搜档网
当前位置:搜档网 › 可以滤除所有谐波的滤波器

可以滤除所有谐波的滤波器

可以滤除所有谐波的滤波器
可以滤除所有谐波的滤波器

可以滤除所有谐波的滤波器

一看标题,可能有人的嘴张得很大表示惊讶,也可能有人的嘴撇到耳根表示不屑,似乎滤除所有谐波是不可能的办到的事情。实际的情况是:看似无限复杂的事情,实现起来却可能相当简单。

现有的谐波滤除装置大都使用无源并联滤波器,对每一种频率的谐波需要使用一组滤波器,通常需要使用多组滤波器用以滤除不同频率的谐波。多组滤波器的使用造成结构复杂,成本增高,并且由于通常的系统中含有无限多种频率的谐波成分,因此无法将谐波全部滤除。不仅如此,由于并联滤波器对谐波的阻抗很低,通常会使谐波源产生更大的谐波电流,谐振在不同频率的滤波器还会互相干扰,例如7次谐波滤波器就可能会放大5次谐波。因此,如果有人将并联滤波器安装前后的谐波情况做过对比,就会发现:虽然滤波器安装以后影响系统的谐波电流减小,但是各滤波器中以及进入系统的谐波电流之和远远超过未安装滤波器之前,谐波源产生的谐波电流也超过未安装滤波器之前。

从广义的角度来讲,频率不等于工频频率的成分统统都是谐波。因此,工频是单一频率,而谐波有无限多种频率,可见谐波具有无限的复杂性,使用并联滤波器的方法显然无法对付无限频率成分的谐波。

无限的复杂性迫使我们不得不放弃无限复杂的解决方案,仔细阅读上一段的叙述,我们就会发现无限的对立面:工频是单一频率。如果我们构造一个滤波器,只允许工频频率的电流通过,所有其他频率成分的电流统统不允许通过,岂不就解决了这个无限复杂的问题了吗?

由电感与电容串联构成的LC串联滤波器,具有一个阻抗很低的串联谐振点,如果我们构造一个串联谐振点为工频频率的串联滤波器,并将其串联在线路中,就可以滤掉所有的谐波。这就是本文介绍的串联滤波器,串联滤波器由电感和电容串联而成,并且串联连接在电源与负荷之间,因此串联滤波器的“串联”二字具有双重意思:一

个意思表示电感与电容串联,另一个意思表示串联在电路中使用。

在三相电路中均接入串联滤波器,由于串联带通滤波器对基波电流的阻抗很小,而对谐波电流的阻抗很大,于是只用一组滤波器就可以滤除所有频率的谐波。

串联滤波器对于谐振点频率的电流具有极低的阻抗,对于偏离谐振点频率的电流,则阻抗增大,偏离的越多,阻抗越大。对于比谐振点频率高的电流成分,电感的阻抗为主,对于比谐振点频率低的电流成分,电容的阻抗为主。由于谐波成分通常比基波频率高,因此滤除谐波的工作主要由电感完成,电容的作用是抵消电感对工频基波的阻抗。

由于滤除谐波的作用主要由电感完成,因此电感量越大滤除谐波的效果越好。但是电感量越大则价格越高,损耗越大,因此从成本及损耗上去考虑问题则希望电感量越小越好。当电感的基波感抗小于负荷等效基波阻抗的50%时,不能实现良好的滤波效果(负荷等效基波阻抗就是负荷相电压有效值与相电流有效值的比值)。因此电感的基波感抗必须大于负荷等效基波阻抗的50%。

对于电容器的选择与电感的选择情况不同,电感的匝数可以随意设计,而电容器的耐压只有固定的若干等级,不能随意设计。比如在低压配电系统中,就只有耐压230V与400V的电力电容器可供选择。由于电容器串联在电路中,电容器中的电流即为负荷电流,当电容器的实际工作电压等于其额定电压时,电容器中流过的电流等于电容器的额定电流,电容器得到充分的利用,因此,当电容器的实际工作电压等于其额定电压时,电容器的成本最低。

实际的串联滤波器成本主要由电感与电容器的成本构成。串联谐振的电感与电容对基波的阻抗相等并且电流相同,因此电感与电容的基波工作电压相同。前面已经说明,当电容器的实际工作电压等于其额定电压时,电容器的成本最低,因此电感的实际工作电压应该等于电容器的额定电压。电容器的额定电压等级大都与电网电压相当,如果电感的实际工作电压等于电容器的额定电压,相当于电感阻抗与负荷阻抗相当,可以取得最好的性能价格比。在这个基础上,如果提高电感的感抗,虽然滤波效果可以提高但提高不多,电感的成本增加,

电容器需要串联,成本急剧增加,性能价格比下降,因此电感的基波感抗大于负荷等效基波阻抗的200%没有实际意义,如果降低电感的感抗,则滤波效果下降,电感的成本降低,电容器的容量增加因此成本增加,性能价格比也下降。为了获得足够的可靠性,电感与电容器的实际工作电压应略低于电容器的额定电压。

当谐波电流由外网窜入而影响内网负荷设备的正常运行时,在电源与负荷设备之间接入串联滤波器就可以阻挡谐波保证负荷设备的正常运行。

当谐波由内网设备产生而影响系统时,产生谐波的设备即为谐波源,在谐波源与电源之间接入串联滤波器就可以使谐波源产生的谐波电流大幅度减小。这里需要注意:串联滤波器使谐波源自身产生的谐波电流减小,相当于使污染源产生的污染减小,是治本的手段。而并联滤波器并不能减小谐波源产生的谐波,而是为谐波电流提供一个低阻抗的通道,避免谐波电流污染系统,相当于先污染再治理的方式,是治标的手段。不仅如此,由于并联滤波器对谐波的阻抗很低,通常会使谐波源产生更大的谐波电流。

