搜档网
当前位置:搜档网 › 2020年高中物理竞赛名校冲刺讲义设计—第十一章 狭义相对论:第四节 相对论力学

2020年高中物理竞赛名校冲刺讲义设计—第十一章 狭义相对论:第四节 相对论力学

2020年高中物理竞赛名校冲刺讲义设计—第十一章 狭义相对论:第四节 相对论力学
2020年高中物理竞赛名校冲刺讲义设计—第十一章 狭义相对论:第四节 相对论力学

2020高中物理竞赛

江苏省苏州高级中学竞赛讲义

第十一章狭义相对论

§11.4 狭义相对论力学

本节开始讨论相对论动力学。在相对论中,能量、动量、角动量等守恒量以及和守恒量传递相联系的物理量,如力、功等,都面临重新定义的问题。

如何定义?

(1) 符合“对应原理”:当υ << c时,新定义的物理量转换为经典物理中相应的量。

(2) 保持基本守恒定律继续成立

一、相对论的质量

在相对论中,质量不再是常量,质量与υ有关:m = m(υ)

υ<< c时,经典力学中的质量m0称为静质量(rest mass);

当υ≈c时,物体的质量m称为相对论质量。

1 相对论质量

以粒子的分裂为例讨论质量和速率的关系。

设:S'中有一粒子静止于原点o,某时刻粒子分裂为全同的两半A、B,A、B分别沿x '轴的正向和反向运动。

由动量守恒:A、B的速率相同,以u表示,

从S'中看

分裂前分裂后

-u

A B

S 中:设另一S 以速率u 沿 - x '方向运动,分裂前粒子(质量M )以u 沿x 向运动 分裂后 A 静止(质量以m A 表示),B 速率υB (质量以m B 表示) 。 S 中看 分裂前

分裂前粒子(质量M )以u 沿x 向运动

分裂后 m A ?=0

m B 以υB 沿x 向运动

由速度变换(x 分量)

S 系中:动量守恒

Mu = m A ? 0 + m B υB 质量守恒

M = m A + m B (2)

(对孤立系统,其质量守恒。由质能关系 ε =mc 2,对孤立系统,外界无能量输入,?ε = 0 ? ?m = 0, 即质量守恒。) (2)式可写为

S //2

1x x x v u v v u c

+=

+()

//

2/22

1211B B B B B v u v u v c

v u u v u c

+=

+=∴=

+Q ()22

21B A B m u m m u u c

+=

+22

22

11B A

u c m m u c

+=-

利用(1)式可得

代入上一式消去u 可得

S 中A 静止, m A 写作m 0(静止质量), m B 写作m , υB 写作υ 得以速率υ 运动的粒子的质量

此即相对论质量。 2 讨论

1) 质量m 和物体运动速率υ (不是参考系的相对速度u )有关,这是相对论的重要结论。

2)质量和参考系的选择有关。

3) υ 增大,m 增大。速度越大惯性就越大,越不易改变原来的运动状态。 4) υ > c 时,m 将为虚数,无意义。c 是一切物体速度的极限。

5) 对于光子,速度为c ,而m 又不可能为无限大,所以光子的静止质量m 0 = 0 6) 如 υ << c ,则m ≈ m 0,回到牛顿力学情况,符合“对应原理”。 二、相对论动量

相对论仍定义质点的动量为 p = m υ 相对论的动量

三、相对论的力学基本方程(动量变化率) 1 相对论的力 力:动量变化率

B m =

m =

p mv ==

r u u u r u r dm v d p F dt dt

==

r u r

u

r 21B c u v ?

= ?

2.讨论 1)由上式有 说明:力的作用既改变物体的速度,也改变物体的质

量。

2) 若力的持续作用

牛顿定律:力持续作用可使 υ → ∞

相对论:随 υ 增大m 增大,a 减小,加速困难。当υ → c 时, m → ∞,有限的力,无法再继续加速, 所以 c 是速度的极限。 3) υ << c 时,回到F = m 0a 。 四、相对论能量

1 相对论动能(relativistic kinetic energy)

若力F 作功使粒子速率由0 →υ 动能

由于 又由 可得

两边求微分

代入上面求动能的积分式 于是有

得相对论动能

dm v dv dm F m v dt dt dt

==+r r

u r r m

m 0

E k = ? c 2d m

()()

v k d

E F dl mv dl v d mv

dt ===???u r r r r r r g g g ()

2v dmv mv dv v vdm mvdv v dm

?=?+?=+r r r r r

r

m =

222222

0m c m v m c -=()

2222222220mc dm mv dm m vdv c dm v dm mvdv d mv c dm

--==+=r r

g 即:

