搜档网
当前位置:搜档网 › 高三物理调研测试题难题

高三物理调研测试题难题

高三物理调研测试题难题
高三物理调研测试题难题

高三物理调研测试题难题15题赏析

1.(盐城一调)如图所示,斜劈A 静止放置在水平地面上。质量为m 的物体B 在外力F 1和F 2的共同作用下沿斜劈表面向下运动。当F 1方向水平向右,F 2方向沿斜劈的表面向下时斜劈受到地面的摩擦力方向向左。则下列说法中正确的是AB

A .若同时撤去F 1和F 2,物体

B 的加速度方向一定沿斜面向下 B .若只撤去F 1,在物体B 仍向下运动的过程中,A 所受地面摩擦力方向可能向右

C .若只撤去F 2,在物体B 仍向下运动的过程中,A 所受地面摩擦力方向可能向右

D .若只撤去F 2,在物体B 仍向下运动的过程中,A 所受地面摩擦力不变 感悟与反思:

A 、

B 选项有两种解法,一是隔离法,二是利用摩擦角确定的特点,第二种解法更为简单,但只有少部分学生能够掌握;

C 、

D 选项只要选斜劈为对象,撤去F 2后,斜劈受力为发生任何变化。

2.(扬州期末)如图所示,L 1和L 2为平行的虚线,L 1上方和L 2下方都是垂直纸面向里的磁感应强度相同的匀强磁场,AB 两点都在L 2上.带电粒子从A 点以初速v 与L 2成300斜向上射出,经过偏转后正好过B 点,经过B 点时速度方向也斜向上,不计重力,下列说法中正确的是AB

A .带电粒子经过

B 点时的速度一定跟在A 点的速度相同

B .若将带电粒子在A 点时的初速度变大(方向不变)它仍能经过B 点

C .若将带电粒子在A 点时初速度方向改为与L 2成600角斜向上,它就不一定经过B 点 D. 粒子一定带正电荷

感悟与反思: AB 选项考查基本知识,C 选项考查这种运动的周期性,也能检查学生的错误思维定势。

3.(扬州期末15分)倾斜雪道的长为50 m ,顶端高为30 m ,下端经过一小段圆弧过渡后与很长的水平雪道相接,如图所示。一滑雪运动员在倾斜雪道的顶端以水平速度v 0=10 m/s 飞出,在落到倾斜雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿斜面的分速度而不弹起。除缓冲外运动员可视为质点,过渡轨道光滑,其长度可忽略。设滑雪板与雪道的动摩擦因数μ=0.2,求:

(1)运动员落在倾斜雪道上时与飞出点之间的距离; (2)运动员落到倾斜雪道瞬间沿斜面的速度大小; (3)运动员在水平雪道上滑行的距离(取g =10 m/s 2)。 解:(1)如图,运动员飞出后做平抛运动

0x v t = 2

12

y gt =

由y=x tanθ得飞行时间t =1.5 s ……1分 落点的x 坐标:x =v 0t =15 m ……2分 落点离斜面顶端的距离:θ

cos 1x

s =

=18.75m ……2分 (2)落点距地面的高度:h =(L -s 1)sinθ=18.75m

接触斜面前的x 分速度:v x =10m/s ……1分

y 分速度:v y =gt=15m/s ……1分

沿斜面的速度大小为:θθsin cos y x B v v v +== 17m/s ……3分 (3)设运动员在水平雪道上运动的距离为s 2,由功能关系得: 2

121cos ()2

B mgh mv mg L s mgs μθμ+

=-+ ……3分 F 1 F 2

解得:s 2=141m ……2分 感悟与反思:

第一问用常规解法;第二问求运动员落到倾斜雪道瞬间沿斜面的速度大小,分解时正交系先选择水平和竖直方向,看似老套其实很好,只不过要二次分解,对分解的要求很高,符合xx 江苏考试说明的变化及要求;第三问要求正确列出动能定理的方程。

4.(扬州期末15分)如图所示,一边长L = 0.2m ,质量m 1 = 0.5kg ,电阻R = 0.1Ω的正方形导体线框abcd ,与一质量为m 2 = 2kg 的物块通过轻质细线跨过两定滑轮相连。起初ad 边距磁场下边界为d 1 = 0.8m ,磁感应强度B =2.5T ,磁场宽度d 2 =0.3m ,物块放在倾角θ=53°的斜面上,物块与斜面间的动摩擦因数μ=0.5。现将物块由静止释放,经一段时间后发现当ad 边从磁场上边缘穿出时,线框恰好做匀速运动。(g 取10m/s 2,sin53°=0.8,cos53°= 0.6)求: (1)线框ad 边从磁场上边缘穿出时绳中拉力的功率; (2)线框刚刚全部进入磁场时速度的大小; (3)整个运动过程中线框产生的焦耳热。 解:(1)由于线框匀速出磁场,则

对m 2有:0cos sin 22=--T g m g m θμθ 得T =10N ……2分

对m 1有:01=--BIL g m T 又因为R

BLv

I =

联立可得:s m R L

B g

m g m v /2)cos (sin 2

212=--=

θμθ……2分 所以绳中拉力的功率P =Tv =20W ……2分

(2)从线框刚刚全部进入磁场到线框ad 边刚要离开磁场,由动能定理得

K E v m m L d g m L d g m g m -+=

----22121222)(2

1

)())(cos sin (θμθ ……3分 且2021)(2

1v m m E k +=

解得v 0=

5

10

3=1.9m/s ……2分 (3)从初状态到线框刚刚完全出磁场,由能的转化与守恒定律可得

2212112122)(2

1

)())(cos sin (v m m Q L d d g m L d d m g m ++=++-++-θμ……3分

将数值代入,整理可得线框在整个运动过程中产生的焦耳热为: Q = 1.5 J ……1分

感悟与反思:

第一问学生往往错误地应用整体法而得出错误答案;第二问有两种解法,一是利用能量转化与守恒,二是纯粹用运动学方法解,但必须正确隔离两个物体;第三问似与第二问考点重复,删去也可。

5.(如东启东期中联考13分)如图所示,一轻绳绕过无摩擦的两个轻质小定滑轮O 1、O 2和质量m B =m 的小球连接,另一端与套在光滑直杆上质量m A =m 的小物块连接,已知直杆两端固定,与两定滑轮在同一竖直平面内,与水平面的夹角θ=60°,直杆上C 点与两定滑轮均在同一高度,C 点到定滑轮O 1的距离为L ,重力加速度为g ,设直杆足够长,小球运动过程中不会与其他物体相碰.现将小物块从C 点由静止释放,试求:

(1)小球下降到最低点时,小物块的机械能(取C 点所在的水平

面为参考平面); (2)小物块能下滑的最大距离;

(3)小物块在下滑距离为L 时的速度大小. 解:(1)设此时小物块的机械能为E 1.由机械能守恒定律得

1(sin )(12)B E m g L L mgL θ=-=

(3分)

(2)设小物块能下滑的最大距离为s m ,由机械能守恒定律有

sin A m B B m gs m gh θ=增 (2分)

而B h L =增 (1分)

代入解得

4(1m s L = ; (2分)

(3)设小物块下滑距离为L 时的速度大小为v ,此时小球的速度大小为v B ,则

cos B v v θ=

(1分) 2211sin 22

A B B A m gL m v m v θ=

+

(2分)

解得

v =

(2分)

感悟与反思:

本题要求正确判断CO 1长度是现变短后变长,从而知道小球是先上升后下降,CO 垂于杆时小球速度为零;物块速度为零时小球速度也为零。最后一问要求学生正确处理A 、B 两物体之间的速度关系,即两者沿绳速度相等。综合考查了运动分析、能量守恒定律、运动的合成与分解等知识。学生对第一问难以上手,所以本题三问的区分度并不好。 6.(盐城一调10分)中国“嫦娥一号”绕月探测卫星完成三次近月制动后,成功进入周期T=127min 、高

度h=200km 的近月圆轨道。

(1)已知月球半径为R=1.72×106

m ,求卫星在高度200km 的圆轨道上运行的速度υ和轨道处的重力

加速度g 。 (2)“嫦娥一号”轨道的近月点到月球球心的距离r 近=193km ,远月点到月球球心的距离r 远=194km 。

张明、王玉两同学利用不同方法分别计算出卫星经过近月点时速度v 近、近月点到月球球心的距离r 近和经过远月点时速度υ远、远月点到月球球心的距离r 远的关系。 张明的方法:

m υ2

近r 近

=GMm r 2近 m υ2

远r 远

=GMm r 2远 由(1)、(2)得υ-υ=GM r 近r 远( r -r )=g(r -r )

王玉的方法:

1

2

m υ-1

2m υ=mg(r -r ) 得υ-υ=2g (r -r )

请分别对这两个同学的计算方法作一评价,并估算从远月点到近月点卫星动能的增量。(卫星质量为1650kg ,结果保留两位有效数字)

解:⑴υ=

T

h R )

(2+π ① υ=60

1271092.114.326????=1.6×103(m/s) ②

由υ=)(h R g +得: ③

g =h R 2

+υ=6

2

310

92.1)106.1(??=1.3 (m/s) ④ ⑵张明的思路方法错误,王玉的方法正确,但所列方程式是错误的。 ⑤ 由动能定理得:

ΔE k =mg (r 远-r 近) =1650×1.3×(1.94-1.93)×105=2.1×106(J) ⑥ 评分标准:②③④各1分,①⑤2分,⑥3分。 感悟与反思:

第一问考查基本知识;第二问立意很好,将实际的椭圆运动和两个独立的圆周运动放在一起让学生辨析,抓住了教师教学和学生学习过程中的常见缺漏。学生大多只是抓住“1千米差别”大做文章,而不能发现本质问题。对第二问,好的学生也可能用引力势能公式计算,这也较好,但题目要求估算,还是题给解法好些。 7.(盐城一调12分)如图所示,在直角坐标系的原点O 处有一放射源,向四周均匀发射速度大小相等、方向都平行于纸面的带电粒子。在放射源右边有一很薄的挡板,挡板与xoy 平面交线的两端M 、N 与原点O 正好构成等腰直角三角形。已知带电粒子的质量为m ,带电量为q ,速度为υ,MN 的长度为L 。 (1)若在y 轴右侧加一平行于x 轴的匀强电场,要使y 轴右侧所有运动的粒子都能打到挡板MN 上,则

电场强度E 0的最小值为多大?在电场强度为E 0时,打到板上的粒子动能为多大?

