搜档网
当前位置:搜档网 › Behaviour of concrete-filled steel tubular stub columns subjected to axially local compression

Behaviour of concrete-filled steel tubular stub columns subjected to axially local compression

Behaviour of concrete-filled steel tubular stub columns subjected to axially local compression
Behaviour of concrete-filled steel tubular stub columns subjected to axially local compression

Journal of Constructional Steel Research64(2008)

377–387

https://www.sodocs.net/doc/599401385.html,/locate/jcsr

Behaviour of concrete-?lled steel tubular stub columns subjected to axially

local compression

Lin-Hai Han a,?,Wei Liu b,You-Fu Yang c

a Department of Civil Engineering,Tsinghua University,Beijing,100084,China

b Wuzhou Engineering Design and Research Institute,Beijing,100053,China

c College of Civil Engineering,Fuzhou University,Fujian,350002,China

Received27June2007;accepted2October2007

Abstract

The behaviour of concrete-?lled steel tubular(CFST)stub columns subjected to axially local compression was experimentally investigated in this paper.A total of thirty-two specimens were tested.The main parameters varied in the tests are:(1)sectional types:circular and square;

(2)local compression area ratio(concrete cross-sectional area to local compression area):1.44and16;and(3)thickness of the endplate:from 2to12mm.A?nite element analysis modelling was used for the analysis of CFST stub columns subjected to axially local compression,and a comparison of results calculated using this modelling shows generally good agreement with the test results.The theoretical modelling was then used to investigate the mechanism of the composite columns subjected to axially local compression.

c 2007Elsevier Ltd.All rights reserved.

Keywords:Composite columns;Local compression;Composite action;Concrete;Design;Hollow sections;Sectional capacity

1.Introduction

It is well known that concrete-?lled steel tubular(CFST) columns are currently being increasingly used in the construction of buildings,due to their excellent static and earthquake-resistant properties,such as high strength,high ductility,large energy absorption capacity,etc.In practice, CFST columns are often subject to axially local compression, as,for example,the pier of a girder bridge;the underneath bearing members of a rigid frame,reticulate frame or arch structures.Fig.1illustrates a schematic view of the CFST columns under axially local compression.

In the past,a large number of studies were carried out on CFST columns[2,7].Several state-of-the-art literatures on concrete-?lled steel tubular structures have been published recently,such as Gourley et al.[1],Nishiyama et al.[6],Shams and Saadeghvaziri[8]and Shanmugam and Lakshmi[9]. However,it seems that seldom attention has been paid to investigating the behaviour of a composite member subjected to axially local compression.This may be attributed to the fact that,except for exceptional cases,structural strength is not compromised by the local compression phenomenon.

?Corresponding author.Tel.:+861062797067;fax:+861062781488.

E-mail address:lhhan@https://www.sodocs.net/doc/599401385.html,(L.-H.Han).

In recent years,the performance of CFST under axially local compression has been of interest to structural engineers. However,such a problem has not been addressed satisfactorily by design codes on the composite columns.It is expected that,due to the locally-loaded effects,the behaviour of CFST columns subjected to axially local compression is different from that of fully-loaded composite columns.

The present paper is thus an attempt to study the behaviour of CFST stub columns under axially local compression.The main objectives of this paper were threefold:?rst,to report a series of test results on the CFST stub columns under axially local compression;second,to analyse the in?uences of several parameters,such as sectional type,local compression area ratio, thickness of the top endplate on the behaviour of locally-loaded CFST specimens;and third,to analyse the mechanism of CFST stub columns subjected to axially local compression by using ?nite element analysis(FEA)modelling.

2.Experimental programme and test results

2.1.Experimental programme

A total of32stub columns subjected to axial compression, including28locally-loaded specimens and four fully-loaded

0143-974X/$-see front matter c 2007Elsevier Ltd.All rights reserved. doi:10.1016/j.jcsr.2007.10.002

378L.-H.Han et al./Journal of Constructional Steel Research 64(2008)377–387

Notation A c Concrete cross-sectional area A L Area of local compression

B Outside width of square steel tube CFST Concrete-?lled steel tube

D Outside diameter of circular steel tube DI Ductility index

E c Concrete modulus of elasticity E s Steel modulus of elasticity

f c Concrete compressive cylinder strength f cu Concrete compressive cube strength f y Yield strength of steel

h Distance away from the top of the column L Length of the specimens N Axial load

N u Axial compressive capacity of fully loaded CFST N uL Axial compressive capacity of locally loaded CFST

p Con?ned stress SI Strength index

t Wall thickness of steel tube

t a Wall thickness of the top endplate

βLocal compression area ratio (=A c /A L )?Axial deformation

?85%Axial deformation when the load falls to 85%of the ultimate load

?ue Axial deformation at the ultimate load ε

Strain

Fig.1.A schematic view of the CFST columns subjected to axially local compression (A L :Cross section area of local compressive load;A c :Cross section area of core concrete).

specimens,were tested.The main parameters varied in the tests are:

–Sectional types:circular and square;

–Local compression area ratio,β(=A c /A L );where,A c is the cross-sectional area of concrete,and A L is the local compression area,shown as in Fig.1):1.44and 16;–Thickness of the top endplate,t a :from 2to 12mm.A summary of the specimens is presented in Table 1,where,B and D are the outside width and diameter of the square and

circular steel tubes,respectively;t is the wall thickness of steel tube;L is the length of the specimen and is chosen to be three-times the diameter (for circular specimens)or width (for square specimens)to avoid the effects of overall buckling and end conditions [4].In the table,the specimen label including the words of “cfst”denotes fully loaded CFST columns.

The tubes were all manufactured from mild steel sheet (2.83mm in thickness),with the plate being cut from the sheet,tack welded into a circular or square shape and then welded with a single bevel butt weld.Strips of the steel plate were tested in tension.Three coupons were taken from the steel plate.From these tests,the average yield strength (f y ),tensile strength (f u ),modulus of elasticity (E s )were 362.9MPa,449.8MPa and 214,000MPa respectively.The Poisson’s ratio (μs )of the steel was 0.274.

A kind of self-consolidating concrete (SCC)mix,with compressive cube strength (f cu )at 28days of approximately 60MPa,was designed.The modulus of elasticity (E c )of concrete was measured,and the average value was 35,300MPa.The mix proportions were:Cement:428kg /m 3;Blast furnace slag:160kg /m 3;Water:176kg /m 3;Sand:758kg /m 3;Coarse aggregate:928kg /m 3;Additional high-range water reducer (HRWR):7.06kg /m 3.

The measured compressive cube strength (f cu )at the time of test was 74.3MPa.

In all the concrete mixes,the ?ne aggregate used was siliceous sand and the coarse aggregate was carbonaceous stone.The fresh properties of the SCC mixture were as follows:–Slump ?ow (mm):247–Unit weight (kg /m 3):2454

–Concrete temperature (?C):30.5–Flow time (s):53.3–Flow speed (mm /s):15–

Flow distance (mm):800.

Each tube was welded to a circular (for circular section)or a square (for square section)steel base plate 10mm thick.The SCC was cast without any vibrations.The specimens were placed upright to air-dry until testing occurred.During curing,a very small amount of longitudinal shrinkage of 0.2mm or so occurred at the top of the column.A high-strength epoxy mortar was used to ?ll this longitudinal gap carefully so that the concrete surface was ?ush with the steel tube at the top,and the top endplate was welded at the same time.