所以有:v

E k = mc 2 - m 0c 2 讨论 当υ << c 有 于是

2 静止能量

E 0 = m 0c 2

静止能量指静止的物体(质心不动)具有的能量。包括物体内各部分的相对运动的动能、相互作用势能、物体的内能(分子动能、势能)、化学能(使原子结合的能量)、电磁能(使核和电子结合的能量)、结合能(核子间的结合能)、粒子间的结合能以及各组成部分(电子、中子、质子等)的静止能,E 0在一定条件下可转化为其他形式的能量(1905年爱因斯坦就预言)。 3 总能

1)质能关系 E = mc 2

E = E k + m 0c 2

质能关系反映了物体的能量和质量的内在的深刻联系。 经典力学中:质量---惯性的度量

能量---运动的度量

相对论中:质、能不可分割即物质和运动不可分割。

E = mc 2为开创原子能时代提供了理论基础,被看作是具有划时代意义的理论公式,已成为纪念爱因斯坦伟大功绩的标志。 4 质量亏损(mass deficit)

对孤立系统进行的过程,系统能量守恒,其动能和静止能量之间可相互转化而保持总能不变。 ?E = ?E k + ?E 0 =0 ?E k = - ?E 0 =?m 0c 2

?m 0 = (∑m 0初) - (∑m 0末) 质量亏损

E k = mc 2

- m 0c 2

(

)

2

1

2

2

2

2

1

11......

21v c v

c ≈++

-22

0201

2

m c m v =-=

例 热核反应 12H +13H → 24He + 01n

?m 0 = (m D +m T ) - (m He +m n ) = 0.0311?10-27 kg 释放能量:?E = ?m 0c 2 = 2.799?10-12 J

五、能量、动量关系 1 能量、动量关系 E 2 = c 2p 2 + m 02c 4 = c 2

p

2

+ E 02

2 讨论 1) 高速情形

E >> m 0 c 2 E ≈ cp

2) 低速情形 将E = E k + m o c 2代入能量-动量关系有 E k 2

+ 2 E k m o c 2

= c 2p 2

低速时,忽略 E k 2有

3 光子的能量、动量

相对论的能量与动量关系式给出一个重要的结果,就是存在无静质量粒子的的可能性,这种粒子具有动量和能量,而无静止质量。如光子 静止质量: m 0 = 0 总质量:

能量--动量关系: E = cp

E

cp

m 0c 2

E k

=

p 2

2 m o

m =

E

c 2

cp

E

m 0 c 2

cp

m 0 c 2

E

E k

动量: 4 意义

狭义相对论动摇了经典的时空观,确立了斩新的时空观,将牛顿力学中互不相关的事件和空间结合为一种统一的运动物质的存在形式,更客观、更真实地反映了自然规律,是研究大尺度引力现象、基本粒子以及过程物理等问题的基础。

p = mc =

E c

第21届全国中学生物理竞赛复赛题参考解答

第21届全国中学生物理竞赛复赛题试卷 一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一定温度下,某种气体通过薄膜渗透过的气体分子数d P S t k N ?=,其中t 为渗透持续时间,S 为薄膜的面积,d 为薄膜的厚度,P ?为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好. 图为测定薄膜材料对空气的透气系数的一种实验装置示意图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.实验中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固定于图中C C '处,从而把渗透室分为上下两部分,上面部分的容积30cm 00.25=V ,下面部分连同U 形管左管水面以上部分的总容积为V 1,薄膜能够透气的面积S =1.00cm 2.打开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,打开开关K 3,对渗透室上部分迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=?H .实验过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.(本实验中由于薄膜两侧的压强差在实验过程中不能保持恒定,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ?来代替公式中的P ?.普适气体常量R = 8.31Jmol -1K -1,1.00atm = 1.013×105Pa ). 二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.已知轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度R GM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测定太空中某星体与地心在某时刻的距离.(最后结果要求用测得量和地球半径R 表示) 三、(15分)μ子在相对自身静止的惯性参考系中的平均寿命s 100.260-?≈τ.宇宙射线与大气在高空某处发生核反应产生一批μ子,以v = 0.99c 的速度(c 为真空中的光速)向下运动并衰变.根据放射性衰变定律,相对给定惯性参考系,若t = 0时刻的粒子数为N (0), t 时刻剩余的粒子数为N (t ),则有()()τt N t N -=e 0,式中τ为相对该惯性系粒子的平均寿命.若能到达地面的μ子数为原来的5%,试估算μ子产生处相对于地面的高度h .不考虑重力和地磁场对μ子运动的影响. 四、(20分)目前,大功率半导体激光器的主要结构形式是由许多发光区等距离地排列在一条直线上的长条状,通常称为激光二极管条.但这样的半导体激光器发出的是很多束发散光束,光能分布很不集中,不利于传输和应用.为了解决这个问题,需要根据具体应用的要求,对光束进行必需的变换(或称整形).如果能把一个半导体激光二极管条发出的光变换成一束很细的平行光束,对半导体激光的传输和应用将是非常有意义的.为此,有人提出了先把多束发散光会聚到一点,再变换为平行光的方案,其基本原理可通过如下所述的简化了的情况来说明. 如图,S 1、S 2、S 3 是等距离(h )地排列在一直线上的三个点光源,各自向垂直于它们的连线的同一方向发出半顶角为α =arctan ()41的圆锥形光束.请使用三个完全相同的、焦距为f = 1.50h 、半径为r =0.75 h 的圆形薄凸透镜,经加工、组装成一个三者在同一平面内的组合透镜,使三束光都能全部投射到这个组合 C E F