(2)若在整个空间加一方向垂直纸面向里的匀强磁场,要使板右侧的MN 连线上都有粒子打到,磁场的

磁感应强度不能超过多少(用m 、υ、q 、L 表示)?若满足此条件,放射源O 向外发射出的所有带电粒子中有几分之几能打在板的左边?

解:⑴由题意知,要使y 轴右侧所有运动粒子都能打在

MN 板上,其临界条件为:沿y 轴方向运动的粒子作类平抛运动,且落在M 或N 点。

M O ′=

2

1

L =υt ①

a=

m

qE 0

OO ′=

21L =2

1

at 2 ③

解①②③式得

E 0=L

q m 24υ

由动能定理知 qE 0×

21L =E k -22

1υm ⑤

υ

υx

y

O

M

N

解④⑤式得 E k =2

2

5υm

⑵由题意知,要使板右侧的MN 连线上都有粒子打到,粒子轨迹直径的最小值为MN 板的长度L 。 R 0=

21L =0qB m υ ⑦

B 0=qL

m υ

2

放射源O 发射出的粒子中,打在MN 板上的粒子的临界径迹如图所示。 ∵OM =ON ,且OM ⊥ON ∴OO 1⊥OO 2 ∴υ1⊥υ2

∴放射源O 放射出的所有粒子中只有

4

1

打在MN 板的左侧。 评分标准:①②③④⑤⑥各1分,⑦⑧各2分,第2问的第二部分的文字叙述正确得2分。 感悟与反思:

本题总体较难。第一问考查带电粒子在电场中的偏转,为基本要求;第二问的第一种情形学生很多看不清题目,错误理解为从左侧打板,第二种情形中学生受熟题影响,只知道相切这种临界情况,而不知道应该按照旋转半径大于L/2考虑。另外,学生不能熟练进行圆的旋转、缩放,束手无策,也是高三复习中的难点问题,需要切实突破。全题大多学生只能做出第一问。

8.(徐州质检13分)如图所示,粒子源S 可以不断地产生质量为m 、电荷量为+q 的粒子(重力不计).粒子从O 1孔漂进(初速不计)一个水平方向的加速电场,再经小孔O 2进入相互正交的匀强电场和匀强磁场区域,电场强度大小为E ,磁感应强度大小为B 1,方向如图.虚线PQ 、MN 之间存在着水平向右的匀强磁场,磁感应强度大小为B 2(图中未画出).有一块折成直角的硬质塑料板abc (不带电,宽度很窄,厚度不计)放置在PQ 、MN 之间(截面图如图),a 、c 两点恰在分别位于PQ 、MN 上,ab =bc =L ,α= 45°.现使粒子能沿图中虚线O 2O 3进入PQ 、MN 之间的区域. (1) 求加速电压U 1.

(2)假设粒子与硬质塑料板相碰后,速度大小不变,方向变化遵守光的反射定律.粒子在PQ 、MN 之间的区域中运动的时间和路程分别是多少?

S

x

O

解:(1)粒子源发出的粒子,进入加速电场被加速,速度为v 0,根据能的转化和守恒定律得:

2012

1

mv qU =

(2分) 要使粒子能沿图中虚线O 2O 3进入PQ 、MN 之间的区域,则粒子所受到向上的洛伦兹力与向下的电场力大小相等,B qv qE 0=得到1

0B E

v = (2分) 将②式代入①式,得2

1

212qB mE U =

(1分)

(2)粒子从O 3以速度v 0进入PQ 、MN 之间的区域,先做匀速直线运动,打到ab 板上,以大小为v 0

的速度垂直于磁场方向运动.粒子将以半径R 在垂直于磁场的平面内作匀速圆周运动,转动一周后打到ab 板的下部.由于不计板的厚度,所以质子从第一次打到ab 板到第二次打到ab 板后运动的时间为粒子在磁场运动一周的时间,即一个周期T .

由R

mv qvB 20

2=和运动学公式02v R T π=,得22qB m T π= (2分)

粒子在磁场中共碰到2块板,做圆周运动所需的时间为T t 21= (2分) 粒子进入磁场中,在v 0方向的总位移s =2L sin45°,时间为0

2v s

t =

(2分) 则t =t 1+t 2=

E

L B qB m 1224+π (2分) 感悟与反思:

本题最大的亮点在于巧妙地设计和考查了学生的空间想象和表达能力,同时要求学生对匀速直线

运动与匀速圆周运动的连接及整个运动的周期性要能做连贯的分析和计算,真正从能力立意。全题考点丰富,有加速、速度选择器、匀速圆周运动、匀速直线运动等,计算设计为字母运算而非数字计算,集中精力考查学生分析运动的能力,很好。平时教学中应该加强对三维空间受力和运动的分析,教会学生正确应用立体图、各种平面视图来帮助分析运动。

9.(如东启东期中联考14分)如图所示,可视为质点的三物块A 、B 、C 放在倾角为300、长L =2m 的固定

斜面上,物块与斜面间的动摩擦因数μ=

73

80

,A 与B 紧靠在一起,C 紧靠在固定挡板上,三物块的质量分别为m A =0.80kg 、m B =0.64kg 、m C =0.50kg ,其中A 不带电,B 、C 的带电量分别为q B =+4.0×10-5C 、q C =+2.0×10-5C 且保持不变,开始时三个物块均能保持静止且与斜面间均无摩擦力作用.如果选定两点电荷在相距无穷远处的电势能为0,则相距为r 时,两点电荷具有的电势能可表示为

12

p q q E k

r

=.现给A 施加一平行于斜面向上的力F ,使A 在斜面上作加速度a =1.5m/s 2的匀加速直线运动,经过时间t 0,力F 变为恒力,当A 运动到斜面顶端时撤去力F .已知静电力常量k =9.0×109N·m 2/C 2,g =10m/s 2.求:

(1)未施加力F 时物块B 、C 间的距离; (2)t 0时间内A 上滑的距离; (3)t 0时间内库仑力做的功; (4)力F 对A 物块做的总功.

解:(1)A 、B 、C 处于静止状态时,设B 、C 间距离为L 1, 则 C 对B 的库仑斥力

02

1

C B

kq q F L =

(1分) 以A 、B 为研究对象,根据力的平衡 0

)sin 30A B F m m g =

+0((1分) 联立解得 L 1=1.0m (1分)

(2)给A 施加力F 后, A 、B 沿斜面向上做匀加速直线运动,C 对B 的库仑斥力逐渐减小,A 、B 之

间的弹力也逐渐减小.经过时间t 0,B 、C 间距离设为L 2,A 、B 两者间弹力减小到零,此后两者分离,力F 变为恒力.则t 0时刻C 对B 的库仑斥力为

022

C B

kq q F L '=

① (1分) 以B 为研究对象,由牛顿第二定律有

000sin 30cos30B B B F m g m g m a μ'--=

② (1分)

联立①②解得 L 2=1.2m

则t 0时间内A 上滑的距离 21Δ0.2m L L L =-=

(1分)

(3)设t 0时间内库仑力做的功为W 0,由功能关系有

1212012

q q q q

W k

k L L =- (1分) 代入数据解得 0 1.2J W =

(1分)

(4)设在t 0时间内,末速度为v 1,力F 对A 物块做的功为W 1,由动能定理有

21011()2

G f A B W W W W m m v +++=+ ④ (1分) 而 0

()sin 30G A B W m m g L =-+?? ⑤

0()cos30f A B W m m g L μ=-+??

212Δv a L =?

⑦ (1分) 由③~⑦式解得 1 1.05W =J

(1分)

经过时间t 0后,A 、B 分离,力F 变为恒力,对A 由牛顿第二定律有

00sin 30cos30A A A F m g m g m a μ--= ⑧ (1分) 力F 对A 物块做的功 22()W F L L =?- ⑨ 由⑧⑨式代入数据得 25J W =

(1分)

则力F 对A 物块做的功 12 6.05J W W W =+=

(1分)

感悟与反思:

本题的设计属于陈题翻新。这类的老陈题多为重力势能与弹性势能结合,加考匀变速运动中的变

量(受力)分析,本题用电势能代替弹性势能,保留重力的分立代替原重力。考查功能很直接:一是考查学生能否用熟悉的方法解决相似问题的能力,二是能否综合应用几乎全部力学规律(匀变速运动、牛顿第二定律、能量守恒定律)解决问题,不失为一道立意鲜明难度适当的好的综合题。

10.(南通四县市17分)如图甲所示,在边界MN 左侧存在斜方向的匀强电场E 1,在MN 的右侧有竖直向上、

场强大小为E 2=0.4N/C 的匀强电场,还有垂直纸面向内的匀强磁场B (图甲中未画出)和水平向右的匀强电场E 3

(图甲中未画出),B 和E 3随时间变化的情况如图乙所示,P 1P 2为距MN 边界2.28m 的竖直墙壁,现有一带正电微粒质量为4×10-7

kg ,电量为1×10-5

C ,从左侧电场中距MN 边界

15

1

m 的A 处无初速释放后,沿直线以1m/s 速度垂直MN 边界进入右侧场区,设此时刻t =0, 取g =10m/s 2

.求: (1)MN 左侧匀强电场的电场强度E 1(sin37o=0.6); (2)带电微粒在MN 右侧场区中运动了1.5s 时的速度;

(3)带电微粒在MN 右侧场区中运动多长时间与墙壁碰撞?(π

22

.1≈0.19)

解:(1)设MN 左侧匀强电场场强为E 1,方向与水平方向夹角为θ.

