搜档网
当前位置:搜档网 › 步进电机的三菱PLC控制

步进电机的三菱PLC控制

摘要:

设计一种基于PLC的步进电机控制系统, 通过微型变速箱将步进电机角位移转化为直线位移, 进而带动直线

伸缩机构运行。该系统结构简单、性能稳定、经济价值和使用效果突出, 能够满足毫米级精确位移的使用需求。

关键词: PLC; 步进电机; 驱动器; 脉冲;方向。

目录

第1章绪论 (1)

1.1 设计背景 (1)

1.2 系统设计的任务 (3)

1.3 本章小结 (3)

第2章步进电机及PLC简介 (4)

2.1 步进电机简介 (4)

2.2 PLC的发展概述 (8)

2.3 PLC技术在步进电机控制中的应用 (8)

2.4 本章小结 (10)

第3章PLC控制步进电机工作方式的选择 (11)

3.1 常见的步进电机的工作方式 (11)

3.2 步进电机控制原理 (12)

3.3 PLC控制步进电机的方法 (12)

3.4 PLC控制步进电机的设计思路 (13)

3.5 本章小结 (15)

第4章FX2N控制步进电机硬件设计 (16)

4.1 三菱FX2nPLC的介绍 (16)

4.2 步进电机的选择 (18)

4.3 步进电机驱动电路设计 (20)

4.4 PLC驱动步进电机 (21)

4.5步进电机驱动器的使用说明 (22)

4.6 I/O接线图 (24)

4.7 本章小结 (25)

第5章控制系统的程序设计 (26)

5.0 本设计相关指令介绍 (26)

结论 (31)

参考文献 (32)

致谢 (33)

附录 (34)

第1章绪论

1.1 设计背景

步进电动机已成为除直流电动机和交流电动机以外的第三类电动机,传统电动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的作用。可是在人类社会进入自动化时代的今天,传统电动机的功能已不能满足工厂自动化和办公自动化等各种运动控制系统的要求。为适应这些要求,发展了一系列新的具备控制功能的电动机系统,其中较有自己特点,且应用十分广泛的一类便是步进电动机。

步进电动机的发展与计算机工业密切相关。自从步进电动机在计算机外围设备中取代小型直流电动机以后,使其设备的性能提高,很快地促进了步进电动机的发展。另一方面,微型计算机和数字控制技术的发展,又将作为数控系统执行部件的步进电动机推广应用到其他领域,如电加工机床、小功率机械加工机床、测量仪器、光学和医疗仪器以及包装机械等。任何一种产品成熟的过程,基本上都是规格品种逐步统一和简化的过程。现在,步进电动机的发展已归结为单段式结构的磁阻式、混合式和爪极结构的永磁式三类。爪极电机价格便宜,性能指标不高,混合式和磁阻式主要作为高分辨率电动机,由于混合式步进电动机具有控制功率小,运行平稳性较好而逐步处于主导地位。最典型的产品是二相8极50齿的电动机,步距角1.8°/0.9°(全步/半步);还有五相10极50齿和一些转子100齿的二相和五相步进电动机,五相电动机主要用于运行性能较高的场合。到目前,工业发达国家的磁阻式步进电动机已极少见[1]。

步进电动机最大的生产国是日本,如日本伺服公司、东方公司、SANYO DENKI 和MINEBEA及NPM公司等,特别是日本东方公司,无论是电动机性能和外观质量,还是生产手段,都堪称是世界上最好的。现在日本步进电动机年产量(含国外独资公司)近2亿台,德国也是世界上步进电动机生产大国。德国B.L.公司1994年五相混合式步进电动机专利期满后,推出了新的三相混合式步进电动机系列,为定子6极转子50齿结构,配套电流型驱动器,每转步数为200、400、1000、2000、4000、10000和20000,它具有通常的二相和五相步进电动机的分辨率,还可以在此基础上再10细分,分辨率提高10倍,这是一种很好的方案,充分运用了电流型驱动技术的功能,让三相电动机同时具有二相和五相电动机的性能。与此同时,日本伺服公司也推出了他们的三相混合式步进电动机。该公司阪正文博士研制了三种不同的永磁式三相步进电动机,即HB型(混合式)、RM性(定子和混合式

相似,转子则同永磁式环形磁铁相似)和爪极PM型。将三相步进电动机同二相步进电动机进行比较后得出:

1)在获得小步距角方面,三相电动机比二相电动机要好。

2)三相电动机的两相励磁最大保持力矩为3T1(T1为单相励磁转矩),而二相电动机为2T1,所以三相电动机的合成力矩大。

3)三相电动机的转矩波动比二相电动机要小。

4)三相电动机连续2步用于半步的转矩差比二相电动机的要小。

5)三相电动机绕组可以星形连接,三个终端驱动,励磁电路晶体管6个;而二相电动机是8个。

6)连续运转时,由于三相步进电动机结构原因,磁通和电流的三次谐波被消除了,所以三相电动机的振动力矩比二相电动机的要小.结论是显而易见的[2]。

另外的结论是HB型电动机更适合于低速大转矩用途;RM型适用于平稳运行以及转速大于1000r/min的用途;而PM型成本低,在低转速时的振动和高转速时的大转矩方面,三相PM型电动机比两相电动机的性能要好。因此,当前最有发展前景的当属混合式步进电动机,而混合式电动机又向以下四个方向发展:发展趋势一,随着电动机本身应用领域的拓宽以及各类整机的不断小型化,要求与之配套的电动机也必须越来越小,在57、42机座号的电动机应用了多年后,现在其机座号向39、35、30、25方向向下延伸。瑞士ESCAP公司最近还研制出外径仅10mm的步进电动机。

发展趋势之二,是改圆形电动机为方形电动机。由于电动机采用方型结构,使得转子有可能设计得比圆形大,因而其力矩体积比将大为提高。同样机座号的电动机,方形的力矩比圆形的将提高30%~40%

发展趋势之三,对电动机进行综合设计。即把转子位置传感器,减速齿轮等和电动机本体综合设计在一起,这样使其能方便地组成一个闭环系统,因而具有更加优越的控制性能。

发展趋势之四,向五相和三相电动机方向发展。目前广泛应用的二相和四相电动机,其振动和噪声较大,而五相和三相电动机具有优势性。而就这两种电动机而言,五相电动机的驱动电路比三相电动机复杂,因此三相电动机系统的性能价格比要比五相电动机更好一些。

我国的情况有所不同,直到20世纪80年代,一直是磁阻式步进电动机占统治地位,混合式步进电动机是80年代后期才开始发展,至今仍然是二种结构类型同时并存。尽管新的混合式步进电动机完全可能替代磁阻式电动机,但磁阻式电动机的整机获得了长期应用,对于它的技术也较为熟悉,特别是典型的混合式步进电动机的步距角(0.9°/1.8°)与典型的磁阻式电动机的步距角(0.75°/1.5°)不一样,用户改变这种产品结构不是很容易的,这就使得两种机型并存的局面难以在较短时间内改变。这种现状对步进电动机的发展是不利的。

1.2 系统设计的任务

步进电机具有较好的控制性能,其启动、停车、反转及其它任何运行方式的改变都可在少数脉冲内完成,且可获得较高的控制精度,因而得到了广泛的应用。步进电机是一种将电脉冲信号转换成直线位移或角位移的执行元件。步进电机具有转子惯量低、定位精度高、无累积误差、控制简单等特点,已成为运动控制领域的主要执行元件之一。

随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个行业的控制领域都将有广泛应用。而现在的可编程控制器(通常称PLC) 是一种工业控制计算机,具有模块化结构、配置灵活、高速的处理速度、精确的数据处理能力、多种控制功能、网络技术和优越的性价比等性能,能充分适应工业环境,简单易懂,操作方便,可靠性高,是目前广泛应用的控制装置之一。