高中物理竞赛讲义:动量

专题六 动量 【扩展知识】 1.动量定理的分量表达式 I 合x =mv 2x -mv 1x , I 合y =mv 2y -mv 1y , I 合z =mv 2z -mv 1z . 2.质心与质心运动 2.1质点系的质量中心称为质心。若质点系内有n 个质点,它们的质量分别为m 1,m 2,……m n ,相对于坐标原点的位置矢量分别为r 1,r 2,……r n ,则质点系的质心位置矢量为 r c=n n n m m m r m r m r m ++++++ 211211=M r m n i i i ∑=1 若将其投影到直角坐标系中,可得质心位置坐标为 x c =M x m n i i i ∑=1, y c =M y m n i i i ∑=1, z c =M z m n i i i ∑=1. 2.2质心速度与质心动量 相对于选定的参考系,质点位置矢量对时间的变化率称为质心的速度。 v c=t r c ??=M p 总=M v m n i i i ∑=1, p c =Mv c =∑=n i i i v m 1 . 作用于质点系的合外力的冲量等于质心动量的增量 I 合= ∑=n i i I 1=p c -p c0=mv c -mv c0 . 2.3质心运动定律 作用于质点系的合外力等于质点总质量与质心加速度的乘积。F合=Ma c.。 对于由n 个质点组成的系统,若第i 个质点的加速度为a i ,则质点系的质心加速度可表示为 a c =M a m n i i i ∑=1 .

【典型例题】 1.将不可伸长的细绳的一端固定于天花板上的C点,另一端系一质量为m的小球以以角速度ω绕竖直轴做匀速圆周运动,细绳与竖直轴之间的夹角为θ,如图所示。已知A、B为某一直径上的两点,问小球从A点运动到B点的过程中细绳对小球的拉力T的冲量为多少? 2.一根均匀柔软绳长为l=3m,质量m=3kg,悬挂在天花板的钉子上,且下端刚好接触地板,现将软绳的最下端拾起与上端对齐,使之对折起来,然后让它无初速地自由下落,如图所示。求下落的绳离钉子的距离为x时,钉子对绳另一端的作用力是多少? 3.一长直光滑薄板AB放在平台上,OB伸出台面,在板左侧的D点放一质量为m1的小铁块,铁块以速度v向右运动。假设薄板相对于桌面不发生滑动,经过时间T0后薄板将翻倒。现让薄板恢复原状,并在薄板上O点放另一个质量为m2的小物体,如图所示。同样让m1从D点开始以速度v向右运动,并与m2发生正碰。那么从m1开始经过多少时间后薄板将翻倒?

第13届全国中学生物理竞赛复赛试题及解答

第十三届全国中学生物理竞赛复赛试题 1.如图所示,有一由匀质细导线弯成的半径为α的圆线和一内接等边三角形的电阻丝组成的电路(电路中各段的电阻值见图)。在圆线圈平面内有垂直纸面向里的均匀磁场,磁感应强度B随时间t均匀减小,其变化率的大小 为一已知常量k。已知2r 1=3r 2 。求:图中AB两点的电势差U A -U B 。 2.长度为4毫米的物体AB由图所示的光学系统成像,光学系统又一个直角棱镜、一个汇聚透镜和一个发散透镜组成,各有关参数和几何尺寸均标示于图上,求:像的位置;像的大小,并作图说明是实像还是虚像,是正立还是倒立的。 3.如图所示,四个质量均为m的质点,用同样长度且不可伸长的轻绳连接成菱形ABCD,静止放在水平光滑的桌面上。若突然给质点A一个历时极短CA 方向的冲击,当冲击结束的时刻,质点A的速度为V,其他质点也获得一定 的速度,∠BAD=2α(α<π/4)。求此质点系统受冲击后所具有的总动量和总能量。