The experimental study was to determine not only the maximum load-bearing capacity of the composite specimens subjected to axially local compression,but also to investigate the failure pattern up to and beyond the ultimate load.All the tests were performed on a 5000kN capacity testing machine.The specimens were seated directly on the rigid steel bed of the machine.Fig.2gives a schematic view of the test arrangements.The concentric loads were applied on the specimens through the loading ram of the machine (for fully-loaded specimens)or the steel-bearing plate (for locally-loaded specimens).The size of the bearing plate was varied to obtain different local compression area ratio (β).Several strain gauges were used for each CFST specimen to measure the variation of strains at the

L.-H.Han et al./Journal of Constructional Steel Research64(2008)377–387379 Table1

Summary of the test information

Section type No.Specimen label B(D)(mm)t L(mm)t s(mm)βN ue(kN)SI DI

(mm)

Circular1lcp1-1-1206 2.836002 1.4431100.988 1.536 2lcp1-1-2206 2.836002 1.4430800.979 1.509

3lcp1-2-1206 2.836005 1.443178 1.010 1.778

4lcp1-2-2206 2.836005 1.443225 1.025 1.871

5lcp1-3-1206 2.836009.6 1.443220 1.023 2.036

6lcp1-3-2206 2.836009.6 1.443305 1.050 1.809

7lcp1-4-1206 2.8360012 1.443230 1.026 2.338

8lcp1-4-2206 2.8360012 1.443288 1.045 2.461

9lcp2-1-1206 2.8360021610720.341 1.738

10lcp2-1-2206 2.8360021612050.383N/A

11lcp2-2-1206 2.8360051612700.403N/A

12lcp2-2-2206 2.8360051612230.389N/A

13lcp2-3-1206 2.83600121613650.434 3.463

14lcp2-3-2206 2.83600121613920.442 2.496

15ccfst-1206 2.836003190 1.568

16ccfst-2206 2.836003105 1.602 Square17lsp1-1-1177 2.835312 1.4418500.706 1.145 18lsp1-1-2177 2.835312 1.4418500.706 1.257

19lsp1-2-1177 2.835315 1.4419850.758 1.362

20lsp1-2-2177 2.835315 1.4418800.718 1.323

21lsp1-3-1177 2.835319.6 1.4422050.842 1.473

22lsp1-3-2177 2.835319.6 1.4421200.809 1.465

23lsp1-4-1177 2.8353112 1.4423000.878 1.811

24lsp1-4-2177 2.8353112 1.4423050.880 1.887

25lsp2-1-1177 2.835312166550.250 1.563

26lsp2-1-2177 2.835312167360.281 1.325

27lsp2-2-1177 2.835315167900.302 1.788

28lsp2-2-2177 2.835315167810.298 2.141

29lsp2-3-1177 2.8353112167800.298 2.342

30lsp2-3-2177 2.8353112167800.298 2.307

31scfst-1177 2.835312650 1.191

32scfst-2177 2.835312590 1.552

section with the distance of0.5B and1.5B away from the top of the specimen.Two linear voltage displacement transducers (LVDTs)were used to measure the axial deformation,as shown in Fig.2.

The specimens were loaded continuously until failure.A load interval of less than one-tenth of the estimated carrying load capacity was used.Each load interval was maintained for about2–3min.The progress of deformation,the mode of failure and the maximum load taken by the specimens were duly recorded.

2.2.Experimental results and specimen behaviour

It was found that the tested CFST columns under local compression generally exhibited in a ductile manner,and the longitudinal force carried by the steel tube increased with the increase of the top endplate thickness(t a).

Fig.3(a)and(b)show the in?uences of top endplate thickness and local compression area ratio on the failure modes of the composite specimens.It can be found that,the deformation of the top part of steel tube becomes more obvious for the specimens with thicker endplate.However,the thinner top endplate under the bearing plate was falling evidently,

and

Fig.2.A schematic view of the test setup.

for the specimens with bigger local compression area ratio,the buckle of the steel tube focused on the position near the top endplate.

Compared with fully loaded specimens,the number of buckles of the steel tube generally decreased with the decrease of the top endplate thickness(as shown in Fig.3(c)),even no buckle due to the local falling of the top endplate beneath the bearing plate(as shown in Fig.3(d)).It is expected that bigger steel wall thickness means higher rigidity of the endplate,under axially local compression,and the endplate can work well with

380L.-H.Han et al./Journal of Constructional Steel Research64(2008)377–387

(a)β=16.(b)β=1.44.(c)β=1.44.

(d)β=16.

Fig.3.Effects of top endplate thickness and local compression area ratio on the failure modes.

(a)Circular section.

Fig.4.Load versus deformation relationships.

L.-H.Han et al./Journal of Constructional Steel Research64(2008)377–387

381

(b)Square section.

Fig.4.(continued)

the composite section in this case,the axial load can transfer to the steel tube effectively and lead to the deformation of the steel tube.However,thin endplate can be dented locally under local compression due to its lower rigidity,and lead to the local compression failure mode(shown as in Fig.3(d)).

Fig.4shows the measured axial load(N)versus axial deformaion(?)curves of all tested specimens.It should be pointed out that,due to the fracture of welding,the specimens lcp2-1-1,scfst-1and scfst-2failed with small deformation after reaching their maximum strength.The measured ultimate strengths of the specimens are listed in Table1.

It was found that,in general,the ultimate strength and elastic stiffness increased with the increase of t a.The higher strength and elastic stiffness can mainly be explained that,with the increase of t a,the deformation of the end of steel tube is restrained and thus the con?nement of the steel tube to core concrete can be improved.Furthermore,the diffusion action of the steel-bearing plate to local compressive force may result in uniform load on the top part of the specimen(as shown in Fig.5),and to some extent,enlargement of the actual load-bearing area.

3.Analysis of test results and discussions

For convenience of analysis,strength index(SI)for CFST stub columns subjected to axially local compression is de?ned as SI=

N uL

N u

(1) where,N uL is the measured ultimate strength of CFSTs subjected to axially local compression,and N u is the tested ultimate strength of the corresponding fully loaded CFSTs.

Fig.6illustrates the effects of the thickness of endplates(t a) and local compression area ratio(β)on the strength index(SI). It can be seen that,SI increases with the increase of t a and decreases with the increase ofβ,and the in?uences on SI of βare more evident than those of t a.Generally,SI of circular specimens is greater than that of square specimens.This means that,under the same values of t a andβ,the“strength loss”of the circular composite columns is less than that of the square specimens.It can be explained that,under axially local compression,the con?nement of circular steel tube with core concrete is more effective than that of square steel tube.

It can also be found from Fig.6that,for the specimens with small local compression area ratio(β=1.44),the “composite action”of square steel tube to core concrete is evidently improved with the increase of t a and the improvement of bearing capacities of square CFST specimens is effective. However,the in?uence of t a on the ultimate strength of circular CFST specimens is moderate,because the con?nement of the circular steel tube to core concrete is more effective than that of square steel tube to core concrete.For the specimens with larger local compression area ratio(β=16),the ultimate

382L.-H.Han et al./Journal of Constructional Steel Research64(2008)

377–387

Fig.5.A schematic view of the local compression transferring

path.

Fig.6.In?uences of t a andβon SI.

strength increases with the increase of t a,and the endplate at

local compression zone deformed in plasticity,due to the higher

local compression force(as shown in Fig.3(d)).

One of the methods used to quantify ductility of the

composite sections is the ductility index(DI)[2].It is expressed

as:

DI=?85%

?ue

(2)

where,?ue is the axial deformation at the ultimate load,and ?85%is the axial deformation when the load falls to85%of the ultimate load.

The ductility indexes(DI)so determined are presented in Table1.Fig.7shows the in?uences of the thickness of endplate (t a)on DI.It can be seen that,in general,DI increases with the increase of t a.It is expected that,bigger wall thickness means higher rigidity of the endplate,and thus can lead to an improving structural performance of the composite section under axially local compression.

Fig.8shows the in?uences of t a on the longitudinal and transverse strains at the middle and end of the steel tube for CFST specimens,when the ultimate strength being achieved.It can be found that,in general,the longitudinal and transverse strains of the steel tube increase with the increase of the endplate thickness(t a).This means that the force

undertaking

(a)Circular

section.

(b)Square section.

Fig.7.t a versus DI relations.

by the steel tube and the“composite action”of the steel tube becomes more obvious with the increase of t a.It can also be found from these?gures that,the strains in the circular steel tubes are much larger than those in the square steel tubes.This may be contributed to the fact that,the interaction between circular steel tube and its core concrete is better than that between square steel tube and its core concrete.

L.-H.Han et al./Journal of Constructional Steel Research64(2008)377–387

383

(a)Circular section(β=1.44).(b)Circular section(β=16)

.

(c)Square section(β=1.44).(d)Square section(β=16).

Fig.8.Steel strains of CFSTs at the ultimate strength.

4.Finite element analysis(FEA)

4.1.Descriptions of the FEA modelling

ABAQUS[5]software was used in Han et al.[3]for the

?nite element analysis(FEA)on CFSTs subjected to pure

torsion.In the analysis,the damage plasticity model de?ned

in ABAQUS/Standard6.4[5]was used.The steel tube was

simulated by using4-node shell elements(S4),and the concrete

core was simulated using8-node brick elements(C3D8R),

with three translation degrees of freedom at each node.A

surface-based interaction with a contact pressure model in the

normal direction and a Coulomb friction model in the tangential

directions to the surface between steel tube and core concrete

was adopted.In the normal direction between steel tube and

core concrete,gap element with big gap rigidity was used[3].