本设计是采用是FX2N-32MT控制三相六拍的反应步式步进电机,通过软件设计脉冲频率来控制步进电机的运行速度,通过加减频率来控制步进动机的转速。围绕这两个主要方面,可提出具体的控制要求如下:

1)可正转运行或反转运行;

2)系统上电后,赋一个初始速度值;

3)步进速度可手动变速;

1.3 本章小结

本章阐述了此次设计的背景,即步进电机的发展状况,和步进电机在工业自动化生产中的重大作用。提出了本次设计的设计任务,用PLC控制步进电机以不同的方式运行。

第2章步进电机及PLC简介

2.1 步进电机简介

步进电动机是一种将数字脉冲信号转换成机械角位移或者线位移的数模转换元件。在经历了一个大的发展阶段后,目前其发展趋于平缓。然而,由于电动机的工作原理和其它电动机有很大的差别,具有其它电动机所没有的特性。因此,沿着小型、高效、低价的方向发展。

步进电动机由此而得名。步进电动机的运行是在专用的脉冲电源供电下进行的,其转子走过的步数,或者说转子的角位移量,与输入脉冲数严格成正比。另外,步进电动机动态响应快,控制性能好,只要改变输入脉冲的顺序,就能方便地改变其旋转方向。这些特点使得步进电动机与其它电动机有很大的差别。因此,步进电动机的上述特点,使得由它和驱动控制器组成的开环数控系统,既具有较高的控制精度,良好的控制性能,又能稳定可靠地工作。因此,在数字控制系统出现之初,步进电动机经历过一个大的发展阶段[3]。

2.1.1 步进电机的分类

1)永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度或15度。

2)反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。

3)混合式步进电机是指混合了永磁式和反应式的优点,它又分为两相和五相。两相步进角一般分为1.8度而五相步进角一般为0.72度,这种步进电机的应用最为广泛。

三相反应式步进电机的结构如图所示。定子、转子是用硅钢片或其他软磁材料制成的。定子的每对极上都绕有一对绕组,构成一相绕组,共三相称为A、B、C相。

图2-1 三相反应式步进电机的结构图

在定子磁极和转子上都开有齿分度相同的小齿,采用适当的齿数配合,当A 相磁极的小齿与转子小齿一一对应时,B相磁极的小齿与转子小齿相互错开1/3齿距,C相则错开2/3齿距。如图所示:

图2-2 A相通电定转子错开示意图

电机的位置和速度由绕组通电次数(脉冲数)和频率成一一对应关系。而方向由绕组通电的顺序决定。

2.1.2 步进电机的基本参数

1.电机固有步距角

它表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角的值,这个步距角可以称之为“电机固有步距角”,它不一定是电机实际工作时的真正步距角,真正的步距角和驱动器有关。

2.步进电机的相数

步进电机的相数是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机。电机相数不同,其步距角也不同,一般二相电机的步距角为0.9°/1.8°、三相的为0.75°/1.5°、五相的为0.36°/0.72°。在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己步距角的要求。如果使用细分驱

动器,则“相数”将变得没有意义,用户只需在驱动器上改变细分数,就可以改变步距角。

3.保持转矩

保持转矩是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2Nm的步进电机,在没有特殊说明的情况下是指保持转矩为2Nm的步进电机。

4.钳制转矩

钳制转矩是指步进电机没有通电的情况下,定子锁住转子的力矩。由于反应式步进电机的转子不是永磁材料,所以它没有钳制转矩。

2.1.3 步进电机主要特点

1)一般步进电机的精度为步进角的3-5%,且不累积。

2)步进电机外表允许的最高温度取决于不同电机磁性材料的退磁点,步进电机温度过高时会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。

3)步进电机的力矩会随转速的升高而下降。当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。

4)步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声。

步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频[4]。

2.1.4 反应式步进电机原理

2.1.4.1 结构

电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0τ、1/3τ、2/3τ(相邻两转子齿轴线间的距离为齿距以τ表示),即A与齿1相对齐,B与齿2向右错开1/3τ,C与齿3向右错开2/3τ,A'与齿5相对齐,(A'就是A,齿5就是齿1)如图:

图2-3 定转子的展开图

2.1.4.2 旋转

三相如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3τ,此时齿3与C偏移为1/3τ,齿4与A偏移(τ-1/3τ)=2/3τ。如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3τ,此时齿4与A偏移为1/3τ对齐。如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3τ这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3τ,向右旋转。如按A,C,B,A……通电,电机就反转。

由此可见,电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,所以本设计采用三相六拍。这样将原来每步1/3τ改变为1/6τ。甚至于通过二相电流不同的组合,使其1/3τ变为1/12τ,1/24τ,这就是电机细分驱动的基本理论依据[5]。

不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。

2.1.5 步进电机在工业控制领域的主要应用

步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种家电产品中,例如打印机、磁盘驱动器、玩具、雨刷、机械手臂和录像机等。另外步进电机也广泛应用于各种工业自动化系统中。由于通过控制脉冲个数可以很方便的控制步进电机转过的角位移,且步进电机的误差不积累,可以达到准确定位的目的。还可以通过控制频率很方便的改变步进电机的转速和加速度,达到任意调速的目的,因此步进电机可以广泛的应用于各种开环控制系统中[6]。

2.2 PLC的发展概述

可编程控制器(简称PLC) 是种数字运算操作的电子系统,是在20 世纪60 年代末面向工业环境由美国科学家首先研制成功的。它采用可编程序的存储器,其内部存贮执行逻辑运算、顺序控制、计数和算术运算等操作指令,并通过数字的、模拟的输入和输出,控各种类型的机械或生产过程。可编程序控制器及其有关设备,都是按易于与工业控制系统形成一体、易于扩充其功能的原则设计的。PLC 自产生至今只有30多年的历史,却得到了迅速发展和广泛应用,成为当代工业自动化的主要支柱之一。产生和发展过程现代社会要求生产厂家对市场的需求做出迅速的反应,生产出小批量、多品种、多规格、低成本和高质量的产品。老式的继电器控制系统已无法满足这一要求,迫使人们去寻找一种新的控制装置取而代之。

PLC实质是一种专用于工业控制的计算机,其硬件结构基本上与微型计算机相同:

1)中央处理单元(CPU)是PLC的控制中枢。它按照PLC系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。当PLC投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。等所有的用户程序执行完毕之后,最后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。

为了进一步提高PLC的可靠性,近年来对大型PLC还采用双CPU构成冗余系统,或采用三CPU的表决式系统。这样,即使某个CPU出现故障,整个系统仍能正常运行。

2)存储器存放系统软件的存储器称为系统程序存储器。存放应用软件的存储器称为用户程序存储器[7]。

2.3 PLC技术在步进电机控制中的应用

随着微电子技术和计算机技术的发展,可编程序控制器有了突飞猛进的发展,其功能已远远超出了逻辑控制、顺序控制的范围。继续沿着小型化的方向发展。随着电动机本身应用领域的拓宽以及各类整机的不断小型化,要求与之配套的电动机也必须越来越小。对电动机进行综合设计。即把转子位置传感器,减速齿轮等和电动机本体综合设计在一起,这样使其能方便地组成一个闭环系统,因而具

有更加优越的控制性。向五相和三相电动机方向发展,目前广泛应用的二相和四相电动机,其振动和噪声较大,而五相和三相电动机具有优势性。而就这两种电动机而言,五相电动机的驱动电路比三相电动机复杂,因此三相电动机系统的性能价格比要比五相电动机更好一些[8]。

