搜档网
当前位置:搜档网 › 单克隆抗体人源化的进展及应用

单克隆抗体人源化的进展及应用

单克隆抗体人源化的进展及应用
单克隆抗体人源化的进展及应用

人源化抗体

人源化抗体 人源化抗体主要指鼠源单克隆抗体通过基因克隆及DNA重组技术等进行改造,重新表达的抗体,其大部分氨基酸序列为人源序列取代,基本保留亲本鼠单克隆抗体的亲和力和特异性,同时又降低了其异源性,有利应用于人体。然而,即使通过嵌合抗体技术把C区替换,人源化抗体V区的互补决定区(CDR)和框架区(FR)也仍有可能诱导相当强的抗体反应。因此,研究者开始着手将部分CDR和FR区也改造为人抗体序列,以便能进一步提高抗体的人源化程度,降低药物抗体反应发生的可能。经过数年的研究和改进,人们已经创建并完善了以重构抗体、表面重塑抗体、去免疫化抗体和链替换抗体等为代表的多种人源化抗体技术。 人源化抗体技术 重构抗体 重构抗体是由异源抗体中和抗原结合相关的残基与人抗体重新剪接构建的抗体,包括互补决定区移植、部分互补决定区移植和特定决定区转移。构建重构抗体的流程:①克隆分析亲本鼠单抗的V区基因,确定CDR和FR区;②通过数据库检索比对及辅助计算机分子模拟等,找出有最大同源性的人FR 区模板;③确定需要保留和改变的关键残基,经基因合成、真核表达、检测实际结合效果后,对需要保留和改变的关键残基进行相应的修正;④最终获得高亲和力的、具有与亲本鼠单抗相同抗原结合表位的人源化抗体。 表面重塑抗体 表面重塑抗体是通过对异源抗体表面氨基酸残基进行人源化改造而获得的人源化抗体。表面重塑抗体的库构建流程:①首先在结构数据库中寻找鼠源的最大同源性蛋白,利用相应的软件并采用分子三维结构分析的方式确定表面残基的位置;②在公用数据库中寻找最大同源性的人抗体序列,在相应的表面残基位置上尝试替换为相应的人抗体残基(替换中要兼顾考虑被替换残基的侧链匹配情况和与CDR是否在空间上紧邻);③确定替换后的残基种类,即可采用定点突变或基因合成等方法获得

抗HER2人源化单克隆抗体Herceptin的专利剖析

抗HER2人源化单克隆抗体Herceptin的专利剖析供稿人:彭建新供稿时间:2004-12-30 关键字:HER2 单克隆抗体乳腺癌 乳腺癌严重地威胁着人们的健康,几乎所有人群的乳腺癌发病率都在上升,平均每年约升高1%,估计全球每年发病患者超过100万(cancer statistics 2002 cancer J Clin 2002,52(1):23)。 c-erbB2/ HER-2/ neu 编码产物p185erbB2是具有酪氨酸激酶活性的跨膜糖蛋白,属于表皮生 长因子受体(EGFR) 家族成员。C-erbB2/ HER-2/ neu 基因的扩增和p185erbB2蛋白的过度表 达见于多种恶性肿瘤,包括乳腺癌、卵巢癌、结肠癌、子宫内膜癌、胃癌、前列腺癌和肺腺 癌。 p185erbB2过度表达提示肿瘤预后差,如转移、复发、易耐药及存活期短等。p185erbB2作为肿瘤 抗原,是一个理想的肿瘤治疗靶点。美国食品及药物管理局( FDA) 已于1998 年10 月正式 批准将一株抗p185erbB2人源化抗体Trastuzumab (商品名Herceptin,Genentech/罗氏公 司)用于临床治疗p185erbB2高表达的转移性乳腺癌。 Genentech公司就Herceptin产品相关的专利申请了如下保护: (1)一种可与HER2受体胞外区特异性结合、抑制肿瘤细胞生长的单克隆抗体及该其在在治 疗过量表达HER2受体的癌症病人方面的应用。 (2)一种可与HER2受体胞外区特异性结合、使过量表达HER2受体的肿瘤细胞对细胞毒性 因子更敏感的单克隆抗体。 (3)治疗过量表达HER2受体的癌症病人的方法,包括给上述患者服用有效量的细胞毒性因 子和能与HER2受体结合、使过量表达HER2受体的肿瘤细胞对细胞毒性因子更敏感的抗体, 以消除或减小患者的肿瘤。 (4)细胞毒性因子和抗体抗原结合残基在上述权利要求方面的应用。 Genentech公司就与Herceptin产品相关的技术已在美国、日本、加拿大申请了专利保护, 具体的专利为:JP3502885、US5677171、US5720937、US5720954、US5725856、US5770195、 US5772997、JP11255666、JP11335297、JP3040121、CA1341082、US6165464、US6387371、 US6399063、US2002192211。 Genentech公司就抗HER2抗体的最新专利申请为(2004年公开的,以Her2 or c-erbB2 or c-erbB-2 or p185作为主题词):