The displacements were applied in several incremental steps,

and CFST responses after each step could be calculated from

the equilibrium equations.Similar model was used in this paper

to analyse the behaviour of CFST columns subjected to axially

local compression.Details of the FEA modelling can be found

in Han et al.[3].

Fixed boundary conditions were applied to the bottom

surface of the column.One fourth of the column was modelled

for CFST columns subjected to axially local compression

because the concentric load was applied only at top end of the

column.The uniform axial deformation(?)was applied to the

top surface of the composite members.Fig.9shows a schematic

view of the element divisions.

4.2.Veri?cations on the FEA modelling

The bearing capacity and the load versus deformation curves

predicted by FEA are compared with test results in this paper.

Fig.4shows the comparisons of load versus deformation

curves between predicted results by FEA and the test results.

Fig.10shows the comparisons of the bearing capacities

between tested and calculated results.It can be found that,

generally,good agreement is obtained between the predicted

and tested results.However,in general,the calculated stiffness

is somewhat higher than the tested results,shown as in Fig.4.

This may be induced by a initial eccentricity of the axial loading

during testing.

4.3.Interactions between steel tube and its core concrete

Fig.11illustrates the predicted load versus deformation

relationships of CFST member with different endplate

thickness.The calculating condition is:β=4,D(B)=

384L.-H.Han et al./Journal of Constructional Steel Research 64(2008)

377–387

Fig.9.A schematic view of the element divisions.1—Local compression zone;2—Symmetrical about yz plane;3—Symmetrical about zx plane;4—Same displacement and rotation;5—y ,z displacement of the steel tube is restricted;6—x ,z displacement of the steel tube is restricted;7—z displacement of the concrete surface is restricted.

400mm,t =9.3mm,L =1200mm,f y =345MPa and f c =51MPa.

Generally,the thicker the endplate,the higher the rigidity of endplate.It can be seen from Fig.11that,both the ultimate strength and stiffness of the composite columns increase with the increase of the endplate thickness.

Fig.12shows the con?ned stress (p )versus longitudinal strain relations for the composite columns under axially local compression.The calculating condition is:β=4,t a =10mm,D (B )=400mm,t =9.3mm,L =1200mm,f y =345MPa and f c =51MPa.The con?ned stress (p )comes from the section away from the top of the specimen of D or B and is the average value in that section.

It can be found from Fig.12that,for circular member,there is a minus value of con?ned stress at the initial stage,i.e.small tensile stress is produced between the steel tube and its core concrete.This may be explained by the Poisson’s ratio of steel being higher than that of concrete at the initial stage.When steel reaches its elastic-plastic stage,the con?ned stress turns to plus value and increases continuously under axial compression.For the composite columns with square sections,the average con?ned stress is always the plus value,and the con?ned stress descends after achieving the ultimate strength.

It was found that,with the increase of the endplate thickness,the zone of bearing load increases and the longitudinal stress (S33)tends to uniform.Furthermore,under the same endplate thickness,the longitudinal stresses (S33)of circular member are higher than those of the square member,due to the good con?nement of circular steel tube to its core concrete.Fig.13shows the typical longitudinal stress distributions across the end section of core concrete in square composite columns,when the ultimate strength is achieved.The calculating

condition

https://www.sodocs.net/doc/599401385.html,parisons of the bearing capacities between tested and calculated

results.

Fig.11.Typical load (N )versus axial deformation (?)relations.

is:β=4,B =400mm,t =9.3mm,L =1200mm,f y =345MPa and f c =51MPa.

Fig.14shows typical diffusions of the longitudinal stress (S33)along the height of the circular member,when the force equals to 30%of the ultimate strength (N uL ).The diffusion behaviour of square member is similar to that of circular member.Fig.15(a)and (b)show the in?uences of endplate thickness and sectional type on the longitudinal stress distributions along the height of the composite columns,where x is the distance away from the symmetrical axes of the member,the lines with “h /D ”and “h /B ”denote the circular and square sections respectively,and h is the distance away from the top of the column.

It can be seen from Fig.15that,the longitudinal stresses gradually decrease with the increase of the endplate thickness.Also,the distributions of longitudinal stress tends to uniform with the increase of the endplate thickness,and the stresses of core concrete beneath the loading plate decrease with the increase of the endplate thickness,shown as in Fig.15(a).This can be explained that,the thinner endplate can not provide enough stiffness to resist the local compression,and then the endplate falls into the concrete owing to relatively low strength

L.-H.Han et al./Journal of Constructional Steel Research 64(2008)377–387

385

Fig.12.Con?ned stress versus strain

relations.

(a)t a =2

mm.

(b)t a =20mm.

Fig.13.Longitudinal stress distributions across the end section of core concrete (square section).

of concrete beneath the endplate.It can also be found that,the stress along the height and the range of diffused stress of square columns are lower than those of circular member,shown as

in

(a)t a =2

mm.

(b)t a =20mm.

Fig.14.Diffusions of the longitudinal stress along the height (circular member).

Fig.15(b).This may be due to the fact that,the con?nement to core concrete of circular steel tube is bigger than that of square steel tube.

Fig.16shows the longitudinal and transverse stresses of the steel tube along the height of the composite columns,when the ultimate strength is achieved.It can be seen that,for circular member,the longitudinal stresses gradually increase from the top to the end,and the longitudinal stresses increase with the increase of the endplate thickness.The transverse stresses at the range of 1.0D from the top of the column are markedly large and decrease with the increase of the endplate thickness.However,the transverse stresses at the range of 1.5D from the end of the column are relatively small and do not vary with the increase of the endplate thickness.For square member,due to nonuniform distribution of the stresses,the rule is not evident.It can be seen that,the transverse stresses are relatively small and the longitudinal stresses gradually increase with the increase of the endplate thickness.The longitudinal stresses are relatively large at the top of the member and uniform at the low part of the member.5.Conclusions

The present study is an attempt to investigate the behaviour

386L.-H.Han et al./Journal of Constructional Steel Research 64(2008)

377–387

(a)Effects of endplate thickness (circular

section).

(b)Effects of section types (t a =2mm ).

Fig.15.Longitudinal stress distributions along the height of the column.

of concrete-?lled steel tubes (CFST)subjected to axially local compression.Based on the results of this study,the following conclusions can be drawn within the scope of the research:(1)Generally,CFST columns under local compression exhibit

in a ductile manner.The local compression effects can lead to a decrease of the bearing capacities of the composite columns.

(2)Under axially local compression,the top endplate can

improve the holistic behaviour of the composite columns by constraining the deformation at the end section and spreading local compression force.The bigger the endplate thickness,the higher the strength index (SI )and the ductility index (DI ).

(3)The strength index (SI )decreases with the increase of the

local compression area ratio (β).However,the in?uence of βon the ductility index (DI )is

moderate.

(a)Longitudinal

strain.

(b)Transverse strain.

Fig.16.Longitudinal and transverse stresses at ultimate strength.

(4)A FEA modelling was used to investigate the mechanism of

the composite columns subjected to axial compression.(5)Signi?cant test data have been presented in this paper,

which are useful for research and proved to be helpful for calibration against FEM or theoretical solutions.Acknowledgements

The research reported in the paper is part of Project 50425823supported by National Natural Science Foundation of China,the project supported by the Start-Up Fund for Outstanding Incoming Researchers of Tsinghua University and the Start-Up Fund for Outstanding Incoming Researchers of Fujian Province.Their ?nancial support is highly appreciated.References

[1]Gourley BC,Tort C,Hajjar JF,Schiller A.A synopsis of studies of the

monotonic and cyclic behavior of concrete-?lled steel tube beam-columns.Report no.ST1-01-4(Version 3.0).Department of Civil Engineering,University of Minnesota;2001.

[2]Han LH.Tests on stub columns of concrete-?lled RHS sections.J Constr

Steel Res 2002;58(3):353–72.

[3]Han LH,Yao GH,Tao Z.Performance of concrete-?lled thin-walled steel

tubes under pure torsion.Thin Walled Structures 2007;45(1):24–36.

[4]Han LH,Zhao XL,Tao Z.Tests and mechanics model of concrete-?lled

SHS stub columns,columns and beam-columns.Steel Compos Struct —An Internat J 2001;1(1):51–74.

L.-H.Han et al./Journal of Constructional Steel Research64(2008)377–387387

[5]Hibbitt,Karlson,Sorenson.ABAQUS version6.4:theory manual,users’

manual,veri?cation manual and example problems manual.Hibbitt, Karlson and Sorenson Inc.;2003.

[6]Nishiyama I,Morino S,Sakino K,Nakahara H,Fujimoto T,Mukai A,et

al.Summary of research on concrete-?lled structural steel tube column system carried out under the US–Japan cooperative research program on composite and hybrid structures.BRI research paper no.147.Japan:

Building Research Institute;2002.