目前利用可编程序控制器(即PLC技术)可以方便地实现对电机速度和位置的控制,方便地进行各种步进电机的操作,完成各种复杂的工作,它代表了先进的工业自动化革命,加速了机电一体化的实现。

用PLC对步进电机也具有良好的控制能力,利用其高速脉冲输出功能或运动控制功能,现对步进电机的控制[9]。

步进电机是一种将电脉冲信号转换成直线位移或角位移的执行元件,每当对其施加一个电脉冲时,其输出轴便转过一个固定的角度。步进电机的输出位移量与输入脉冲个数成正比,其转速与单位时间内输入的脉冲数(即脉冲频率)成正比,其转向与脉冲分配到步进电机的各相绕组的相序有关。所以只要控制指令脉冲的数量、频率及电机绕组通电的相序,便可控制步进电机的输出位移量、速度和转向[10]。PLC直接控制步进电机系统由PLC和步进电机组成,PLC具有实时刷新技术,输出信号的频率可以达到数千赫兹或更高,使得脉冲分配能有很高的分配速度,充分利用步进电机的速度响应能力,提高整个系统的快速性。并且,PLC有采用大功率晶体管的输出端口,能够满足步进电机各相绕组数10V级脉冲电压、1A级脉冲电流的驱动要求[11]。

有以上步进电机的工作原理以及工作方式我们可以看出:

控制步进电机最重要的就是要产生出符合要求的控制脉冲。三菱PLC本身带有高速脉冲计数器和高速脉冲发生器,其发出的频率最大为10KHz,能够满足步进电动机的要求。对PLC提出两个特性要求。一是在此应用的PLC最好是具有实时刷新技术的PLC,使输出信号的频率可以达到数千赫芝或更高。其目的是使脉冲能有较高的分配速度,充分利用步进电机的速度响应能力,提高整个系统的快速性。二是PLC本身的输出端口应该采用大功率晶体管,以满足步进电机各相绕组数十伏脉冲电压、数安培脉冲电流的驱动要求[12]。如下图所示:

图2-4 步进电机的PLC直接控制

2.4 本章小结

本章阐述了步进电机的主要特点与工作原理,并介绍了PLC的发展状况以及PLC技术在步进电机控制中所发挥的巨大作用。

第3章PLC控制步进电机工作方式的选择3.1 常见的步进电机的工作方式

常见的步进电机的工作方式有以下三种:

1.三相单三拍:A-> B-> C-> A

图3-1 三相单三拍工作方式时序图

2.三相双三拍:AB -> BC -> CA -> AB

图3-2 三相双三拍工作方式时序图

3.三相六拍:A -> AB -> B -> BC -> C -> CA -> A

图3-3 三相六拍工作方式时序图

3.2 步进电机控制原理

3.2.1 控制步进电机换向顺序

通电换向这一过程称为脉冲分配。例如:三相步进电机的三相三拍工作方式,其各相通电顺序为A-B-C-D,通电控制脉冲必须严格按照这一顺序分别控制A、B、C、D相的通断。

3.2.2 控制步进电机的转向

如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则电机就反转。

3.2.3 控制步进电机的速度

如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。调整发出的脉冲频率,就可以对步进电机进行调速。

3.3 PLC控制步进电机的方法

在本设计中直接使用PLC控制步进电机,可使用PLC产生控制步进电机所需要的各种时序的脉冲。三相步进电机可采用三种工作方式:三相单三拍,三相双三拍,三相单六拍。这三种方式的主要区别是:电机绕组的通电、放电时间不同。工作方式是单三拍时通电时间最短,双三拍时允许放电时间最短,六拍时通电时间和放电时间最长。因此,同一脉冲频率时,六拍的工作方式出力最大。而且,电机是三拍的工作方式时,其分辨率为3度,六拍的工作方式时,分辨率是1.5度。所以,在本课题中,我们采用三相六拍的工作方式,在这种控制方式下工作,步进电机的运行特性好,步进电机分辨率最高。

可根据步进电机的工作方式,以及所要求的频率(步进电机的速度),画出A、B、C各相的时序图。并使用PLC产生各种时序的脉冲。例如:本设计采用三菱FX2n-32MT PLC控制三相步进电机的过程。

图3-4 三相单六拍正向时序图

3.4 PLC控制步进电机的设计思路

3.4.1 步进电机控制方式

典型的步进电机控制系统如图所示:

图3-5 典型的步进电机控制系统

步进电动机是一种将数字脉冲信号转换成机械角位移或者线位移的数模转换元件。在经历了一个大的发展阶段后,日前其发展趋向平缓。然而,其基本原理是不变的,即:是一种将电脉冲信号转换成直线位移或角位移的执行元件,每当对其施加一个电脉冲时,其输出转过一个固定的角度。步进电机的输出位移量与输入脉冲个数成正比,其转速与单位时间内输入的脉冲数(即脉冲频率)成正比,其转向与脉冲分配到步进电机的各相绕组的脉冲顺序有关。所以只要控制指令脉冲的数量、频率及电机绕组通电的顺序,便可控制步进电机的输出位移量、速度和转向。步进电机的机理是基于最基本的电磁铁作用,可简单地定义为,根据输人的脉冲信号,每改变一次励磁状态就前进一定角度或长度,若不改变励磁状态则保持一定位置而静止的电动机:从广义上讲,步进电动机是一种受电脉冲信号控制的无刷式直流电机,也可看作是在一定频率范围内转速与控制脉冲频率同步的同步电动机。

步进电机的控制和驱动方法很多,按照使用的控制装置来分可以分为:普通集成电路控制、单片机控制、工业控制机控制、可编程控制器控制等几种;按照控制结构可分为:硬脉冲生成器硬脉冲分配结构(硬-硬结构)、软脉冲生成器软脉冲分配器结构(软-软结构)、软脉冲生成器硬脉冲分配器结构(软-硬结构)。

1.硬——硬结构

如图3.6所示,这种步进电机的控制驱动系统由硬件电路脉冲生成器、硬件电路脉冲分配器、驱动器组成。这种控制驱动方式运行速度比较快,但是电路复杂,功能单一。

2.软——软结构

如图3.7所示,这种步进电机的控制驱动系统由软件程序脉冲生成器、软件程序脉冲分配器、驱动器组成,而软件脉冲生成器和脉冲分配器都有微处理器或微控制器通过编程实现。用单片机、工业控制机、普通个人计算机、可编程序控制器控制步进电机一般均可采用这种结构。这种控制驱动方法电路结构简单、可以实现复杂的功能,但是占用CPU时间多,给微处理器运行其他工作造成困难。3.软——硬结构

如图3.8所示,这种步进电机的控制驱动系统由软件脉冲生成器、硬件脉冲分配器和硬件驱动器组成。硬件脉冲分配器是通过脉冲分配器芯片(如8713芯片)来实现通电换相控制的。这种控制驱动方法电路结构简单、可以实现复杂的功能,同时占用CPU时间较少,用可编程控制器全部实现了控制器和驱动器的功能。在PLC中,由软件代替了脉冲生成器和脉冲分配器,直接对步进电机进行并行控制,并且由PLC输出端口直接驱动步进电机。如图3.7所示,这是一种软-软结构,脉冲生成器和脉冲分配器均有可编程序控制器程序实现。

图3-6 硬硬结构控制

图3-7 软软结构控制

图3-8 软硬结构控制

3.4.2三菱PLC控制步进电机

由以上步进电机的工作原理以及工作方式我们可以看出:

控制步进电机最重要的就是要产生出符合要求的控制脉冲。三菱PLC本身带有高速脉冲计数器和高速脉冲发生器,其发出的频率最大为10KHz,能够满足步进

电动机的要求。对PLC提出两个特性要求。一是在此应用的PLC最好是具有实时刷新技术的PLC,使输出信号的频率可以达到数千赫芝或更高。其目的是使脉冲能有较高的分配速度,充分利用步进电机的速度响应能力,提高整个系统的快速性。二是PLC本身的输出端口应该采用大功率晶体管,以满足步进电机各相绕组数十伏脉冲电压、数安培脉冲电流的驱动要求。

对输入电机的相关脉冲控制,从而达到对步进电机三相绕组的48V直流电源的依次通、断,形成旋转磁场,使步进电机转动。

3.5 本章小结

本章说明了三相步进电机几种常见的工作方式,即三相单三拍,三相双三拍和三相六拍。阐述了步进电机的控制原理,以及PLC控制步进电机运行的方法。

第4章FX2N控制步进电机硬件设计

4.1 三菱FX2nPLC的介绍

1)FX2n系列是FX系列PLC家族中最先进的系列。由于FX2n系列具备如下特点:最大范围的包容了标准特点、程式执行更快、全面补充了通信功能、适合世界各国不同的电源以及满足单个需要的大量特殊功能模块,它可以为你的工厂自动化应用提供最大的灵活性和控制能力。

2)为大量实际应用而开发的特殊功能。开发了各个范围的特殊功能模块以满足不同的需要----模拟I/O,高速计数器。定位控制达到16轴,脉冲串输出或为J 和K型热电偶或Pt传感器开发了温度模块。对每一个FX2n主单元可配置总计达8个特殊功能模块。

3)网络和数据通信:连接到世界上最流行的开放式网络CC-Link,Profibus Dp和DeviceNet或者采用传感器层次的网络解决您的通信需要。

4)其它功能:内置式24V直流电源24V、400mA直流电源可用于外围设备,如传感器或其它元件。快速断开端子块因为采用了优良的可维护性快速断开端子块,即使接着电缆也可以更换单元。时钟功能和小时表功能在所有的FX2NPLC 中都有实时时钟标准。时间设置和比较指令易于操作。小时表功能对过程跟踪和机器维护提供了有价值的信息。

5)持续扫描功能:为应用所需求的持续扫描时间定义操作周期。

61)输入滤波器调节功能:可以用输入滤波器平整输入信号(在基本单元中x000到x017)。

7)注解记录功能:元件注解可以记录在程序寄存器中。

8)在线程序编辑:在线改变程序不会损失工作时间或停止生产运转。

9)RUN/STOP 开关面板上运行/停止开关易于操作。

10)远程维护:远处的编程软件可以通过调制解调器通信来监测、上载或卸载程序和数据

11)密码保护:使用一个八位数字密码保护您的程序。

4.1.1 三菱PLC 应用中需要注意的问题

1)温度:PLC 要求环境温度在0 ℃~55 ℃,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大。

2)湿度:为了保证PLC 的绝缘性能,空气的相对湿度应小于85%( 无露珠) 。

3)震动:应使PLC 远离强烈的震动源,防止振动频率为10 Hz~55Hz 的频繁或连续振动。当使用环境不可避免震动时,必须采取减震措施,如采用减震胶等。

4)空气:避免有腐蚀和易燃的气体,如氯化氢、硫化氢等。对于空气中有较多粉尘或腐蚀性气体的环境,可将PLC 安装在封闭性较好的控制室或控制柜中。

5)电源:PLC 对于电源线带来的干扰具有一定的抵制能力。在可靠性要求很高或电源干扰特别严重的环境中,可以安装一台带屏蔽层的隔离变压器,以减少设备与地之间的干扰。一般PLC 都有直流24 V输出提供给输入端,当输入端使用外接直流电源时,应选用直流稳压电源。普通的整流滤波电源,由于纹波的影响,容易使PLC 接收到错误信息。

4.1.2 控制系统中干扰及其来源

影响PLC 控制系统的干扰源,大都产生在电流或电压剧烈变化的部位,其原因是电流改变产生磁场,对设备产生电磁辐射;磁场改变产生电流,电磁高速产生电磁波,电磁波对其具有强烈的干扰。

1)强电干扰。由于电网覆盖范围广,电网受到空间电磁干扰而在线路上感应电压。尤其是电网内部的变化,刀开关操作浪涌、大型电力设备启停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。

2)柜内干扰。控制柜内的高压电器,大的电感性负载,混乱的布线都容易对PLC 造成一定程度的干扰。

3)来自接地系统混乱时的干扰。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC 系统将无法正常工作。

4)来自PLC 系统内部的干扰。主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。

5)变频器干扰。一是变频器启动及运行过程中产生谐波对电网产生传导干扰,引起电网电压畸变,影响电网的供电质量;二是变频器的输出会产生较强的电磁辐射干扰,影响周边设备的正常工作。

4.1.3 主要抗干扰措施

1)合理处理电源以抑制电网引入的干扰

对于电源引入的电网干扰可以安装一台带屏蔽层的变比为1∶1 的隔离变压器,以减少设备与地之间的干扰,还可以在电源输入端串接LC 滤波电路。

2)合理安装与布线

动力线、控制线以及PLC 的电源线和RS485 网线应分别配线,各走各的桥架或线槽。PLC 应远离强干扰源,柜内PLC 应远离动力线( 二者之间距离应大于200 mm),与PLC 装在同一个柜子内的电感性负载,如功率较大的继电器、接触器的线圈,应并联RC 消弧电路。PLC 的输入与输出最好分开走线,开关量与模拟量也要分开敷设。模拟量信号的传送应采用屏蔽线,屏蔽层应一端或两端接地,接地电阻应小于屏蔽层电阻的1/10。交流输出线和直流输出线不要用同一根电缆,输出线应尽量远离高压线和动力线,避免并行。

4.1.4 正确选择接地点以完善接地系统

PLC 控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地系统混乱对PLC 系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。

1)安全地或电源接地:将电源线接地端和柜体连线接地为安全接地。

2)系统接地:PLC 控制器为了与所控的各个设备同电位而接地,叫系统接地。接地电阻值不得大于 4 Ω,一般需将PLC 设备系统地和控制柜内开关电源负端接在一起,作为控制系统地。

3)信号与屏蔽接地:一般要求信号线必须要有唯一的参考地。

4.2 步进电机的选择

本设计选用45BF008。相数是三相、步距角1.5/3度。电压24V、相电流0.2A、保持转距0.118NM(1.2kg.cm)、空载启动频率500,D为45;D1为25;高H 为2.5;d为4;E为14.5;L为58;D2为33;MS为4-M3。

图4-2 45BF三相反应式步进电机实物图

西门子S 系列PLC控制步进电机进行正反转的方法

1、主程序先正转,等到正转完了就中断,中断中接通个辅助触点(),当闭合,住程序中的反转开始运做。这样子就OK了。 2、用PTO指令让OR 高速脉冲,另一个点如做方向信号,就可以控制正反转了,速度快慢就要控制输出脉冲周期了,周期越短速度越快,如果你速度很快的话请考虑缓慢加速,不然它是启动不了的,如果方向也变的快的话就要还做一个缓慢减速,不然它振动会蛮厉害,而且也会失步。 3、程NETWORK 1 // 用于单段脉冲串操作的主程序(PTO) // 首次扫描时,将映像寄存器位设为低 // 并调用子程序0 LD R 1 CALL SBR_0 NETWORK 1 // 子程序0开始 LD MOVB 16#8D SMB67 // 设置控制字节: // - 选择PTO操作 // - 选择单段操作 // - 选择毫秒增加 // - 设置脉冲计数和周期数值 // - 启用PTO功能 MOVW +500 SMW68 // 将周期设为500毫秒。 MOVD +4 SMD72 // 将脉冲计数设为4次脉冲。 ATCH INT_0 19 // 将中断例行程序0定义为 // 处理PTO完成中断的中断。 ENI // 全局中断启用

PLS 0 // 激活PTO操作,PLS0 =》 MOVB 16#89 SMB67 // 预载控制字节,用于随后的 // 周期改动。 NETWORK 1 // 中断0开始 // 如果当前周期为500毫秒: // 将周期设为1000毫秒,并生成4次脉冲 LDW= SMW68 +500 MOVW +1000 SMW68 PLS 0 CRETI NETWORK 2 // 如果当前周期为1000毫秒: // 将周期设为500毫秒,并生成4次脉冲 LDW= SMW68 +1000 MOVW +500 SMW68 PLS 0序注释 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关PLC产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。

PLC控制步进电机的实例(图与程序)

PLC控制步进电机的实例(图与程序) ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!