抗体技术研究进展_人源抗体技术

第33卷第5期暨南大学学报(自然科学版) Vol.33No.52012年10月 Journal of Jinan University (Natural Science ) Oct.2012 [收稿日期]2012-03-26 [基金项目]国家自然科学基金项目(81202449);广东省科技计划项目(201213010300016)[作者简介]向军俭(1952-),男,教授,研究方向:抗体技术与应用 抗体技术研究进展(1):人源抗体技术 向军俭,童吉宇,王 宏 (广东省分子免疫与抗体工程重点实验室;暨南大学抗体工程研究中心,广东广州510632) [摘 要]100年来,抗体的发现为人类疾病诊断、治疗和有害物质的分析检测发挥了巨大的作用.特别是1975年 发明了单克隆抗体技术以及1986年发明基因工程抗体技术,为研制特异性高、大量均一并大量生产抗体成为了现实,也使嵌合抗体、全人源抗体造福人类并产生巨大的经济效益.为了克服鼠源性单抗可诱发人抗鼠抗体(HA-MA ),通过嵌合抗体、改构抗体、小分子抗体等技术和改良抗体与抗原结合的特异性,已成为抗体技术研究的主要发展方向,本文主要就抗体人源化及抗体分子小型化,抗体功能复合化两个部分的进展进行综述.[关键词]抗体; 人源化抗体; 基因工程抗体; 抗体库技术; 小分子抗体 [中图分类号]R392.11 [文献标志码]A [文章编号]1000-9965(2012)05-0524-07 Recent advances in antibody technique (1):Humanized antibody technique XIANG Jun-jian ,TONG Ji-yu ,WANG Hong (Guangdong province Key laboratory of Molecule Immunology and Antibody Engineering ,Jinan University ,Guangzhou 510632,China ) [Abstract ]In the past 100years ,antibody has played a significant role in human disease diagnosis and treatment and the analysis of detrimental substances.Especially ,the inventions of both monoclonal antibody technique in 1975and genetic engineering technique in 1986,on one hand ,have made it possi-ble for producing abundant antibodies of high specificity and homogeneity ,on the other hand ,help chim-eric antibody and fully human antibody bring benefit to human beings.To overcome the problem that mu-rine monoclonal antibody may induce HAMA ,technologies such as chimeric antibody ,reshaping antibod-y ,small-molecule antibody and improvements of the specificity between antibody and antigen have be-come the main trend when developing antibody technique.This review gives an overview on antibody hu-manization ,small-molecule antibody and composite function of antibody.[Key words ]antibody ;humanization antibody ;genetic engineering antibody ; antibody library technique ;small-molecule antibody 19世纪末抗体首次被发现,其后很长一段时间内人们都以抗原免疫动物获得抗血清(多克隆抗 体).1975年, K hler 和Milstein 建立了B 淋巴细胞杂交瘤技术,为大量生产均一、特异性强的单克隆抗体提供了技术支持并使免疫学发生一场革命,有力 地促进诊断与治疗性抗体的发展.然而由于单克隆 抗体大部分为鼠源性抗体,在临床治疗中可在人体 内可诱发人抗鼠抗体(HAMA )[1] ,限制了单克隆抗体在临床治疗中的应用.随着基因工程技术的发展和对各类抗体结构和氨基酸序列、及其变异种属和

重组抗人PD-1人源化单克隆抗体说明书

K E X I N科昕生物 北京科昕生物科技有限公司 重组抗PD-1全人单克隆抗体(细胞培养级别) Recombinant anti-Human PD-1 Functional Monoclonal Antibody (Cell Culture Grade) 产品说明: PD1 全人单抗可以有效地封闭PDL1 和PD1 的结合,并且不会引起 HAMA 反应(人抗鼠抗体反应)。PD1 的抗体已作为广谱性抗肿瘤药物被接受,也可能成为最有效地平衡细胞治疗的工具。PD1 是激活的T细胞、B 细胞以及髓样细胞膜表面重要的免疫调控受体。与配体PDL1和PDL2 结合,抑制T 细胞增殖和细胞因子分泌,影响细胞治疗的效果。近来研究发现,DC 细胞含有PDL1,DC‐CIK 联合治疗时,PDL1 可能是潜在的细胞治疗的负调节因素。PD‐1 主要在活化的T、B 和NK 等细胞上呈诱导性表达,PD‐1 有PD‐L1(B7‐H1,CD274)和PD‐L2(B7‐DC,CD273)两个配体。PD‐L1 广泛组成性表达于多种实质器官组织、免疫细胞以及多种类型的肿瘤细胞上,而PD‐L2 仅表达于活化的巨噬细胞、树突状细胞、骨髓来源的基质细胞和个别肿瘤细胞株。PD‐1 随T 细胞活化程度逐步上调表达,与PD‐L 结合后引发抑制信号的产生,致使效应性T 细胞失能并及时进入凋亡。 本产品系由单克隆细胞株表达并高度纯化后的抗体经超滤换液分装制成。 本产品为无菌澄明液体,由含有 10mM PBS pH为 7.2的蛋白溶液经0.2um过滤后分装。 规格参数: 货号:kx10-1 体积:50ul/500ul/1ml 浓度:1mg/ml. 质量控制: 纯度:经高效液相色谱(SEC-HPLC)和SDS-PAGE检测,纯度大于98.0%. 内毒素:小于1EU/mg. 使用说明: 建议长期-80℃分装保存,无菌条件下操作,避免污染。 具体用量需通过预实验确定。 1

