搜档网
当前位置:搜档网 › 示波器协议解码功能和专用总线协议分析仪的区别

示波器协议解码功能和专用总线协议分析仪的区别

示波器协议解码功能和专用总线协议分析仪的区别

随着示波器分析功能的越来越强大,示波器厂商开始把对一些总线的

解码功能内置到示波器里,这样做数字总线调试的用户不但可以用示波器进行波形分析,也可以通过解码软件把相应总线上承载的内容解码出来。示波器里的总线解码功能相对于专用协议分析仪来说,主要有以下优点:

1/ 可以直接把示波器采集到的波形和协议内容相关起来。比如下图中我们可以把直接看到包里面的数据以及对应的波形,这样数据出了问题我们可以判断出是确实数据发错了还是某个bit 信号质量的问题。协议分析仪由于只能看到

数据包而看不到原始波形,所以数据发生错误时没法判断是确实发错了还是信号质量造成的。

2/ 示波器可以使用探头点在信号上直接进行总线的协议分析。示波器由于可以使用探头,所以只要探头能接触到的地方就可以用探头点上去捕获波形并进行协议解码,比较灵活。有些总线是内部总线,没有对外接口时用示波器的探头点测就成为唯一的方案。而专用的协议分析仪一般需要被测总线是标准接口才能连接进行测试。

3/示波器里的协议分析选件相对价格比较便宜。示波器是做总线测试的必备仪表,在上面扩展一个总线的协议解码功能一般只有几千美金。而专用的总线协议分析仪价格是这个的很多倍。

当然,示波器里的协议解码功能也不是万能的,相对于专用的协议分析仪

来说,其也有一些局限性,主要表现在以下方面:

1/ 采集时间较短。示波器里要对每个bit 采集多个点才能得到细致的波形,因此示波器的内存深度即使很深也存不了太长时间的数据,一般对PCIE/SATA 等高速总线进行采集时,其标配内存采集的数据深度通常在ms 级或以下。而

can总线协议完全解析

CAN总线协议解析 李玉丽 (吉林建筑工程学院电气与电子信息工程学院,吉林长春,130021 ) 摘要:现场总线的发展与应用引起了传统控制系统结构的改变。控制局域网(C AN)总线因其自身的特点被广泛应用于 自动控制领域。本文对C AN总线协议作了详尽解析。 关键词:C AN总线;隐性位;显性位;节点 中图分类号:T U 85 文献标识码:A CAN(Cont roll e r A rea N et work)是分布式实时控 制系统的串行通信局域网,称谓CAN总线。在数据 实时传输中,设计独特、低成本,具有高可靠性,得到 广泛应用。 本文着重解析C AN 技术规范2.0B 版的CAN 的分层结构规范和CAN 报文结构规范。重点在于 充分理解CAN总线协议精髓,有助于CAN总线的 局网设计、软件编程、局网维护。 一、C AN的分层结构 CAN 遵从O SI ( Ope n Syste m I nte rc onnec ti on Re fe re nce Mode l ) 模型,其分层结构由高到低如图1 所示。 图1 C AN的分层结构 对应OSI 模型为两层,实际为三层,即LLC、 MA C、PL S。由此而知,对应于CAN总线系统每个 节点都是三层结构。数据发送节点数据流为LLC→ MA C→P LS ,然后将数据发送到总线上;而对于挂在 总线上的所有节点(包括发送节点)的接收的数据流 为PL S→MA C→LLC。 这种分层结构的规范保证了CAN 总线的多主 方式工作模式,即不分主从,非破坏性的仲裁工作模 式。而LLC 层的报文滤波功能可实现点到点、一点 对多点、全局广播、多点对一点,多点对多点等数据 传递方式。 各分层主要功能如下: LLC 层:接收滤波、超载通知、恢复管理; MAC 层:控制帧结构、执行仲裁、错误检测、出 错标定、故障界定。该层是CAN的核心; PL S 层:位编码/ 解码、位定时。 二、CAN总线的报文规范 CAN报文的传送有4 种不同类型的帧结构,数 据帧、远程帧、出错帧、超载帧。CA B2.0B 有4 种帧 格式。 (一)数据帧

第三讲 示波器基础之触发功能(上)

第三讲示波器基础之触发功能(上) 作者:汪进进来源:美国力科公司深圳代表处 中心议题: ?示波器的触发功能的含义 解决方案: ?多用于低频信号的准确测量中 ?要点:触发源、触发点、触发电平、触发模式 触发是数字示波器区别于模拟示波器的最大特征之一。数字示波器的触发功能非常丰富,通过设置,用户可以看到触发前后的信号。对于高速信号的分析,触发应用较少,因为通常是捕获很长时间的波形然后做眼图和抖动分析。而对于低速信号的测量,触发应用非常频繁,因为通常会有很多杂讯需要被隔离。 示波器的采集存储器是一个循环缓存,新的数据会不断覆盖老的数据,直到采集过程结束。触发电路坏掉的示波器仍然可以工作,只是此时看到的波形在屏幕上来回“晃动”,或者说在屏幕上闪烁,这其实相当于将触发模式设置为“Auto”状态并把触发电平设置得超过信号的最大或最小幅值。没有触发电路,这些采集的数据不断地这样新老交替,在屏幕上视觉上感觉波形在来回“晃动”。如图一所示。 图一数字示波器的存储器是循环缓存 Auto Setup是自动触发设置,示波器根据被测信号的特点自动设置示波器的水平时基,垂直灵敏,偏置和触发条件,使得波形能显示在示波器上。如果不理解触发的概念,通过Auto Setup的设置就开始观察,测量的结果,甚至得出的结论都是不对的。 所谓触发,专业的解释是:按照需求设置一定的触发条件,当波形流中的某一个波形满足这一条件时,示波器即实时捕获该波形和其相邻部分,并显示在屏幕上。触发条件的唯一性是精确捕获的首要条件。为了观察特定波形之前发生的更多事件,把触发点往显示窗口右方推移一段时间,即是延迟触发;为了了解特定波形之后发生的更多事件,把触发点往显示窗口