·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。 ·V+,GND:为驱动器直流电源端子,也有交流供电类型。 ·A+,A-,B+,B-分别接步进电机的两相线圈。

用PLC控制步进电机的相关指令说明

用PLC控制步进电机的相关指令 下面介绍的指令只适用于FX1S、FX1N系列的晶体管输出PLC,如高训的FX1N-60MT。这些指令主要是针对用PLC直接联动伺服放大器,目的是可以不借助其他扩展设备(例如1GM模块)来进行简单的点位控制,使用这些指令时最好配合三菱的伺服放大器(如MR-J2)。 然而,我们也可以用这些指令来控制步进电机的运行,如高训810室的实验台架。下面我们来了解相关指令的用法: 1、脉冲输出指令PLSY(FNC57) PLSY指令用于产生指定数量的脉冲。助记法为HZ、数目Y出来。指令执行如下: 2、带加减速的脉冲输出指令PLSR(FNC59) 3、回原点ZRN(FNC156)--------重点撑握 ZRN指令用于校准机械原点。助记法为高速、减速至原点。指令执行如下:

4、增量驱动DRVI(FNC158)--------重点撑握 DRVI为单速增量驱动方式脉冲输出指令。这个指令与脉冲输出指令类似但又有区别, 只是根据数据脉冲的正负多了个转向输出。本指令执行如下: 5、绝对位置驱动指令DRVA(FNC159) 本指令与DRVI增量驱动形式与数值上基本一样,唯一不同之处在于[S1.]: 在增量驱动中,[S1.]指定的是距离,也就是想要发送的脉冲数;而在绝对位置驱动指令中, [S1.]定义的是目标位置与原点间的距离,即目标的绝对位置。

下面以高训810室的设备为例,说明步进电机的驱动方法: 在用步进电机之前,请学员考虑一下几个相关的问题: 1、何谓步进电机的步距角?何为整步、半步?何谓步进电机的细分数? 2、用步进电机拖动丝杆移动一定的距离,其脉冲数是如何估算的? 3、在步进顺控中运用点位指令应注意什么?(切断电源的先后问题!) 步进电机测试程序与接线如下: 1、按下启动按钮,丝杆回原点,5秒钟后向中间移动,2秒后回到原点。

三菱PLC与步进电机控制练习题 1

三菱PLC与步进电机控制练习题 1 1. 参数设置与工作要求。 按照自己设计的电气图设置,主回路由一个带星-三角降压启动的正反转电机控制回路【正、反转启动时,星形运行时间4秒,再转换成三角运行;正、反转转换时的时间间隔为5 秒】、变频器控制的单速电机三速段变速控制回路【设置参数:变频器设置为第一速段为25Hz加速时间 2 秒,第二速段为35Hz、第三速段为50 Hz】、步进电机控制回路【设置参数:步进电机,第一次动作为正向旋转4 圈,脉冲频400Hz;第二次动作为正向旋转3圈脉冲频率400Hz;第三次动作为反向向旋转6圈,脉冲频率600Hz:步进驱动器设置为4 细分,电流设置为1.5A。】组成。竞赛以电机旋转“顺时针旋转为正向,逆时针为反向” 为准。 (1)整个动作实现过程应采用无人工干预的方式,由PLC控制实现。 (2)整个动作实现过程不考虑任何特殊情况下的如紧急停车或自动恢复。(3)使用SB1作为起动、SB2停止的控制方式,并有工作状态指示。 (4)整个控制电路(含主回路与控制回路),必须按自己设计的图纸连接实现。(5)热继电器FR1、FR2的整定电流均为0.4A。 2. 工艺过程实现。 按下启动按钮SB1后,M1按降压启动模式(星形)正转;4 s后,转入三角形运转(为保证转换时不出现短路,应在程序上使KMY转成KM△的时间间隔为0.2秒)。同时,步进电机M3第一次正向旋转4 圈停车;停2s后,变频器所控电机M2以第二速段正向旋转6s停车(时间包含加速时间),第一次动作过程结束。停1.5s后,步进电机M3第二次正向旋转3圈停止;此时再停2s 后,变频器所控电机M2按第一速段反向旋转8s停车,当变频器所控电机M2停车的同时电机M1停转(在停转前的过程中电机M1一直保持三角形运转),第二次动作过程结束。停5s 后,M1按降压启动模式(星形)反转;4 s后,转入三角形运转(为保证转换时不出现短路,应在程序上使KMY转成KM△的时间间隔为0.2秒)。同时,步进电机M3第三次反向旋转6圈停止;再停2s后,变频器所控电机M2按第三速段正向旋转,按下停止按钮SB2后,整个动作过程结束。二、不考虑特殊情下系统故障的问题 在编程时考虑例如紧急停止、突然断电情况下系统当时的运行状态,重新启动时,按下启动按钮系统从当时状态恢复并继续运行、按下复位按钮再按启动按钮系统重新开始从头运行。

FX1S控制步进电机的实例(图与程序)

此主题相关图片如下,点击图片看大图: ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。

·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作! ·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。·V+,GND:为驱动器直流电源端子,也有交流供电类型。 ·A+,A-,B+,B-分别接步进电机的两相线圈。 此主题相关图片如下,点击图片看大图: PLC技术网(https://www.sodocs.net/doc/5819294897.html,)-可编程控制器技术门户 此主题相关图片如下,点击图片看大图:

基于PLC的步进电机控制

2014 ~ 2015 学年第 1 学期 《电气控制及PLC 》课程设计报告 题目:步进电机的PLC控制设计 专业:自动化 班级: 11自动化(1)班 姓名:李勇李亚李新明荆欢 贾伟黄龙飞皇甫趁心 指导教师:江春红 电气工程学院 2014年10月31日

1、任务书

摘要 步进电机可以对旋转角度和转动速度进行高精度控制。步进电机作为制执行元件,是电气自动化的关键产品之一, 广泛应用在各种自动化控制系统和精密机械等领域。例如,在仪器仪表,机床设备以及计算机的外围设备中(如打印机和绘图仪等),凡需要对转角进行精确控制的情况下,使用步进电机最为理想。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。软件PLC综合了计算机和PLC的开关量控制、模拟量控制、数学运算、数值处理、网络通信、PID调节等功能,通过一个多任务控制内核,提供强大的指令集、快速而准确的扫描周期、可靠的操作和可连接各种I/O系统的及网络的开放式结构。用PLC控制步进电机的定位、转向、调速、细分有很大的优势与前景。此次设计是利用PLC 的控制方法,上位机的监控功能,在试验室进行模拟实现的。试验结果达到了预期的功能。 关键词:软PLC;步进电机;上位机;定位;转向;调速;细分