4.在一个半径为R的导体球外,有一个半径为r的细圆环,圆环的圆心与导体球心的连线长为a(a>R),且与环面垂直,如图所示。已知环上均匀带电,总电量为q,试问: 1.当导体球接地时,球上感应电荷总电量是多少? 2.当导体球不接地而所带总电量为零时,它的电势如何? 3.当导体球的电势为V O 时,球球上总电荷又是多少? 4.情况3与情况1相比,圆环受导体球的作用力改变量的大小和方向如何? 5.情况2与情况1相比,圆环受导体球的作用力改变量的大小和方向如何? 〔注〕已知:装置不变时,不同的静电平衡 带电状态可以叠加,叠加后仍为静电平衡状 态。 5、有一个用伸缩性极小且不漏气的布料制作的气球(布的质量可忽略不计), 直径为d=2.0米,球内充有压强P 1.005×105帕的气体,该布料所能承受 的最大不被撕破力为f m =8.5×103牛/米(即对于一块展平的一米宽的布料,沿布面而垂直于布料宽度方向所施加的力超过8.5×103牛时,布料将被撕 破)。开始时,气球被置于地面上,该处的大气压强为P ao =1.000×103帕, 温度T =293开,假设空气的压强和温度均随高度而线性地变化,压强的变 化为α p =-9.0帕/米,温度的变化为α T =-3.0×10-3开/米,问该气球上升到 多高时将撕破?假设气球上升很缓慢,可以为球内温度随时与周围空气的温度保持一致,在考虑气球破裂时,可忽略气球周围各处和底部之间空气压强的差别。 6.有七个外形完全一样的电阻,已知其中6个的阻值相同,另一个的阻值不同,请按照下面提供的器材和操作限制,将那个限值不同的电阻找出,并指出它的阻值是偏大还是偏小,同时要求画出所用电路图,并对每步判断的根据予以论证。 提供的器材有:1电池;2一个仅能用来判断电流方向的电流表(量程足够),它的零刻度在刻度盘的中央,而且已知当指针向右偏时电流是由哪个接线柱流入电流表的;3导线若干 操作限值:全部过程中电流表的使用不得超过三次。

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

第31届全国中学生物理竞赛复赛试题及答案(精美word版)

第31届全国中学生物理竞赛复赛理论考试试题解答 2014年9月20日 一、(12分) (1)球形 (2)液滴的半径r 、密度ρ和表面张力系数σ(或液滴的质量m 和表面张力系数σ) (3)解法一 假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ① 式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 按照这一约定,①式在同一单位制中可写成 {}[]{}{}{}{}[][][]αβγαβγρσρσ=f f k r r 由于取同一单位制,上述等式可分解为相互独立的数值等式和单位等式,因而 [][][][]αβγρσ=f r ② 力学的基本物理量有三个:质量m 、长度l 和时间t ,按照前述约定,在该单位制中有 {}[]=m m m ,{}[]=l l l ,{}[]=t t t 于是 [][]-=f t 1 ③ [][]=r l ④ [][][]ρ-=m l 3 ⑤ [][][]σ-=m t 2 ⑥ 将③④⑤⑥式代入②式得[][]([][])([][])αβγ---=t l m l m t 132 即[][][][]αββγγ--+-=t l m t 132 ⑦ 由于在力学中[]m 、[]l 和[]t 三者之间的相互独立性,有 30αβ-=, ⑧ 0βγ+=, ⑨ 21γ= ⑩ 解为311 ,,222αβγ=-=-= ?将?式代入①式得 σρ=f k r 3 解法二 假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ① 式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 在同一单位制中,①式两边的物理量的单位的乘积必须相等[][][][]αβγρσ=f r ② 力学的基本物理量有三个:质量M 、长度L 和时间T ,对应的国际单位分别为千克(kg )、米(m )、秒(s ). 在国际单位制中,振动频率 f 的单位[]f 为s -1 ,半径r 的单位[]r 为m ,密度ρ的单位[]ρ为 3kg m -?,表面张力系数σ的单位[]σ为1 2 1 2N m =kg (m s )m kg s ----????=?,即有 []s -=f 1 ③ []m =r ④ []kg m ρ-=?3 ⑤ []kg s σ-=?2 ⑥ 若要使①式成立,必须满足 () ()s m kg m kg s (kg)m s β γ αβγαβγ ---+--=??=??13232 ⑦ 由于在力学中质量M 、长度L 和时间T 的单位三者之间的相互独立性,有 30αβ-=, ⑧ 0βγ+=, ⑨

高中物理竞赛讲义全套(免费)

目录 中学生全国物理竞赛章程 (2) 全国中学生物理竞赛内容提要全国中学生物理竞赛内容提要 (5) 专题一力物体的平衡 (10) 专题二直线运动 (12) 专题三牛顿运动定律 (13) 专题四曲线运动 (16) 专题五万有引力定律 (18) 专题六动量 (19) 专题七机械能 (21) 专题八振动和波 (23) 专题九热、功和物态变化 (25) 专题十固体、液体和气体的性质 (27) 专题十一电场 (29) 专题十二恒定电流 (31) 专题十三磁场………………………………………………………………………… 33 专题十四电磁感应 (35) 专题十五几何光学 (37) 专题十六物理光学原子物理 (40)