SPIICUARTUSB串行总线协议的区别

S P I、I2C、U A R T、U S B串行总线协议的区别 SPI、I2C、UART三种串行总线协议的区别 第一个区别当然是名字: SPI(Serial Peripheral Interface:串行外设接口); I2C(INTER IC BUS) UART(Universal Asynchronous Receiver Transmitter:通用 异步收发器) 第二,区别在电气信号线上: SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出( SDO)、串行数据输入(SDI)。SPI总线可以实现多个SPI设备互 相连接。提供SPI串行时钟的SPI设备为SPI主机或主设备(Mast er),其他设备为SPI从机或从设备(Slave)。主从设备间可以 实现全双工通信,当有多个从设备时,还可以增加一条从设备 选择线。 如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),

一 个输入口(SDI),另一个口则视实现的设备类型而定,如果 要 实现主从设备,则需输入输出口,若只实现主设备,则需输出 口即可,若只实现从设备,则只需输入口即可。 I2C总线是双向、两线(SCL、SDA)、串行、多主控(multi-mas ter)接口标准,具有总线仲裁机制,非常适合在器件之间 进 行近距离、非经常性的数据通信。在它的协议体系中,传输数 据时都会带上目的设备的设备地址,因此可以实现设备组网。如果用通用IO口模拟I2C总线,并实现双向传输,则需一 个输 入输出口(SDA),另外还需一个输出口(SCL)。(注:I2C资料了解得比较少,这里的描述可能很不完备) UART总线是异步串口,因此一般比前两种同步串口的结构要复 杂很多,一般由波特率产生器(产生的波特率等于传输波特 率 的16倍)、UART接收器、UART发送器组成,硬件上由两根线,

简谈示波器的触发

示波器的触发 1.触发概述 触发的定义:按照需求设置一定的触发条件,当波形流中的某一个波形满足这一条件时,示波器即时捕获该波形和其相邻部分,并显示在屏幕上。 触发的作用:保证每次时基扫描或采集的时候,都从输入信号上满足定义的触发条件处开始,这样每一次扫描或采集的波形就同步,可以使每次捕获的波形相重叠,从而显示稳定的波形。即:捕获感兴趣的信号;稳定显示。 用于:对单次信号进行捕获,对重复信号中的异常波形隔离捕获,对周期性信号进行稳定的显示等。 如果没有触发,每一屏的显示都不同,如图1所示。当示波器快速刷新的时候,看到的信号是混叠的,没有稳定的图像,无法观察和测量。 图1 无触发的图像 触发是数字示波器区别于模拟示波器的最大特征之一。模拟示波器只有简单的边沿触发。没有存储单元,触发只是示波器显示波形的一个起始信号,只定义了波形的起点。而数字存储示波器把模拟信号数字化,由于有数据存储,并可以定义触发点在内存中的位置,可以看到触发之前的波形,可以设置更多更复杂的触发类型,满足不同特征波形的触发和观察。 2.触发设置 2.1触发源 触发源决定触发信号从哪里获得。多数情况下,触发信号来自输入信号本身。触发电路与被测信号处理电路是并行结构,所以触发电路并不会影响到被测信号的数字化处理,也就决定了触发信号不光可以从被测信号引入,还可以通过其他通道、外触发通道等引入。若示波器具有外部触发输入端,那么它上面连接的信号则可以驱动触发电路时示波器触发。若想要观察与电源有关的干扰信号,可以使用电源触发。

2.2触发点 为了观察特定波形之前发生的更多事件,把触发点往显示窗口右方推移一段时间,即是预触发。 为了了解特定波形之后发生的更多事件,把触发点往显示窗口左方推移一段时间,即是延迟触发。 另外,将触发点向左移可充分利用示波器的存储空间。 一般将触发点设置在中间位置以方便观察和调节,因为示波器的波形扩展时是以触发点为对称点展开的。 2.3触发释抑 有时,为了使示波器能在信号的正确部分触发并不容易。许多示波器采用专门特性,简化了任务。触发器释抑时间是发生正确触发后的一段时间,在这段时间内,示波器不能触发。当触发源是复杂波形的时候,该特性能发挥作用。其结果是,只有在适当的触发点示波器才能触发。图2解释了如何使用触发释抑特性来显示有用波形。 图2 触发释抑 2.3 触发电平 触发电平是指信号需要达到该电平才能被触发。 设置任何触发条件都需要有一个具体的触发电平。触发电平定义了信号是否为满足触发条件的“事件”。 在上升沿触发时,只有该上升沿在上升的过程中达到触发电平的位置才认为是“事件”从而被“隔离”在触发点。