[7]Schneider SP.Axially loaded concrete-?lled steel tubes.J Struct Eng1998;

124(10):1125–38.

[8]Shams M,Saadeghvaziri MA.State of the art of concrete-?lled steel tubular

columns.ACI Struct J1997;94(5):558–71.

[9]Shanmugam NE,Lakshmi B.State of the art report on steel-concrete

composite columns.J Constr Steel Res2001;57(10):1041–80.

各国钢材牌号对照表

中国德国法国国际标准日本瑞典英国美国 GB DIN W-Nr. NF ISO JIS SS BS ASTM UNS Q195 (A1,B1) S185 (st33) 1.0035 S185 (A33) HR2 -- S185 (140A10) A285M Gr.B - Q215A USt34-2 1.0028 A34 HR1 SS330 (SS34) 1370 040A12 A283M Gr.C - A215B (A2,C2) RSt34-2 1.0034 A34-2NE ---- A573M Gr.58 - Q235A S235JR 1.0037 S235JR Fe 360A SS 400 (SS 41) 1311 S235JR A570 Gr.A K02501 Q235B S235JRG1 1.0036 S235JRG1 Fe 360D -1312 S235JRG1 A570 Gr.D K02502 Q235C S235JRG2 (St 37-2) (USt 37-2) (RSt 37-2) 1.0038 S235JRG2 (E24-2) (E24-2NE) --- S235JRG2 (40B,C) A283M Gr.D - Q235D (A3,C3) --------- Q255A St44-2 1.0044 E28-2 -SM 400A 1412 43B A709M Gr.36 Q255D (A4,C4) ---- SM400B (SM 41A) (SM 41B) ---- Q275 (C5) S275J2G3 S275J2G4 (St44-3N) 1.0144 1.0145 1.0055 S275J2G3 S275J2G4 Fe430A SS490 (SS50) 1430 S275J2G3 S275J2G4 (43D) -K02901 注:括号内为旧钢号

09农学

0901 植物生产类 090101 农学 业务培养目标:本专业培养具备作物生产、作物遗传育种以及种子生产与经营管理等方面的基本理论、基本知识和基本技能,能在农业及其他相关的部门或单位从事与农学有关的技术与设计、推广与开发、经营与管理、教学与科研等工作的高级科学技术人才。 业务培养要求:本专业学生主要学习农业生物科学、农业生态科学、作物生长发育和遗传规律等方面的基本理论和基本知识,受到作物生产和作物新品种选育等方面的基本训练,具有作物育种、作物栽培与耕作、种子生产与检验等方面的基本能力。 毕业生应获得以下几方面的知识和能力: 1.具备扎实的数学、物理、化学等基本理论知识; 2.掌握生物学科和农学学科的基本理论、基本知识; 3.具备农业生产,特别是作物生产的技能和方法; 4.具备农业可持续发展的意识和基本知识,了解农业生产和科学技术的科学前沿和发展趋势; 5.熟悉农业生产、农村工作的有关方针、政策和法规; 6.掌握科技文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力; 7.有较强的调查研究与决策、组织与管理、口头与文字表达能力,具有独立获取知识、信息处理和创新的基本能力。 主干学科:作物学 主要课程:植物生理与生物化学、应用概率统计、遗传学、田间试验设计、农业生态学、作物栽培与耕作学、育种学、种子学、农业经济管理、农业推广学等 主要实践性教学环节:包括教学实习、生产实习、课程设计、毕业论文(毕业 设计)、科研训练、生产劳动、社会实践等,一般安排不少于30周。 主要专业实验:作物发育形态、田间诊断、作物杂交和选择、种子生产等修业年限:四年 授予学位:农学学士 相近专业:园艺、植物保护 开设院校: 四川农业大学 贵州大学 云南农业大学 西藏大学 甘肃农业大学 青海大学 宁夏大学 新疆农业大学 北京农学院 天津农学院 河北职业技术师范学院

国内外钢材牌号对照

UK Euronorm Germany France Italy Spain Japan USA USA BS1449 EN10111 Din 1614 NFA 36-301 UNI 5867 UNE 36-086/11 JIS G3131 ASTM SAE HR15 *** *** *** C15 *** *** A611 1018 HR4 FeP10 *** 1C FeP10 *** DPHC *** 1010 HR3 FeP11 Stw22 2C FeP11 AP11 SPHD A619 1008 HR2 FeP12 Stw23 *** FeP12 AP12 *** A621 1006 HR1 FeP13 Stw24 3C FeP13 AP13 SPHE A622 1006Al k BS4360 EN10025 DIN 17100 NFA 35-501 UNI 7080 UNE 36-080/11 JIS G3101 ASTM *** 40A S235 Ust 37-2 *** Fe360 A370 *** A283C *** 40B S235JR Rst 37-2 E24-2 Fe360B *** *** *** *** 43A S275 *** *** *** *** *** A570Gr40 *** 43B S275 St44-2 E28-2 Fe430B *** *** *** *** 50A S355 *** *** Fe510 A450 SS50 A572Gr50 *** 50B S355JR *** *** Fe510B *** *** *** *** 50C S355JO St52-3U E36-3 FE510C *** *** *** *** 50D *** *** *** *** *** *** *** *** BS1449 EN10149 SEW 092 NFA36-231 UNI UNE JIS ASTM AT15 SAE J1392 40/30 S315MC QSTE 340TM E315D Fe E275 *** *** 045XLK 43/35 S355MC QSTE 380TM E355D *** *** *** 50 050XLK 46/40 S420MC QSTE420M E420D Fe355 *** *** 60 060XLK 50/45 S460ML QSTE500TM E490D Fe420 *** *** 70 *** 60/55 S550MC QSTE550TM E560D Fe560 *** *** 80 080XLK *** S560MC QSTE600TM E600D *** *** *** *** *** BS1449 EN10130 DIN1623 NFA 36-401 UNI 5866-77 UNE 36086 JIS 3141-77 *** ***

国际钢牌号对照表

国际钢牌号对照表 一、我国钢号表示方法概述 钢的牌号简称钢号,是对每一种具体钢产品所取的名称,是人们了解钢的一种共同语言。我国的钢号表示方法,根据国家标准《钢铁产品牌号表示方法》(GB221-79)中规定,采用汉语拼音字母、化学元素符号和阿拉伯数字相结合的方法表示。即: ①钢号中化学元素采用国际化学符号表示,例如Si,Mn,Cr……等。混合稀土元素用“RE”(或“Xt”)表示。 ②产品名称、用途、冶炼和浇注方法等,一般采用汉语拼音的缩写字母表示,见表。 ③钢中主要化学元素含量(%)采用阿拉伯数字表示。表:GB标准钢号中所采用的缩写字母及其涵义:

二、我国钢号表示方法的分类说明 1.碳素结构钢 ①由Q+数字+质量等级符号+脱氧方法符号组成。它的钢号冠以“Q”,代表钢材的屈服点,后面的数字表示屈服点数值,单位是MPa例如Q235表示屈服点(σs)为235 MPa的碳素结构钢。 ②必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、B、C、D。脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。 ③专门用途的碳素钢,例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2.优质碳素结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。 ③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。 3.碳素工具钢 ①钢号冠以“T”,以免与其他钢类相混。 ②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0.8%。 ③锰含量较高者,在钢号最后标出“Mn”,例如“T8Mn”。 ④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A”,以示区别,例如“T8MnA”。 4.易切削钢 ①钢号冠以“Y”,以区别于优质碳素结构钢。 ②字母“Y”后的数字表示碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.3%的易切削钢,其钢号为“Y30”。 ③锰含量较高者,亦在钢号后标出“Mn”,例如“Y40Mn”。 5.合金结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如40Cr。 ②钢中主要合金元素,除个别微合金元素外,一般以百分之几表示。当平均合金含量<1.5%时,钢号中一般只标出元素符号,而不标明含量,但在特殊情况下易致混淆者,在元素符号后亦可标以数字“1”,例如钢号“12CrMoV”和“12Cr1MoV”,前者铬含量为0.4-0.6%,后者为0.9-1.2%,其余成分全部相同。当合金元素平均含量≥1.5%、≥2.5%、≥3.5%……时,在元素符号后面应标明含量,可相应表示为2、3、4……等。例如18Cr2Ni4WA。 ③钢中的钒V、钛Ti、铝AL、硼B、稀土RE等合金元素,均属微合金元素,虽然含量很低,仍应在钢号中标出。例如20MnVB钢中。钒为0.07-0.12%,硼为0.001-0.005%。 ④高级优质钢应在钢号最后加“A”,以区别于一般优质钢。 ⑤专门用途的合金结构钢,钢号冠以(或后缀)代表该钢种用途的符号。例如,铆螺专用的30CrMnSi钢,钢号表示为ML30CrMnSi。