当串联滤波器连接在电源与谐波源之间时,谐波源的输入电压波形会发生严重畸变,正时这种电压波形的畸变使得谐波源的电流接近正弦波。这种输入电压波形畸变可能会影响谐波源控制电路的正常运行,如果出现控制电路不能正常运行的情况,应该将控制电路的电源改接至串联滤波器的前端。

信号与系统试题附答案

信科0801《信号与系统》复习参考练习题一、单项选择题:

14、已知连续时间信号,) 2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。200 rad /s C 。100 rad /s D 。50 rad /s

f如下图(a)所示,其反转右移的信号f1(t) 是() 15、已知信号)(t f如下图所示,其表达式是() 16、已知信号)(1t A、ε(t)+2ε(t-2)-ε(t-3) B、ε(t-1)+ε(t-2)-2ε(t-3) C、ε(t)+ε(t-2)-ε(t-3) D、ε(t-1)+ε(t-2)-ε(t-3) 17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是() A、f(-t+1) B、f(t+1) C、f(-2t+1) D、f(-t/2+1)

18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( ) 19。信号)2(4sin 3)2(4cos 2)(++-=t t t f π π 与冲激函数)2(-t δ之积为( ) A 、2 B 、2)2(-t δ C 、3)2(-t δ D 、5)2(-t δ ,则该系统是()>-系统的系统函数.已知2]Re[,6 51)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统 C 、因果稳定系统 D 、非因果不稳定系统 21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( ) A 、常数 B 、 实数 C 、复数 D 、实数+复数 22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( ) A 、阶跃信号 B 、正弦信号 C 、冲激信号 D 、斜升信号

谐波的危害及其抑制措施

谐波的危害及其抑制措施 中国联通苏州分公司 柳振伟 摘要:本文对谐波的概念及产生原理、谐波产生的问题作了较为详细的描述,并对目前解决谐波问题的措施作了分析。 关键词:交频器;谐波危害;抑制谐波措施 一、概述 理想状态下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国工业用电频率以50Hz 为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基频率波的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I 区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4,6、8等为偶次谐波,如基波为50Hz 时,2次谐波为lOOHz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7,11、13、17、19等,变频器主要产生5、7次谐波。一个正弦波在5次谐波和7次谐波的影响下怎样发生畸变。(相对于基波的24%和9%),如下图所示。 图1 基波和谐波 图2 失真波形 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热,使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏,从而降低继电保护、控制、以及检测装

数字信号处理滤波器

1.设计物理可实现的低通滤波器 设计思路:因为要设计FIR有限脉冲响应滤波器,通常的理想滤波器的单位脉冲响应h是无限长的,所以需要通过窗来截断它,从而变成可实现的低通滤波器。程序如下: clc;clear all; omga_d=pi/5; omga=0:pi/30:pi; for N=3:4:51; w1= window(@blackman,N); w2 = window(@hamming,N); w3= window(@kaiser,N,2.5); w4= window(@hann,N); w5 = window(@rectwin,N); M=floor(N/2); subplot(311);plot(-M:M,[w1,w2,w3,w4,w5]); axis([-M M 0 1]); legend('Blackman','Hamming','kaiser','hann','rectwin'); n=1:M; hd=sin(n*omga_d)./(n*omga_d)*omga_d/pi; hd=[fliplr(hd),1/omga_d,hd]; h_d1=hd.*w1';h_d2=hd.*w2';h_d3=hd.*w3';h_d4=hd.*w4';h_d5=hd.*w5'; m=1:M; H_d1=2*cos(omga'*m)*h_d1(M+2:N)'+h_d1(M+1); H_d2=2*cos(omga'*m)*h_d2(M+2:N)'+h_d2(M+1); H_d3=2*cos(omga'*m)*h_d3(M+2:N)'+h_d3(M+1); H_d4=2*cos(omga'*m)*h_d4(M+2:N)'+h_d4(M+1); H_d5=2*cos(omga'*m)*h_d5(M+2:N)'+h_d5(M+1); subplot(312);plot(omga,[H_d1,H_d2,H_d3,H_d4,H_d5]); legend('Blackman','Hamming','kaiser','hann','rectwin'); subplot(313);plot(abs([fft(h_d1);fft(h_d2);fft(h_d3);fft(h_d4);fft(h_ d5)])'); pause(); end 程序分析: 整个对称窗的长度为N,然而为了在MATLAB中看到窗函数在负值时的形状需将N变为它的一半,即为2M+1个长度。窗长设置为从3开始以4为间隔一直跳动51。则长度相同的不同窗函数在时域[-M,M]的形状如第一个图所示。 对窗函数进行傅里叶变换时,将零点跳过去先构造一个一半的理想滤波器的脉冲响应hd,再将零点位置求导得出的数赋值进去。将生成的hd左右颠倒形成了一个理想的滤波器的脉冲响应。将构造的理想滤波器的脉冲响应依次与之前定义的窗函数相乘,相乘出来的为列向量,用转置将其变成行向量,形成的h_d就是非理想的低通滤波器的脉冲响应序列。因为h_d为对称奇数长度序列,它的DTFT 可以是二倍的离散余弦变化,而零点的位置则直接带入求出,两者相加则是H_d。则第二个图表示的是五个矩阵向量在频域的变化,而第三个图表示的是五个非理想低通滤波器的傅里叶变换,图三FFT给出的结果永远是对称的,因为它显示