目录 1引言 0 2.方案论证与对比 0 2.1 方案一 0 2.2 方案二 0 2.3 方案对比与选择 (1) 3、系统设计 (1) 3.1 PLC内部原理 (1) 3.2 二相混合式步进电机工作原理 (3) 3.3 驱动器原理 (4) 3.4硬件与软件设计 (4) 4、组态的设计 (6) 4.1 I/O 口的定义 (6) 4.2 构造数据库 (6) 4.3 建立动画连接 (7) 5、系统功能调试与性能分析 (7) 5.1系统调试中的问题及解决方案 (7) 5.1.1软件调试 (7) 5.1.2、正反转未响应 (8) 5.1.3、定位的误差 (8) 5.1.4、组态设计中的问题 (8) 5.1.5、其它 (8) 6、详细仪器清单 (8) 7、总结与致谢 (8) 参考文献 (10) 附录一梯形图 (11) 附录二源程序 (13)

步进电机的三菱PLC控制

摘要: 设计一种基于PLC的步进电机控制系统, 通过微型变速箱将步进电机角位移转化为直线位移, 进而带动直线 伸缩机构运行。该系统结构简单、性能稳定、经济价值和使用效果突出, 能够满足毫米级精确位移的使用需求。 关键词: PLC; 步进电机; 驱动器; 脉冲;方向。 目录 第1章绪论 (1) 1.1 设计背景 (1) 1.2 系统设计的任务 (3) 1.3 本章小结 (3) 第2章步进电机及PLC简介 (4) 2.1 步进电机简介 (4) 2.2 PLC的发展概述 (8) 2.3 PLC技术在步进电机控制中的应用 (8) 2.4 本章小结 (10) 第3章PLC控制步进电机工作方式的选择 (11) 3.1 常见的步进电机的工作方式 (11) 3.2 步进电机控制原理 (12) 3.3 PLC控制步进电机的方法 (12) 3.4 PLC控制步进电机的设计思路 (13)

3.5 本章小结 (15) 第4章FX2N控制步进电机硬件设计 (16) 4.1 三菱FX2nPLC的介绍 (16) 4.2 步进电机的选择 (18) 4.3 步进电机驱动电路设计 (20) 4.4 PLC驱动步进电机 (21) 4.5步进电机驱动器的使用说明 (22) 4.6 I/O接线图 (24) 4.7 本章小结 (25) 第5章控制系统的程序设计 (26) 5.0 本设计相关指令介绍 (26) 结论 (31) 参考文献 (32) 致谢 (33) 附录 (34)

第1章绪论 1.1 设计背景 步进电动机已成为除直流电动机和交流电动机以外的第三类电动机,传统电动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的作用。可是在人类社会进入自动化时代的今天,传统电动机的功能已不能满足工厂自动化和办公自动化等各种运动控制系统的要求。为适应这些要求,发展了一系列新的具备控制功能的电动机系统,其中较有自己特点,且应用十分广泛的一类便是步进电动机。 步进电动机的发展与计算机工业密切相关。自从步进电动机在计算机外围设备中取代小型直流电动机以后,使其设备的性能提高,很快地促进了步进电动机的发展。另一方面,微型计算机和数字控制技术的发展,又将作为数控系统执行部件的步进电动机推广应用到其他领域,如电加工机床、小功率机械加工机床、测量仪器、光学和医疗仪器以及包装机械等。任何一种产品成熟的过程,基本上都是规格品种逐步统一和简化的过程。现在,步进电动机的发展已归结为单段式结构的磁阻式、混合式和爪极结构的永磁式三类。爪极电机价格便宜,性能指标不高,混合式和磁阻式主要作为高分辨率电动机,由于混合式步进电动机具有控制功率小,运行平稳性较好而逐步处于主导地位。最典型的产品是二相8极50齿的电动机,步距角1.8°/0.9°(全步/半步);还有五相10极50齿和一些转子100齿的二相和五相步进电动机,五相电动机主要用于运行性能较高的场合。到目前,工业发达国家的磁阻式步进电动机已极少见[1]。 步进电动机最大的生产国是日本,如日本伺服公司、东方公司、SANYO DENKI 和MINEBEA及NPM公司等,特别是日本东方公司,无论是电动机性能和外观质量,还是生产手段,都堪称是世界上最好的。现在日本步进电动机年产量(含国外独资公司)近2亿台,德国也是世界上步进电动机生产大国。德国B.L.公司1994年五相混合式步进电动机专利期满后,推出了新的三相混合式步进电动机系列,为定子6极转子50齿结构,配套电流型驱动器,每转步数为200、400、1000、2000、4000、10000和20000,它具有通常的二相和五相步进电动机的分辨率,还可以在此基础上再10细分,分辨率提高10倍,这是一种很好的方案,充分运用了电流型驱动技术的功能,让三相电动机同时具有二相和五相电动机的性能。与此同时,日本伺服公司也推出了他们的三相混合式步进电动机。该公司阪正文博士研制了三种不同的永磁式三相步进电动机,即HB型(混合式)、RM性(定子和混合式

PLC控制步进电机的接法与实例程序

PLC 控制步进电机的接法与实例程序 ·采用绝对位置控制指令(DRVA),大致阐述FX1S 控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX 系列PLC 单元能同时输出两组100KHZ 脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A 点停止,X1闭合动作到B 点停止,接线图与动作位置示

例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A 点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D 8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作! ·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。

步进电机的PLC控制调速方法之探索

步进电机的PLC控制调速方法之探索 步进电机又叫做脉冲电机,是控制系统中的一种执行元件。它的作用是将脉冲信号变换为相应的位移,即给一个脉冲电信号,步进电机就转动一个角度或前进一步。由于步进电机的位移与脉冲个数成正比,其转向与脉冲分配到步进电机的各相绕组的相序有关。所以只要控制指令脉冲的数量、频率及电机绕组通电的相序,便可控制步进电机的输出位移量、速度和方向。步进电机具有较好的控制性能,其启动、停止、正反转及其它任何运行方式的改变都可在少数脉冲内完成,且可获得较高的控制精度,从而实现精确定位。同时可以通过控制脉冲频率来控制步进电机转动的速度和加速度,从而达到调速的目的。在负载能力范围内,这些关系不因电源电压、负载大小、环境条件的波动而变化,因而可适用于开环系统中作执行元件,使控制系统大为简化。目前,我国已较多地将步进电机用于机械加工的数控机床中,在绘图机、轧钢机的自动控制、自动记录仪表和数模变换等方面也得到较多的应用。 可编程序控制器简称PLC,是一种数字运算操作的控制系统,专门用于工业环境设计。它的主要特点是可靠性高、使用方便、体积小、重量轻、编程简单易学,在工业控制领域得到广泛的应用。目前,利用PLC技术可以方便地实现对电机速度和位置的控制,方便地进行各种步进电机的操作,完成各种复杂的工作。它代表了先进的工业自动化革命,加速了机电一体化的实现。 本论文以项目教学法的方式探索步进电机的PLC控制转速方法。本设计控制要求如下:按下启动按钮,步进电机以100Hz的基准频率正转。按一次加速按钮,频率以50Hz递增,最多加速5次;按一次减速按钮,频率以25Hz递减,最多减速4次。加速时为正转,减速时为反转。按下停止按钮,步进电机立即停止运行。步进电机驱动器的细分设置为1,电流设置为1.5A。 1 控制系统的硬件设计 1.1 控制系统的结构。本设计中,系统硬件部分由上位机、PLC、步进电机驱动器、步进电机、负载等组成。上位机是计算机,作为控制面板、人机交互界面和控制软件编制环境,通过与PLC的通信,实现操作监控功能;PLC发出脉冲信号、方向信号,通过步进电机驱动器控制步进电机的运行状态。 1.2 控制系统的硬件。 1.2.1 PLC。使用PLC控制步进电机时,应该保证PLC具有高速脉冲输出功能。通过选择具有高速脉冲输出功能或专用运动控制功能的模块来实现。在本设计中,采用的是三菱系列FX2N-32MT型的晶体管输出型PLC。在PLC的选型上,必须采用晶体管输出型PLC,若使用继电器型的PLC,则高速脉冲的输出很难达到控制要求。 1.2.2 步进电机。步进电机有步距角(涉及到相数)、静力矩、电流三大要素