人源化单克隆抗体的构建技术

人源化单克隆抗体的构建技术 摘要:单克隆抗体从问世到现在已广泛应用于临床,经历了一段曲折的发展历程。其中人源化抗体是一个重要的里程碑,并伴随着一系列重大的技术革新,如PCR 技术、抗体库技术、转基因动物等。抗体技术从最初的嵌合抗体、改型抗体逐渐发展为今天的人源化抗体。本文综述了人源化单克隆抗体的构建技术。 关键词:人源化,单克隆抗体,构建 从20世纪70年代英国学者Milstein和德国学者Kohler利用细胞融合技术首次成功地制备出单克隆抗体以来[1],单克隆抗体在医学、生物学、免疫学等诸多学科中发挥了巨大的作用。单克隆抗体可用于分析抗原的细微结构及检验抗原抗体未知的结构关系,还可用于分离、纯化特定分子抗原,甚至用于临床疾病的诊断和治疗等。然而,单克隆抗体技术在临床治疗应用中的进展却很慢,主要原因是目前单克隆抗体大多是鼠源性的,而鼠源性单克隆抗体应用于人体治疗时存在诸多问题:一是不能有效地激活人体中补体和Fc受体相关的效应系统;二是被人体免疫系统所识别,产生人抗鼠抗体(human antigen mouse antibody,HAMA);三是在人体循环系统中被很快清除掉。因此,在保持对特异性抗原表位高亲和力的基础上进行人源化改造,减少异源抗体的免疫原性,成为单克隆抗体研究的重点[2]。随着对抗体基因的研究和DNA分子重组技术的应用,通过基因改造获得特异性抗体成为可能。1989年Huse等首次构建了抗体基因库,从而使抗体的研究从细胞水平进入到分子水平,并推动了第3代抗体—基因工程抗体技术的发展。至此,抗体的产生技术经历了三个阶段:经典免疫方法产生的异源多克隆抗体;细胞工程产生的鼠源单克隆抗体及基因工程产生的人源单克隆抗体。 人源化抗体就是指抗体的可变区部分(即Vh和Vl区)或抗体全部由人类抗体基因所编码。人源化抗体可以大大减少异源抗体对人类机体造成的免疫副反应。人源化抗体的形式也从最初的嵌合抗体、改型抗体等逐步发展为今天的人源化抗体。 1 嵌合抗体的构建 抗体分子与抗原结合特异性由L链和H链V区决定,抗体C区可作为异源蛋白诱发免疫反应,产生抗小鼠抗体(human anti-mouse antibody,HAMA)。将小鼠单克隆

抗体药物的研究现状和发展趋势

一、研究现状 1.抗体研究发展历程 抗体作为药物用于人类疾病的治疗拥有很长历史。但整个抗体药物的发展却并非一帆风顺,而是在曲折中前进。第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病的早期被动免疫治疗。虽然具有一定的疗效,但异源性蛋白引起的较强的人体免疫反应限制了这类药物的应用,因而逐渐被抗生素类药物所代替。第二代抗体药物是利用杂交瘤技术制备的单克隆抗体及其衍生物。单克隆抗体由于具有良好的均一性和高度的特异性,因而在实验研究和疾病诊断中得到了广泛应用。 单抗最早被用于疾病治疗是在1982年,美国斯坦福医学中心Levy等人利用制备的抗独特型单抗治疗B细胞淋巴瘤,治疗后患者病情缓解,瘤体消失,这使人们对抗体药物产生了极大的期望。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时的抗排斥反应。此时抗体药物的研制和应用达到了顶点。随着使用单抗进行治疗的病例数的增加,鼠单抗用于人体的毒副作用也越来越明显。同时一些抗肿瘤单抗未显示出理想效果。人们的热情开始下降。到20世纪90年代初,抗内毒素单抗用于治疗脓毒败血症失败使得抗体药物的研究进入低谷。由于大多数单抗均为鼠源性,在人体内反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。因此,一方面在给药途径上改进,如使用片段抗体、交联同位素、局部用药等使鼠源性抗体用量减少,也增强了疗效;另一方面,积极发展基因工程抗体和人源抗体。 近年来,随着免疫学和分子生物学技术的发展以及抗体基因结构的阐明,DNA 重组技术开始用于抗体的改造,人们可以根据需要对以往的鼠抗体进行相应的改造以消除抗体应用不利性状或增加新的生物学功能,还可用新的技术重新制备各种形式的重组抗体。抗体药物的研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术的改造,可以