电力电子装置的谐波危害及抑制

随着电力电子技术的快速发展,电力电子装置越来越多地应用于冶金、化工、煤炭和运输等诸多领域,已成为实现生产自动化的重要基础设备。然而,随着这些电力电子装置的广泛应用,将大量的谐波和无功功率注入电网,使电网的电能质量下降,引起“电网污染”问题,这已成为阻碍电力电子技术发展的重大障碍之一。因此,认识和分析电力电子装置谐波产生的原因及其危害,探讨综合治理的方法,抑制谐波污染,提高电网功率因数已成为电力电子技术中的一个重大研究课题。 谐波的危害 电网中日益严重的谐波污染常常对设备的工作产生严重的影响,其危害一般表现为: 1)谐波电流使输电电缆损耗增大,输电能力降低,绝缘加速老化,泄漏电流增大,严重的甚至引起放电击穿。 2)使电动机损耗增大,发热增加,过载能力、寿命和效率降低,甚至造成设备损坏。 3)容易使电网与用作补偿电网无功功率的并联电容器发生谐振,造成过电压或过电流,使电容器绝缘老化甚至烧坏。 4)谐波电流流过变压器绕组,增大附加损耗,使绕组发热,加速绝缘老化,并发出噪声。 5)使大功率电动机的励磁系统受到干扰而影响正常工作。 6)影响电子设备的正常工作,如:使某些电气测量仪表受谐波的影响而造成误差,导致继电保护和自动装置误动作,对邻近的通信系统产生干扰,非整数和超低频谐波会使一些视听设备受到影响,使计算机自动控制设备受到干扰而造成程序运行不正常等。 电力电子装置中的谐波产生 电网中的谐波主要是由各种大容量功率变换器以及其他非线性负载产生的,其中主要的谐波源是各种电力电子装置,如整流装置、交流调压装置等,这其中,整流装置所占的比例最大,它几乎都是采用带电容滤波的二极管不控整流或晶闸管相控整流,它们产生的谐波污染和消耗的无功功率是众所周知的;除整流装置外,斩波和逆变装置的应用也很多,而其输入直流电源也来自整流装置,因此其谐波问题也很严重,尤其是由直流电压源供电的斩波和逆变装置,其直流电压源大多是由二极管不控整流后经电容滤波得到的,这类装置对电网的谐波污染日益突出。 谐波的抑制 为了抑制电网中的谐波,减小谐波的危害,在加强科学化、法制化管理的同

北京邮电大学数字信号处理习题库选择题附加答案重点

13.下列关于冲激响应不变法描述错误的是 ( C A.S 平面的每一个单极点 s=sk 变换到 Z 平面上 z= e skT 处的单极点 B.如果模拟滤波器是因果稳定的,则其数字滤波器也是因果稳定的 C.Ha(s和 H(z的部分分式的系数是相同的 D.S 平面极点与Z 平面极点都有 z= e s kT 的对应关系 14.下面关于 IIR 滤波器设计说法正确的是( C A. 双线性变换法的优点是数字频率和模拟频率成线性关系 B. 冲激响应不变法无频率混叠现象 C. 冲激响应不变法不适合设计高通滤波器 D. 双线性变换法只适合设计低通、带通滤波器 15.以下关于用双线性变换法设计 IIR 滤波器的论述中正确的是( B 。 A.数字频率与模拟频率之间呈线性关系 B.总是将稳定的模拟滤波器映射为一个稳定的数字滤波器 C.使用的变换是 s 平面到 z 平面的多值映射 D.不宜用来设计高通和带阻滤波器 16.以下对双线性变换的描述中不正确的是 ( D 。 A.双线性变换是一种非线性变换 B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把 s 平面的左半平面单值映射到 z 平面的单位圆内 D.以上说法都不对17.以下对双线性变换的描述中正确的是 ( B 。 A.双线性变换是一种线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换 C.双线性变换是一种分段线性变换 D.以上说法都不对 18.双线性变换法的最重要优点是:;主要缺点是 A 。 A. 无频率混叠现象;模拟域频率与数字域频率间为非线性关系 B. 无频率混叠现象;二次转换造成较大幅度失真 C. 无频率失真;模拟域频率与数字域频率间为非线性关系 D. 无频率失真;二次转换造成较大幅度失真 19.利用模拟滤波器设计法设计 IIR 数字滤波器的方法是先设计满足相应指标的模拟滤波器,再按 某种方法将模拟滤波器转换成数字滤波器。双线性变换法是一种二次变换方法,即它 C 。 A. 通过付氏变换和 Z 变换二次变换实现 B. 通过指标变换和频谱变换二次变换实现 C. 通过二次变换,使得变换后 S 平面与 Z 平面间为一种单值映射关系 D. 通过模拟频率变换和数字频率变换二次变换实现 20.下列对 IIR 滤波器特点的论述中错误的是( C 。 A.系统的单位冲激响应 h(n是无限长的 B.结构必是递归型的C.肯定是稳定的 D.系统函数 H(z在有限 z 平面(0<|z|<∞)上有极点 21.在数字信号处理中通常定义的数字频率ω是归一化频率,归一化因子为 C 。 A.采样周期B. 模拟采样角频率 C. 模拟采样频率 D. 任意频率 22.信号数字频谱与模拟频谱间的一个显著区别在于数字频谱具有 A 。 A.周期性 B. 更大的精确度 C. 更好的稳