中外常用钢材料牌号对照表

常用国内外钢材牌号对照表 中国 美国 日本 德国 英国 法国 前苏联 国际标准化组织 GB AST JIS DIN 、DINEN BS 、BSEN NF 、NFEN ΓOCT ISO 630 品 名 牌号 牌号 牌号 牌号 牌号 牌号 牌号 Q195 Cr.B Cr.C SS330 SPHC SPHD S185 040 A10 S185 S185 CT1K П CTlC П CTl ПC Q215A Cr.C Cr.58 SS 330 SPHC 040 A12 CT2K П—2 CT2C П—2 CT2ПC —2 Q235A Cr.D SS400 SM400A 080A15 CT3K П—2 CT3C П—2 CT3ПC —2 E235B Q235B Cr.D SS400 SM400A S235JR S235JRGl S235JRG2 S235JR S235JRGl S235JRG2 S235JR S235JRGl S235JRG2 CT3K П—3 CT3C П—3 CT3ПC —3 E235B Q255A SS400 SM400A CT4K П—2 CT4C П—2 CT4ПC —2 普 通 碳 素 结 构 钢 Q275 SS490 CT5C П—2 CT5ПC —2 E275A

中国 美国 日本 德国 英国 法国 前苏联 国际标准化组织 GB AST JIS DIN 、DINEN BS 、BSEN NF 、NFEN ΓOCT IS0 630 品 名 牌号 牌号 牌号 牌号 牌号 牌号 牌号 08F 1008 1010 SPHD SPHE 040A10 80K П 10 1010 S10C S12C CKl0 040A12 XCl0 10 C101 15 1015 S15C S17C CKl5 Fe360B 08M15 XCl2 Fe306B 15 C15E4 20 1020 S20C S22C C22 IC22 C22 20 25 1025 S25C S28C C25 IC25 C25 25 C25E4 40 1040 S40C S43C C40 IC40 080M40 C40 40 C40E4 45 1045 S45C S48C C45 IC45 080A47 C45 45 C45E4 50 1050 S50C S53C C50 IC50 080M50 C50 50 C50E4 优 质 碳 素 结 构 钢 15Mn 1019 080A15 15r

世界各国钢材牌号对照表

一、我国钢号表示方法概述 钢的牌号简称钢号,是对每一种具体钢产品所取的名称,是人们了解钢的一种共同语言。我国的钢号表示方法,根据国家标准《钢铁产品牌号表示方法》(GB221-79)中规定,采用汉语拼音字母、化学元素符号和阿拉伯数字相结合的方法表示。即: ①钢号中化学元素采用国际化学符号表示,例如Si,Mn,Cr……等。混合稀土元素用“RE”(或“Xt”)表示。 ②产品名称、用途、冶炼和浇注方法等,一般采用汉语拼音的缩写字母表示,见表。 ③钢中主要化学元素含量(%)采用阿拉伯数字表示。表:GB标准钢号中所采用的缩写字母及其涵义

二、我国钢号表示方法的分类说明 1.碳素结构钢 ①由Q+数字+质量等级符号+脱氧方法符号组成。它的钢号冠以“Q”,代表钢材的屈服点,后面的数字表示屈服点数值,单位是MPa例如Q235表示屈服点(σs)为235 MPa的碳素结构钢。 ②必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、B、C、D。脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。 ③专门用途的碳素钢,例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2.优质碳素结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是

顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。 ③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。3.碳素工具钢 ①钢号冠以“T”,以免与其他钢类相混。 ②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0.8%。 ③锰含量较高者,在钢号最后标出“Mn”,例如“T8Mn”。 ④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A”,以示区别,例如“T8MnA”。4.易切削钢 ①钢号冠以“Y”,以区别于优质碳素结构钢。 ②字母“Y”后的数字表示碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.3%的易切削钢,其钢号为“Y30”。 ③锰含量较高者,亦在钢号后标出“Mn”,例如“Y40Mn”。 5.合金结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如40Cr。 ②钢中主要合金元素,除个别微合金元素外,一般以百分之几表示。当平均合金含量<1.5%时,钢号中一般只标出元素符号,而不标明含量,但在特殊情况下易致混淆者,在元素符号后亦可标以数字“1”,例如钢号“12CrMoV”和“12Cr1MoV”,前者铬含量为0.4-0.6%,后者为0.9-1.2%,其余成分全部相同。当合金元素平均含量≥1.5%、≥2.5%、≥3.5%……时,在元素符号后面应标明含量,可相应表示为2、3、4……等。例如18Cr2Ni4WA。 ③钢中的钒V、钛Ti、铝AL、硼B、稀土RE等合金元素,均属微合金元素,虽然含量很低,仍应在钢号中标出。例如20MnVB 钢中。钒为0.07-0.12%,硼为0.001-0.005%。

最新高考志愿填报指南说明书

最新高考志愿填报指南说明书一、

二、“985”工程高校名单一期名单:(34所) 清华大学北京大学中国科技大学南京大学复旦大学上海交通大学西安交通大学浙江大学哈尔滨工业大学南开大学天津大学东南大学华中科技大学武汉大学厦门大学山东大学湖南大学中国海洋大学中南大学吉林大学北京理工大学大连理工大学北京航空航天大学重庆大学电子科技大学四川大学华南理工大学中山大学兰州大学东北大学 西北工业大学同济大学北京师范大学中国人民大学 二期名单:(4所)中国农业大学国防科技大学中央民族大学西北农林科技大学 三、教育部直属六所师范院校名单 1北京师范大学(北京) 2.华东师范大学(上海) 3.东北师范大学(长春) 4.华中师范大学(武汉) 5.陕西师范大学(西安) 6.西南师范大学( 重庆,已与西南农业大学合并为西南大学)。 四、2007年就业热门专业有: 计算机、通信、电子等信息类专业;金融、财经、政法类专业;环境科学类、土木建筑类、管理类、外语类专业;机械类、材料类、化工类、仪表类、纺织类等工科专业;农业类、林业类等专业及医药文教类专业等。

三资企业接收本科毕业生最多的专业是计算机科学与技术、机械设计制造及其自动化、电子信息工程、自动化、国际经济与贸易、英语、工商管理、会计学、电子科学与技术、电气工程及其自动化等。 金融单位接收本科毕业生最多的专业是金融学、会计学、计算机科学与技术、国际经济与贸易、法学、经济学、工商管理、信息管理与信息系统、财政学、市场营销等。 高考理科热门专业:数控专业 (专业介绍)数控技术是数字程序控制数控机械实现自动工作的技术。它广泛用于机械制造和自动化领域,较好地解决多品种、小批量和复杂零件加工以及生产过程自动化问题。随着计算机、自动控制技术的飞速发展,数控技术已广泛地应用于数控机床、机器人以及各类机电一体化设备上。同时,社会经济的飞速发展对数控装置和数控机械要求在理论和应用方面有迅速的发展和提升。 (分配去向)数控技术应用专业的毕业生分配单位的性质分布如下:三资企业占58%,国有企业占26%,民营企业占9%,其他占5%。 数控技术应用专业的毕业生所从事的工作性质分布如下:操作占55.7%,编程占13.4%,维修占9.4%,工艺占8.0%,生产管理占7.1%,质量检测占4.5%,综合占1.2%,营销占1.7%,行政管理占1.4%,其他占5.5%。 市场需求情况:随着改革开放深入发展,全国及机电行业发展迅速,特别是国有大中型企业及三资企业,在生产中都广泛地应用了数控加工技术和计算机辅助加工技术。因为市场竞争日益激烈,这些企业不得不大量引进高新技术,从而导致对专业人才的大量需求。 数控操作技工:精通机械加工和数控加工工艺知识,熟练掌握数控机床的操作和手工编程,了解自动编程和数控机床的简单维护维修。适合中职学校组织培养。此类人员市场需求量大,适合作为车间的数控机床操作技工。但因为其知识较单一,其工资待遇不会大高。 数控编程员:掌握数控加工工艺知识和数控机床的操作,掌握复杂模具的设计和制造专业知识,熟练掌握三维CAD/CAM软件,如uc、ProE等;熟练掌握数控手工和自动编程技术;适合高职、本科学校组织培养。适合作为工厂设计处和工艺处的数控编程员。此类人员需求量大,尤其在模具行业非常受欢迎;待遇也较高。 数控机床维护、维修人员:掌握数控机床的机械结构和机电联调,掌握数控机床的操作与编程,熟悉各种数控系统的特点、软硬件结构、PLC和参数设置。精通数控机床的机械和电气的调试和维修。适合高职学校组织培养。适合作为工厂设备处工程技术人员。此类人员需求量相对少一些,但培养此类人员非常不易,知识结构要求很广,适合与数控相关的工作水平强,需要大量实际经验的积累,当前非常缺乏,其待遇也较高。 数控通才:具备并精通数控操作技工、数控编程员和数控维护、维修人员所需掌握的综合知识,并在实际工作中积累了大量实际经验,知识面很广。精通数控机床的机械结构设计和数控系统的电气设计,掌握数控机床的机电联调。能自行完成数控系统的选型、数控机床电气系统的设计、安装、调试和维修。能独立完成机床的数控化改造.是企业(特别是民营企业)的抢手人才,其待遇很高。适合本科、高职学校组织培养。但必须在提供特殊的实训措施和名师指导等手段,促其成才。适合于担任企业的技术负责 人或机床厂数控机床产品开发的机电设计主管。 高校特色专业 南京信息工程大学:气象学 徐州医学院落:麻醉学 长安大学:道路与铁道工程;载运工具与使用工程 江南大学(江苏无锡):发酵工程;食品工程 天津中医学院:针灸推拿学 长春理工大学:光学工程 上海水产大学:水产养殖 扬州大学:预防兽医学 上海大学:机械电子工程;钢铁冶金 南昌大学:食品科学;材料物理与化学 西安科技学院:矿业安全技术及工程 甘肃农业大学:草业科学 东华大学(上海):纺织科学与工程