人源化抗体

人源化抗体 中文名称:人源化抗体 英文名称:humanized antibody 其他名称:互补决定区移植抗体 定义:将小鼠抗体分子的互补决定区序列移植到人抗体可变区框架中而制成的抗体。此抗体可明显降低由鼠源单克隆抗体所致的人抗鼠抗体反应。 概述 人源化抗体就是指抗体的可变区部分(即Vh和Vl区)或抗体所有全部由人类抗体基因所编码。人源化抗体可以大大减少异源抗体对人类机体造成的免疫副反应。 人源化抗体包括嵌合抗体、改型抗体和全人源化抗体等几类。 嵌合抗体 嵌合抗体是利用DNA重组技术,将异源单抗的轻、重链可变区基因插入含有人抗体恒定区的表达载体中,转化哺乳动物细胞表达出嵌合抗体,这样表达的抗体分子中轻重链的V区是异源的,而C区是人源的,这样整个抗体分子的近2/3部分都是人源的。这样产生的抗体,减少了异源性抗体的免疫原性,同时保留了亲本抗体特异性结合抗原的能力。 改型抗体 改型抗体也称CDR植入抗体(CDRgraftingantibody),抗体可变区的CDR是抗体识别和结合抗原的区域,直接决定抗体的特异性。将鼠源单抗的CDR移植至人源抗体可变区,替代人源抗体CDR,使人源抗体获得鼠源单抗的抗原结合特异性,同时减少其异源性。然而,抗原虽然主要和抗体的CDR接触,但FR区也常参作用,影响CDR的空间构型。因此换成人源FR区后,这种鼠源CDR和人源FR相嵌的V区,可能改变了单抗原有的CDR构型,结合抗原的能力会下降甚至明显下降。虽然目前已能对抗体进行分子设计,在人源FR区引入鼠源FR区的某些关键残基,如配置得当,其亲和力可与原有小鼠抗体的亲和力相当,但人化抗体常达不到原有鼠源单抗的亲和力。 表面重塑抗体 表面重塑抗体是指对异源抗体表面氨基酸残基进行人源化改造。该方法的原则是仅替换与人抗体SAR差别明显的区域,在维持抗体活性并兼顾减少异源性基础上选用与人抗体表面残基相似的氨基酸替换;另外,所替换的区段不应过多,对于影响侧链大小、电荷、疏水性,或可能形成氢键从而影响到抗体互补决定区(CDR)构象的残基尽量不替换。 全人源化抗体 全人源化抗体是指将人类抗体基因通过转基因或转染色体技术,将人类编码抗体的基因全部转移至基因工程改造的抗体基因缺失动物中,使动物表达人类抗体,达到抗体全人源化的目的。

人源化单克隆抗体的研究进展

论人源化单克隆抗体的研究进展 *** (生物工程一班生命科学学院 ***大学哈尔滨 150080) 摘要:自从单克隆抗体问世至今已广泛应用与临床治疗,然而鼠源性单克隆抗体在临床治疗中会产生人抗鼠抗体反应,从而使鼠源性单克隆抗体的应用受到极大限制。随着基因工程技术和抗体工程技术的迅速发展,人源性单克隆抗体开始快速发展而逐渐代替鼠源性单克隆抗体。本文将就人源化单克隆抗体的构建以及其在临床治疗方面的应用进行综述。 关键词:单克隆抗体人源化临床治疗 Theory humanized monoclonal antibody research progress *** (The 1st class of Bioengineering , College of Life Science, *** University, Harbin, 150080) Abstract: Since the advent of monoclonal antibody has been widely applied in clinical treatment, but the mouse source sex monoclonal antibodies in clinical treatment will produce people resistance to mouse antibody response, so that the rat source sex monoclonal antibody application are highly limited. Along with the genetic engineering technology and the rapid development of antibody engineering technology, humanized sex monoclonal antibody began to rapid development and gradually replaces the rat source sex monoclonal antibody. This paper will review humanized monoclonal antibody construction and the application of clinical treatment in this article. Keywords: monoclonal antibody humanized clinical treatment 1975年。Kohler和Milstein将小鼠骨髓瘤细胞和经免疫的小鼠脾细胞融合,形成了可产生单克隆抗体的杂交瘤细胞,该细胞机能产生抗体,又可无限增殖,从而创立了单克隆抗体杂交瘤技术[1],此后单抗药物开始迅速发展并广泛应用于临床。1982年,Philip Karr 将第一株抗独特型单抗(anti- ld) 应用于B细胞淋巴瘤的临床治疗并取得成功[2],使得治疗性抗体的研究很快成为生物医药的热点,许多以单克隆抗体为研究对象的公司相继成立。然而,鼠源性单克隆抗体应用于人类有较强的免疫原性,能诱发人抗鼠抗体( Human ant-i mouse antibody, HAMA) 反应,引起强烈的免疫排斥反应[3],而且鼠源性单克隆抗体不能有效地激活人体的生物效应功能,因此限制了其临床应用。这使研究学者意识到研制鼠源性单克隆抗体人源化或完全的人源性抗体才有可能减少或避免HAMA反应并提高疗效。然而反复实验证明, 杂交瘤技术不能提供稳定分泌人抗体的细胞株。直到80年代末期,随着分子生物学研究的深入,在抗体基因工程研究领域相继出现了一

抗体人源化技术进阶之路

抗体人源化技术进阶之路 在过去的十几年中,FDA已经批准了近100种抗体用于人类的疾病治疗。抗体药物经历了最初的多克隆抗体到单抗,并最终到基因工程的三个阶段。20世纪80年代初,随着鼠单抗在临床的大量应用,人们发现异源的鼠单抗所具有的免疫原性会引起强烈的抗抗体反应(HAMA),从而使患者发生严重的过敏反应和毒副作用,使其药物失去其应有的疗效。这使得之后的研究者致力于进行人源化改造,从而避免其在人体中免疫反应。经过多年的努力,目前人们已经可以使用嵌合抗体技术、人源化抗体技术、全人抗体技术来大大降低抗体药物的HAMA反应,以满足临床的要求(图1)。 虽然嵌合抗体成功地保留了亲本小鼠抗体的特异性,降低了其免疫原性,但是V区的FR区和CDR区仍有可能诱导强烈的HAMA反应。因此V区的人源化甚至全人源势在必行。在过去的几十年中,人源化方法已经多样化,目前人们已经创建了以重构抗体、表面重塑抗体、链替换抗体为代表的多种人源化抗体技术。 图1. 抗体人源化 重构抗体技术是英国剑桥大学Winter研究小组在1986年首先发明的,经过进一步完善,目前成熟的重构抗体技术路线是分析亲本鼠单抗的V区,确定CDR区和FR区,进而通过数据库检索比对和计算机同源建模,寻找出具有最大同源性的人的FR区模板,综合考虑确定FR区需要进行回复突变的关键残基,最终获得高亲和的人源化抗