谐波电流及抑制

一.谐波电流 一般来说, 理想的交流电源应是纯正弦波形, 但因现实世界中的输出阻抗及非线性负载的原因, 导致电源波形失真。近年来整流性负载的大量使用, 造成大量的谐波电流, 也间接污染了市电, 产生电压的谐波成份. 另外一些市售的发电机或UPS本身输出电压就非纯正弦波, 甚至有方波的情形, 失真情形更严重, 所含谐波成份占了很大的比。 1.谐波的危害 谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。 2.谐波是怎么产生的 一是发电源质量不高产生谐波: 发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。

二是输配电系统产生谐波: 输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流%。 三是用电设备产生的谐波: 晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

信号与系统综合实验报告-带通滤波器的设计DOC

广州大学 综合设计性实验 报告册 实验项目选频网络的设计及应用研究 学院物电学院年级专业班电子131 姓名朱大神学号成绩 实验地点电子楼316 指导老师

《综合设计性实验》预习报告 实验项目:选频网络的设计及应用研究 一 引言: 选频网络在信号分解、振荡电路及其收音机等方面有诸多应用。比如,利用选频网络可以挑选出一个周期信号中的基波和高次谐波。选频网络的类型和结构有很多,本实验将通过设计有源带通滤波器实现选频。 二 实验目的: (1)熟悉选频网络特性、结构及其应用,掌握选频网络的特点及其设计方法。 (2)学会使用交流毫伏表和示波器测定选频网络的幅频特性和相频特性。 (3)学会使用Multisim 进行电路仿真。 三 实验原理: 带通滤波器: 这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减和抑制。 典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成,如图1所示。 电路性能参数可由下面各式求出。 通带增益:CB R R R R A f vp 144+= 其中B 为通频带宽。 中心频率:)1 1(121 3 12 20R R C R f += π

通带宽度:)2 1(14 321R R R R R C B f -+= 品质因数:B f Q 0 = 此电路的优点是,改变f R 和4R 的比值,就可以改变通带宽度B 而不会影响中心频率0f 。 四 实验内容: 设计一个中心频率Hz f 20000=,品质因数5>Q 的带通滤波器。 五 重点问题: (1)确定带通滤波器的中心频率、上限频率及下限频率。 (2)验证滤波器是否能筛选出方波的三次谐波。 六 参考文献: [1]熊伟等.Multisim 7 电路设计及仿真应用.北京:清华大学出版社,2005. [2]吴正光,郑颜.电子技术实验仿真与实践.北京:科学出版社,2008. [4]童诗白等.模拟电子技术基础(第三版).北京:高等教育出版社, 2001. 图1 二阶带通滤波器

基于matlab谐波抑制的仿真研究(毕设)

电力系统谐波抑制的仿真研究 目 录 1 绪论…………………………………………………………………………… 1.1 课题背景及目的………………………………………………………… 1.2国内外研究现状和进展………………………………………………… 1.2.1国外研究现状 …………………………………………………… 1.2.1国内研究现状 …………………………………………………… 1.3 本文的主要内容…………………………………………………………… 2 有源电力滤波器及其谐波源研究……………………………………………… 2.1 谐波的基本概念………………………………………………………… 2.1.1 谐波的定义……………………………………………………… 2.1.2谐波的数学表达………………………………………………… 2.1.3电力系统谐波标准………………………………………………… 2.2 谐波的产生……………………………………………………………… 2.3 谐波的危害和影响……………………………………………………… 2.4 谐波的基本防治方法…………………………………………………… 2.5无源电力滤波器简述…………………………………………………… 2.6 有源电力滤波器介绍…………………………………………………… 2.6.1 有源滤波器的基本原理.……………………………………… 2.6.2 有源电力滤波器的分类.……………………………… 2.7并联型有源电力滤波器的补偿特性…………………………………… 2.7.1谐波源………………………………………………………… 2.7.2有源电力滤波器补偿特性的基本要 求…………………………… 2.7.3影响有源电力滤波器补偿特性的因素…………………………… 2.7.4并联型有源电力滤波器补偿特性……………………………… 2.8 谐波源的数学模型的研究……………………………………………… 2.8.1 单相桥式整流电路非线性负荷………………………………… 2.8.2 三相桥式整流电路非线性负荷.………………………………… 3 基于瞬时无功功率的谐波检测方法…………………………………………… 3.1谐波检测的几种方法比较…………………………………………… 3.2三相电路瞬时无功功率理论…………………………………………… 3.2.1瞬时有功功率和瞬时无功功 率……………………………………… 3.2.2瞬时有功电流和瞬时无功电流……………………………………… 3.3 基于瞬时无功功率理论的p q -谐波检测算法.…………………… 3.4基于瞬时无功功率理论的p q i i -谐波检测法.…………………… 4并联有源电力滤波器的控制策略…………………………………………… 4.1并联型有源电力滤波器系统构成及其工作原理………………………… 4.2并联有源电力滤波器的控制研究.……………………………… 4.2.1并联有源电力滤波器直流侧电压控制…………………… 4.2.2有源电力滤波器电流跟踪控制技术…………………………… 4.2.2.1 P WM 控制原理………………………………………… 4.2.2.2滞环比较控制方