全国各地好的专科院校名单

全国各地好的专科院校名单! 北京市:北京交通职业学院北京科技职业学院北京政法职业学院北京经贸职业学院北京农业职业学院北京电子职业学院北京青年政治学院北京吉利大学 天津市:天津铁道职业技术学院天津艺术职业学院天津艺术职业学院天津现代职业技术学院天津渤海职业技术学校 上海市:上海出版印刷高等专科学校上海中侨职业技术学院 重庆市:重庆三峡医药高等专科学校重庆工贸职业技术学院重庆城市职业学院重庆电子工程职业学院重庆工商职业学院重庆三峡职业学院重庆工程职业技术学院 河南省:河南交通职业技术学院河南工业贸易职业学院 河北省:唐山科技职业技术学院河北工程技术高等专科学校承德石油高等专科学校沧州医学高等专科学校 山西省:晋城职业技术学院山西华澳商贸职业学院山西警官高等专科学校山西省财政税务专科学校运城幼儿师范高等专科学校吕梁高等专科学校太原电力高等专科学校更多 山东省:青岛求实学院 陕西省:延安大学西安创新学院西安三资职业学院陕西警官职业学院西安欧亚职业学院西安医学院西京学院西安外事学院西安翻译学院西安通信学院西安海棠职业学院西安思源学院西安航空职业学院西安汽车科技职业学院榆林学院西安文理学院陕西服装艺术职业学院陕西国防工业职业技术学院铜川职业技术学院陕西国际商贸职业学院陕西铁路工程职业技术学院陕西电子信息职业技术学院宝鸡职业技术学院西藏民族学院 湖北省:湖北财经高等专科学校武汉科技学院东湖校黄冈职业技术学院十堰职业技术学院武汉商贸学院武汉商贸学院 湖南省:湖南对外经济贸易职业学院怀化医学高等专科学校长沙电力职业技术学院湖南科技工业职业技术学院湖南都市职业学院湖南电子科技职业学院娄底职业技术学院郴州职业技术学院湘潭职业技术学院湖南科技职业学院湖南商务职业技术学院湖南生物与机电工程职业技术学院张家界航空工业职业技术学院湖南长沙职工大学湖南司法警官职业学院湖南理工职业技术学院邵阳职业技术学院长沙商贸旅游职业技术学院湖南网络工程职业学院长沙环境保护职业技术学院湖南体育职业学院长沙通信职业技术学院株洲职业技术学院湖南外国语职业学院湖南电气职业技术学院湖南艺术职业学院湖南机电职业技术学院湖南同德职业学院益阳职业技术学院长沙南方职业学院 广东省:广州体育学院广东金融学院深圳信息职业技术学院广东外语外贸大学南国商学院广东商学院华商学院 贵州省:安顺师范高等专科学校黔西南民族师范高等专科学校铜仁师范高等专科学校六盘水师范高等专科学校黔南民族医学高等专科学校 海南省:三亚城市职业学院海南政法职业学院海南外国语职业学院三亚航空旅游职业学院三亚卓达旅游职业学院海南职业技术学院海口经济职业技术学院琼州学院 黑龙江省:黑龙江东方学院 广西省:暂时没有添加学校 青海省:青海畜牧兽医职业技术学院青海卫生职业技术学院青海建筑职业技术学院青海警官职业学院青海交通职业技术学院 四川省:四川电力职业技术学院民办四川天一学院四川中医药高等专科学校四川工程职业技术学院成都纺织高等专科学校 宁夏省:宁夏工商职业技术学院宁夏民族职业技术学院银川科技职业学院宁夏工业职业学院宁夏财经职业技术学院宁夏司法警官职业学院宁夏建设职业技术学院宁夏职业技术学院

2019年度甘肃省高等学校产业支撑引导项目拟立项名单

2019年度甘肃省高等学校产业支撑引导项目拟立项名单 项目名称负责人申报单位 河西药用植物种质园建设及三种中药材规范化种植集成技术研究与示范推广张勇河西学院甘肃大宗药材黄芪精加工关键技术及相关产品开发李金田甘肃中医药大学 甘南高寒牧区环境友好型牦牛生产关键技术研究与示范余四九甘肃农业大学地理空间数据数字指纹系统集成及应用示范闫浩文兰州交通大学有色金属矿山开采装备智能管控技术研发与应用示范陈伟兰州理工大学 石油化工用流线型波纹连续翅片空冷器研发及产业化王良璧兰州交通大学翅果油树在平凉关山的生态引种及推广研究梁治学甘肃医学院 煤化工基地建设与新型煤化工技术开发李治军陇东学院基于虚拟现实的大地湾史前文明数字化综合展示系统的研究与实现高翔兰州文理学院乡村振兴战略下陇南市产业融合的机制创新与深度推进研究管新帅兰州财经大学长青学院畜禽养殖废弃物污染防控与综合利用技术研发与示范安建平天水师范学院 设施农业智能化绿色生产系统技术装备研发与产业化魏列江兰州理工大学甘肃康县近云轩手工书画纸延伸产品—水彩画纸的发展与研究巩万钧甘肃财贸职业学院甘肃省苹果产业升级关键技术研究与集成示范陈佰鸿甘肃农业大学 原子气室工程化制备关键技术研究及装备开发王华栋兰州工业学院 甘肃煤矿区废弃地治理与复垦的关键技术及示范研究宋元文兰州资源环境职业技术 学院 基于BIM与倾斜摄影测量技术的麦积山石窟历史文化遗迹信息化复原与VR展 现的研究王娟丽 甘肃建筑职业 技术学院 高寒地区戈壁温室生物质燃料智能防冻系统的研发与应用李玉宏酒泉职业技术学院甘肃省乡村振兴大数据监测平台建设及应用研究庞智强兰州财经大学消炎利胆颗粒的研发及临床疗效评价魏玉辉兰州大学FAM111B介导DDR1调控胃癌转移和侵袭的研究张德奎兰州大学

常用钢铁牌号对照表

常用钢铁牌号对照表 钢铁材料的名称、用途、特性和工艺方法命名符号(GB/T221-1979)

①按照GB/T 717—1982《炼钢用生铁》的规定,统一采用汉语拼音字母“L”,(“L”为“炼”字汉语拼音第一个字母)为命名符号。 ②根据GB700--88修改。 ③根据GB699--88修改。 ④根据GBl298--86修改。 表1-9生铁牌号的表示方法 表1-10铁合金牌号的表示方法