中学生全国物理竞赛章程 第一章总则 第一条全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physic Olympiad,缩写为CPhO)是在中国科协领导下,由中国物理学会主办,各省、自治区、直辖市自愿参加的群众性的课外学科竞赛活动,这项活动得到国家教育委员会基础教育司的正式批准。竞赛的目的是促使中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;帮助学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。第二条全国中学生物理竞赛要贯彻“教育要面向现代化、面向世界、面向未来”的精神,竞赛内容的深度和广度可以比中学物理教学大纲和教材有所提高和扩展。 第三条参加全国中学生物理竞赛者主要是在物理学习方面比较优秀的学生,竞赛应坚持学生自愿参加的原则.竞赛活动主要应在课余时间进行,不要搞层层选拔,不要影响学校正常的教学秩序。 第四条学生参加竞赛主要依靠学生平时的课内外学习和个人努力,学校和教师不要为了准备参加竞赛而临时突击,不要组织“集训队”或搞“题海战术”,以免影响学生的正常学习和身体健康。学生在物理竞赛中的成绩只反映学生个人在这次活动中所表现出来的水平,不应当以此来衡量和评价学校的工作和教师的教学水平。 第二章组织领导 第五条全国中学生物理竞赛由中国物理学会全国中学生物理竞赛委员会(以下简称全国竞赛委员会)统一领导。全国竞赛委员会由主任1人、副主任和委员若干人组成。主任和副主任由中国物理学会常务理事会委任。委员的产生办法如下: 1.参加竞赛的省、自治区、直辖市各推选委员1人; 2.承办本届和下届决赛的省。自治区、直辖市各推选委员3人。 3.由中国物理学会根据需要聘请若干人任特邀委员。 在全国竞赛委员会全体会议闭会期间由主任和副主任组成常务委员会,行使全国竞赛委员会职权。 第六条在全国竞赛委员会领导下,设立命题小组、组织委员会和竞赛办公室等工作机构。命题小组成员由全国竞赛委员会聘请专家和高等院校教师担任。组

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

第28届全国中学生物理竞赛复赛试题及答案(word版)

第28届全国中学生物理竞赛复赛试题 一、(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T为76.1年。1986年它过近日点P0时,与太阳S的距离r0=0.590AU,AU是天文单位,它等于地球与太阳的平均距离。经过一段时间,彗星到达轨道上的P点,SP与SP0的夹角θP=72.0°.已知:1AU=1.50×1011m,引力常量G=6.67×10-11m3?kg-1?s-2,太阳质量m S=1.99×1030kg.试求P到太阳S的距离r P及彗星过P点时速度的大小及方向(用速度方向与SP0的夹角表示)。 二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦因数为μA, B、D两点与光滑竖直墙面接触,杆A B和CD接触处的静摩擦因数为μC,两杆的质量均为m,长度均为l. (1)已知系统平衡时AB杆与墙面夹角θ,求CD杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。 (2)若μA=1.00,μC=0.866,θ=60.0°,求系统平衡时α的取值范围(用数值计算求出)。

三、(25分)人造卫星绕星球运行的过程中,为了保持其对称轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴旋转。但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转。减慢或者消除卫星旋转的一种方法是所谓的“YO—YO”消旋法,其原理如图。 设卫星是一半径为R、质量为M的薄壁圆筒,其横截面如图所示。图中O是圆筒的对称轴。两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q、Q'(位于圆筒直径两端)处,另一端各拴有一质量为m/2的小球。正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P0、P0'处,与卫星形成一体,绕卫星的对称轴旋转。卫星自转的角速度为ω0.若要使卫星减慢或停止旋转(消旋),可瞬间撤去插销释放小球,让小球从圆筒表面甩开,在甩开的整个过程中,从绳与圆筒表面相切点到小球的那段绳都是拉直的。当卫星转速逐渐减小到零时,立即使绳与卫星脱离,接触小球与卫星的联系,于是卫星停止转动。已知此时绳与圆筒的相切点刚好在Q、Q'处。试求: (1)当卫星角速度减至ω时绳拉直部分的长度l; (2)绳的总长度L; (3)卫星从ω0到停转所经历的时间t. m /2

镜像法-高中物理竞赛讲义

镜像法 思路 用假想的镜像电荷代替边界上的感应电荷。 保持求解区域中场方程和边界条件不变。 使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 使用范围 界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 步骤 确定镜像电荷的大小和位置。 去掉界面,按原电荷和镜像电荷求解所求区域场。 求解边界上的感应电荷。 求解电场力。 平面镜像1 点电荷对平面的镜像 (a) 无限大接地导体平面上方有点电荷q (b)用镜像电荷-q代替导体平面上方的感应电荷 图4.4.1 点电荷的平面镜像 在无限大接地导体平面(YOZ平面)上方有一点电荷q,距离导体平面的高度为h。 用位于导体平面下方h处的镜像电荷-q代替导体平面上的感应电荷,边界条件维持不变,即YOZ平面为零电位面。 去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注意不能用原电荷和镜像电荷求解导体下方区域场。

电位: (4.4.2.1 ) 电场强度: (4.4.2.2) 其中, 感应电荷:=> (4.4.2.3) 电场力: (4.4.2.4) 图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像 无限长单导线对平面的镜像 与地面平行的极长的单导线,半径为a,离地高度为h。