带电小球受力如右图.

沿水平方向有 qE 1cos θ=ma (1分) 沿竖直方向有 qE 1sin θ=mg (1分)

对水平方向的匀加速运动有 v 2

=2as (1分) 代入数据可解得 E 1=0.5N/C (1分)

θ=53o (1分)

即E 1大小为0.5N/C,方向与水平向右方向夹53o角斜向上.

(2) 带电微粒在MN 右侧场区始终满足 qE 2=mg (1分)

在0~1s 时间内,带电微粒在E 3电场中 1.010

4004.01017

53=???==--m qE a m/s 2

(1分) 带电微粒在1s 时的速度大小为 v 1=v +at =1+0.1×1=1.1m/s (1分)

在1~1.5s 时间内,带电微粒在磁场B 中运动,周期为 108.010*******

7

=????==--πππqB m T s (1分) 在1~1.5s 时间内,带电微粒在磁场B 中正好作半个圆周运动.所以带电微粒在MN 右侧场区中运动了1.5s 时的速度大小为1.1m/s, 方向水平向左. (1分) (3)在0s~1s 时间内带电微粒前进距离 s 1= vt +

21at 2=1×1+2

1

×0.1×12=1.05m 带电微粒在磁场B 中作圆周运动的半径 π

π21.108.01011.110457=????==--qB mv r m (1分) 因为r +s 1<2.28m ,所以在1s~2s 时间内带电微粒未碰及墙壁.

在2s~3s 时间内带电微粒作匀加速运动,加速度仍为 a =0.1m/s 2

, 在3s 内带电微粒共前进距离 s 3=2.221.02

1

21212233=??+?=+

at vt m (1分) 在3s 时带电微粒的速度大小为 2.121.0133=?+=+=at v v m/s 在3s~4s 时间内带电微粒在磁场B 中作圆周运动的半径

mg

qE 1 θ 图甲

q m A

E 1

E 2

N

M

P 2

P 1

图乙 E 3/Vm -1

t /s

O

B /T

t /s

O

0.004

0.08

π

π22.108.01012.110457

33=????==--qB mv r m=0.19m (1分)

因为r 3+s 3>2.28m ,所以在4s 时间内带电微粒碰及墙壁.

带电微粒在3s 以后运动情况如右图,其中 d =2.28-2.2=0.08m

sin θ=

5.03

=r d

, θ=30o (1所以,带电微粒作圆周运动的时间为

12108.01011210421221257

33=?????===--πππqB m T t s (1分) 带电微粒与墙壁碰撞的时间为 t 总=3+

121=12

37s (1分) 感悟与反思:

这道题较好地考察了带电粒子在电场和磁场中的直线和偏转运动,所考查的知识点容量很大,

对数值计算的要求高,且要求逐步计算出正确结果,才能得出下一步结果。但对运动过程的设置为正向设计,学生只要依次分析、计算,在细心分析基础上应该有一定比例的考生能够走到最后,所以有较好的区分度。运动的过程设计还有几个亮点,即运动中有重复性但又蕴含数值(半径)的变化,磁场运动和电场运动的交替连接也很得体,分析与计算长度的要求较高,符合高考能力立意、运用数学工具的要求。 11.(南通市一调15分) 如图甲,相距为L 的光滑平行金属导轨水平放置,导轨一部分处在垂直导轨平

面的匀强磁场中,oo /为磁场边界,磁感应强度为B ,导轨右侧接有定值电阻R ,导轨电阻忽略不计。在距oo /为L 处垂直导轨放置一质量为m 、电阻不计的金属杆ab 。

(1)若ab 杆在恒力作用下由静止开始向右运动,其速度-位移的关系图象如图乙所示,则在此过程

中电阻R 上产生的电热Q 1是多少?ab 杆在离开磁场前瞬间的加速度为多少?

(2)若a b 杆固定在导轨上的初始位置,磁场按B t =Bcosωt 规律由B 减小到零,在此过程中电阻R 上

产生的电热为Q 2,求ω的大小。

解:(1)ab 杆在位移L 到3L 的过程中,由动能定理 F (3L -L )=

)(2

12

122v v m - (1分) ab 杆在磁场中发生L 过程中,恒力F 做的功等于ab 杆增加的动能和回路产生的电能 FL =

12

12

1Q mv + (2分) 解得 4

)

3(31221v v m Q -= (2分)

v 1v 2图甲

图乙

ab 杆在离开磁场前瞬间,水平方向上受安培力F 安和外力F 作用,加速度a ,

R

v L B F 1

22=安 (1分)

m

F F a 安

-=

(1分) 解得 mR

v

L B L v v a 2221224--= (2分) (2)当磁场按B t =B cos t 规律变化时,闭合回路的磁通量Φ的变化规律为

Φ==B cos ωt =BL 2cos ωt

该过程中穿过线圈的磁通量,与线圈在磁场中以角速度ω匀速转动规律相同,因此回路中产生交

流电。

电动势最大值

E m =BωL 2 (2分) 磁场减小到零,相当于线圈转过90°,经历四分之一周期,过程中产生的电热 Q 2=41)2

(

2T

R E m ? (2分) T =

ω

π

2

解得 4

224L B R

Q πω=

(2分)

感悟与反思:

本题学生入手不易,主要是对所给图象不理解,但细一分析,后一段匀变速运动的分析是突破口,

再往前推,题目就容易多了。第二问巧妙设计了交流电,学生不易辨别。解法又两种,一是如题所述(类比迁移法),二是对磁通量求导的方法得出电动势为交变电动势,显然第一种方法较好,这种解法并不超纲。

12.(苏北三市14分) 如图甲所示,一边长L =2.5m 、质量m =0.5kg 的正方形金属线框,放在光滑绝缘的水

平面上,整个装置放在方向竖直向上、磁感应强度B =0.8T 的匀强磁场中,它的一边与磁场的边界MN 重合。在水平力F 作用下由静止开始向左运动,经过5s 线框被拉出磁场。测得金属线框中的电流随时间变化的图像如乙图所示,在金属线框被拉出的过程中。 ⑴求通过线框导线截面的电量及线框的电阻; ⑵写出水平力F 随时间变化的表达式;

⑶已知在这5s 内力F 做功1.92J ,那么在此过程中,线框产生的焦耳热是多少?

解:⑴根据q =I t ,由I -t 图象得:q =1.25C (2分)

甲 乙

又根据I =Rt R E φ?==Rt

BL 2

(2分)

得R = 4Ω (1分)

⑵ 由电流图像可知,感应电流随时间变化的规律:I =0.1t (1分)

由感应电流R v BL I =

,可得金属框的速度随时间也是线性变化的,t .BL

RI

v 20==(1分) 线框做匀加速直线运动,加速度a = 0.2m/s 2 (1分) 线框在外力F 和安培力F A 作用下做匀加速直线运动,ma F F A =-(1分) 得力F =(0.2 t +0.1)N (1分)

⑶ t =5s 时,线框从磁场中拉出时的速度v 5 = at =1m/s (1分)

线框中产生的焦耳热6712

12

5.v m W Q =-=J (3分)

感悟与反思:

这道题精彩之处在于通过给出感应电流随时间做正比例变化,倒推出运动性质为匀变速运动,结合牛顿第二定律解出相关物理量。难度适中,所考查的知识点也不少。另外,学生计算焦耳热时可能会错误地应用平均值概念,这是具有迷惑性的地方。

13.(苏北三市14分)如图所示的直角坐标系中,在直线x =-2l 0到y 轴区域内存在着两个大小相等、方向

相反的有界匀强电场,其中x 轴上方的电场方向沿y 轴负方向,x 轴下方的电场方向沿y 轴正方向。在电场左边界上A (-2l 0,-l 0)到C (-2l 0,0)区域内,连续分布着电量为+q 、质量为m 的粒子。从某时刻起由A 点到C 点间的粒子,依次连续以相同的速度v 0沿x 轴正方向射入电场。若从A 点射入的粒子,恰好从y 轴上的A ′(0,l 0)沿x 轴正方向射出电场,其轨迹如图。不计粒子的重力及它们间的相互作用。

⑴求匀强电场的电场强度E ;

⑵求在AC 间还有哪些位置的粒子,通过电场后也能沿x 轴正方向运动?

⑶若以直线x =2l 0上的某点为圆心的圆形区域内,分布着垂直于xOy 平面向里的匀强磁场,使沿x 轴正方向射出电场的粒子,经磁场偏转后,都能通过直线x =2l 0与圆形磁场边界的一个交点处,而便于被收集,则磁场区域的最小半径是多大?相应的磁感应强度B 是多大?