信号与系统课程设计滤波器word文档

信号与系统课程设计 课程名称:信号与系统 题目名称:滤波器的设计与实现 学院:电气与电子工程学院 专业班级:电气工程及其自动化 学号:012005018113 学生姓名:谢宗喜 指导教师:黄劲 2007年12 月20 日

目录 一、设计要求 (2) 二、设计原理 (2) 三、设计思路 (3) 四、设计内容 (3) A、一阶有源滤波电路 (3) B、二阶有源滤波电路 (5) 1、二阶低通滤波电路 (5) 2、二阶高通滤波电路 (6) 3、二阶带通滤波电路 (8) C、用仿真软件设计滤波器 (10) 1、给定性能参数设计滤波器 (10) a、二阶低通滤波器 (10) b、二阶高通滤波器 (11) c、二阶带通滤波器 (12) 2、不同阶数滤波器性能比较 (12) D、滤波器的Matlab设计仿真 (13) 1、二阶低通滤波器 (13) 2、二阶高通滤波器 (14) 五、参考文献 (16)

一、设计要求 自已设计电路系统,构成低通滤波器、高通滤波器和带通滤波器。利用Matlab或其他仿真软件进行仿真。 有源滤波器由是有源元件和无源元件(一般是R和C)共同组成的电滤波器。和无源滤波器相比,它的设计和调整过程较简便,此外还能提供增益。因此,本课程设计中选择了二阶有源滤波器作为主要研究对象。 1、自行设计电路图,确定前置放大电路,有源滤波电路,功率放大电路的方案, 并使用绘图软件(Electronics Worrkbench)画出设计电路,包括低通、高通和带通。 2、所设计的滤波器不仅有滤波功能,而且能起放大作用,负载能力要强。 3、根据给定要求和电路原理图计算和选取单元电路的元件参数。 4、用Matlab或其他仿真软件(FilterLab)对滤波器进行仿真,记录仿真结果。 二、设计原理 1、电容器C具有通高频阻低频的性能。 2、由源滤波器由放大电路部分和滤波电路部分组成。 3、仿真软件可以将滤波器的性能直观的表现出来。 4、各种滤波器的幅频特性:

08级数字信号处理试卷A及参考答案1

2008 ~2009《数字信号处理》考试试卷(A ) 一、 填空题(本题满分30分,共含4道小题,每空2分) 1. 两个有限长序列x 1(n),0≤n ≤33和x 2(n),0≤n ≤36,做线性卷积后结果的长度 是 ,若对这两个序列做64点圆周卷积,则圆周卷积结果中n= 至 为线性卷积结果。 2. DFT 是利用nk N W 的 、 和 三个固有特性来实现FFT 快速运算的。 3. IIR 数字滤波器设计指标一般由 、 、 和 等四项组成。 4. FIR 数字滤波器有 和 两种设计方法,其结构 有 、 和 等多种结构。 二、 判断题(本题满分16分,共含8道小题,每小题2分,正确打√,错误打×) 1. 相同的Z 变换表达式一定对应相同的时间序列。( ) 2. Chirp-Z 变换的频率采样点数M 可以不等于时域采样点数N 。( ) 3. 按频率抽取基2 FFT 首先将序列x(n)分成奇数序列和偶数序列。( ) 4. 冲激响应不变法不适于设计数字带阻滤波器。( ) 5. 双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。( ) 6. 巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。( ) 7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相位。( ) 8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于FIR 阶数。( ) 三、 综合题(本题满分18分,每小问6分) 若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=? 2) 若)()]([)(26k X W n g DFT k G k ==,试确定6点序列g(n)=?

谐波工作原理

谐波工作原理 1.什么是电力谐波 理想上,电力系统只供应纯基波成份之无污染正弦波形,其电源频率仅50Hz(或60Hz)。但现代诸多工业或信息设备均为非线性负载,其负载电流波形并非纯正弦波,畸变的波形中可被分析出许多整数倍于基波频率的成份,这些基频以外之交流周期性波形即称为谐波。若其频率为基波的n倍,则称之为n次谐波,如250 Hz为50 Hz的5倍则称为5次谐波。 1 其中K1为基波成份之有效值 Kn为各谐波成份之有效数值(n分别为2, 3…) K1 is rms of fundamental wave. Kn is rms of each single harmonic. (n = 2, 3 …) 欲表示某单一谐波之污染量,则可采用 Single harmonic distortion can show as below SHDn(%) = Kn ? 100% K1 2.电力谐波的影响 当谐波严重污染电力系统时,除影响系统供电品质外,亦可能破坏电力设备或影响设备之正常运转,如功因改善电容器打穿,变压器及电缆过载或绝缘破坏等事故;当电力系统中电压闪烁污染严重时,会造成日光灯或白炽灯等灯具光度的闪变,使人的眼睛产生不舒适感觉;当三相负载严重失衡时,造成三相电压不平衡导致感应马达线圈异常过热,或干扰邻近计算机,导致荧光幕扭曲;当雷击或开关、电容器切换时引起之瞬时突波,可能使电力设备因过电压或过电流而发生故障;当雷击、盐害或人为与天灾引起之事故,导致系统电压骤降(Voltage sags)与骤升(Swell),可能造成电力设备欠压或过压,导致保护电驿动作,造成电力中断。故电力品质测量分析与改善技术之研究为当今各国电力公司与工业界工作之重点。 谐波存在电力系统中将可能引起若干问题: The effect of harmonic could cause many problems: 系统或负载过电压、过电流 System or load over-voltage, over-current. 因集肤效应因而引起的电缆温升破坏及严重降压 Because of skin effect, the temperature of wire cable rise and serious voltage step down. 变压器马达及发电机等的铜损、铁损增加而过温