体(图2)。目前在GeneBank 和IMGT等公用数据库中收录了大量的抗体的可变区基因共寻找最佳匹配的亲本鼠单抗的人FR序列。确定需要保留和改变的关键残基目前仍然是重构抗体人源化抗体最关键也是最困难的一步,它要求我们对于抗体抗原复合物的空间结构要具有足够的知识积累。当然目前人们已经总结出了一些需要保留的重要残基的规律,包括CDR两侧保守序列,有可能直接参与抗原结合位点以及对空间结构有重要影响的残基。目前已被批准的上市的人源抗体中,基本全采用的重构抗体技术。 图2. 重构抗体技术 CDR移植产生的人源化抗体对人类的免疫原性通常比小鼠或嵌合抗体低;但是,由于CDR不是人类的,它们仍然具有免疫原性。为了克服这一问题,一些研究人员提出用特异性决定残基(SDR)移植代替CDR移植来人源化抗体。人们发现在绝大多数抗体中通常只有约30%的CDR残基直接构成抗原抗体的结合位点。与CDR移植相比,仅移植数量更少且更关键的SDR将可能取得更佳的效果,比CDR移植相比具有更低的免疫原性。 CDR移植和SDR移植均是寻找最大同源性人抗体的V区序列作为改造的模板。与此不同,Hwang和他的同事设计了一种基于CDR区域同源性的抗体人源化的新方法。与通常的CDR移植方法不同,该方法不是寻找最大同源的人抗体作为模板,而是寻找与被改造的抗体的CDR结构同源的人胚系V区基因作为模板,然后简单、快速的将鼠单

人源化抗体的研究进展

人源化抗体的研究进展 摘要:单克隆抗体的问世使得人们对于一种新的治疗疾病的药物充满期待,然而鼠源性抗体往往会受到人体免疫系统的排斥,因而抗体的人源化已成为治疗性抗体的发展趋势。用人抗体取代鼠抗体,是克服鼠单抗临床应用障碍的关键。随着分子生物学研究的深入和一些技术的突破,抗体人源化技术日益成熟。大量人源化抗体已经被广泛应用于临床试验和应用。本文主要介绍了目前人源化抗体构建的三种方法:嵌合、重构和表面重塑,并对人源化抗体的未来发展趋势进行了展望。 关键字:基因工程抗体人源化 1 基因工程抗体简介 基因工程抗体(genetically engineered antibod2ies ,GEAb)是按人工设计所重新组装的新型抗体分子,它既保留或增加了天然抗体的特异性和生物学活性,又去除或减少了无关结构,降低或基本消除抗体的免疫原性,使抗体人源化,并改善抗体的药物动力学,具有生产简单,价格低廉,容易获得稀有抗体的优点,具有广阔的临床应用前景。其主要技术原理是:首先从杂交瘤或免疫脾细胞、外周血淋巴细胞等提取mRNA,逆转录成cDNA,再经PCR分别扩增出抗体的重链及轻链基因,按一定的方式将两者连接克隆到表达载体中,并在适当的宿主细胞(如大肠杆菌、CHO细胞、酵母细胞、植物细胞及昆虫细胞等)中表达并折叠成有功能的抗体分子,筛选出高表达细胞株,再用亲和层折等手段纯化抗体片段[1]。 1984年,Morrison等首次报道人鼠嵌合抗体在骨髓瘤成功表达,标志着基因工程抗体的诞生。1986年,Jones等人源化抗体构建和表达成功。1988年,Skerra 等第一次证明抗体的F ab和F v片段可以在大肠杆菌(E。coli)中正确地装配成保持原抗体特异性的小分子抗体。1989年,Huse等用外分泌型载体构建成功小鼠抗体库,利用抗体库技术获得了全人源化的抗体。1994年,德国基因工程抗体研究小组成功地将基因工程抗体在培养细胞中表达,抗体释放到组织培养液中,获得了较高的抗体产量[2]。 抗体药物的最大特征在于它识别抗原的高度专一性。本文主要介绍人源化抗体的发展历程与研究进展。近几年来随着鼠单抗人源化技术越来越成熟大量的人源性单抗被用于临床治疗肿瘤研究,并取得一定进展,由于其具有高效、低毒、病人不易产生抗药性等优点,同时又克服鼠单抗半衰期短、反复应用会引进病人的等缺点,人源性单抗已成为继手术切除、放疗及化疗后又一治疗肿瘤的药物[3]。 2 人源化抗体的发展 早在一个世纪前,Paul Ehrlich就把抗体形容为“魔弹”,1975年杂交瘤技术建立以后,大量制备含有相同抗原决定簇的单克隆抗体成为可能,从而使“魔弹”进入了临床试验阶段[4]。1982年,当Philip Karr将第一株抗独特型单抗(anti-1d)应用于B细胞淋巴瘤的临床治疗并取得成功之后[5],治疗性抗体的研究很快成为