示波器有关知识及选型方案

示波器有关知识及选型方案 此方案为北京海洋兴业科技有限公司所有,如需转载请注明出处。 示波器自从问世以来,它一直是最重要、最常用的电子测试仪器之一。由于电子技术的发展,示波器的能力在不断提升,其性能与价格也五花八门,市场参差不齐。示波器看似简单,但如何选择,也存在许多问题。本文根据多年的经验,结合北京海洋兴业科技有限公司选型指南,从几个方面告知您在选择示波器时应注意的问题: 一、了解您需要测试的信号 您要知道用示波器观察什么?您要捕捉并观察的信号其典型性能是什么?您的信号是否有复杂的特性?您的信号是重复信号还是单次信号?您要测量的信号过渡过程的带宽,或者上升时间是多大?您打算用何种信号特性来触发短脉冲、脉冲宽度、窄脉冲等?您打算同时 显示多少信号?您对测试信号作何种处理? 二、选择示波器的核心技术差异:模拟(DRT)、数字(DSO)、还是数模兼合 (DPO) 传统的观点认为模拟示波器具有熟悉的控制面板,价格低廉,因而总觉得模拟示波器“ 使用方便” 。但是随着 A/D 转换器速度逐年提高和价格不断降低,以及数字示波器不断增加的测量能力和实际上不受限制的测量功能,数字示波器已独领风骚。但是数字示波器显示具有三维的缺陷、处理连续性数据慢等缺点,需要具有数模兼合技术的示波器,例 DPO 数字荧光示波器。 三、确定测试信号带宽 带宽一般定义为正弦波输入信号幅度衰减到 -3dB 时的频率,即幅度的70.7% 。带宽决定示波器对信号的基本测量能力。如果没有足够的带宽,示波器将无法测量高频信号,幅度将出现失真,边缘将会消失,细节数据将被丢失;如果没有足够的带宽,得到的信号所有 特性,包含响铃和振鸣等都毫无意义。 一个决定您所需要的示波器带宽有效经验——“5倍经验准则”:将您要测量的信号最高频率分量乘以5,使测量结果获得高于2%的精度。

完整版工业自动化领域各种总线协议规范接口

+接口+协议+规范工业自动化领域各种总线 工业自动化总标识特点简介 ASI 用于下位控制级的传感器/执行器总线【整理】ASI接口/协议 /规范用于将传感器和执行器连接AS-interface AS 至上位控制层,布线简单、经济。IEC EN 50295 符合国际标准和interface 标准。62026-2 传感器接执行器/AS-i = AS-Interface(口)是用于连接执行器和传感器的现 场总线通讯方案。BACnet==楼【整理】工业自动Building Automation Control Network 化之楼宇自动化之宇自动控制网.

用于执行器/传感器领域的多主站总线 对总线带宽的有效利用使得CANopen能 够在数据传输速率相对较低的情况下实现较短的系统响应时间。CAN 总线的主 要优点有:数据安全性高,能够保留多主站能力。 CC-Link 主要针对亚洲市场的现场总线 CC-Link(Control & Communication

Link,控制与通信链路)是一种开放式总线系统,用于控制级和现场总线级之间的通讯,应用范围主要为亚洲地区。 ControlNet 标准化现场总线 ControlNet 是一种开放式标准现场总线系统。该总线协议允许循环数据和非循 DALI 楼宇自动化领域的通讯标准【整理】工业自动)是一种跨越厂商标准 (IEC60929DALI 化总线之楼宇自动化之照明接口:的协议,其目的是在照明应用中确保电子DALI1-镇流器的互用性。这个新标准用于替代调光器接口。10VDigital ,数字可寻址照明接口(DALI)是一种楼Addressable Lighting Interface化

示波器_使用方法_步骤

示波器 摘要:以数据采集卡为硬件基础,采用虚拟仪器技术,完成虚拟数字示波器的设计。能够具有运行停止功能,图形显示设置功能,显示模式设置功能并具有数据存储和查看存储数据等功能。实验结果表明, 该仪器能实现数字示波器的的基本功能,解决了传统测试仪器的成本高、开发周期长、数据人工记录等问题。 1.实验目的 1.理解示波器的工作原理,掌握虚拟示波器的设计方法。 2.理解示波器数据采集的原理,掌握数据采集卡的连接、测试和编程。 3.掌握较复杂的虚拟仪器的设计思想和方法,用LabVIEW实现虚拟示波器。 2. 实验要求 1.数据采集 用ELVIS实验平台,用DAQmx编程,通过数据采集卡对信号进行采集,并进行参数的设置。 2.示波器界面设计 (1)设置运行及停止按钮:按运行时,示波器工作;按停止时,示波器停止工作。 (2)设置图形显示区:可显示两路信号,并可进行图形的上下平移、图形的纵向放大与缩小、图形的横向扩展与压缩。 (3)设置示波器的显示模式:分为单通道模式(只显示一个通道的图形),多通道模式(可同时显示两个通道),运算模式(两通道相加、两通道相减等)。

万联芯城https://www.sodocs.net/doc/57605628.html,作为国内优秀的电子元器件采购网,一直秉承着以良心做好良芯的服务理念,万联芯城为全国终端生产研发企业提供原装现货电子元器件产品,拥有3000平方米现代化管理仓库,所售电子元器件有IC集成电路,二三极管,电阻电容等多种类别主动及被动类元器件,可申请样片,长久合作可申请账期,万联芯城为客户提供方便快捷的一站式电子元器件配套服务,提交物料清单表,当天即可获得各种元件的优势报价,整单付款当天发货,物料供应全国,欢迎广大客户咨询合作,点击进入万联芯城