常见的信号处理滤波方法

低通滤波:又叫一阶惯性滤波,或一阶低通滤波。是使用软件编程实现普通硬件RC 低通滤波器的功能。 适用范围:单个信号,有高频干扰信号。 一阶低通滤波的算法公式为: Y(n)X(n)(1)Y(n 1)αα=+-- 式中: α是滤波系数;X(n)是本次采样值;Y(n 1)-是上次滤波输出值;Y(n)是本次滤波输出值。 滤波效果1: 红色线是滤波前数据(matlab 中生成的正弦波加高斯白噪声信号) 黄色线是滤波后结果。 滤波效果2:

matlab中函数,相当于一阶滤波,蓝色是原始数据(GPS采集到的x(北)方向数据,单位m),红色是滤波结果。 一阶滤波算法的不足: 一阶滤波无法完美地兼顾灵敏度和平稳度。有时,我们只能寻找一个平衡,在可接受的灵敏度范围内取得尽可能好的平稳度。

互补滤波:适用于两种传感器进行融合的场合。必须是一种传感器高频特性好(动态响应好但有累积误差,比如陀螺仪。),另一传感器低频特性好(动态响应差但是没有累积误差,比如加速度计)。他们在频域上互补,所以进行互补滤波融合可以提高测量精度和系统动态性能。 应用:陀螺仪数据和加速度计数据的融合。 互补滤波的算法公式为: 1122Y(n)X (n)(X (n)Y(n 1))αα+=+-- 式中:1α和2α是滤波系数;1X (n)和2X (n)是本次采样值;Y(n 1)-是上次 滤波输出值;Y(n)是本次滤波输出值。 滤波效果 (测试数据): 蓝色是陀螺仪 信号,红色是加 速度计信号,黄 色是滤波后的 角度。

互补滤波实际效果:

卡尔曼滤波:卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测。 首先,用于测量的系统必须是线性的。 k k k 是测量系统参数。 在进行卡尔曼滤波时: 首先进行先验预测: 计算先验预测方差: 计算增益矩阵: 后验估计值: 后验预测方差: 举例说明: (下文中加粗的是专有名词,需要理解) 预测小车的位置和速度的例子(博客+自己理解):

(完整word版)数字信号处理题库(附答案)

数字信号处理复习题 一、选择题 1、某系统)(),()()(n g n x n g n y =有界,则该系统( A )。 A.因果稳定 B.非因果稳定 C.因果不稳定 D. 非因果不稳定 2、一个离散系统( D )。 A.若因果必稳定 B.若稳定必因果 C.因果与稳定有关 D.因果与稳定无关 3、某系统),()(n nx n y =则该系统( A )。 A.线性时变 B. 线性非时变 C. 非线性非时变 D. 非线性时变 4.因果稳定系统的系统函数)(z H 的收敛域是( D )。 A.9.0z D. 9.0>z 5.)5.0sin(3)(1n n x π=的周期( A )。 A.4 B.3 C.2 D.1 6.某系统的单位脉冲响应),()21()(n u n h n =则该系统( C )。 A.因果不稳定 B.非因果稳定 C.因果稳定 D.非因果不稳定 7.某系统5)()(+=n x n y ,则该系统( B )。 A.因果稳定 B.非因果稳定 C.因果不稳定 D.非因果不稳定 8.序列),1()(---=n u a n x n 在)(z X 的收敛域为( A )。 A.a z < B. a z ≤ C. a z > D. a z ≥ 9.序列),1()21()()31()(---=n u n u n x n n 则)(z X 的收敛域为( D )。 A.21z C. 21>z D. 2 131<

整流器件的谐波抑制仿真

整流器件的谐波抑制仿真 :The use of nonlinear loads in power system make harmonic pollution ,in order to solve the harmonic pollution ,active power filter is used. This paper introduces the basic principles of active filter ,and establishs a Matlab / Simulink simulation model and analysis. The results show that the active filter has good compensation characteristic. 0 引言随着电力电子技术的迅速发展和电力电子装置的应用越来越广泛,电磁环境受到严重的污染,电网谐波污染问题成为一个非常严峻问题。此外电网中使用的异步电动机、变压器和电弧炉等负荷消耗大量的无功功率,若得不到及时补偿将致使电网电压波动、供电设备容量增加、损耗增加。因此,谐波补偿成为当前的一个非常严峻的问题。 谐波抑制的手段主要包括无源滤波和有源滤波。无源滤波器是由电容器和电抗器串联而组成的,并且调谐在某种特定的谐波频率,对它所调谐的谐波具有一个低阻抗作用;有源滤波器是产生与其所测得的畸变的谐波电流的相位相反的一组谐波电流,谐波电流因此被抵消并且最终变成一个没有畸变的正弦波。本文中 主要介绍并联型有源滤波器的原理,并进行MATLAE仿真和分析。