表1-11铸铁牌号的表示方法 产品名称牌号举例 QT40017 表示方法说明 灰铸铁 球墨铸铁 黑心可锻铸铁白心可锻铸铁珠光体可锻铸铁耐磨铸铁 抗磨白口铸铁抗磨球墨铸铁 冷硬铸铁 耐蚀铸铁 耐蚀球墨铸铁耐热铸铁 耐热球墨铸铁 HTl00 QT400--17 KTH300—06 KTB350---04 KTZ450—06 MTCulPTi—150 KmTBMn5M02Cu KmTQMn6 LTCrMoRE STSil5M04Cu STQAl5Si5 RTCr2 RTQAl6 伸长率(%) 抗拉强度(MPa) 球墨铸铁代号 ST Si15Mo4Cu ————铜元素符号 —————钼的名义百分含量 —————钼元素符号 —————硅的名义百分含量 —————硅元素符号 —————耐蚀铸铁代号 MT Cu1P Ti —150 ———抗拉强度(MPa) ———钛元素符号 ———磷元素符号 ———铜的名义百分含量 ———铜元素符号 ———耐磨铸铁代号 注:表中成分含量皆指质量分数 表1-12铸钢牌号的表示方法 表1-13钢产品号的表示方法

注:1.平均合金含量∠1.5%者,在牌号中只标出元素符号,不注其含量。 2.平均合金含量为1.5%~2.49%、2.50%~ 3.49%、…、22.5%~23.49%、…时相应的注为2、3、…、23、…。 3.成份含量皆指质量指数。

钢材牌号对应表

我国在此是以钢材的用途分类作为表示方法分类的基础: 1)碳素结构钢:表示方法:Q+数字+(质量等级符号)+(脱氧方法符号)+(专门用途的符号)①钢号冠以“Q”,代表钢材的屈服点;②“Q”后面的数字表示屈服点数值,单位是MPa。例如Q235表示屈服点(σs)为235 MPa的碳素结构钢;③必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、B、C、D。脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。专门用途的碳素钢:例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2)优质碳素结构钢表示方法:数字+(元素符号)+(脱氧方法符号)+(专门用途的符号)①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。 3)碳素工具钢表示方法:字母T+数字+(元素符号)+(质量等级符号)①钢号冠以“T”,以免与其他钢类相混。②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0.8%。③锰含量较高者,在钢号最后标出“Mn”,例如 “T8Mn”。④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A”,以示区别,例如“T8MnA”。 4)易切削钢表示方法:字母Y+数字+(元素符号)①钢号冠以“Y”,以区别于优质碳素结构钢。②字母“Y”后的数字表示碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.3%的易切削钢,其钢号为“Y30”。③锰含量较高者,亦在钢号后标出“Mn”,例如“Y40Mn”。 5)合金结构钢表示方法:(专门用途符号)+数字+主要合金元素符号和数字+微量合金元素符号+(质量等级符号)+(专门用途符号)①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如40Cr。 ②钢中主要合金元素,除个别微合金元素外,一般以百分之几表示。当平均合金含量<1.5%时,钢号中一般只标出元素符号,而不标明含量,但在特殊情况下易致混淆者,在元素符号后亦可标以数字“1”,例如钢号“12CrMoV”和“12Cr1MoV”,前者铬含量为0.4-0.6%,后者为0.9- 1.2%,其余成分全部相同。当合金元素平均含量≥1.5%、≥ 2.5%、≥ 3.5%……时,在元素符号后面应标明含量,可相应表示为2、3、4……等。例如18Cr2Ni4WA。③钢中的钒V、钛Ti、铝AL、硼B、稀土RE等合金元素,均属微合金元素,虽然含量很低,仍应在钢号中标出。例如 20MnVB钢中:钒为0.07-0.12%,硼为0.001-0.005%。④高级优质钢应在钢号最后加“A”,以区别于一般优质钢。⑤专门用途的合金结构钢,钢号冠以(或后缀)代表该钢种用途的符号。例如铆螺专用的30CrMnSi钢,钢号表示为ML30CrMnSi 6)低合金高强度钢表示方法:(专门用途符号)+数字+主要合金元素符号和数字+微量合金元素符号+(质量等级符号)+(专门用途符号)①钢号的表示方法,基本上和合金结构钢相同。②对专业用低合金高强度钢,应在钢号最后标明。例如16Mn钢,用于桥梁的专用钢种为“16Mnq”,汽车大梁的专用钢种为 “16MnL”,压力容器的专用钢种为“16MnR”。 7)弹簧钢弹簧钢按化学成分可分为碳素弹簧钢和合金弹簧钢两类,其钢号表示方法,前者基本上与优质碳素结构钢相同,后者基本上与合金结构钢相同。 8)滚动轴承钢表示方法:高碳铬轴承钢:字母G+Cr元素符号和数字渗碳轴承钢:字母G+数字+主要合金元素符号和数字+微量合金元素符号+(质量等级符号)①钢号冠以字母“G”,表示滚动轴承钢类。②高碳铬轴承钢钢号的碳含量不标出,铬含量以千分之

新老钢号对照(Q235AQ235BQ235C的区别)

新老钢号对照(Q235A\Q235B\Q235C的区别) 一、我国钢号表示方法概述 钢的牌号简称钢号,是对每一种具体钢产品所取的名称,是人们了解钢的一种共同语言。我国的钢号表示方法,根据国家标准《钢铁产品牌号表示方法》(GB221-79)中规定,采用汉语拼音字母、化学元素符号和阿拉伯数字相结合的方法表示。即: ①钢号中化学元素采用国际化学符号表示,例如Si,Mn,Cr……等。混合稀土元素用“RE”(或“Xt”)表示。 ②产品名称、用途、冶炼和浇注方法等,一般采用汉语拼音的缩写字母表示,见表。 ③钢中主要化学元素含量(%)采用阿拉伯数字表示。 表:GB标准钢号中所采用的缩写字母及其涵义

二、我国钢号表示方法的分类说明 1.碳素结构钢 ①由Q+数字+质量等级符号+脱氧方法符号组成。它的钢号冠以“Q”,代表钢材的屈服点,后面的数字表示屈服点数值,单位是MPa 例如Q235表示屈服点(σs)为235 MPa的碳素结构钢。 ②必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、B、C、D。脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。 ③专门用途的碳素钢,例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2.优质碳素结构钢

①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。 ③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。3.碳素工具钢 ①钢号冠以“T”,以免与其他钢类相混。 ②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0.8%。 ③锰含量较高者,在钢号最后标出“Mn”,例如“T8Mn”。 ④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A”,以示区别,例如“T8MnA”。 4.易切削钢 ①钢号冠以“Y”,以区别于优质碳素结构钢。 ②字母“Y”后的数字表示碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.3%的易切削钢,其钢号为“Y30”。 ③锰含量较高者,亦在钢号后标出“Mn”,例如“Y40Mn”。5.合金结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如40Cr。 ②钢中主要合金元素,除个别微合金元素外,一般以百分之几表

中外钢牌号对照表

钢板金属材料牌号对照 钢种 中国GB 日本JIS 美国ASTM 德国 牌号牌号标准号钢号钢号材料号标准号 碳素钢板Q235-F SS41 G3101 A36 USt37-2 1.0112 DIN17100 Q235 SS41 G3101 A283-C RSt37-2 1.0114 DIN17100 Q255A SS50 G3101 A283-D (RSt42-2) 1.0134 DIN17100 (A3R) SPV24 G3115 A285-C 20g SB42 G3103 A515.Cr60 HⅡ 1.0425 DIN17155 (15g) SB35 G3103 A515.Cr55 HⅠ 1.0345 DIN17155 (25g) SB46 G3103 A515.Cr65 HⅢ 1.0435 DIN17155 25 SM41A G3103 DIN17100 低合金钢板 16Mn SM50-B.C G3106 St52-3 1.0841 DIN17155 16MnR SM41B G3106 A299/A537-Ⅰ.Ⅱ 17Mn4 19Mn5 1.0841 1.8045 16MngC SPV36 G3115 St52-3 15MnVR SPV36 (WELTEN50) G3115 A225Gr.A.B WStE39 1.8930 15MnVgC (A633-GR.B) 15MnVNTR (K-TEN62M) A302-GR.B 18MnMoNbR A533-Gr.A.I 耐热钢板 16Mo SB46M G3103 A204-Gr A.B 15 Mo3 1.5414 DIN17155 12CrMo SCMV1 G4109 A387-Gr.2 15CrMo SCMV2 G4109 A387-Gr.12 13 CrMo44 1.7335 DIN17155 12Cr2Mo1 SVMV4 G4109 A387-Gr.22 10 Mo910 1.7362 DIN17155 低温钢板 16MnR SLA24B G3126 A516-Gr55 TTSTE26 1.0463 SEW089 15MnVR SLA33A A516-Gr60 TTSTE29 1.0488 15MnVNTR A516-Gr65 A516-Gr70 TTSTE32 TTSTE36 1.0851 1.0859