人源化抗人CD28单克隆抗体说明书

人源化抗人CD28单克隆抗体说明书 产品名称 通用名称:人源化抗人CD28单克隆抗体 英文名称:Humanized anti-human CD28 monoclonal antibody 适用范围 用于T淋巴细胞激活扩增,适用于直肠癌、乳腺癌、肺癌、肾癌、淋巴瘤、白血病、多发性骨髓瘤、恶性 CD28分子存在于大多数T细胞表面,被认为是一种T细胞特有的表面分子。T细胞对抗原的反应性主要 通过CD3/TCR复合物介导,但也有赖于T细胞表面其他分子的协同。T细胞可通过CD3/TCR、CD2和 CD28等多种途径被有效激活。从外周血、骨髓或脐血中分离出的单个核细胞在CD3、CD28单克隆抗体和 多种细胞因子存在的条件下,经过一定时间培养可以获得具有肿瘤细胞杀伤活性的CIK(Cytokine-induced Killer)细胞。 功能参数 使用说明 可溶法:推荐使用浓度为400ng/ml,在该浓度条件下细胞可获得充分的活化和刺激,细胞扩增倍数和最终的CD3+CD56+双阳率有明显提高。 包被法: 10mL PBS缓冲液(5ug/mL anti-human CD28)铺T75方瓶置于4℃过夜。使用前去除PBS缓冲液,生理盐水洗涤三次。 参考文献 1、Daniel Teschner *, Gregor Wenzel *, Eva Distler *, Elke Schnürer *, Matthias Theobald *, AxlA. Neurauter ?, Karoline Schjetne ? and Wolfgang Herr *. In vitro stimulation and expansion of human tumor- reactive CD8+cytotoxic T-lymphocytes by anti-CD3/CD28/CD137 magnetic beads .Scandinavian Journal of Immunology 2011, 74(2):155–164 2、D Sangiolo?, G Mesiano, F Carnevale-Schianca, W Piacibello, M Aglietta & A Cignetti . Cytokine induced killer cells as adoptive immunotherapy strategy to augment graft versus tumor after hematopoietic cell transplantation. Expert Opin. Biol. Ther. (2009) 9(7):831-840 3、RENATE SIEFKEN, ROLAND KURRLE,* AND REINHARD SCHWINZER.CD28-Mediated Activation of Resting Human T Cells without Costimulation of the CD3/TCR Complex. CELLULAR IMMUNOLOGY 176, 59–65 (1997)

人源化抗体发展及应用概略

人源化抗体发展及应用概略 【摘要】伴随着一系列重大生物技术(如PCR技术、抗体库技术、转基因动物技术等)的发展,抗体技术从最初的嵌合抗体、改型抗体逐渐发展为今天的人源化抗体。人源化抗体在治疗肿瘤、自身免疫性疾病、器官移植等方面已经显示出独特的优势和良好的应用前景。本文介绍了人源化抗体的构建及其表达系统,并对其临床应用进行了展望。 【关键词】嵌合抗体;人源化抗体;噬菌体展示技术;转基因技术 【Abstract】With the development of a series of substantial biotechnologies, such as PCR, phage display and transgenic animal, antibody techniques have developed from chimeric antibody and reshaped antibody to humanized antibody. As therapeutic antibodies, the humanized antibodies have been showed specific advantage and application prospect for cancer therapy,autoimmudisease,transplant rejection.The humanized antibody construction and expressing system, also foresaw tendency of humanized antibodies in clinical application have summarized in this paper. 【key word】chimeric antibodies; humanized antibodies; phage display; trangenic technology 引文: 从20世纪70年代英国学者Milstein和德国学者Kohler利用细胞融合技术首次成功地制备出单克隆抗体以来,单克隆抗体在医学、生物学、免疫学等诸多学科中发挥了巨大的作用。单克隆抗体可用于分析抗原的细微结构及检验抗原抗体未知的结构关系,还可用于分离、纯化特定分子抗原,甚至用于临床疾病的诊断和治疗等。然而,单克隆抗体技术在临床治疗应用中的进展却很慢,主要原因是目前单克隆抗体大多是鼠源性的,而鼠源性单克隆抗体应用于人体治疗时存在诸多问题:一是不能有效地激活人体中补体和Fc受体相关的效应系统;二是被人体免疫系统所识别,产生人抗鼠抗体(human antigen mouse antibody,HAMA);三是在人体循环系统中被很快清除掉。因此,在保持对特异性抗原表位高亲和力的基础上进行人源化改造,减少异源抗体的免疫原性,成为单克隆抗体研究的重点。 正文: 1.人源化抗体的建构策略 鼠抗体人源化就是通过基因改造,使其和人体内的抗体分子具有极其相似的轮廓,从而逃避人免疫系统的识别,避免诱导HAMA反应。对鼠源抗体进行人源化改造时要遵守两个原则,首先要保持抗体的亲和力和特异性,其次要降低或消除抗体的免疫原性。 1.1 嵌合抗体(Chimeric antibody) 20世纪80年代中期开始研制的第一代人源化抗体,即简单的嵌合抗体,是用人源基因代替鼠源单抗的恒定区。这样构建的嵌合抗体不仅保留了抗原抗体结合的特异性,又大大降低了鼠源单抗的免疫原性。美罗华(Rituximab)作为第一个用于肿瘤治疗的基因工程抗体,就是由鼠可变区和人恒定区组成的嵌合抗体。但由于嵌合抗体可变区(V)约占整个抗体的30%,鼠源性抗体V区中的框架区(FR)仍残留一定的免疫原性,可诱发HAMA反应。灵长目源抗体也是一类嵌合抗体,通过免疫短尾猿猴产生。由于短尾猿猴抗体的可变区几乎与人可变区无差异,这类嵌合抗体不需要作任何改变,而不致发生抗体反应。 Fab和F(ab’),嵌合抗体的制备原理是将功能性抗体轻、重链可变区基因分别与人抗体的K链和重链CHl恒定区基因进行重组,克隆到表达载体中,构建成鼠一人嵌合的Fab基因表达载体,再转入宿主细胞表达。天然抗体分子重链CHl和CH2之间的一段铰链区结构,其中的2个Cys残基可以生成二硫键,将2条重链紧密地共价结合在一起。在Fab的C-端额外连接一