用位于地面下方h处的镜像单导线代替地面上的感应电荷,边界条件维持不变。 将地面取消而代之以镜像单导线(所带电荷的电荷密度为) 电位: (4.4.2.5) 对地电容 : (4.4.2.6 平面镜像2 无限长均匀双线传输线对平面的镜 像 与地面平行的均匀双线传输线, 半径为a,离地高度为h,导线间距离为d, 导线一带正电荷+,导线二带负电荷-。 用位于地面下方h处的镜像双 导线代替地面上的感应电荷,边界条件维 持不变。 将地面取消而代之以镜像双导线。 图 4.4.4 无限长均匀传输线对地面的镜像 求解电位: (4.4.2.8) (4.4.2.9)

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

第十九届全国中学生物理竞赛复赛试题(含答案)

第十九届全国中学生物理竞赛复赛试题 一、(20分)某甲设计了1个如图复19-1所示的“自动喷泉”装置,其中A 、B 、C 为3个容器,D 、E 、F 为3根细管,管栓K 是关闭的.A 、B 、C 及细管D 、E 中均 盛有水,容器水面的高度差分别为1h 和1h 如图所示.A 、B 、C 的截 面半 径为12cm ,D 的半径为0.2cm .甲向同伴乙说:“我若拧开管栓K ,会有水从细管口喷出.”乙认为不可能.理由是:“低处的水自动走向高外,能量从哪儿来?”甲当即拧开K ,果然见到有水喷出,乙哑口无言,但不明白自己的错误所在.甲又进一步演示.在拧开管栓K 前,先将喷管D 的上端加长到足够长,然后拧开K ,管中水面即上升,最后水面静止于某个高度处. (1).论证拧开K 后水柱上升的原因. (2).当D 管上端足够长时,求拧开K 后D 中静止水面与A 中水面的高度差. (3).论证水柱上升所需能量的来源. 二、 (18 分) 在图复19-2中,半径为R 的圆柱形区域内有匀强磁场,磁场方向垂直纸面指向纸外, 磁感应强度B 随时间均匀变化,变化率/B t K ??=(K 为一正值常量),圆柱形区外空间没有磁场,沿图中AC 弦的方向画一直线,并向外延长,弦AC 与半径OA 的夹角/4απ=.直线上有一任意点,设该点与A 点的距离为x ,求从A 沿直线到该点的电动势的大小. 三、(18分)如图复19-3所示,在水平光滑绝缘的桌面上,有三个带正电的质点1、2、3,位于边长为l 的等边三角形的三个顶点处。C 为三角形的中心,三个质点的质量皆为m ,带电量皆为q 。质点 1、3之 间和2、3之间用绝缘的轻而细的刚性杆相连,在3的连接处为无摩擦的铰链。已知开始时三个质点的速度为零,在此后运动过程中,当质点3运动到C 处时,其速度大小为多少? 四、(18分)有人设计了下述装置用以测量线圈的自感系数.在图复19-4-1中,E 为电压可调的直流电源。K 为开关,L 为待测线圈的自感系数,L r 为线圈的直流电阻,D 为理想二极管,r 为用电阻丝做成的电阻器的电阻,A 为电流表。将图复19-4-1中a 、b 之间的电阻线装进图复19-4-2所示的试管1内,图复19-4-2中其它装置见图下说明.其中注射器筒5和试管1组成的密闭容器内装有

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

第21届全国中学生物理竞赛复赛试题及答案

本卷共七题,满分140分. 一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一定温度下,某种气体通过薄膜渗透 过的气体分子数d PSt k N ?=,其中t 为渗透持续时间,S 为薄膜 的面积,d 为薄膜的厚度,P ?为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好. 图为测定薄膜材料对空气的透气系数的一种实验装置示意 图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.实验中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固定于图中C C '处,从而把渗透室分为上下两部分,上面部分的容积30cm 00.25=V ,下面部分连同U 形管左管水面以上部分的总容积为V 1,薄膜能够透气的面积 S =1.00cm 2 .打开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,打开开关K 3,对渗透室上部分迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=?H .实验过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.(本实验中由于薄膜两侧的压强差在实验过程中不能保持恒定,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ?来代替公式中的P ?.普适气体常量R = 8.31Jmol -1K -1,1.00atm = 1.013×105Pa ). 第21届全国中学生物理竞赛复赛题试卷 C F

2017年第34届全国中学生物理竞赛复赛试题与答案

第34届全国中学生物理竞赛复赛理论考试试题解答 2017年9月16日 (34届复赛17年)一、(40分)一个半径为r 、质量为m 的均质实心小圆柱被置于一个半径为R 、质量为M 的薄圆筒中,圆筒和小圆柱的中心轴均水平,横截面如图所示。重力加速度大小为g 。试在下述两种情形下,求小圆柱质心在其平衡位置附近做微振动的频率: (1)圆筒固定,小圆柱在圆筒内底部附近作无滑滚动; (2)圆筒可绕其固定的光滑中心细轴转动,小圆柱仍在圆筒内底部附近作无滑滚动。