甘肃省首届大学生创业计划大赛获奖名单

甘肃省首届大学生创业计划大赛获奖名单 一、特等奖1项 兰州理工大学城市道路护栏自动清洗机的市场化推广指导老师:蔺全录、王宏、王翆琳 团队成员:陈祯、曹勇、张志万、苏京、谭婧、王彦君、陈珏宏、王起超 二、一等奖2项 1、兰州大学三颗豆互动教育 指导老师:万红波 团队成员:杜兴彦、范玉金、高皓亮、曹瑞芳、李杨杨、王勃、曹震、袁勇 2、兰州交通大学MHS-30型牛肉拉面自动顺筋机 指导老师:何玮、李万祥 团队成员:黄志东、王明轩、刘义玲、杨晓昕、海燕 三、二等奖5项 1、兰州商学院长青学院草根盛世动漫文化传播 指导老师:张维宁 团队成员:刘睿、徐玫、哈筱璇、董旭辉 2、兰州大学构建数字化校园网络电视平台 指导老师:包国宪、万红波 团队成员:马占虎、刘小峒、陈俊喜、马占梅、卲岩奇

3、甘肃交通职业技术学院安宁区在校大学生兼职信息服务 指导老师:杨晓英、于润嘉 团队成员:董康、杨伟民、郑琪、张燕、张晓芸、赵英娟4、甘肃联合大学淘扣网电子优惠券 指导老师:毛恺勇 团队成员:薛文涛、仇凤君、殷小芷、许晓芬、张小欢、马莉、袁碧聪、李小文、张银存 5、兰州交通大学安全监督管理系统 指导老师:周婷 团队成员:钱龙、王小龙、王静、李赟、张永强 四、三等奖7项 1、兰州理工大学基于ZigBee无线传感器技术智能小区安 防监控系统 指导老师:陈旭辉 团队成员:于晓华、武玉杰、赵进龙、焦静静、朱少可、王雷、李尘 2、兰州交通大学散热式键盘设计与推广 指导老师:赵岩 团队成员:赵传龙、王瑞锋、董军强、李艳博、冯欢、 韦正生 3、西北师范大学超码鼠标

指导老师:刘敏 团队成员:倪军、张旭升、魏美佳、谷溪、张冉、刘静、张璇 4、天水师范学院金城果汁厂软儿梨开发 指导老师:王延璞 团队成员:孙义平、保林、汪君强、席万秋、李彦文、 丁丽娟 5、天水师范学院天然色素的发酵生产 指导老师:马伟超、李一婧 团队成员:魏永强、付旭锋、马振贵、任伟亮、崔丽媛、高颖颖 6、西北师范大学译甸园 指导老师:马小凤 团队成员:郜幸、曹吉欣、汪海涛、王亚星、张兴才、孙婷、张雪梅 7、兰州大学星辰网络科技 指导老师:沙勇忠 团队成员:周海峰、余斌、侯晨兴、陆忠缘、宋昌峻、 何亦辰、张宁、张美荣、白晓、代丽君、李雪慧、 郑如轩 五、优秀奖22项 1、兰州大学“Kids Care—儿童快乐成长”心理保健计划

各国钢材牌号对照表(英语)

Q235 – A.F GB 700 – 88SS41G 3101A36UST37 – 2 1.0112DIN 17100Q235 – A GB 700 – 88SS41 G 3101 A283 – C RST37 – 2 1.0114 DIN 17100 Q235 – C GB 3274 – 88A285 Gr.C 20R GB 6654 – 96SPV24G 3115A285 –C,A516 Gr.6020g GB 713 – 86SB42G 3103A516 – GRADE 60H Ⅱ 1.0425DIN 17155(15g )GB 713 – 86SB35G 3103A515 – GRADE 55H Ⅰ 1.0345DIN 17155Q255 – A GB 700 – 88SS50G 3101A283 – GRADE D (RST42 – 2) 1.0134DIN 17100A299 17Mn4 1.0844DIN 17155A537 - ⅠⅡ19Mn5 1.0845 DIN 17155 A516 Gr.70 SPV36ST52 – 3DIN 17100 (WELTEN50) (BH36)WSTE39SEWo89(FG39) 15MnVgc GB 713 – 86(K–TEN62M ) 15MnVNR GB 6654 – 96(A633 – E)A302 – grade B A533 - grade A Ⅰ 1.Steel Plate States China ( GB) Japan( JIS) American (ASTM) Germany( DIN) steel grade standard steel grade standard steel grade and standard steel grade material grade standard 16Mn GB 1591 – 88 SM50 – B.C G 3106 ST52 – 3 1.0841DIN 17100A516 Gr.70 16MnR GB 6654 – 96 SPV36G 3115 15MnVR GB 6654 – 96A225 – grade A,B 1.893 16Mngc GB 713 – 86G 3115 18MnMoNbR GB 6654 – 96 Steel Grades for GB standard/ JIS standard/ASTM standard/ DIN standard Carbon steel plate Low alloy steel plate

种子生产与经营专业建设方案

种子生产与经营专业建设方案 甘肃农业职业技术学院种子生产与经营专业开设于2005年,2006年开始招生,属甘肃农业职业技术学院改革示范专业和特色专业。 为了进一步加强种子生产与经营专业的建设,保障人才培养质量,为甘肃和我国种子产业提供合格的农作物种子生产、加工、贮藏、检验、销售和管理一线的技术服务型人才,特制订《甘肃农业职业技术学院种子生产与经营专业建设方案》。 一、专业建设背景 1907年甘肃中等农矿学堂成立,先后开设过初级农科、高级农科、农学专业、作物育种专业等专业,为甘肃和国内培养了大量的农业技术和管理人才。2000年开设了种子工程专业,2002年又曾被批准为种植专业全国示范专业。甘肃农业职业技术学院成立(2004年)后设立了作物生产技术专业(种业产业化方向),2005年开设种子生产与经营专业。种子生产与经营专业建立在甘肃农业职业技术学院百年农业职业教育积累的办学经验和教学资源之上,也是建立在以获国家科技进步三等奖的多抗、早熟、丰产兼用亚麻品种天亚五号等36个优良品种为代表的40多年作物育种科研实践之上。 河西走廊地区是我国最大的杂交玉米种子生产基地和重要的瓜菜、花卉、向日葵制(繁)种基地,种子产业是甘肃省重点农业产业之一。据调查,河西种子企业大专以上学历员工占员工总数的43.2%,中专以上学历占71.8%,属于典型的技术密集型企业。种子企业设有生产技术员、加工技术员、质量检验员、储藏保管员、营销员、加工机械维修员、财会员、办公文员等岗位,由于该地区种子企业多数以生产为主,只有少数企业设有营销部门,种子生产与经营专业面向的主要岗位集中在生产技术员和加工技术员上,同时兼顾营销员、质量检验员、储藏保管员、办公文员。种子生产与经营专业的设置具有很强的针对性、灵活性和适应性,是我省农业产业发展的需要,也是发挥百年办学传统优势,将学院做大、做精、做强的需要。种子企业员工工资一般高于省内其他种植企业,保险金缴纳比较规范,内部福利较多,休假、培训和进修机会也比较多。学生进入企业一般担任技术员,符合高职学生有别于本科教育和中等职业教育的综合素质和就业心理。至2009年甘肃省共有4所高等院校设立了种子类专业,设立高职层次种子生产与经营专业的院校有3家,河西种业企业员工主要来源于上述院校和当地中等职业学校。河西走廊种业人力资源市场自2003年起容量基本稳定,约为17000人左右。据测算,种子企业每年人员增长及新老更替平均约15.2%,河西种业人力资源市场每年增量约2700人左右,高端技能型人才需求要远远大于上述平均数。从2008年本专业第一届毕业生至今,男毕业生一直供不应求,女毕业生也基本能够就业,用人单位提供的就业岗位远大于毕业生总数。 二、专业建设基础 种子生产与经营专业脱胎于中专时期种子工程专业和高职时期的作物生产技术专业(种业产业化方向),2006年开始招生,至2011年,共招生5届,毕业3届,现在校生376人。其中2011年毕业学生77人,初次就业率92.6%;招收学生175人,新生报到率92.6%。本专业共有专任教师27人,企业兼职教师47人(主要负责顶岗实习指导)。建有以种子工程实训室为主,包括农业技术、植物保护、土壤肥料、园艺技术等相关实训室共5个,现有实训设备140台(套),总值408.39万元。学校设有教学实习农场(校内实训基地)。本专业

相关主题