PLC控制步进电机的实例(图与程序)教学内容

P L C控制步进电机的实例(图与程序)

PLC控制步进电机的实例(图与程序) ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。

·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作! ·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。

步进电机的三菱PLC控制

步进电机的三菱P L C控 制 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

摘要: 设计一种基于PLC的步进电机控制系统, 通过微型变速箱将步进电机角位移转化为直线位移, 进而带动直线 伸缩机构运行。该系统结构简单、性能稳定、经济价值和使用效果突出, 能够满足毫米级精确位移的使用需求。 关键词: PLC; 步进电机; 驱动器; 脉冲;方向。 目录

第1章绪论 设计背景 步进电动机已成为除直流电动机和交流电动机以外的第三类电动机,传统电动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的作用。可是在人类社会进入自动化时代的今天,传统电动机的功能已不能满足工厂自动化和办公自动化等各种运动控制系统的要求。为适应这些要求,发展了一系列新的具备控制功能的电动机系统,其中较有自己特点,且应用十分广泛的一类便是步进电动机。 步进电动机的发展与计算机工业密切相关。自从步进电动机在计算机外围设备中取代小型直流电动机以后,使其设备的性能提高,很快地促进了步进电动机的发展。另一方面,微型计算机和数字控制技术的发展,又将作为数控系统执行部件的步进电动机推广应用到其他领域,如电加工机床、小功率机械加工机床、测量仪器、光学和医疗仪器以及包装机械等。任何一种产品成熟的过程,基本上都是规格品种逐步统一和简化的过程。现在,步进电动机的发展已归结为单段式结构的磁阻式、混合式和爪极结构的永磁式三类。爪极电机价格便宜,性能指标不高,混合式和磁阻式主要作为高分辨率电动机,由于混合式步进电动机具有控制功率小,运行平稳性较好而逐步处于主导地位。最典型的产品是二相8极50齿的电动机,步距角°/°(全步/半步);还有五相10极50齿和一些转子100齿的二相和五相步进电动机,五相电动机主要用于运行性能较高的场合。到目前,工业发达国家的磁阻式步进电动机已极少见[1]。 步进电动机最大的生产国是日本,如日本伺服公司、东方公司、SANYO DENKI和MINEBEA及NPM公司等,特别是日本东方公司,无论是电动机性能和外观质量,还是生产手段,都堪称是世界上最好的。现在日本步进电动机年产量(含国外独资公司)近2亿台,德国也是世界上步进电动机生产大国。德国.公司1994年五相混合式步进电动机专利期满后,推出了新的三相混合式步进电动机系列,为定子6极转子50齿结构,配套电流型驱动器,每转步数为200、400、1000、2000、4000、10000和20000,它具有通常的二相和五相步进电动机的分辨率,还可以在此基础上再10细分,分辨率提高10倍,这是一种很好的方案,充分运用了电流型驱动技术的功能,让三相电动机同时具有二相和五相电动机的性能。与此同时,日本伺服公司也推出了他们的三相混合式步进电动机。该公司阪正文博士研制了三种不同的永磁式三相步进电动机,即HB型(混合

plc200-步进电机实例

Plc200控制电机 这是网上擂台的题目:一台电动机要求在按下起动按钮后,电动机运行10秒,停5秒,重复3次后,电动机自动停止。同时设置有手动停机按钮和过载保护。编写梯形图控制程序。PLC可以随便选用,要有相关说明。注意:要有PLC控 制电路和I/O分配表。 1、硬件选择:一台PLC(S7-200)、一个交流接触器Z0(控制电机运行)、2个 按钮开关(SB1、SB2)及1个过流继电器(FR),电路图如下:(不包括粉色虚线 框部分) 2、编程:用不同思路,可编出几种不同的控制方案,都可实现该项目要求。(1)、最简单的编程方案,就是选用5个通电延时定时器:其3个定时10秒,用于电机启动运行,另2个定时5秒,使电机停。具体编程也有二种方式,见下图:

上图中的方案一与方案二,同用5个定时器,完成同样的功能。 方案一是这样编程:按下启动按钮(I0.0),使断开。在此过程中,M0.0、MO. 2、M0.4都是10秒的导通时间,用它们去控制Q0.7,其彼此间隔时间为5秒(即M0.1、M0.3的通导时间)。?8?1延时?8?1M0.0=1,T101得电开始延时, 延时10秒,T101吸合使M0.1=1、M0.0=0,使T101断电,而T102得电开始延时,5秒后T102得电吸合,使M0.2=1,M0.1=0。。。直到T105得电 方案二是这样编程:按下启动按钮(I0.0),使 M0.0=1,T101得电开始延时,延时10秒,T101吸合,使T102得电开始延时,延时5秒,T102吸合,使T10 3得电开始延时。。。直至T105得电延时,延时10秒后动作,使M0.0=0,M0. 0=0使T101—T105皆断开,程序结束。用M0.0的常开触点与T101的常闭触点 串联,用T102的常开触点与T103的常闭触点串联,用T104的常开触点与T10 5的常闭触点串联,三者再并联后去驱动Q0.7,可达到同样的控制作用, 由上图可见,由于编程方法不同,其方案二用的指令比方案一少,显然:方案 二优于方案一。 (2)、用二个定时器(T101、T102)和一个字节存储器(MB1)编程也可实现同样 功能: 按下启动按钮,使MB1=0、M0.0=1,M0.0=1使T101得电开始延时,10秒T101 吸合使T102得电吸和,延时5秒,T102吸合,其常闭点断开,使T101、T102 失电断开,T101又得电延时。。。形成振荡器,T102每吸合一次,使MB1加1,

PLC如何控制步进电机

PLC如何控制步进电机 用三菱PLC的FX1S-14MT以切纸机为例,大致阐述一下PLC控制步进电机的方法。 *PL+,PL-:步进驱动器的脉冲信号端子, *DR+,DR-:步进驱动器的方向信号端子。 为了简单明了地讲明PLC控制步进电机的方法,所以本例一切从简,只画了PLC的脉冲输出端Y0,方向控制端Y2与步进电机驱动器的脉冲信号端子,方向信号端子的接线方式。 PLC输出端的内部结构如上图,其为NPN输出方式。所以其负载(驱动器的光电三极管)应该接在输出三极管的集电极。 驱动器信号端子的内部结构图如上,其供电电压应该是5V,根据其电流参数计算,24V 供电应该串联了一个2K左右的电阻。 *个人认为24V串联电阻供电方式比5V供电抗干扰性要好,所以宁愿麻烦多串两个电阻。 电气接线为:X0接启动按钮,X1接停止按钮。X2接切刀位置开关(切刀在下方切纸结束时接通).Y4控制切刀电磁阀。 机械结构大致为:步进电机经过同步带带动压轮(周长40mm),也就是说步进电机转动一圈送纸40mm。切刀由电磁阀带动(实际应用切刀也用步进电机驱动更理想). 根据机械结构与精度要求(误差小于0.1mm),本例将驱动器的设为4细分,也就是驱动器接收到800个脉冲步进电机转一圈,PLC输出一雎龀逅椭?.05mm. 程序如下: 本程序只为说明控制方法,没有认真考虑工作过程要求,程序严密性定然不够,不具备设计参考价值!