解: (1)如图,θ为在某时刻小圆柱质心在其横截面上到圆筒中心轴的垂线与竖直方向的夹角。小圆柱受三个力作用:重力,圆筒对小圆柱的支持力和静摩擦力。设圆筒对小圆柱的静摩擦力大小为F ,方向沿两圆柱切点的切线方向(向右为正)。考虑小圆柱质心的运动,由质心运动定理得 sin F mg ma θ-= ① 式中,a 是小圆柱质心运动的加速度。由于小圆柱与圆筒间作无滑滚动,小圆柱绕其中心轴转过的角度1θ(规定小圆柱在最低点时10θ=)与θ之间的关系为

1()R r θθθ=+ ② 由②式得,a 与θ的关系为 22122()d d a r R r dt dt θθ ==- ③ 考虑小圆柱绕其自身轴的转动,由转动定理得 21 2d rF I dt θ-= ④ 式中,I 是小圆柱绕其自身轴的转动惯量 21 2 I mr = ⑤ 由①②③④⑤式及小角近似 sin θθ≈ ⑥ 得 22203() θθ+=-d g dt R r ⑦ 由⑦式知,小圆柱质心在其平衡位置附近的微振动是简谐振动,其振动频率为 f = ⑧ (2)用F 表示小圆柱与圆筒之间的静摩擦力的大小,1θ和2θ分别为小圆柱与圆筒转过的角度(规定小圆柱相对于大圆筒向右运动为正方向,开始时小圆柱处于最低 点位置120θθ==)。对于小圆柱,由转动定理得2 21 212θ??-= ???d Fr mr dt ⑨ 对于圆筒,同理有 22 2 2()θ=d FR MR dt ⑩ 由⑨⑩式得 22122221θθ?? -+=- ??? d d F r R m M dt dt ? 设在圆柱横截面上小圆柱质心到圆筒中心轴的垂线与竖直方向的夹角θ,由于小圆柱与圆筒间做无滑滚动,有 12()θθθθ=+-R r R ? 由?式得 22212 222()θθθ-=-d d d R r r R dt dt dt ? 设小圆柱质心沿运动轨迹切线方向的加速度为a ,由质心运动定理得 sin F mg ma θ-= ? 由?式得 22()θ =-d a R r dt ? 由????式及小角近似sin θθ≈,得 22203d M m g dt M m R r θθ++=+- ? 由?式可知,小圆柱质心在其平衡位置附近的微振动是简谐振动,其振动频率为 f = ? 评分参考:第(1)问20分,①②式各3分,③式2分,④式3分,⑤⑥式各2分,⑦式3分,⑧式2分;第(2)问20分,⑨⑩?式各2分,?式3分,???式各2分,?式3分,?式2分。 (34届复赛17年)二、(40分)星体P (行星或彗星)绕太阳运动的轨迹为圆锥曲线 1cos k r εθ =+

第届全国中学生物理竞赛复赛试题及答案

第26届全国中学生物理竞赛复赛试卷一、填空(问答)题(每题5 分,共25分)有人设想了一种静电场:电场的方向都垂直于纸面并指向纸里,电场强 度的大小自左向右逐渐增大,如图所示。这种分布的静电场是否可能存在试述理由。 X X X XX 2?海尔-波普彗星轨道是长轴非常大的椭圆,近日点到太阳中心的距离为天文单位( 1 天文单位等于地日间的平均距离),则其近日点速率的上限与地球公转(轨道可视为圆周) 速率之比约为(保留 2位有效数字)__________________ 。用测电笔接触市电相线,即使赤脚站 在地上也不会触电,原因是 ________________________________ __________________________________________________ ;另一方面,即使穿绝缘性能良好的电 工鞋操作,测电笔仍会发亮,原因是 _________________________________ 4. ________________ 在图示的复杂网络中,所有电源的电动势 均为吕,所有电阻器的电阻值均为 R ),所有电容 器的电容均为C 0,则图示电容器 A 极板上的电荷 量为 ________ 。 5?如图,给静止在水平粗糙地面上的木块一 初速度,使之开始运动。一学生利用角动量定理 来考察此木块以后的运动过程:“把参考点设于如 图所示的地面上一点 Q 此时摩擦力f 的力矩为0, 从而地面木块的角动量将守恒,这样木块将不减速而作匀速运动。”请指出上述推理的错误, 二、(20分)图示正方形轻质刚性水平桌面由四条完全相同的轻质细桌腿 1、2、3、4支撑于桌角A 、B 、C D 处,桌腿竖直立在水平粗糙刚性地面上。 已知桌腿受力后将产生弹性微小形变。现于桌面中心点 Q 至角A 的连线QA 上 QP 某点P 施加一竖直向下的力 F ,令 C ,求桌面对桌腿1的压力F i 。三、 QA (15 分) 1 ?一质量为m 的小球与一劲度系数为 k 的弹簧相连组成一体系, 置于光滑水平桌面上, 弹簧的另一端与固定墙面相连,小球做一维自由振动。试问在一沿此弹簧长度方向以速度 u 作匀速运动的参考系里观察,此体系的机械能是否守恒,并说明理由。 2. 若不考虑太阳和其他星体的作用, 则地球-月球系统可 看成孤立系统。若把地球和月 并给出正确的解释: ___________________________________________________ X X X XX X X X XX x X XXX X X X XX