示波器触发功能使用

灵活使用示波器触发功能 每个工程师刚刚开始接触示波器的时候,都是从最基础的数字信号的信号质量开始测量的。找一块板子,接一个时钟信号,一个数据信号,测量它们的最大/最小电压(Max/Min)、建立/保持时间(Setup/Hold Time)、上升/下降时间(Rise/Fall Time)等基础参数。这些基础参数的测量老工程师们都耳熟能详,也都知道怎么去测量它们,但很多朋友却不知道,如果能灵活地使用示波器的各种触发功能进行辅助,将会使测量时间大大缩短,测量结果更加精准。下面我们来看一看示波器的触发功能在信号质量测量时的一些经典应用。 最古老的也是最经典的触发–边沿触发带给我们的启示 边沿触发从示波器诞生之日起就与示波器密不可分,最早的模拟示波器只有一种触发功能,就是边沿触发。边沿触发非常简单和常用,以至于很多工程师用了几年的示波器都没有意识到这是一种触发功能。边沿触发包括上升沿触发和下降沿触发,以上升沿触发为例,示波器的触发器会比较触发电平(Trigger Level)前后两个点的电压,当后一个点的电压高于前一个点时,就会判定为上升沿触发;下降沿触发则反之。 信号的最大/最小电压(Max/Min)测量是一个常规的测量项目,一般常用的方法有两种,一种是直接用示波器的自动测量,打开统计功能,找出最大/最小值,第二种是打开示波器的无限余辉,累积一段时间后,用光标测量最大/最小值。但这两种方法都有一个小缺点,就是无法直观地看到Max/Min电压所对应的波形。对于Debug而言,更希望能清楚地看到这个最坏的波形,以便能找到调试的思路。利用传统的边沿触发,通过调节边沿触发的触发电平,我们就可以轻松地看到最大/最小电压所对应的波形并进行测量。 选择上升沿触发,将触发模式调成Normal (注1)。然后慢慢调高触发电平,直到触发事件变得非常稀少(示波器面板上Trig’d绿色指示灯的亮/灭间隔明显变长或屏幕波形刷新速度明显变慢),这意味着电压的上升已处于极限位置,此时触发点的波形就是最大电压的波形。同理,选择下降沿触发,调低触发电平,可以精确定位最小电压所对应的波形。

工业现场总线协议解析

工业现场总线协议解析 工业网络通常采用现场总线协议,通过实时和可靠的分布式控制功能来连接生产车间中的仪器仪表和机械设备,比较容易并且可靠的控制所实现的系统。现场总线标准应用非常广泛,大量已经安装的设备都采用了现场总线。但是,大部分这些现场总线标准都是基于(已有的)串行通信协议标准(与RS485或者RS232相似),没有充分发挥应用广泛的以太网技术的优势。 随着系统复杂程度的增加,大部分现场总线难以满足平台通用性和系统性能的要求。这促使设备生产商转向采用基于以太网的通信技术,实现高性能、低成本和很好的通用性。很多现场总线标准都已经集成到工业以太网协议中,采用很少的控制功能,实现实时通信和工业互联,同时保护了在现场总线软件和已有设备上的投入。 控制区域网(CAN)是一种广播、差分串行总线标准,工作在干扰较大的电力机械(噪声)环境中。CANopen建立在自动化应用CAN (例如,数据链路层和物理层)基础上,能够实现百分之百的数据完整性,而采用以太网无法满足这一要求。 DeviceNet是设备级网络,为工业自动化提供可靠、高效的数据处理功能。ControlNet是一种实时、确定性、可重

构的控制层网络,适用于数据和消息的高速传送。DeviceNet 和ControlNet的应用层基于公共工业协议(CIP)层,它也用于Ethernet/IP中。这些协议目前由独立开放设备供应商协会(ODV A)管理。 LonWorks是用于开发照明和HV AC等自动化/控制应用的流行协议标准。LonWorks网络设备可使用各种介质,包括双绞线、电源线、以太网、光纤和RF等。 Modbus是为可编程逻辑控制器(PLC)应用开发的免版税开放串行通信协议。Modbus支持很多设备连接在同一网络上,例如监控以及数据采集(SCADA)系统中管理计算机和远端单元(RTU)的连接等。Modbus基本结构由Modbus/IDA进行管理,这一自动设备独立用户和供应商组织希望能够推动这一协议标准的广泛应用。 过程现场总线(PROFIBUS)是一种现场总线协议。对于分散外围设备和过程自动化(DP和PA)这两种PROFIBUS,在分散生产和过程控制中,PROFIBUS DP一般通过中央控制器对传感器和激励器进行控制。应用较少的PA主要用于监视测量设备。经过多年的应用,PROFIBUS在生产和过程自动化方面都得到了广泛认可。Profibus国际组织(PI)不断完善并推进PROFIBUS技术的应用。 串行实时通信系统(SERCOS)接口为运动控制、数字伺服驱动和输入/输出(I/O)设备提供标准、实时、高性能通信链接。

