算84x 。 运算matlab 程序为 1 计算Householder 变换 [v,belta]=house(x) function [v,belta]=house(x) n=length(x); x=x/norm(x,inf); sigma=x(2:n)'*x(2:n); v=zeros(n,1); v(2:n,1)=x(2:n); if sigma==0 belta=0; else alpha=sqrt(x(1)^2+sigma); if x(1)<=0 v(1)=x(1)-alpha; else v(1)=-sigma/(x(1)+alpha); end belta=2*v(1)^2/(sigma+v(1)^2); v=v/v(1,1); end end

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

计算方法上机实习题大作业(实验报告).

计算方法实验报告 班级: 学号: 姓名: 成绩: 1 舍入误差及稳定性 一、实验目的 (1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; (2)通过上机计算,了解舍入误差所引起的数值不稳定性 二、实验内容 1、用两种不同的顺序计算10000 21n n -=∑,分析其误差的变化 2、已知连分数() 1 01223//(.../)n n a f b b a b a a b =+ +++,利用下面的算法计算f : 1 1 ,i n n i i i a d b d b d ++==+ (1,2,...,0 i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f 3、给出一个有效的算法和一个无效的算法计算积分 1 041 n n x y dx x =+? (0,1,...,1 n = 4、设2 2 11N N j S j == -∑ ,已知其精确值为1311221N N ?? -- ?+?? (1)编制按从大到小的顺序计算N S 的程序 (2)编制按从小到大的顺序计算N S 的程序 (3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数 三、实验步骤、程序设计、实验结果及分析 1、用两种不同的顺序计算10000 2 1n n -=∑,分析其误差的变化 (1)实验步骤: 分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h (2)程序设计: a.顺序计算

#include #include void main() { double sum=0; int n=1; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0)printf("sun[%d]=%-30f",n,sum); if(n>=10000)break; n++; } printf("sum[%d]=%f\n",n,sum); } b.逆序计算 #include #include void main() { double sum=0; int n=10000; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0) printf("sum[%d]=%-30f",n,sum); if(n<=1)break; n--; } printf("sum[%d]=%f\n",n,sum); } (3)实验结果及分析: 程序运行结果: a.顺序计算

相关主题