1并联有源滤波器的工作原理 系统的主要组成包括:指令电流运算电路、电流跟踪控制电路、驱动电路和主电路。Is 为电网提供的电流,il 为负载电流,ic 为有源滤波器的输出电流。基本原理为当需要对非线性负载所产生谐波电流进行补偿时,由检测电路测量出补偿对象负载电流il 中的谐波电流成分iLh ,将它相位相反后当作要补偿电流的指令信号,因此由补偿电流发生电路产生的补偿电流ic 和负载电流中的谐波信号iLh 等大、反相,补偿电流与电网中的谐波和无功电流相消,因此电网的电流和负载的基波电流相等,使的电源电流变为正弦波。 2有源滤波器的Matlab 仿真研究 2.1谐波检测谐波电流检测法有很多,包含用模拟带通滤波器,傅立叶变换谐波检测分析,瞬时无功功率谐波检测等等。本文采用的办法是基于瞬时无功功率的谐波检测法,其基本原理如图2 所示。 图2 中: C=sin s t -cos s tcos s t sin 3 t , =■ 1 -1/2 -1/20 ■ 12 -■/2 其中 ia 、ib 、ic 分别为谐波补偿之前 a、b、c 的三相电流,输入电流ia、ib、ic通过C32坐标变换后使其再经过滤波器(LPF),然后再经过一次C32反变换后就可以得到基波电流分量

滤波器信号分析与处理实验

实验报告 课程名称:信号分析与处理指导老师:项基成绩:__________________ 实验名称:________滤波器_____实验类型:___研究型________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、 实验目的和要求(必填) 1、了解有源滤波器的种类、基本结构、工作原理及其特性。 2、学会测量有源滤波器的幅频特性。 二、 实验内容和原理(必填) 有源滤波器具有体积小、性能好、调整方便等优点,在信号处理方面得到了广泛的应用。 通常高阶的有源滤波器都可由一阶和二阶的滤波器串联而成,其中一阶滤波器只需一只电阻和一只电容构成一级RC 无源网络即可。本实验研究二阶RC 有源滤波器的有关问题。 1.二阶低通有源滤波器 二阶低通有源滤波器的实验电路如图2-7-1(a )所示。图中将1C 接地端改接到输出端是为了改善 10=ωω附近的滤波器性能。因为在10 <ωω 且接近1的范围内,o u 和i u 相位差小于 90,1C 起正反馈作用, 因而有利于提高这段范围内的输出幅度,而在频带外即10 ??ωω 时,o u 和i u 基本相同,1C 起促进带外衰减 的作用。 当R R R ==21时,该滤波器电路的传递函数为 2 12 122 122002200121 )(C C R s RC s C C R s Q s K s H ++=++=ωωω 截止频率为 2 101C C R = ω 品质因数为 2 1 21C C Q = 通带增益为10=K 。 该电路的优点是改变电阻R 即可改变截止角频率而不影响品质因数Q ,因此,调整时应先调1C 或2C ,使Q 满足要求,然后通过调节电阻R 将0ω调准确。

信号与系统实验四 答案

实验四 基于窗函数的FIR DF 的设计 提示: 1. Matlab 中提供了很多常用的窗函数,其中一些窗函数的调用形式为: 矩形窗:w=boxcar(N) 三角形窗:w=bartlett(N) 汉宁窗:w=hanning(N) 哈明窗:w=hamming(N) 布莱克曼窗:w=blackman(N) 其中,输入参数N 表示窗口的长度,返回的变量w 是一个长度为N 的列向量,表示窗函数在这N 点的取值。 2. b=fir1(N,Wc,'ftype',Window) fir1函数用来设计FIR 滤波器。其中N 为滤波器的阶数;Wc 是截止频率,其取值在0~1之间,它是以π为基准频率的标称值,设计低通和高通滤波器时,Wc 是标量,设计带通和带阻滤波器时,Wc 是1×2的向量;设计低通和带通滤波器时,无需 'ftype',当ftype=high 时,设计高通滤波器,当ftype=stop 时,设计带阻滤波器;Window 表示设计滤波器所采用的窗函数类型,Window 的长度为N+1,若Window 缺省,则fir1默认使用哈明窗;b 对应设计好的滤波器的系数h(n),即单位冲激响应,h(n)的长度为N+1。 需注意)(n h 的长度与滤波器的阶数间的关系。FIR 滤波器的系统函数可表示为: ∑-=-=1 )()(N n n z n h z H )(n h 的长度为N ,而滤波器的阶数为1-N 阶。 3. 求数字滤波器的频率响应 h=freqz(b,a,w) 其中,b 和a 分别为系统函数)(z H 的分子多项式和分母多项式的系数。对于FIR 滤波器,此处的b 即为h(n),a 可看作1。 实验题目: 1. 分别用矩形窗和哈明窗设计FIR 低通滤波器,设窗宽11=N ,截止频率rad c πω 2.0=,要求绘出两种窗函数设计的滤波器幅频曲线,并进行比较。