示波器的使用方法详解

* 声明 鼎阳科技有限公司,版权所有。 未经本公司同意,不得以任何形式或手段复制、摘抄、翻译本手册的内容。 ⅠSDS1000系列数字存储示波器简介 SDS1000 系列数字示波器体积小巧、操作灵活;采用彩色TFT-LCD及弹出式菜单显示,实现了它的易用性,大大提高了用户的工作效率。此外,SDS1000 系列性能优异、功能强大、价格实惠。具有较高的性价比。SDS1000 实时采样率最高 2GSa/s 、存储深度最高 2Mpts, 完全满足捕捉速度快、复杂信号的市场需求;支持USB设备存储,用户还可通过U盘或LAN 口对软件进行升级,最大程度地满足了用户的需求;所有型号产品都支持PictBridge 直接打印,满足最广泛的打印需求。 SDS1000系列有二十一种型号: [ SDS1000C系列 ]: SDS1102C、SDS1062C、SDS1042C、SDS1022C [ SDS1000D系列 ]:SDS1102D、SDS1062D、SDS1042D、SDS1022D [ SDS1000CM系列 ]: SDS1152CM、SDS1102CM、SDS1062CM [ SDS1000CE系列 ]: SDS1302CE、SDS1202CE、SDS1102CE、SDS1062CE [ SDS1000CF系列 ]: SDS1304CF、SDS1204CF、SDS1104CF、SDS1064CF [ SDS1000CN系列 ]:SDS1202CN、SDS1102CN ●超薄外观设计、体积小巧、桌面空间占用少、携带更方便 ●彩色TFT-LCD显示,波形显示更清晰、稳定 ●丰富的触发功能:边沿、脉冲、视频、斜率、交替 ●独特的数字滤波与波形录制功能 ●Pass/Fail功能,可对模板信号进行定制 ●3种光标模式、32 种自动测量种类

几大通信协议区别

I2C和SPI,UART的区别 2009-12-07 21:55 SPI--Serial Peripheral Interface,(Serial Peripheral Interface:串行外设接口)串行外围设备接口,是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。 I2C--INTER-IC(INTER IC BUS:意为IC之间总线)串行总线的缩写,是PHILIPS 公司推出的芯片间串行传输总线。它以1根串行数据线(SDA)和1根串行时钟线(SCL)实现了双工的同步数据传输。具有接口线少,控制方式简化,器件封装形式小,通信速率较高等优点。在主从通信中,可以有多个I2C总线器件同时接到I2C总线上,通过地址来识别通信对象。 能用于替代标准的并行总线,能连接的各种集成电路和功能模块。I2C是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。多路微控制器能在同一个I2C总线上共存。 最主要的优点是其简单性和有效性。它支持多主控(multimastering),其中任何能够进行发送和接收的设备都可以成为主总线。一个主控能够控制信号的传输和时钟频率。当然,在任何时间点上只能有一个主控。 UART(Universal Asynchronous Receiver Transmitter:通用异步收发器):单端,远距离传输。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总常不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。----------------------------------------------------------------------------------------------------------------------------------- 区别在电气信号线上: SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。SPI总线可以实现多个SPI设备互相连接。提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。主从设备间可以实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。 如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输出口即可,若只实现从设备,则只需输入口即可。

示波器触发功能

关于示波器的触发功能 我记得初入力科的时候,在关于示波器的三天基础知识培训中有一整天的时间都是在练习触发功能。“触发”似乎是初学者学习示波器的难点。我们常帮工程师现场解决关于触发的测试问题的案例也很多。通常有些工程师只知道“Auto Setup”之后看到屏幕上有波形然后“Stop”下来再展开波形左右移动查看细节。因此,我有时候甚至接到这样的电话,质疑我们的示波器有问题,因为他在”Auto Setup”之后看到的波形总是在屏幕上来回“晃动”。但是当我问他触发源设置得对不对,触发电平设置得合适否,是否采用了合适的触发方式等问题时,我没有得到答案; 即使有时遇到我心目中的高手,我也常发现他们对触发的基本概念都没有建立起来。我喜欢在写作某个主题之前google一下,但是很遗憾我没有找到一篇堪称完整的启蒙文章。虽然三家示波器厂家的PPT讲稿中都有很多关于触发的,但细致介绍触发的中文文章真的很少。当然,这也是幸运的,因为我的拙文也许将是很多工程师茅塞顿开的启蒙之作。 触发是数字示波器区别于模拟示波器的最大特征之一。数字示波器的触发功能非常地丰富,通过触发设置使用户可以看到触发前的信号也可以看到触发后的信号。对于高速信号的分析,其实很少去谈触发,因为通常是捕获很长时间的波形然后做眼图和抖动分析。触发可能对于低速信号的测量应用得频繁些,因为低速信号通常会遇到很怪异的信号需要通过触发来隔离。 假如示波器的触发电路坏了,示波器仍然可以工作,只是这时候看到的波形在屏幕上来回“晃动”,或者说在屏幕上闪啊闪的。这其实相当于您将触发模式设置为“Auto”状态并把触发电平设置得超过信号的最大或最小幅值。示波器的采集存储器是一个循环缓存,新的数据会不断覆盖老的数据,直到采集过程结束。如图一所示。没有触发电路,这些采集的数据不断地这样新老交替,在屏幕上视觉上感觉波形在来回“晃动”。Auto Setup是自动触发设置,示波器根据被测信号的特点自动设置示波器的水平时基,垂直灵敏,偏置和触发条件,使得波形能显示在示波器上。其主要目的是保证波形能显示出来,这对于拿到示波器不知道如何使波形“出来”的新手是有用的。但如果不理解触发的概念,通过Auto Setup的设置就开始观察,测量甚至得出结论是不对的。示波器毕竟是工程师的眼睛,工程师需要透彻掌握这个工具,用好这双眼睛。 所谓触发,按专业上的解释是:按照需求设置一定的触发条件,当波形流中的某一个波形满足这一条件时,示波器即实时捕获该波形和其相邻部分,并显示在屏幕上。触发条件的唯一性是精确捕获的首要条件。为了观察特定波形之前发生的更多事件,把触发点往显示窗口右方推移一段时间,即是延迟触发;为了了解特定波形之后发生的更多事件,把触发点往显示窗口左方推移一段时间,即是超前触发。如图二所示。在数字示波器中,触发点可以位于采集存储的记录的任何位置。如图一的右边图形,触发点停留在采集存储的中间时刻。 为了更形象地理解触发,我常用一段很酸的话来形容。所谓触发,就是“在此刻停留”,或者说是“等待那一刻”。触发电路可以理解为有那么一双纯情的眼睛在注视在她面前走过的每一个人(信号流),当她看到她的意中人(触发条件)时,她的眼睛凝视这个人,让意中人停留在她注视的位置(触发点)。但她会继续寻找她的下一个意中人。每次找到了意中人,她都会让意中人在她注视的位置(触发点)停留。因此,她的眼睛注视点(触发点)的位置只停留那些意中人(满足条件的波形)。