鼠源抗体的人源化设计

鼠源抗体的人源化设计 前言 (1) 方法 (2) 结果与讨论 (3) 鼠源抗体筛选人源框架 (3) 人源化抗体CDR的改造 (4) 结论 (6) 附录 (6) 参考文献 (7) 前言 第一个人用抗体药物来自鼠源抗体,直到现在鼠源抗体仍然是抗体药物的一大来源[Pogson et al.,2016]。由于鼠源抗体的免疫原性,一般会对其作人源化处理。目前最通用的方法是将鼠抗的CDR序列移植到人源框架上[Hwang et al., 2005]。通常CDR移植后的人源化抗体与抗原的亲和力会减弱,如何保持人源化抗体的亲和力是目前最大的技术瓶颈。通过高通量的筛选方法可以得到适合CDR

移植的人源框架,但是这种实验方法周期长,价格昂贵[Townsend et al.,2015]。为了快速筛选出适合的人源框架,研究者利用序列比对和结构模拟的方法筛选出适合的人源框架,然后通过实验验证抗体与抗原的亲和力,减少了实验工作量,节约了成本和时间,未来会成为具有潜力的抗体人源化设计方法[Kurella et al., 2014;Choi et al.,2015;Choi et al.,2016]。本文采用自主开发的抗体人源化设计程序,对已知的鼠源抗体进行人源化设计,结果表明计算的方法可以筛选出序列同源性靠后但是亲和力更高的人源化框架。 方法 抗体阻断蛋白-蛋白相互作用的受体和配体结构已知(图1)。配体与抗体结合的区域重叠在受体和配体结合的区域(图2),所以鼠源的抗体可以有效阻断受体和配体的相互作用[Apgar et al.,2016]。通过鼠源抗体的人源化设计可以最大限度减少抗体的免疫原性。首先使用鼠源抗体(PDBID为5F3B)的序列在人源框架库中搜索排名靠前的序列作为候选序列,然后将人源序列同源建模到鼠源抗体的骨架上,保留鼠源CDR的序列,然后计算同源模型的能量,判断人源化抗体的稳定性。人源化CDR突变体采用相同的策略,不同之处在于替换鼠源CDR 序列为突变体序列,并且保留抗原的结构。

抗体药物地研究现状和发展趋势

抗体药物的研究现状和发展趋势 一、研究现状 1.抗体研究发展历程 抗体作为药物用于人类疾病的治疗拥有很长历史。但整个抗体药物的发展却并非一帆风顺,而是在曲折中前进。第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病的早期被动免疫治疗。虽然具有一定的疗效,但异源性蛋白引起的较强的人体免疫反应限制了这类药物的应用,因而逐渐被抗生素类药物所代替。第二代抗体药物是利用杂交瘤技术制备的单克隆抗体及其衍生物。单克隆抗体由于具有良好的均一性和高度的特异性,因而在实验研究和疾病诊断中得到了广泛应用。 单抗最早被用于疾病治疗是在1982年,美国斯坦福医学中心Levy等人利用制备的抗独特型单抗治疗B细胞淋巴瘤,治疗后患者病情缓解,瘤体消失,这使人们对抗体药物产生了极大的期望。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时的抗排斥反应。此时抗体药物的研制和应用达到了顶点。随着使用单抗进行治疗的病例数的增加,鼠单抗用于人体的毒副作用也越来越明显。同时一些抗肿瘤单抗未显示出理想效果。人们的热情开始下降。到20世纪90年代初,抗毒素单抗用于治疗脓毒败血症失败使得抗体药物的研究进入低谷。由于大多数单抗均为鼠源性,在人体反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。因此,一方面在给药途径上改进,如使用片段抗体、交联同位素、局部用药等使鼠源性抗体用量减少,也增强了疗效;另一方面,积极发展基因工程抗体和人源抗体。 近年来,随着免疫学和分子生物学技术的发展以及抗体基因结构的阐明,DNA 重组技术开始用于抗体的改造,人们可以根据需要对以往的鼠抗体进行相应的改造以消除抗体应用不利性状或增加新的生物学功能,还可用新的技术重新制备各种形式的重组抗体。抗体药物的研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术的改造,可以降低甚至消除人体对抗体的排斥反应;②基因工程抗体的分子量较小,可以部分