解:⑴ 从A 点射出的粒子,由A 到A ′的运动时间为T ,根据运动轨迹和对称性可得 x 轴方向 002l v T = (1分) y 轴方向 2)2

(2122

0?=

T m qE l (1分)

得:0

2mv E ql =

(2分) ⑵ 设到C 点距离为△y 处射出的粒子通过电场后也沿x 轴正方向,粒子第一次达x 轴用时△t ,水平位移为△x ,则 0x v t ?=? 21()2qE

y t m

?=

? (1分) 若满足022l n x =??,则从电场射出时的速度方向也将沿x 轴正方向 (2分)

解之得:2002

20111

()2l qE y l n m v n

?=

= (2分) 即AC 间y 坐标为021

y l n

=- (n = 1,2,3,……) (1分)

⑶ 当n =1时,粒子射出的坐标为10y l =

当n =2时,粒子射出的坐标为201

4

y l =-

当n ≥3时,沿x 轴正方向射出的粒子分布在y 1到y 2之间(如图)y 1到y 2之间的距离为 L = y 1-y 2=

054l 则磁场的最小半径为 0528

l

L R == (2分) 若使粒子经磁场偏转后汇聚于一点,粒子的运动半径与磁场圆的半径相等(如图),(轨迹圆与磁

场圆相交,四边形PO 1QO 2为棱形) 由2

00mv qv B R

= 得:0

085mv B ql = (2分)

感悟与反思:

难度很高。从第二问开始,要求学生正确处理带电粒子在电场中的周期性运动及附带的数值上的变化,对粒子的出射点位置还要能加以区分;第三问最难,学生很难理解从不同位置入射的粒子怎么能够经过磁场偏转后运动到同一点,另外,磁场的最小范围的含义学生也不易理解。这一问的平面几何的分析推理要求太高了,个人感觉这一问数学味太浓,物理味太淡,不要也可。

14. 如图所示,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔P ,现有一质量m=4×10-20

kg ,

带电量q=+2×10-14C 的粒子,从小孔以速度v 0=3×104

m/s 水平射向磁感应强度B=0.2T 、方向垂直纸面向里

粒子重力不计.求:

(1)粒子在磁场中做圆周运动的半径; (2)粒子在磁场中运动的时间; (3)正三角形磁场区域的最小边长.

解:(1)由r v m qvB 2=,v

r

T π2=得:

/0.3r mv Bq m ==………………………………(4分)

552/210 6.2810T m Bq s s ππ--==?=?………………………………(2分)

(2)画出粒子的运动轨迹如图,可知5/6t =T ,得:…………………(4分)

(3)由数学知识可得:?

?

+=

30cos 30cos 2r r L 得:

m qB mv L 99.010

334)134(=+=+=

………………………………(3分) 感悟与反思:

本题几何分析要求高,但紧扣住初始速度和出场速度方向,应该不难知道粒子在磁场中偏转的轨

迹。学生在分析三角形边长时可能会出错,以为是整个圆的外切圆。

16.如图所示,在真空室内x 轴正半轴 点固定一负的点电荷,电量 。点电荷左侧的电场分布以y 轴为界

限。在x 轴负半轴远离原点某处有一粒子放射源不断沿x 轴正向放射出速度相同的带正电的粒子。粒子质量 ,电量 ,速率 。为使带电粒子进入y 轴右侧后作匀速圆周运动,最终打在位于x 正半轴点电荷右侧的荧光屏上(未画出),可在y 轴左侧加一个方向垂直纸面向外、圆心在x 轴上的圆形匀强磁场区域,其磁感应强度 。不计粒子重力,静电力常数 。求: (1)所加圆形匀强磁场区域的圆心坐标。 (2)所加磁场的区域半径。

30°

O

P A

v 0

a

b

c

o 1 60°

e

g

f

解:(1)设粒子进入电场中做匀速圆周运动的轨道半径为r

22Qq mv k r r = ()2

0.6kQq

r m mv

== (3分)

由题意可知:要使粒子进入电场时作匀速圆周运动,须满足粒子必须在N 点进入电场(如图所示),且MN=r ,进入电场时速度方向垂直于MN

(2分)

由几何关系可得ON=0.3(m ) 3'10OO m = 磁场圆心坐标为3,0??

-

? ???

(3分) (2)设粒子在磁场中的运动轨道半径为R

2mv Bqv R = ()0.1mv

R m Bq

=

= (2分)

如图所示:由几何关系可得所加磁场区域的半径'0.50.05R R m =?=

(4分)

感悟与反思:

运动过程的设计只给初末两个状态,实际要求学生采用逆向推导的方法逐步理出整个运动过程。

另外,粒子在有界磁场中的运动是个难点,要求学生从粒子的运动范围推知最小磁场的半径(解答的图中轨迹有错!)。

高中物理磁场经典习题含答案

寒假磁场题组练习 题组一 1.如图所示,在xOy平面内,y ≥ 0的区域有垂直于xOy平面向里的匀强磁场,磁感应强度为B,一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以v0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。 在着沿ad方向的匀强电场,场强大小为E,一粒子源不断地从a处的小孔沿 ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好 从e处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场, 磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出。(带电粒子的重 力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何? (2)电场强度E与磁感应强度B的比值为多大? 题组二 4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小B1 = T的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = m的匀强磁场B2。某时刻一质量m = ×10-8 kg、电量q = +×10-4 C的带电微粒(重力可忽略不计),从x轴上坐标为( m,0)的P点以速度v = ×103 m/s沿y轴正方 向运动。试求: (1)微粒在y轴的左侧磁场中运动的轨道半径; (2)微粒第一次经过y轴时速度方向与y轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件。 5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B0,

方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。 (1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。 (2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为3a /4,求离子乙的质量。 (3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。 题组三 7.如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布 在以直径A 2A 4为边界的两个半圆形区域I 、II 中,A 2A 4与A 1A 3的夹角为60°。一质量为m 、带电荷量为+q 的粒子以某一速度从I 区的边缘点A 1处沿与A 1A 3成30°角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入II 区,最 后再从A 4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t ,求I 区和II 区中磁感应强度的大小(忽略粒子重力)。 8.如图所示,在以O 为圆心,内外半径分别为R 1和R 2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U 为常量,R 1=R 0,R 2=3R 0,一电荷量为+q ,质量为m 的粒子从内圆上的A 点进入该区域,不计重力。 (1)已知粒子从外圆上以速度射出,求粒子在A 点的初速度的大小; (2)若撤去电场,如图(b ),已知粒子从OA 延长线与外圆的交点C 以速度射出,方向与OA 延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间; (3)在图(b )中,若粒子从A 点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少? A 23

高考物理万能答题模板汇总

2019高考物理万能答题模板汇总 高考物理万能答题模板(一) 题型1〓直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题. 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 题型2〓物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化. 题型3〓运动的合成与分解问题

题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解. 思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析. 题型4〓抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上. 思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足 vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解. 题型5〓圆周运动问题 题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速

高三物理单元测试题 (7)

高三物理单元测试题 (单元二:牛顿运动定律) 一、选择题:本题共10小题;每小题4分,共40分。在每小题给出的四个选项中,有的小题只有一个选项是正确的,有的小题有多个选项是正确的。全部选对的得4分,选对但不全的得2分,有错选或不答的得0分。 1、伽俐略理想实验将可靠的事实和理论思维结合起来,能更深刻地反映自然规律,伽俐略的斜面实验程序如下: (1)减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度。 (2)两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面。 (3)如果没有摩擦,小球将上升到释放时的高度。 (4)继续减小第二个斜面的倾角,最后使它成水平面,小球沿水平方向做持续的匀速运动。 请按程序先后次序排列,并指出它究竟属于可靠的事实,还是通过思维过程的推论,下列选项正确的是(数字表示上述程序的号码):( ) A 、事实2→事实1→推论3→推论4; B 、事实2→推论1→推论3→推论4; C 、事实2→推论3→推论1→推论4; D 、事实2→推论1→推论4→推论3; 2、如图3-1所示,一质量为M 的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a 、b 为两个位于斜面上质量均为m 的小木块。已知所有接触 面都是粗糙的。现发现a 、b 沿斜面匀速下滑,而楔形木块静止不动,这时楔形木块对水平桌面的压力等于:( ) A Mg +mg B Mg +2mg C Mg +mg(sinα+sinβ) D Mg +mg(cosα+cosβ) 3、人们乘电梯从1楼到10楼,再从10楼到1楼,则: A 、上楼过程中只有超重现象 B 、下楼过程中只有失重现象 C 、上楼、下楼过程中都只有失重现象 D 、上楼、下楼过程中都有超重现象 4、如图3-2所示,质量为M 的木架上有一个质量为m 的金属环,当环沿着木架以加速度a 加速下滑时,环与木架之间滑动摩擦力大小为f , ( ) A 、 ma g m M -+)( B 、g m M )(+ C 、f Mg + D 、f g m M -+)( 5、如图3-3所示,物体P 以一定的初速度v 沿光滑水平面向右运动,与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回。若弹簧在被压缩过程中始终遵守胡克守律,那么在P 与弹 簧发生相互作用的整个过程中:( ) A 、P 做匀变速直线运动 B 、P 的加速度大小不变,但方向改变一次 C 、P 的加速度大小不断改变,当加速度数值最大时,速度最小 D 、有一段过程,P 的加速度逐渐增大,速度也逐渐增大 图3-3 图3-2 图3-1