DeviceNet现场总线协议讲解

场总线的两种有代表性的定义。 (l)ISA SP50中对现场总线的定义。现场总线是一种串行的数字数据通讯链路,它沟通了过程控制领域的基本控制设备(即场地级设备)之间以及与更高层次自动控制领域的自动 化控制设备(即车间级设备)之间的联系。 这里的现场设备指最底层的控制监测、执行和计算设备,包括传感器、控制器、智能阀门、微处理器和内存等各种类型的仪表产品。 (2)根据国际电工委员会IEC标准和现场总线基金会FF的定义:现场总线是连接智能现场设备和自动化系统的数字式、双向传输、多分支结构的通讯网路。现场总线的本质含义表现在以下6个方面: a)现场通讯网路:用于过程以及制造自动化的现场设备或现场仪表互连的通讯网路。 b)现场设备互连:现场设备或现场仪表是指传感器、变送器和执行器等,这些设备通过一对传输线互连,传输线可以使用双绞线、同轴电缆、光纤和电源线等,并可根据需要因地制宜地选择不同类型的传输介质。 c)互操作性:现场设备或现场仪表种类繁多,没有任何一家制造商可以提供一个工厂所需的全部现场设备,所以,互相连接不同制造商的产品是不可避免的。用户不希望为选用不同的产品而在硬件或软件上花很大气力,而希望选用各制造商性能价格比最优的产品,并将其集成在一起,实现“即接即用;用户希望对不同品牌的现场设备统一组态,构成他所需要的控制回路。这些就是现场总线设备互操作性的含义。现场设备互连是基本的要求,只有实现互操作性,用户才能自由地集成FCS。 d)分散功能块:FCS废弃了DCS的输入/输出单元和控制站,把DCS控制站的功能块分散地分配给现场仪表,从而构成虚拟控制站。例如,流量变送器不仅具有流量信号变换、

工业自动化领域各种总线+协议+规范+接口

工业自动化领域各种总线+协议+规范+接口 用于下位控制级的传感器 AS-interface 至上位控制层,布线简单、经济。 interface 62026-2 AS-Interface 是用于连接执行器和传感器的现场总线通 讯方案。 Building Automation Control Network

用于执行器 对总线带宽的有效利用使得 够在数据传输速率相对较低的情况下实 较短的系统响应时间。 点有:数据安全性高,能够保留多 力。 主要针对亚洲市场的现场总线 CC-Link 控制与通信链路)是一种开放式总线系统,用于控制级和现场总线级之间的通讯, 范围主要为亚洲地区。 标准化现场总线 ControlNet 统。 同时通过总线进行交换, 响。

楼宇自动化领域的通讯标准 DALI 协议, 器的互用性。 光器接口。 数字可寻址照明接口( Addressable Lighting Interface 宇自动 制。 百叶帘或温度控制,可直接与楼宇管理统进行通讯。 采用 DeviceNet 统, 区也得到越来越多的应用。 CAN 总线。

楼宇自动化领域的通讯标准 EIB 总线) 主要在欧洲地区广泛应用。 免维护、无需电池、无需接线 是一种无线技术。 主要用于楼宇自动化: 不同的设备模块(比如一个灯的开关)内嵌了 制该设备。 EtherCAT Technology 网)是用于工业自动化的以太网解决方 具有性能优异和操作简单等特点。

来自 Ethernet/IP Vendor Association 商协会)制定的工业以太网标准,它以Ethernet TCP/IP 网络总线 以太网是办公领域的一项重要标准, 所具备的很多优点,如传输速率高、与现有网络的集成简单、 多等,在 充分体现。 符合

fluke示波器的使用方法

示波器的使用方法 示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。本章以SR-8型双踪示波器为例介绍。 (一)面板装置 SR-8型双踪示波器的面板图如图5-12所示。其面板装置按其位置和功能通常可划分为3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。 1.显示部分主要控制件为: (1)电源开关。 (2)电源指示灯。 (3)辉度调整光点亮度。 (4)聚焦调整光点或波形清晰度。 (5)辅助聚焦配合“聚焦”旋钮调节清晰度。 (6)标尺亮度调节坐标片上刻度线亮度。 (7)寻迹当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。 (8)标准信号输出1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y 轴输入灵敏度和X轴扫描速度。 2.Y轴插件部分 (1)显示方式选择开关用以转换两个Y轴前置放大器YA与YB 工作状态的控制件,具有五种不同作用的显示方式: “交替”:当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,每次扫描都轮流接通YA或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电