抗体药物的研究现状和发展趋势分析报告

抗体药物的研究现状和发展趋势分析报告

一、研究现状 1.抗体研究发展历程 抗体作为药物用于人类疾病的治疗拥有很长历史。但整个抗体药物的发展却并非一帆风顺,而是在曲折中前进。第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病的早期被动免疫治疗。虽然具有一定的疗效,但异源性蛋白引起的较强的人体免疫反应限制了这类药物的应用,因而逐渐被抗生素类药物所代替。第二代抗体药物是利用杂交瘤技术制备的单克隆抗体及其衍生物。单克隆抗体由于具有良好的均一性和高度的特异性,因而在实验研究和疾病诊断中得到了广泛应用。 单抗最早被用于疾病治疗是在1982年,美国斯坦福医学中心Levy 等人利用制备的抗独特型单抗治疗B细胞淋巴瘤,治疗后患者病情缓解,瘤体消失,这使人们对抗体药物产生了极大的期望。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时的抗排斥反应。此时抗体药物的研制和应用达到了顶点。随着使用单抗进行治疗的病例数的增加,鼠单抗用于人体的毒副作用也越来越明显。同时一些抗肿瘤单抗未显示出理想效果。人们的热情开始下降。到20世纪90年代初,抗内毒素单抗用于治疗脓毒败血症失败使得抗体药物的研究进入低谷。由于大多数单抗均为鼠源性,在人体内反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。因此,一方面在给药途径上改进,如使用片段抗体、交联同位素、局部用药等使鼠源性抗体用量减少,

也增强了疗效;另一方面,积极发展基因工程抗体和人源抗体。 近年来,随着免疫学和分子生物学技术的发展以及抗体基因结构的阐明,DNA重组技术开始用于抗体的改造,人们可以根据需要对以往的鼠抗体进行相应的改造以消除抗体应用不利性状或增加新的生物学功能,还可用新的技术重新制备各种形式的重组抗体。抗体药物的研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术的改造,可以降低甚至消除人体对抗体的排斥反应;②基因工程抗体的分子量较小,可以部分降低抗体的鼠源性,更有利于穿透血管壁,进入病灶的核心部位; ③根据治疗的需要,制备新型抗体;④可以采用原核细胞、真核细胞和植物等多种表达形式,大量表达抗体分子,大大降低了生产成本。 自从1984年第一个基因工程抗体人-鼠嵌合抗体诞生以来,新型基因工程抗体不断出现,如人源化抗体、单价小分子抗体(Fab、单链抗体、单域抗体、超变区多肽等)、多价小分子抗体(双链抗体,三链抗体,微型抗体)、某些特殊类型抗体(双特异抗体、抗原化抗体、细胞内抗体、催化抗体、免疫脂质体)及抗体融合蛋白(免疫毒素、免疫粘连素)等。另外,用于制备新型抗体的噬菌体抗体库技术成为继杂交瘤技术之后生命科学研究中又一突破性进展。采用噬菌体抗体库技术筛选抗体不必进行动物免疫,易于制备稀有抗原的抗体、筛选全人源性抗体和高亲和力抗体。同时也将抗体工程的研究推向了一个新的高潮。在噬菌体抗体库基础上,近几年又发展了核糖体展示抗体库技术。利用核糖体展示技术筛选抗体的整个过程均在体外进

鼠单克隆抗体人源化

细胞与分子免疫学杂志 1997;13(1):68-72 Journal of Cellular and Molecular Immunology 鼠单克隆抗体人源化 袁清安俞炜源黄翠芬 (军事医学科学院生物工程研究所,北京 100071) 提要鼠源性单克隆抗体应用于临床由于HAMA反应的存在而受到阻碍。以CDR 移植为核心,以同源分析及分子模建为辅助设计的人源化方案,已成为克服HAMA 反应的主要手段。本文结合单克隆抗体人源化的最新进展对该领域的工作作一综述。 关键词人源化 CDR移植分子模建 HAMA 单克隆抗体 抗体是免疫系统中最重要的分子,在临床上有极大的应用价值。其立体结构组成 与功能关系表明,不同的结构模块(CH1、CH2、CH3、V L 、V H )在空间和折叠上相对 独立,对应着不同的功能。抗体的效应功能由Fc引发,特异性和高亲和性由Fv 决定。大量的抗体一级结构序列和越来越多的抗体立体结构数据分析表明,Fv在空间结构上十分保守,但人、鼠间有差异的框架区(FR)、空间构象及序列各由有差别的6个互补决定区(CDR)组成。CDR上有直接的抗原接触位点,FR是Fv最主要的抗原性决定区,是引起人抗鼠抗体(HAMA)反应的主要部分,在异种间可引起抗个体型抗体。 1 鼠源单克隆抗体的临床应用与问题 以细胞融合为基础的鼠杂交瘤技术的发展,使得人们能够大量获取高亲和性和强特异性的鼠单克隆抗体(McAb),它们在临床上有多方面的潜在应用[1]。 1.1 感染性疾病抗体提供的被动免疫,消除了病原体的致病能力: 仅仅是Fab 与抗原的结合,足以中和很多毒素与病毒的毒力;Fc与相应受体结合,可引发包括ADCC在内的诸多效应功能。 1.2 体内定位诊断同位素标记的McAb或Fab在病灶的定位造影,对确诊及手术有很大帮助,已用于心血管、原发癌及转移癌等疾病的定位诊断。 1.3 免疫调节在免疫活化方面,双特异性的抗体将效应细胞表面的信号转导分子和病变细胞表面的抗原分子交联,便可活化效应细胞,使之发挥免疫功能;在免疫抑制方面,抗受体抗体可封闭受体,阻断效应细胞活化的路径。因受体分子的分

相关主题