高三物理选修3-5综合测试题

高三物理选修3-5综合检测题 一、选择题(本题共10小题,每题4分,共40分) 1.人类认识原子结构和开发利用原子能经历了十分曲折的过程.卢瑟福、玻尔、查德威克等科学家在原子结构或原子核的研究方面做出了卓越的贡献.他们的主要成绩,下列说法中正确的是() A.卢瑟福提出了原子的核式结构 B.查德威克发现了质子 C.卢瑟福把量子理论引入原子模型 D.玻尔提出自己的原子结构假说,成功的解释了氢原子光谱 2.在α粒子散射试验中,少数α粒子发生了大角度偏转,这些α粒子( ) A.一直受到重金属原子核的斥力作用 B.动能不断减小 C.电势能不断增大 D.出现大角度偏转是与电子碰撞的结果 【解析】α粒子一直受到斥力的作用,斥力先做负功后做正功,α粒子动能先减小后增大,势能先增大后减小.α粒子的质量远大于电子的质量,与电子碰后其运动状态基本不变.A项正确 3.某种放射性元素的半衰期为6天,则下列说法中正确的是() A.10个这种元素的原子,经过6天后还有5个没有发生衰变 B.当环境温度升高的时候,其半衰期缩短 C.这种元素以化合物形式存在的时候,其半衰期不变 D.半衰期有原子核内部自身的因素决定 【解析】半衰期跟原子所处的物理环境和化学状态无关,由原子核自身决定,D项正确.半衰期是根据统计规律的出来的,对几个原子核是来说没有意义. 4.(改编题)甲球与乙球相碰,甲球的速度减少了5m/s,乙球的速度增加了3m/s,则甲、

乙两球质量之比m 甲∶m 乙是( ) A 2∶1 B 3∶5 C 5∶3 D 1∶2 【解析】两个物体发生碰撞满足动量守恒时,一个物体动量的增量等于另一个物体动量的减小量,乙乙甲甲v m v m ?=?得m 甲∶m 乙=3∶5 5.科学研究表明,光子有能量也有动量,当光子与电子发生碰撞时,光子的一些能量转移给电子.假设光子与电子碰撞前的波长为λ,碰撞后的波长为λ',则碰撞过程中( ) A . 能量守恒,动量守恒,且λ=λ' B . 能量不守恒,动量不守恒,且λ=λ' C . 能量守恒,动量守恒,且λ<λ' D . 能量守恒,动量守恒,且λ>λ' 【解析】光子与电子的发生的是完全弹性碰撞,动量守恒,能量守恒.由于光子的能量转移给电子,能量减少,由hv E =,光子的频率减小,所以波长增大,C 项正确. 6.为了模拟宇宙大爆炸的情况,科学家们使两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞。若要使碰撞前的动能尽可能多地转化为内能,应设法使离子在碰撞前的瞬间具有 ( ) A .相同的速率 B .相同的质量 C .相同的动能 D .大小相同的动量 7.如图40-5所示,带有斜面的小车A 静止于光滑水平面上,现B 以某一初速度冲上斜面,在冲到斜面最高点的过程中 ( ) A.若斜面光滑,系统动量守恒,系统机械能守恒 B.若斜面光滑,系统动量不守恒,系统机械能守恒 C.若斜面不光滑,系统水平方向动量守恒,系统机械能不守恒 D.若斜面不光滑,系统水平方向动量不守恒,系统机械能不守恒 【解析】若斜面光滑,因只有重力对系统做功和系统内的弹力对系统内物体做功,故系统机械能守恒,而无论斜面是否光滑,系统竖直方向动量均不守恒,但水平方向动量均守恒 8.“朝核危机”引起全球瞩目,其焦点就是朝鲜核电站采用轻水堆还是重水堆.重水堆核电 图40-5

高三物理电磁场测试题

高三物理电磁场测试题 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分. 1.如图1所示,两根相互平行放置的长直导线a 和b 通有大小相等、方向相反的电流,a 受到磁场力的大小为F 1,当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力大小变为F 2.则此时b 受到的磁场力大小为( ) A .F 2 B .F 1-F 2 C .F 1+F 2 D .2F 1-F 2 2.如图2所示,某空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知一离子在电场力和磁场力作用下, 从静止开始沿曲线acb 运动,到达b 点时速度为 零,c 为运动的最低点.则 ( ) A .离子必带负电 B .a 、b 两点位于同一高度 C .离子在c 点速度最大 D .离子到达b 点后将沿原曲线返回 3.如图3所示,带负电的橡胶环绕轴OO ′以角速 a I I 图 图3 图2

度ω匀速旋转,在环左侧轴线上的小磁针最后平衡的位置是() A.N极竖直向下 B.N极竖直向上 C.N极沿轴线向左 D.N极沿轴线向右 4.每时每刻都有大量带电的宇宙射线向地球 射来,幸好地球磁场可以有效地改变这些 宇宙射线中大多数射线粒子的运动方向, 使它们不能到达地面,这对地球上的生命 有十分重要的意义。假设有一个带正电的 宇宙射线粒子垂直于地面向赤道射来(如图4,地球由西向东转,虚线表示地球自转轴,上方为地理北极),在地球磁场的作用下,它将向什么方向偏转?()A.向东B.向南C.向西D.向北 5.如图5所示,甲是一个带正电的小物块,乙是一个不带电的绝缘物块,甲、乙叠放在一起静置于粗糙的水平 地板上,地板上方空间有水平方向的匀强磁 场。现用水平恒力拉乙物块,使甲、乙无相 对滑动地一起水平向左加速运动, 在加速运动阶段()图5 图4

高三物理复习专题--有关地磁场类问题集锦

有关地磁场类问题集锦 1.十九世纪二十年代,以塞贝克(数学家)为代表的科学家已认识到:温度差会引起电流。安培考虑到地球自转造成了太阳照射后正面与背面的温度差,从而提出如下假设:地球磁场是绕地球的环形电流引起的,则该假设中的电流的方向是( ) A.由西向东垂直磁子午线 B.由东向西垂直磁子午线; C.由南向北沿磁子午线方向 D.由赤道向两极沿磁子午线方向 注:磁子午线是地球磁场N 极与S 极在地球表面的连线 2.20世纪50时年代,科学家提出了地磁场的“电磁感应学说”,认为当太阳强烈活动影响地球而引起磁暴时,磁暴在外地核中感应产生衰减时间较长的电流,此电流产生了地磁场。连续的磁暴作用可维持地磁场。则外地核中的电流方向为(地磁场N 极与S 极在地球表面的连线称为磁子午线)( ) A.垂直磁子午线由西向东 B 垂直磁子午线由东向西 C.沿磁子午线由南向北 D 沿磁子午线由北向南 3.根据安培假设的思想,认为磁场是由于运动电荷产生的,这种思想如果对地磁场也适用,而目前在地球上并没有发现相对地球定向移动的电荷,那么由此可断定地球应该( ) A.带负电 B带正电 C.不带电 D无法确定 4.一根沿东西方向的水平导线,在赤道上空自由下落的过程中,导线上各点的电势( ) A.东端最高 B.西端最高 C.中点最高 D.各点一样高 5.在赤道附近有一竖直向下的匀强电场,在此区域内有一根沿东西方向放置的直导体棒,由水平位置自静止落下,不计空气阻力,则导体棒两端落地的先后关系是( ) A.东端先落地 B.西端先落地 C.两端同时落地 D.无法确定 6.在赤道上,地磁场可以看作是沿南北方向并且与地面平行的匀强磁场,磁感应强度是5×10-5T.如果赤 道上有一条沿东西方向的直导线,长40m,载有20A的电流,地磁场对这根导线的作用力大小是 ( ) A.4×10-8N B.2.5×10-5N C.9×10-4N D.4×10-2N 7.关于磁通量的说法中,正确的是( ) A.穿过一个面的磁通量等于磁感强度和该面面积的乘积 B.在匀强磁场中,穿过某平面的磁通量等于磁感应强度与该面面积的乘积 C.穿过一个面的磁通量就是穿过该面的磁感线条数 D.地磁场穿过地球表面的磁通量为零。 8.为了利用海洋资源,海洋工作者有时根据水流切割地磁场所产生的感应电动势 来测量海水的流速。假设海洋某处地磁场竖直分量为B=0.5×10-4 T ,水流是南北 流向,如图1所示,将两电极竖直插入此处海水中,且保持两电极的连线垂直水 流方向。若两电极相距L=20m ,与两电极相连的灵敏电压表读数为U=0.2mV ,则 海水的流速大小为( ) A.10m/s B.0.2m/s C.5m/s D.2m/s 9.指南针静止时,其N 极指向如图2中虚线所示。若在其上方放置水平方向的导线,并通以直流电,则指南针转向图中实线位置。据此可知( ) A.导线南北放置,通有向北的电流 B.导线南北放置,通有向南的电流 C.导线东西放置,通有向西的电流 D.导线东西放置,通有向东的电流 10.欧姆在探索通过导体的电流和电压、电阻关系 时,因无电源和电流表,他利用金属在冷水和热水中产生电动势 代替电源,用小磁针的偏转检测电源,具体做法是:在地磁场作 用下处于水平静止的小磁针上方,平行于小磁针水平放置一直 导线, 当该导 图1 西 东

高三物理单元测试题(四)