子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。 “断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通YA和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。因此,这种工作状态适合于观察两个工作频率较低的信号。 “YA”、“YB ”:显示方式开关置于“Y A ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“Y A”或“YB ”通道的信号波形。 “YA + YB”:显示方式开关置于“Y A + YB ”时,电子开关不工作,YA与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。 (2)“DC-⊥-AC” Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。 (3)“微调V/div” 灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应大于2.5倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。 (4)“平衡” 当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。 (5)“↑↓ ” Y轴位移电位器,用以调节波形的垂直位置。 (6)“极性、拉YA ” Y A 通道的极性转换按拉式开关。拉出时YA 通道信号倒相显示,即显示方式(YA+ YB )时,显示图像为YB - Y A 。 (7)“内触发、拉YB ” 触发源选择开关。在按的位置上(常态)扫描触发信号分别取自YA 及YB 通道的输入信号,适应于单踪或双踪显示,但不能够对双踪波形作时间比较。当把开关拉出时,扫描的触发信号只取自于YB 通道的输入信号,因而它适合于双踪显示时对比两个波形的时间和相位差。 (8)Y轴输入插座采用BNC型插座,被测信号由此直接或经探头输入。 3.X轴插件部分

DeviceNet现场总线协议讲解

DeviceNet 现场总线协议讲解
Devicenet 简介: DeviceNet 是由美国 Rockwell 公司在 CAN 基础 上推出的一种低成本的通信链接, 是一种低端网络系统。 它将基 本工业设备连接到网络,从而避免了昂贵和繁琐的硬接线。 DeviceNet 是一种简单的网络解决方案,在提供多供货商同类部 件间的可互换性的同量, 减少了配线和安装工业自动化设备的成 本和时间。DeviceNet 的直接互连性不仅改善了设备间的通信, 而且同时提供了相当重要的设备级诊断功能。 现场总线系统的结构和技术特点 1. 现场总线的历史和发展 现场总线是 20 世纪 80 年代中期在国际上发展起来的。 随着 微处理器与计算机功能的不断增强和价格的急剧下降, 计算机与 计算机网络系统得到迅速发展, 而处于生产过程底层的测控自动 化系统,采用一对一联机,用电压、电流的模拟信号进行测量控 制, 或采用自封闭式的集散系统, 难以实现设备之间以及系统与 外界之间的信息交换,使自动化系统成为“信息孤岛”。要实现整 个企业的信息集成, 要实施综合自动化, 就必须设计出一种能在 工业现场环境运行的、性能可靠、造价低廉的通讯系统,形成工 厂底层网络, 完成现场自动化设备之间的多点数字通讯, 实现底

层现场设备之间以及生产现场与外界的信息交换。 现场总线就是 在这种实际需求的驱动下应运产生的。 它作为过程自动化、 制造 自动化、楼宇、交通等领域现场智能设备之间的互连通信网络, 沟通了生产过程现场控制设备之间及其与更高控制管理层网络 之间的联系,为彻底打破自动化系统的信息孤岛创造了条件。 由于标准实质上并未统一, 所以对现场总线的定义也是各有 各的定义。下面给出的是现场总线的两种有代表性的定义。 (l) ISA SP50 中对现场总线的定义。现场总线是一种串行的 数字数据通讯链路,它沟通了过程控制领域的基本控制设备(即 场地级设备)之间以及与更高层次自动控制领域的自动化控制设 备(即车间级设备)之间的联系。 这里的现场设备指最底层的控制监测、 执行和计算设备, 包 括传感器、控制器、智能阀门、微处理器和内存等各种类型的仪 表产品。 (2)根据国际电工委员会 IEC 标准和现场总线基金会 FF 的 定义: 现场总线是连接智能现场设备和自动化系统的数字式、 双 向传输、 多分支结构的通讯网路。 现场总线的本质含义表现在以 下 6 个方面: a)现场通讯网路: 用于过程以及制造自动化的现场设备或现 场仪表互连的通讯网路。 b)现场设备互连:现场设备或现场仪表是指传感器、变送器