第0步:设定基底速度120转/分(一转800个脉冲,1600HZ就是每秒2转),加速时间100ms,最高速度600转/分(一转800个脉冲,8000HZ就是每秒10转)。HZ(赫兹)是频率单位,每秒PLC输出的脉冲个数。 第20步,22步:启动,停止操作。T0的延时有防干扰作用,停止按钮(X1)闭合时间不到100毫秒无效。20步的启动按钮应该再串联一个触点,防止再运行过程中按启动按钮,M0置位。(懒得改程序了)

PLC控制步进电机的实例图与程序

P L C控制步进电机的实例(图与程序) ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!

·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。 ·V+,GND:为驱动器直流电源端子,也有交流供电类型。 ·A+,A-,B+,B-分别接步进电机的两相线圈。

plc步进电机控制方法攻略程序+图纸

PLC控制步进电机应用实例 基于PLC的步进电机运动控制 一、步进电机工作原理 1. 步进电机简介 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单 2. 步进电机的运转原理及结构 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A…与齿5相对齐,(A…就是A,齿5就是齿1) 3. 旋转 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。如B相通电,A,C相不通电时,

齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。如A相通电,B,C相不通电,齿4与A 对齐,转子又向右移过1/3て 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 步进电机的静态指标术语 拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即 A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。 4. 步进电动机的特征 1) 运转需要的三要素:控制器、驱动器、步进电动机

PLC控制步进电机的应用案例

PLC 控制步进电机的应用案例1(利用PLSY 指令) 任务: 利用PLC 作为上位机,控制步进电动机按一定的角度旋转。控制要求:利用PLC 控制步进电机顺时针2周,停5秒,逆时针转1周,停2秒,如此循环进行,按下停止按钮,电机马上停止(电机的轴锁住)。 1、系统接线 PLC 控制旋转步进驱动器,系统选择内部连接方式。 2、I/O 分配 X26——启动按钮,X27——停止按钮;Y1——脉冲输出,Y3——控制方向。 3、细分设置 在没有设置细分时,歩距角是1.8 0,也即是200脉冲/转,设置成N 细分后,则是200*N 脉冲/转。假设要求设置5细分,则是1000脉冲/转。 4、编写控制程序 控制程序可以用步进指令STL 编写,用PLSY 指令产生脉冲,脉冲由Y1输出,Y3控制方向。 5、脉冲输出指令(PLSY )的使用 PLSY K1200D1Y0 [S1.] [S2.][D.]X10 Y0 脉冲输出指令PLSY 用来产生指令数量的脉冲。[S1.]用来指定脉冲频率(2~20000Hz ), [S2.]指定脉冲的个数(16位指令的范围为1~32767,32位指令则为1~2147483647)。如果指定脉冲数为0,则产生无穷多个脉冲。指定脉冲输出完成后,完成标志M8029置1。如上图所示,当X10由ON 变为OFF 时,M8029复位,停止输出脉冲。若X10再次变为ON 则脉冲从头开始输出。 注意:PLSY 指令在程序中只能使用一次,适用于晶体管输出类型的PLC 。

6、控制流程图 S0 S20 S21 S22 S23 M8002 X26 启动 (M0)正转 M8029 (T0 K50)停5秒 T0 (M1) (Y3)反转 M8029 (T1 K20)停2秒 T1 7、梯形图程序(参考)

用PLC实现步进电机的快速精确定位

用PLC实现步进电机的快速精确定位 摘要:在介绍步进电机升降频调速原理及快速精确定位方法的基础上,提出了利用P L C的高速脉冲输出实现步进电机位置控制功能的方法,给出了精确定位的控制方案及软件实现方法。关键词:步进电机,P L C,定位,57-200,精确 A b s t r a c t:T h i s p a p e r i n t r o d u c e s t h e t h e o r y o f s p e e d r e g u l a t i o n a n d t h e m e t h o d o f p o s i t i o n c o n t r o l q u i c k l y a n d a c c u r a t e l y f o r s t e p p e r-m o t o r.I t r e a l i z e d a c c u r a t e l y o r i e n t a t i o n f o r s t e p p e r-m o t o r w i t h h i g h-p u l s e o u t p u t o f P L C. K e y w o r d s:S t e p p e r-m o t o r P L C,p o s i t i o n c o n t r o l57-200,a c c u r a c y 0引言 步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号时 就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),其旋转以固定的角度运行。可以通过控制脉冲个数来控制角位移量以达到准确定位的目的;同时也可以通过控制脉冲频率来控制电机转动的速度和加速度而达到调速的目的。步进电机作为一种控制用的特种电机,因其没有积累误差(精度为100%)而广泛应用于各种开环控制。 可编程序控制器(C P L C)是专为在工业环境下应用而设计的一种工业控制计算机,具有抗 干扰能力强、可靠性极高、体积小等显著优点,是实现机电一体化的理想控制装置。通过对步进电机定位与S i e m e n s P L C的深入研究,本文提出了利用P L C的高速脉冲输出实现步进电机位置控制功能的有关见解与方法,介绍了步进电机加减速控制原理以及用P L C实现步进电机快速精确定位的方法,给出了位置控制系统方案及软件设计思路,在实验室内运行通过,对于工矿企业实现相关步进电机的精确定位控制具有较高的应用与参考价值。 1定位原理及方案 1.1步进电机加减速控制原理 步进电机驱动执行机构从一个位置向另一个位置移动时,要经历升速、恒速和减速过程。 当步进电机的运行频率低于其本身起动频率时,可以用运行频率直接起动并以此频率运行,需

PLC控制步进电机正反转

实验名称:步进电机正反转的PLC控制 一、实验目的 了解步进电机运转的基本原理和步进电机控制系统的基本组成,熟练运用梯形图语言进行编程,掌握用PLC控制系统控制步进电机正反转的方法。 二、实验要求 1)通过查找相关资料和教师讲解了解步进电机运转的基本原理和步进电机 控制系统的基本组成; 2)以实验室西门子SIMATIC S7-200为硬件设备,认识掌握用PLC控制系统 控制步进电机正反转的方法; 3)学习STEP7-Micro/WIN4.0软件,运用梯形图语言进行编程。 三、实验设备 1)西门子SIMATIC S7-200 PLC硬件系统 2)西门子SIMATIC S7-200 PLC编程软件STEP7-Micro/WIN4.0 3)SH全系列步进电机驱动器SH-3F075 四、实验原理 1、PLC控制系统I/O分配表

2、PLC电气接线图 24 伏 电 源 步 进 电 机 步 进 电 机 驱 动 器 7-200 图1 PLC电气接线图 3、程序代码(梯形图) 图2 电机停止梯形图 (1)按下停止键,I0.0接通,脉冲输出功能关闭,电机停止。

图3 电机正转梯形图 (2)按下正转键,I0.1接通,方向电平复位,脉冲输出功能PWM输出脉冲周 期为2000um,脉宽为1000um的脉冲,电机正转。 注:寄存器说明 SM77.0 PWM update cycle time value 0 = no update; 1 = update cycle time SM77.1 PWM update pulse width time value 0 = no update; 1=update pulse width SM77.3 PWM time base select 0 = 1 us/tick; 1 = 1ms/tick SM77.4 PWM update method: 0 = asynchronous update, 1 = synchronous update SM77.6 PWM mode select 0 = selects PTO; 1 = selects PWM SM77.7 PWM enable 0 = disables PWM; 1 = enables PWM SMW78 :PWM cycle time value (range: 2 to 65535) SMW80 :PWM pulse width value (range: 0 to 65535)

相关主题