高一物理必修2模块综合评价检测试题 一、本题共12小题;每小题3分,共36分,在每小题给出的四个选项中,有的小题只有一个 正确选项,有的小题有多个正确选项。全部选对的得3分,选不全的得2分,有选错的或不答的得0分。 1. 从同一高度以相同的速率分别抛出质量相等的三个小球,一个竖直上抛,一个竖直下抛,另 一个平抛,则它们从抛出到落地 ① 运行的时间相等 ②加速度相同 ③落地时的速度相同 ④落地时的动能相等 以上说法正确的是 ( ) A .①③ B .②③ C .①④ D .②④ 2. 半径为R 的光滑半圆球固定在水平面上,顶部有一小物体 m ,如图4—1所示,今给小物体一个水平初速度 , 则物体将 ( ) A .沿球面滑至m 点 B .先沿球面滑至某点N 再离开球面做斜下抛运动 C .按半径大于R 的新圆弧轨道运动 D .立即离开半球面作平抛运动 3. 如图4—2所示,在研究平抛运动时,小球A 沿轨道滑下。 离开轨道末端(末端水平)时撞开轻质接触式开关S ,被电 磁铁吸住的小球B 同时自由下落。改变整个装置的高度 H 做同样的实验,发现位于同一高度的A 、B 两球总是同 时落地,该实验一现象说明了A 球在离开轨道后 ( ) A .水平方向的分运动是匀速直线运动 B .水平方向的分运动是匀加速直线运动 C .竖直方向的分运动是自由落体运动 D .竖直方向的分运动是匀速直线运动 4. 如图4—3所示,图中α、b 、c 、d 四条圆轨道的圆心均在 地球的自转轴上,均绕地球做匀速圆周运动的卫星中,下 列判断图中卫星可能的轨道正确说法是 ( ) A . 只要轨道的圆心均在地球自转轴上都是可能的轨道,图 中轨道α、b 、c 、d 都是可能的轨道 B . 只有轨道的圆心在地球的球心上,这些轨道才是可能的 轨道,图中轨道α、b 、c 、均可能 C . 只有轨道平面与地球赤道平面重合的卫星轨道才是可能的轨道,图中只有α轨道是 可能的 D . 只有轨道圆心在球心,且不与赤道平面重合的轨道,即图中轨道b 、c 才是可能的 5. 2001年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,命名为 MCG6-30-15由于黑洞的强大引力,周围物质大量掉入黑洞,假定银河系中心仅此一个黑洞。已知太阳系绕银河系中心匀速运转,下列哪组数据可估算出该黑洞的质量 ( ) A .地球绕太阳公转的周期和速度 B .太阳的质量和运行速度 C .太阳的质量和太阳到MCG6-30-15距离 D .太阳运行速度和太阳到MCG6-30-15距离 6. 如图4—4所示,以初速度9.8m/s 水平抛出的物体,飞行一段时 间后垂直撞在倾角为30°的斜面上,则物体飞行时间为 ( ) A . B . C . D . 2s gR s 3 3s 3 32 s 3

高三物理力学综合测试题

2010届高三物理力学综合测试题 考试时间:90分钟 满分:120分 一.选择题(本题共12小题,共计60分。有一个或多个选项正确,选对得5分,少选得3 分,错选或不选得0分。) 1、以下说法中,错误..的是( ) A .教练员研究运动员跑步的动作时,运动员可以视为质点 B .作用力是弹力,则对应的反作用力也是弹力 C .只要物体所受外力不为零,则物体的运动状态一定改变 D .物体不受外力作用时,物体也可能保持运动状态 2、 质量为1kg 的物体作匀变速直线运动,某时刻速度的大小为4m/s ,1s 后速度的大小变为 10m/s 。在这1s 内该物体的( ) A .位移的大小可能小于4m B .动量变化的大小不可能等于14kg.m/s C .加速度的大小可能小于24m/s D .合外力的冲量的大小可能等于S N .6 3、在09年柏林田径世锦赛中,牙买加选手博尔特是公认的世界飞人,在400m 环形赛道上,博尔特在男子100m 决赛和男子200m 决赛中分别以9.58s 和19.19s 的成绩破两项世界纪录,获得两枚金牌。关于他在这两次决赛中的运动情况,下列说法正确的是( ) A .200m 决赛中的位移是100m 决赛的两倍 B .200m 决赛中的平均速度约为10.42m/s C .100m 决赛中的平均速度约为10.44m/s D .100m 决赛中的最大速度一定为20.88m/s 4、如图所示,一轻质弹簧固定在墙上,一个质量为m 的木块以速度v 0从右侧沿光滑水平面向 左运动并与弹簧发生相互作用。设相互作用的过程中弹簧始终在弹性限度范围内,那么, 在整个相互作用的过程中弹簧对木块冲量I 的大小和弹簧对木块做的功W 分别是( ) A 、I=0,W=mv 02 B 、I=mv 0,W=mv 02 /2 C 、I=2mv 0,W=0 D 、I=2mv 0,W=mv 02 /2 5、如图所示,弹簧秤、绳和滑轮的重力不计,摩擦力不计,物体重量都是G 。在甲、乙、丙、丁四种情况下,弹簧的读数分别是F 1、F 2、F 3 、F 4,则F 1、F 2、F 3 、F 4 大小关系正确的是( ) A . F 3> F 1=F 2 > F 4 B . F 3=F 1> F 2=F 4 C . F 1=F 2=F 3 > F 4 D . F 1> F 2=F 3> F 4 6、 如图所示,物体A 、B 、C 叠放在光滑水平桌面上,A 与B 、A 与C 表面是不一样的粗糙, 力F 作用在物体C 上后,那么以下说法正确的是( ) A .A 可能始终静止 B .A C 可能相对静止,B 在A 上滑动 C .AB 可能相对静止,C 在A 上滑动 D .A 、B 、C 不可能相对静止 7、 半圆柱体P 放在粗糙的水平地面上,其右端有固定放置的竖直挡板MN,在半圆柱P 和 MN 之间放有一个光滑均匀的小圆柱体Q ,整个装置处于静止。如图所示,是这个装置的纵截面图。若用外力使MN 保持竖直并且缓慢地向右移动,在Q 落到地面以前,发现P 始终保持静止。在此过程中,下列说法中正确的是( ) A .MN 对Q 的弹力逐渐增大

高中物理选修磁场安培力练习题

一、磁场安培力练习题 一、选择题 1.关于磁场和磁感线的描述,正确的说法有[] A.磁极之间的相互作用是通过磁场发生的,磁场和电场一样,也是一种物质 B.磁感线可以形象地表现磁场的强弱与方向 C.磁感线总是从磁铁的北极出发,到南极终止 D.磁感线就是细铁屑在磁铁周围排列出的曲线,没有细铁屑的地方就没有磁感线 2.一束带电粒子沿水平方向飞过小磁针上方,并与磁针指向平行,能使磁针的S 极转向纸内,如图1所示,那么这束带电粒子可能是[] A.向右飞行的正离子束B.向左飞行的正离子束 C.向右飞行的负离子束D.问左飞行的负离子束 3.铁心上有两个线圈,把它们和一个干电池连接起来,已知线圈的电阻比电池的内阻大得多,如图2所示的图中,哪一种接法铁心的磁性最强[] 4.关于磁场,以下说法正确的是[] A.电流在磁场中某点不受磁场力作用,则该点的磁感强度一定为零 B.磁场中某点的磁感强度,根据公式B=F/I·l,它跟F,I,l都有关 C.磁场中某点的磁感强度的方向垂直于该点的磁场方向 D.磁场中任一点的磁感强度等于磁通密度,即垂直于磁感强度方向的单位面积的磁通量 5.磁场中某点的磁感应强度的方向[] A.放在该点的通电直导线所受的磁场力的方向 B.放在该点的正检验电荷所受的磁场力的方向 C.放在该点的小磁针静止时N极所指的方向

D.通过该点磁场线的切线方向 6.下列有关磁通量的论述中正确的是[] A.磁感强度越大的地方,穿过线圈的磁通量也越大 B.磁感强度越大的地方,线圈面积越大,则穿过线圈的磁通量越大 C.穿过线圈的磁通量为零的地方,磁感强度一定为零 D.匀强磁场中,穿过线圈的磁感线越多,则磁通量越大 7.如图3所示,条形磁铁放在水平桌面上,其中央正上方固定一根直导线,导线与磁铁垂直,并通以垂直纸面向外的电流,[] A.磁铁对桌面的压力减小、不受桌面摩擦力的作用 B.磁铁对桌面的压力减小、受到桌面摩擦力的作用 C.磁铁对桌面的压力增大,个受桌面摩擦力的作用 D.磁铁对桌面的压力增大,受到桌面摩擦力的作用 8.如图4所示,将通电线圈悬挂在磁铁N极附近:磁铁处于水平位置和线圈在同一平面内,且磁铁的轴线经过线圈圆心,线圈将[] A.转动同时靠近磁铁B.转动同时离开磁铁 C.不转动,只靠近磁铁D.不转动,只离开磁铁 9.通电矩形线圈平面垂直于匀强磁场的磁感线,则有[] A.线圈所受安培力的合力为零 B.线圈所受安培力以任一边为轴的力矩为零 C.线圈所受安培力以任一对角线为轴的力矩不为零 D.线圈所受安培力必定使其四边有向外扩展形变的效果 二、填空题 10.匀强磁场中有一段长为0.2m的直导线,它与磁场方向垂直,当通过3A的电