高端示波器的触发功能简介

高端示波器的触发功能简介 触发是数字示波器区别于模拟示波器的最大特征之一。所谓触发,按专业上的解释是:按照需求设置一定的触发条件,当波形流中的某一个波形满足这一条件时,示波器即实时捕获该波形和其相邻部分,并显示在屏幕上。触发条件的唯一性是精确捕获的首要条件。为了观察特定波形之前发生的更多事件,把触发点往显示窗口右方推移一段时间,即是延迟触发;为了了解特定波形之后发生的更多事件,把触发点往显示窗口左方推移一段时间,即是超前触发。 图一触发原理示意图 示波器的采集存储器是一个循环缓存,新的数据会不断覆盖老的数据,直到采集过程结束。触发点有时侯也叫触发延迟,在数字示波器中,触发点可以位于采集存储的记录的任何位置。如图二的右边图形,触发点停留在采集存储的中间时刻。假如示波器的触发电路坏了,示波器仍然可以工作,只是这时候看到的波形在屏幕上来回“晃动”,或者说在屏幕上闪啊闪的。这其实相当于您将触发模式设置为“Auto”状态并把触发电平设置得超过信号的最大或最小幅值。 图二触发存储示意图 通常示波器有四种触发模式,Auto,Normal,Single,Stop。Auto是指不管是否满足触发条件,都实时刷新波形,这时候示波器的屏幕上的波形通常看起来是“晃动”的。Normal 是指满足触发条件才触发,否则波形会静止不动,并且对于力科示波器在屏幕的右下角有红色的提示:“Waiting for Trigger”。 Single指仅捕获第一次满足触发条件的波形,捕获后就停止。 Stop指强制让波形静止不动。 示波器示波器的触发功能主要有两点,第一,隔离感兴趣的事件,在触发点处隔离的事件是满足触发条件的信号。第二,同步波形,或者说稳定显示波形,即找到一种触发方式使波形不再“晃动”,也就是找出信号的规律性来同步信号。下面以力科公司的高端示波器界面为例介绍高端示波器主要的触发方式。 1、边沿触发(Edge) 边沿触发是最常用最简单最有效的触发方式,也是中低端示波器的主要触发方式,绝大

示波器的常用功能

示波器在實際中的常用功能 以前在大学的时候也学过示波器,但也只是限于课堂,课下也没去多实踐,课上听得也是云里雾里,似懂非懂的。后来真正从事工作了才感慨对示波器的认知还真的欠缺很大,遇到需要测量的只能装做会的样子在那捣鼓,偶尔上网查下(但还是不懂),有时工程老大实在看不下去了只能亲自上阵,而自己只能在旁乖乖的呆着顺便偷师一下。我想与此情况相似的或多或少总有那么几个吧,所以在此讲下平时使用示波器的常用功能,希望能够对人有所启发。好了,下面进入主题! 先来回答几个问题: 1、示波器一般是测量什么? 答:示波器常用的测量可以是电压、纹波电压、晶振时钟、信号时钟、数据信号。 2、示波器测量的意义? 答:当没万用表时可以用示波器来测电压。测量纹波电压来判断电源的稳定性。测量晶振时钟来看晶振有没有跑起来。测量信号时钟及数据信号是看IC有没有输出及有没有和相连的IC通信成功。系统电路在运行过程中若怀疑某处电压异常,则可以在该处电压上挂个示波器用时实时跟踪查看该电压会不会有变化。 示波器的认识 下(图一)是本文所讲的示波器面板(其中对各控制键进行了编号,以方便后面的讲解)。所有示波器的基本功能都是差不多的,通过了解了该示波器的操作,那么对其他示波器的操作应该也是可以上手的。 (图一) 如上图我们常用的按键有:F1、F2、F3、F4、F5、1、4、5、6、9、12、13、14、15、16、22、25、26、27、28、29、30。 CH1:通道1。 CH2:通道2。 1:测量线的移动。 5:通道1波形的垂直移动。 6:通道1设置/开关。 7:通道1幅值刻度设置。

12:测量项目显示。 13:测量线设置。 14:通道2波形的垂直移动。 15:通道2设置/开关。 16:通道2幅值刻度设置。 22:波形水平移动。 25:时间刻度设置。 29:触发电平设置。 30:触发菜单设置。 下(图二)是键控面板放大图: (图二) 示波器的操作 1、校准 示波器在使用前先进行校准下,看示波器及探头这些是否正常。 将各探头接在示波器的各通道上,然后探头另一端勾在如下(图三)这个地方,然后按下26(自动设置),如图各通道出现了5V/1KHz的方波,则说明示波器可以正常测量。

SPI、I2C、UART三种串行总线协议的区别

第一个区别当然是名字: SPI(Serial Peripheral Interface:串行外设接口); I2C(INTER IC BUS) UART(Universal Asynchronous Receiver Transmitter:通用异步收发器) 第二,区别在电气信号线上: SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输 入(SDI)。SPI总线可以实现多个SPI设备互相连接。提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。主从设备间可以 实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。如果用通用IO 口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现 的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输 出口即可,若只实现从设备,则只需输入口即可。 I2C总线是双向、两线(SCL、SDA)、串行、多主控(multi-master)接口标准,具有总线仲裁机制,非常适合在器件之间进行近距离、非经常性的数据通信。 在它的协议体系中,传输数据时都会带上目的设备的设备地址,因此可以实现 设备组网。如果用通用IO口模拟I2C总线,并实现双向传输,则需一个输入 输出口(SDA),另外还需一个输出口(SCL)。(注:I2C资料了解得比较少,这 里的描述可能很不完备) UART总线是异步串口,因此一般比前两种同步串口的结构要复杂很多,一般 由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、 UART发送器组成,硬件上由两根线,一根用于发送,一根用于接收。显然, 如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。 第三,从第二点明显可以看出,SPI和UART可以实现全双工,但I2C不行; 第四,看看牛人们的意见吧! 1、I2C线更少,我觉得比UART、SPI更为强大,但是技术上也更加麻烦些,因为I2C需要有双向IO的支持,而且使用上拉电阻,我觉得抗干扰能力较弱,一般用于同一板卡上芯片之间的通信,较少用于远距离通信。SPI实现要简单 一些,UART需要固定的波特率,就是说两位数据的间隔要相等,而SPI则无 所谓,因为它是有时钟的协议。 2、I2C的速度比SPI慢一点,协议比SPI复杂一点,但是连线也比标准的SPI要少。

相关主题