高中物理竞赛讲义——微积分初步

高中物理竞赛讲义——微积分初步 一:引入 【例】问均匀带电的立方体角上一点的电势是中心的几 倍。 分析: ①根据对称性,可知立方体的八个角点电势相等;将原立 方体等分为八个等大的小立方体,原立方体的中心正位于个小立方体角点位置;而根据电势叠加原理,其电势即为八个小立方体角点位置的电势之和,即U 1=8U 2 ; ②立方体角点的电势与什么有关呢?电荷密度ρ;二立方体的边长a ;三立方体的形状; 根据点电荷的电势公式U=K Q r 及量纲知识,可猜想边长为a 的立方体角点电势为 U=CKQ a =Ck ρa 2 ;其中C 为常数,只与形状(立方体)及位置(角点)有关,Q 是总电量,ρ是电荷密度;其中Q=ρa 3 ③ 大立方体的角点电势:U 0= Ck ρa 2 ;小立方体的角点电势:U 2= Ck ρ(a 2 )2=CK ρa 2 4 大立方体的中心点电势:U 1=8U 2=2 Ck ρa 2 ;即U 0=12 U 1 【小结】我们发现,对于一个物理问题,其所求的物理量总是与其他已知物理量相关联,或者用数学语言来说,所求的物理量就是其他物理量(或者说是变量)的函数。如果我们能够把这个函数关系写出来,或者将其函数图像画出来,那么定量或定性地理解物理量的变化情况,帮助我们解决物理问题。 二:导数 ㈠ 物理量的变化率 我们经常对物理量函数关系的图像处理,比如v-t 图像,求其斜率可 以得出加速度a ,求其面积可以得出位移s ,而斜率和面积是几何意义上 的微积分。我们知道,过v-t 图像中某个点作出切线,其斜率即a= △v △t . 下面我们从代数上考察物理量的变化率: 【例】若某质点做直线运动,其位移与时间的函数关系为上s=3t+2t 2,试求其t 时刻的速度的表达式。(所有物理量都用国际制单位,以下同)

(完整版)第23届全国中学生物理竞赛复赛试题

第23届全国中学生物理竞赛复赛试卷 一、(23分)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。现用支架固定一照相机,用以拍摄小球在空间的位置。每隔一相等的确定的时间间隔T拍摄一张照片,照相机的曝光时间极短,可忽略不计。从所拍到的照片发现,每张照片上小球都处于同一位置。求小球开始下落处离玻璃管底部距离(用H表示)的可能值以及与各H值相应的照片中小球位置离玻璃管底部距离的可能值。

二、(25分)如图所示,一根质量可以忽略的细杆,长为2l,两端和中心处分别固连着质量为m的小球B、D和C,开始时静止在光滑的水平桌面上。桌面上另有一质量为M的小球A,以一给定速度 v沿垂直于杆DB的方间与右端小球B作弹性碰撞。求刚碰后小球A,B,C,D的速度,并详细讨论以0 后可能发生的运动情况。

三、(23分)有一带活塞的气缸,如图1所示。缸内盛有一定质量的气体。缸内还有一可随轴转动的叶片,转轴伸到气缸外,外界可使轴和叶片一起转动,叶片和轴以及气缸壁和活塞都是 绝热的,它们的热容量都不计。轴穿过气缸处不漏气。 如果叶片和轴不转动,而令活塞缓慢移动,则在这种过程中,由实验测得,气体的压强p 和体积V 遵从以下的过程方程式k pV a =其中a ,k 均为常量, a >1(其值已知)。可以由上式导出, 在此过程中外界对气体做的功为 ?? ? ? ??--=--1112111a a V V a k W 式中2V 和1V ,分别表示末态和初态的 体积。 如果保持活塞固定不动,而使叶片以角速度ω做匀角速转动,已知在这种过程中,气体的压强的改变量p ?和经过的时间t ?遵从以下的关系式 ω?-=??L V a t p 1 式中V 为气体的体积,L 表示气体对叶片阻力的力矩的大小。 上面并没有说气体是理想气体,现要求你不用理想气体的状态方程和理想气体的内能只与温度有关的知识,求出图2中气体原来所处的状态A 与另一已知状态B 之间的内能之差(结果要用状态 A 、 B 的压强A p 、B p 和体积A V 、B V 及常量a 表示)

相关主题