2018高三物理几种类型磁场难题及解析

2018高三物理几种类型磁场难题及解析 1、一个质量为m,带电量为q的带电粒子(不计重力),以初速v0沿X轴正方向运动,从图中原点O处开始进入一个 边界为圆形的匀强磁场中,已知磁场方向垂直于纸面,磁感强度大小为B.粒子飞出磁场区域后,从P处穿过Y轴,速度方向与Y轴正方向的夹角为θ=300, 如图所示,求: (1)圆形磁场的最小面积。 (2)粒子从原点O处开始进入磁场到达P点经历的时间。 2、如图所示,在空间中固定放置一绝缘材料制成的边长为L的刚性等边三边形框架△DEF,DE边上S点() 处有一发射带正电的粒子源,发射粒子的方向皆在图中截面内且垂直于DE边向下.发射的电量皆为q,质量皆为m,但速度v有各种不同的值.整个空间充满磁感应强度大小为B,方向垂直截面向里的均匀磁场。设粒子与△DEF 边框碰撞时没有能量损失和电量传递。求: (1)带电粒子速度的大小为v时,做匀速圆周运动的半径 (2)带电粒子速度v的大小取那些数值时,可使S点发出 的粒子最终又垂直于DE边回到S点? (3)这些粒子中,回到S点所用的最短时间是多少? 3、如图甲所示为电视机中显象管示意图,电子枪中灯丝加热阴极而逸出电子,这些电子再经加速电场加速后,从O 点进入由磁偏转线圈产生的偏转磁场中,经偏转磁场后打到荧光屏MN上,使荧光屏发出荧光形成图象。不计逸出电子的初速度和重力。已知电子质量为m,电量为e,加加速电场的电压为U。偏转线圈产生的磁场分布在边长为L 的正方形abcd区域内,磁场方向垂直纸面,且磁感应强度随时间变化的规律如图乙所示。在每个周期内磁感应强

度都是从-B均匀变化到B。磁场区域的左边界的中点与O点重合,ab边与OO′平行,右边界bc与荧光屏之间的距离为S。由于磁场区域较小,且电子运动的的速度很大,所以在每个电子通过磁场区域的过程中,可认为磁感应强度不变,即为稳定的匀强磁场,不计电子之间的相互作用。 1)求电子射出电场时的速度大小。 2)为使所有的电子都能从磁场的bc 边射出,求偏转线圈产生磁场的磁感应强度的最大值。 3)荧光屏上亮线的最大长度是多少? 4、如图(a)所示,在x≥0的区域内有如图(b)所示大小不变、方向随时间周期性变化的磁场,磁场方向垂直纸面 向外时为正方向。现有一个质量为m,电量为q的带正电的粒子(不计重力),在t=0时刻从坐标原点O以速度v 沿与x轴正方向成30°射入磁场,粒子运动一段时间后到达P点,此时粒子的速度与x轴正方向的夹角仍为30°。 如图(a)所示 (1)若B0为已知量,试求带电粒子在磁场中运动的轨道半径R和周期T0的表达式。 (2)若B0为未知量,但已知P点的坐标为(a,0),带电粒子第一次通过x轴时就经过P点,求磁场变化周期T 应满足的条件。 (3)若B0为未知量,但已知P点的坐标为(a,0),且带电粒子通过P点的时间大于T/2,求磁感应强度B0和磁场变化周期T。 5、如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形 区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60o。一质量为m、带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30o角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力)。

高中物理--机械振动单元测试题(含答案)

高中物理--机械振动单元测试题(含答案) 时间:90分钟 总分:100分 一、选择题(每小题3分,共30分) 1.弹簧振子作简谐运动,t 1时刻速度为v ,t 2时刻也为v ,且方向相同。已知(t 2-t 1)小于周期 T ,则(t 2-t 1) A .可能大于四分之一周期 B .可能小于四分之一周期 C .一定小于二分之一周期 D .可能等于二分之一周期 2.一弹簧振子的振幅为A ,下列说法正确的是 A .在T /4时间内,振子发生的位移一定是A ,路程也是A B .在T/4 C .在T /2时间内,振子发生的位移一定是2A ,路程一定是2A D .在T 时间内,振子发生的位移一定为零,路程一定是4A 3.某单摆的振动图象如右图所示,这个单摆的最大偏角最接近 A .2° B .3° C .4° D .5° 4.如图所示,置于地面上的一单摆在小振幅条件下摆动的周期为T 0。下列说法中正确的是 A .单摆摆动的过程,绳子的拉力始终大于摆球的重力 B .单摆摆动的过程,绳子的拉力始终小于摆球的重力 C .将该单摆悬挂在匀减速下降的升降机中,其摆动周期T < T 0 D .将该单摆置于高空中相对于地球静止的气球中,其摆动周期T > T 0 5.一物体在某行星表明所受万有引力是在地球表面时的16,在地球上走得很准的摆钟搬到该行星上,分针走一圈所用时间实际是 A .1/4h B .1/2h C .3h D .4h 6.如图所示,固定曲面AC 是一段半径为4.0米的光滑圆弧形成的,圆弧与水平方向相切于A 点, AB =10cm ,现将一小物体先后从斜面顶端C 和斜面圆弧部分中点D 处由静止释放,到达斜曲面低端时速度分别为v 1和v 2,所需时间为t 1和t 2,以下说法正确的是: A .v 1 > v 2 , t 1 = t 2 B .v 1 > v 2 , t 1 > t 2 C .v 1 < v 2 , t 1 = t 2 D .v 1 < v 2 , t 1 > t 2 7.如图所示,一轻弹簧与质量为m 的物体组成的弹簧振子,物体在同一条竖直线上的A 、B 间作简谐运动,O 为平衡位置,C 为AO 的中点,已知OC =h ,振子的周期为T ,某时刻物体恰好经过C 点

推荐推荐高三物理力学综合测试经典好题(含答案)

高三物理力学综合测试题 一、选择题(4×10=50) 1、如图所示,一物块受到一个水平力F 作用静止于斜面上,F 的方向与斜面平行, 如果将力F 撤消,下列对物块的描述正确的是( ) A 、木块将沿面斜面下滑 B 、木块受到的摩擦力变大 C 、木块立即获得加速度 D 、木块所受的摩擦力改变方向 2、一小球以初速度v 0竖直上抛,它能到达的最大高度为H ,问下列几种情况中,哪种情况小球不. 可能达到高度H (忽略空气阻力): ( ) A .图a ,以初速v 0沿光滑斜面向上运动 B .图b ,以初速v 0沿光滑的抛物线轨道,从最低点向上运动 C .图c (H>R>H/2),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 D .图d (R>H ),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 3. 如图,在光滑水平面上,放着两块长度相同,质量分别为M1和M2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块,开始时,各物均静止,今在两物体上各作用一水平恒力F1、F2,当物块和木块分离时,两木块的速度分别为v1和v2,,物体和木板间的动摩擦因数相同,下列说法 若F1=F2,M1>M2,则v1 >v2,; 若F1=F2,M1<M2,则v1 >v2,; ③若F1>F2,M1=M2,则v1 >v2,; ④若F1<F2,M1=M2,则v1 >v2,;其中正确的是( ) A .①③ B .②④ C .①② D .②③ 4.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N 时,物体A 处于静止状态。若小车以1m/s2的加速度向右运动后,则(g=10m/s2)( ) A .物体A 相对小车仍然静止 B .物体A 受到的摩擦力减小 C .物体A 受到的摩擦力大小不变 D .物体A 受到的弹簧拉力增大 5.如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小 球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤gR 3 10,则有关小球能够上升到最大高度(距离 底部)的说法中正确的是: ( ) A .一定可以表示为g v 22 B .可能为3 R C .可能为R D .可能为 3 5R 6.如图示,导热气缸开口向下,内有理想气体,气缸固定不动,缸内活塞可自由滑动且不 漏气。活塞下挂一砂桶,砂桶装满砂子时,活塞恰好静止。现给砂桶底部钻一个小洞,细砂慢慢漏出,外部环境温度恒定,则 ( ) A .气体压强增大,内能不变 B .外界对气体做功,气体温度不变 C .气体体积减小,压强增大,内能减小 D .外界对气体做功,气体内能增加 7.如图所示,质量M=50kg 的空箱子,放在光滑水平面上,箱子中有一个质量m=30kg 的铁块,铁块与箱子的左端ab 壁相距s=1m ,它一旦与ab 壁接触后就不会分开,铁块与箱底间的摩擦可以忽略不计。用水平向右的恒力F=10N 作用于箱子,2s 末立即撤去作用力,最后箱子与铁块的共同速度大小是( )