高频开关变换器中EMI产生的机理及其抑制方法

高频开关变换器中EMI产生的机理及其抑制方法 1 前言 开关电源具有体积小、重量轻、效率高等特点,广泛用于通信、自动控制、家用电器、计算机等电子设备中。但是,其缺点是开关电源在高频条件下工作,产生非常强的电磁干扰(Electromagnet ic Inte rf erence,EMI),经传导和辐射会污染周围电磁环境,对电子设备造成影响。本文从开关电源的电路结构、器件进行分析,探讨了电磁干扰产生的机理及其抑制方法。 2 开关电源电磁干扰(EMI)产生的机理 开关电源的电磁干扰,按耦合途径来分,可分为传导干扰和辐射干扰。按噪声干扰源可分为两大类:一类是外部噪声,例如通过电网传输过来的共模和差模干扰、外部电磁辐射对开关电源控制电路的干扰等;另一类是开关电源自身产生的电磁干扰,如开关管、整流管的电流尖峰产生的谐波及电磁辐射干扰。 其中外部噪声产生的影响可以通过电源滤波器进行衰减,本文不做讨论,仅讨论开关电源自身产生的电磁噪声。 常规交流输入的开关电源主要结构可以分为四大部分,其框图如图1所示。 其中输入与整流滤波部分、高频逆变部分、输出整流与滤波部分是产生电磁干扰的主要来源。以下将通过对各部分电压、电流波形的分析,阐明电磁噪声产生的原因。 2.1 工频整流器引起的电磁噪声 一般开关电源为容式滤波,在输入与整流滤波部分电磁噪声主要是由整流过程中造成的电流尖峰、电压波动所引起的。正弦波电源经过电源滤波器进行差模、共模信号衰减后,由整流桥整流、电解电容滤波,得到的电压作为高频逆变部分的输入电压。由于滤波电容的存在,使整流器不象纯整流那样一组开通半个周期,而是只在正弦电压高于电容电压时才导通,造成电流波形非常陡峭,同时电压波形变得平缓。电流、电压的波形如图2所示。 根据Fourier级数,图中的电流、电压波形可分解为直流分量和一系列频率为基波频率整数倍的正弦交流分量之和。通过电磁场理论以及试验结果表明,谐波(特别是高次谐波)会产生传导干扰和辐射干扰。通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰,在空间产生电场、磁场向外辐射产生的干扰称之为辐射干扰。 2.2 变压器与开关管引起的电磁噪声 逆变部分是开关稳压电源的核心,用以实现变压、变频以及完成输出电压的调整,主要有开关管和高频变压器组成。电磁噪声主要是由于变压器的漏感、分布电容以及开关管的开通、关断造成。开关电源中的高频变压器用作隔离和变压,变压器在理论分析时,通常认为是理想变压器,但是在实际应用中变压器存在漏感,而且在高频的情况下,还要考虑变压器层间的分布电容。高频变压器的等效电路模型如图3所示。

数字信号处理和滤波器设计

计算机仿真技术实验指导书

河南科技大学电子信息工程学院 二〇〇八年二月

计算机仿真技术实验指导书 MATLAB是一种交互式的以矩阵为基本数据结构的系统。在生成矩阵对象时,不要求明确的维数说明。所谓交互式,是指MATLAB的草稿纸编程环境。 与C语言或FORTRON语言作科学数值计算的程序设计相比较,利用MATLAB可节省大量的编程时间。 本实验指导书主要讨论四个实验。 实验一信号与系统的时域分析以及信号合成与分解 1. 实验目的 (1) 连续时间信号的向量表示法和符号运算表示法,典型离散信号表示; (2) 连续信号和离散信号的时域运算与时域变换; (3) 连续系统和离散系统的卷积,以及冲激响应、阶跃响应、单位响应、零状态响应; (4) 周期信号的傅立叶级数分解与综合(以周期方波为例); 2. 实验原理与方法 (1) 信号在MATLAB中的表示方法 MATLAB用两种方法来表示连续信号,一种是用向量的方法来表示信号,另一种则是符号运算的方法来表示信号。用适当的MATLAB语句表示出信号后,就可以利用MATLAB的绘图命令绘制出直观的信号时域波形。 向量表示法表示信号的方法是:MATLAB用一个向量表示连续信号的时间范围,另一个向量表示连续信号在该时间范围内的对应样值。如下列代码p=0.001; t=-pi:p:pi; f=1+cos(t); plot(t,f) title('f(t)=1+cos(t)') xlabel('t') axis([-pi,pi,-0.2,2.4])

执行后即可绘制连续信号1+cos(t)的时域波形。 借助于符号运算以及符号绘图函数ezplot,也可以绘制连续信号时域波形。如下列代码 syms t f=sym('1+cos(t)') %定义符号表达式 ezplot(f,[-pi,pi]) %绘制符号表达式波形 set(gcf,'color','w') %设置当前图形背景颜色为白色 执行后即可绘制连续信号1+cos(t)的时域波形。 与连续信号的表示相似,在MATLAB中,离散信号也需要用两个向量来表示,其中一个向量表示离散信号的时间范围,另一个向量表示该离散信号在该时间范围内的对应样值。但与连续信号表示有所不同的是,表示离散信号时间范围向量的元素必须为整数。如下列代码 n=[-3,-2,-1,0,1,2,3]; x=[-3,2,-1,3,1,-2,1]; stem(n,x,'filled') set(gcf,'color','w') title('x(n)') xlabel('n') 执行后即可绘制离散信号x(n)={ -3,2,-1,3,1,-2,1}的时域波形。 ↑ n=0 (2) 连续信号和离散信号的时域运算与时域变换 对连续信号而言,其基本时域变换有反褶、平移、尺度变换、倒相。 利用MATLAB的符号运算功能以及符号绘图函数ezplot,可以直观的观察和分析连续信号的时域运算与时域变换。如下列代码 syms t; f=sym('(t+1)*(heaviside(t+1)-heaviside(t))'); f=f+sym('(heaviside(t)-heaviside(t-1))'); %定义信号符号表达式 ezplot(f,[-3,3]) %绘制信号波形 axis([-3,3,-1.2,1.2]) set(gcf,'color','w')

相关主题