高三物理《电场和磁场》测试题及答案.doc

高三物理《电场和磁场》测试题及答案 一、选择题(共10小题,在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。全部选对的得4分,选不全的得2分,有选错的 或不答的得0分) 1. 一个电子穿过某一空间而未发生偏转,则此空间( ) A.一定不存在磁场 B.可能只存在电场 C.可能存在方向重合的电场和磁场 D.可能存在正交的磁场和电场 2. 据报道,我国第21次南极科考队于2005年在南极考查时观察到了 美丽的极光,极光是由来自太阳的高能量带电粒子流高速冲进高空稀 薄大气层时,被地球磁场俘获的,从而改变原有运动方向,向两极做 螺旋运动,如图1所示,这些高能粒子在运动过程中与大气分子或原子剧烈碰撞或摩擦从而激发大气分子或原子,使其发出有一定特征的各种颜色的光,由于地磁场的存在,使多数宇宙粒子不能达到地面而向人烟稀少的两极偏移,为地球生命的诞生和维持提供了天然的屏障,科学家发现并证实,向两极做螺旋运动的这些高能粒子的旋转半径是不断减少的,这主要与下列哪些因素有关( ) A.洛伦兹力对粒子做负功,使其动能减小 B.空气阻力做负功,使其动能减小 C.向南北两极磁感应强度不断增强 D.太阳对粒子的引力做负功 3..一个质子在匀强磁场和匀强电场中运动时,动能保持不变,已知磁场方向水平向右,则质子的运动方向和电场方向可能是(质子的重力不计)( ) A.质子向右运动,电场方向竖直向上 B.质子向右运动,电场方向竖直向下 C.质子向上运动,电场方向垂直纸面向里 D.质子向上运动,电场方向垂直面向外 4. 如图2所示,一带电粒子以水平初速度0v (0E v B <)先后进入方向垂直的匀强电场和匀强磁场区域,已知电场方向竖直向宽度相同且紧邻在一起,在带电粒子穿过电场和磁场的过程中(其所受重力忽略不计),电场和磁场对粒子所做的总功为1W ;若把电场和磁场正交重叠,如图3所示,粒子仍以初速度0v 穿过重叠场区,在带电粒子穿过电场和磁场的过程中,电场和磁场对粒子所做的总功为2W ,比较1W 和2W ,有( ) A.一定是12W W > B.一定是12W W = C.一定是1W W < D.可能是1W W <,也可能是12W W >

高中物理:相互作用单元测试题(1)

高中物理:相互作用单元测试题 一、选择题:(10×4=40分,每小题至少有一个答案是正确的,请将正确的答案填在答题卷的对应处) 1、下列说法正确的是: A、书对桌面的压力,施力物体是桌面,受力物体是书 B、桌面对书的支持力是由于桌面形变产生的 C、书对桌面的压力与书的重力是一对平衡力 D、桌面对书的支持力与书对桌面的压力是一对平衡力 2、关于四种基本相互作用,以下说法中正确的是: A、万有引力只发生在天体与天体之间,质量小的物体(如人与人)之间无万有引力 B、电磁相互作用是不需要相互接触就能起作用的 C、强相互作用只发生在宇宙天体等宏观物体之间 D、弱相互作用就是非常小的物体间的相互作用 3、下面关于重力、重心的说法中正确的是 A、重力就是物体受到地球的万有引力 B、重心就是物体的几何中心 C、直铁丝变弯后,重心便不在中点,但一定还在铁丝上 D、重心是物体的各部分所受重力的等效作用点 4、我国自行设计建造的世界第二大斜拉索桥——上海南浦大桥,桥面高46m,主桥(桥面是水平的)长846m,引桥全长7500m,下面关于力的说法正确的是 A、引桥长是为了减小汽车上桥时的阻力,增强下桥时的控制能力,但确增强了汽车对引桥面的压力 B、主桥面上每个索点都是一个支承点,斜拉索将桥的重力都转移到了支承塔上 C、索拉的结构减小了汽车对主桥面的压力 D、增加了汽车在引桥上时重力平行于桥面向下的分力 5、下列说法正确的 A、相互接触并有相对运动的两物体间必有摩擦力 B、两物体间有摩擦力,则其间必有弹力 C、两物体间有弹力,则其间必有摩擦力 D、两物体间无弹力,则其间必无摩擦力 6、如右图所示,在水平桌面上放一木块,用从零开始逐渐增大的水平拉 力F拉木块直到沿桌面运动,在此过程中,木块受到的摩擦力 f F的大小 随拉力F的大小变化的图象,在下图中正确的是 7、已知两个分力的大小为 1 F、 2 F,它们的合力大小为F,下列说法中不正确的是 A、不可能出现F<F1同时F<F2的情况 B、不可能出现F>F1同时F>F2的情况 C、不可能出现F<F1+F2的情况 D、不可能出现F>F1+F2的情况 8、一根细绳能承受的最大拉力是G,现把一重为G的物体系在绳的中点,分别握住绳的两端,先并拢,然后缓慢地左右对称地分开,若要求绳子不断,则两绳间的夹角不能超过 A、450 B、600 C、1200 D、1350 9、如图斜面上一小球用竖直档板挡位静止,若将档板缓慢 由竖直放置转为水平放置的过程中,斜面对小球的支持力 及档板对小球的弹力下列说法中正确的是 A、斜面对小球的支持力先减少后增大 B、档板对小球的弹力先减小后增大,最后等于小球重力大 小 C、斜面对小球的支持力与档板对小球的弹力都不变。 D、斜面对小球的支持力与档板对小球的弹力的合力始终不变 10、如图所示,在倾角为θ的固定光滑斜面上,质量为m的物体受外力F1和F2的作用,F1方向水平向右,F2方向竖直向上,若物体静止在斜面上,则下列关系正确的是 A、mg F mg F F≤ = + 2 2 1 , sin cos sinθ θ θ F F F F A B C

2013届高三物理一轮复习(人教版)选修3-5综合测试题

2013届高三物理一轮复习(人教版)选修3-5 综合测试题 本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分, 考试时间90分钟. 第Ⅰ卷(选择题共40分) 一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.下面列出的是一些核反应方程: 30 15P―→3014Si+X,94Be+21H―→105B+Y, 4 2He+42He―→73Li+Z. 其中() A.X是质子,Y是中子,Z是正电子 B.X是正电子,Y是质子,Z是中子 C.X是中子,Y是正电子,Z是质子 D.X是正电子,Y是中子,Z是质子 [答案] D [解析]由电荷数守恒和质量数守恒规律可知,X是正电子,Y 是中子,Z是质子,故D正确. 2.(2012·上海模拟)用α粒子轰击铝核(2713Al),在变为磷核(3015P)的同时释放一个x粒子,磷核(3015P)具有放射性,它在衰变为硅核(3014Si)的同时释放一个y粒子,则x粒子和y粒子分别是() A.质子和电子 B.质子和正电子

C.中子和电子D.中子和正电子 [答案] D [解析]由核反应的质量数和电荷数守恒得42He+2713Al→3015P+10n, x粒子为中子;3015P→3014Si+01e,y是正电子,D正确. 3.(2012·乌鲁木齐模拟)下列说法正确的是() A.15 7N+11H→12 6C+42He是α衰变方程 B.42He+2713Al→3015P+10n是β衰变方程 C.11H+21H→32He+γ是核聚变反应方程 D.238 92U→234 90Th+42He是核裂变反应方程 [答案] C [解析]放射性元素的原子核发出α粒子,称之为α衰变,A选项错误;β衰变为10n→11H+ 0-1e,B选项错误;铀的裂变反应方程为: 238 92U+10n→144 56Ba+8936Kr+310n,D选项错误;C选项正确.4.如图所示, 一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块.木箱和小木块都具有一定的质量.现使木箱获得一个向右的初速度v0,则() A.小木块和木箱最终都将静止

高考物理电磁学知识点之磁场经典测试题附答案

高考物理电磁学知识点之磁场经典测试题附答案 一、选择题 1.为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的.在下列四个图中,正确表示安培假设中环形电流方向的是( ) A . B . C . D . 2.2019年我国研制出了世界上最大的紧凑型强流质子回旋加速器,该回旋加速器是我国目前自主研制的能量最高的质子回旋加速器。如图所示为回旋加速器原理示意图,现将两个相同的回旋加速器置于相同的匀强磁场中,接入高频电源。分别加速氘核和氦核,下列说法正确的是( ) A .它们在磁场中运动的周期相同 B .它们的最大速度不相等 C .两次所接高频电源的频率不相同 D .仅增大高频电源的频率可增大粒子的最大动能 3.如图所示,边长为L 的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab 边中点和ac 边中点,在虚线的下方有一垂直于导线框向里的匀强磁场,此时导线框通电处于静止状态,细线的拉力为F 1;保持其他条件不变,现虚线下方的磁场消失,虚线上方有相同的磁场同时电流强度变为原来一半,此时细线的拉力为F 2 。已知重力加速度为g ,则导线框的质量为 A . 21 23F F g + B .21 2 3F F g - C . 21 F F g - D .21 F F g +

4.如图所示,一块长方体金属板材料置于方向垂直于其前表面向里的匀强磁场中,磁感应强度大小为B。当通以从左到右的恒定电流I时,金属材料上、下表面电势分别为φ1、 φ2。该金属材料垂直电流方向的截面为长方形,其与磁场垂直的边长为a、与磁场平行的边长为b,金属材料单位体积内自由电子数为n,元电荷为e。那么 A. 12IB enb ?? -=B. 12IB enb ?? -=- C. 12 IB ena ?? -=D. 12 IB ena ?? -=- 5.如图甲所示,静止在水平面上的等边三角形金属线框,匝数n=20,总电阻R=2.5Ω,边长L=0.3m,处在两个半径均为r=0.1m的圆形匀强磁场中,线框顶点与右侧圆心重合,线框底边与左侧圆直径重合,磁感应强度B1垂直水平面向外;B2垂直水平面向里,B1、B2随时间t的变化如图乙所示,线框一直处于静止状态,计算过程中取π3 =,下列说法正确的是() A.线框具有向左的运动趋势 B.t=0时刻穿过线框的磁通量为0.5Wb C.t=0.4s时刻线框中感应电动势为1.5V D.0-0.6s内通过线框横截面电荷量为0.018C 6.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平 面(未画出)。一群比荷为q m 的负离子以相同速率v0(较大),由P点在纸平面内向不同 方向射入磁场中发生偏转后,又飞出磁场,最终打在磁场区域右侧足够大荧光屏上,离子重力不计。则下列说法正确的是() A.离子在磁场中的运动轨迹半径可能不相等

相关主题