搜档网
当前位置:搜档网 › 电机轴承常见 种异常声音的分析与解决

电机轴承常见 种异常声音的分析与解决

电机轴承常见 种异常声音的分析与解决
电机轴承常见 种异常声音的分析与解决

电机轴承常见7种异常声音的分析与解决

交流电机轴承声音异常的分析与解决

1、连续蜂鸣声“嗡嗡……”

原因分析:

电机无负荷运转是发出类似蜂鸣一样的声音,且电动机发生轴向异常振动,开或关机时有“嗡”声音

具体特点:

多发润滑状态不好,冬天且两端用球轴承的电机多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动

解决方法

A、用润滑性能好的油脂

B、提高马达轴承座钢性

C、选用径向游隙小的轴承

D、加预负荷,减少安装误差

E、加强轴承的调心性

注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。

2、保持器声“唏利唏利……”

原因分析:

由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生

解决方法:

A、提高保持器精度

B、降低力矩负荷,减少安装误差

C、选用好的油脂

D、选用游隙小的轴承或对轴承施加预负荷

3、高频、振动声“哒哒…...”

具体特点:

声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。

解决方法:

A、改善轴承滚道表面加工质量,降低波纹度幅值

B、减少碰伤

C、修正游隙预紧力和配合,检查自由端轴承的运转,改善轴与轴承座的精度安装方法

4、杂质音

原因分析:

由轴承或油脂的清洁度引起,发出一种不规则的异常音

具体特点:

声音偶有偶无,时大时小没有规则,在高速电机上多发

解决方法:

A、选用好的油脂

B、加强轴承的密封性能

C、提高注脂前清洁度

D、提高安装环境的清洁度

5、漆锈

原因分析:

由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音

具体特点:

被腐蚀后轴承表面生锈比第一面更严重

解决方法:

A、把转子、机壳、晾干或烘干后装配

B、降低电机温度

C、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起

D、改善电机轴承放置的环境温度

E、采用真空浸漆工艺

具体特点:

轴承运转后,温度超出要求的范围

原因分析:

A、润滑脂过多,润滑剂的阻力增大

B、游隙过小引起内部负荷过大

C、安装误差

D、密封装备的摩擦

E、轴承的爬行

解决方法:

A、选用正确的油脂,用量适当

B、修正游隙预紧力和配合,检查自由端轴承运转情况

C、改善轴承座精度及安装方法

2021三相异步电动机常见故障分析与排除

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021三相异步电动机常见故障分 析与排除

2021三相异步电动机常见故障分析与排除导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 三相异步电动机应用广泛,但通过长期运行后,会发生各种故障,及时判断故障原因,进行相应处理,是防止故障扩大,保证设备正常运行的一项重要的工作。 一、通电后电动机不能转动,但无异响,也无异味和冒烟。 1.故障原因①电源未通(至少两相未通);②熔丝熔断(至少两相熔断);③过流继电器调得过小;④控制设备接线错误。 2.故障排除①检查电源回路开关,熔丝、接线盒处是否有断点,修复;②检查熔丝型号、熔断原因,换新熔丝;③调节继电器整定值与电动机配合;④改正接线。 二、通电后电动机不转,然后熔丝烧断 1.故障原因①缺一相电源,或定干线圈一相反接;②定子绕组相间短路;③定子绕组接地;④定子绕组接线错误;⑤熔丝截面过小; ⑤电源线短路或接地。 2.故障排除①检查刀闸是否有一相未合好,可电源回路有一相断

电机滚动轴承保持架失效原因分析

电机滚动轴承保持架失效原因分析 【摘要】圆柱滚子槽形保持架轴承的失效形式主要是保持架早期磨损。针对造成该问题的几种因素:保持架加工工艺、滚子倒角尺寸、装配工艺和表面处理工艺进行了改进和控制,有效解决了保持架早期失效问题,提高了槽形保持架轴承的使用寿命。 【关键词】保持架;滚子轴承;磨损;寿命;工艺 保持架在滚动轴承中起着等距离隔离滚动体并防止滚动体掉落,引导并带动滚动体转动的作用。滚动轴承在工作时,由于滑动摩擦而造成轴承发热和磨损,特别是在高速运转的条件下,由于离心力的作用,加速了摩擦磨损与发热,严重时会造成保持架烧伤和断裂,致使轴承不能正常使用。保持架损坏在轴承失效形式中占有较大的比例。 下面以6201- 2RZ轴承的保持架为研究对象。某轴承企业生产的6201- 2RZ 轴承装在某型电机上使用不到2天就发生抱死,且此类现象频现。在对电机进行分解后发现:轴承外表面有变色的油脂,用手转动轴承完全卡死,轴承密封盖打开后可观察到轴承内部较黑,剩余油脂已全部碳化,轴承保持架有一处断裂;轴承清洗后可见大量片状碎屑,在钢球与内滚道间居多,防尘盖附着的油脂中也混有部分碎屑。 一、故障特征 鉴于轴承已经发生止转失效,部分零件已经损坏严重,轴承的旋转精度及尺寸精度完全丧失,已无法测量,故直接对轴承外圈切割将轴承进行分解,发现有以下几个特征: 1.一粒钢球从断裂的兜孔中脱离,挤压到相邻兜孔,两个兜孔都已变形;钢球表面已经失去光泽,朝外一侧严重磨损(图1)。 图1 钢球从断裂的兜孔中脱离 2.内外沟道的工作轨迹均偏离沟道中心位置,且内圈工作轨迹较宽,约占沟道宽度的3/5。内、外沟道均发现有多个轴向压痕,工作轨迹表面出现了粗糙度下降的情况;内沟道黏有大量金属铁屑,连续铺满约180°的内沟道表面,铁屑已被碾压成片状。 3.保持架内径与外径方向均有明显磨损,兜孔边缘可见挤压变形;七个兜孔中有五个兜孔保持基本完整,一片半保持架在两个相邻的损坏的兜孔间的铆钉孔处断裂,断裂处铆钉已不可见,断口卷曲变形(无脆性断裂特征);另一片半保持架在对应位置有挤压变形,铆钉孔内径方向磨豁。在未分解之前该处一粒钢球已从兜孔中脱出。在断裂处相隔一个铆钉的位置,发现一枚铆钉在中心位置断

轴承异响的种声音原因

轴承发响的30种原因 正常运转的轴承声音 1、轴承若处于良好的连转状态会发出低低的呜呜或嗡嗡声音。若是发出尖锐的嘶嘶音,吱吱音及其它不规则的声音,经常表示轴承处于不良的连转状况。尖锐的吱吱噪音可能是由于不适当的润滑所造成的。不适当的轴承间隙也会造成金属声。 2、轴承外圈轨道上的凹痕会引起振动,并造成平顺清脆的声音。 3、若是有间歇性的噪音,则表示滚动件可能受损。此声音是发生在当受损表面被辗压过时,轴承内若有污染物常会引起嘶嘶音。严重的轴承损坏会产生不规则并且巨大的噪音。 4、若是由于安装时所造成的敲击伤痕也会产生噪音,此噪音会随着轴承转速的高低而不同。异常轴承响声 大的金属噪音 原因1:异常负荷,对策:修正配合,研究轴承游隙,调整与负荷,修正外壳挡肩位置。 原因2:安装不良,对策:轴、外壳的加工精度,改善安装精度、安装方法。 原因3:润滑剂不足或不适合,对策:补充润滑剂,选择适当的润滑剂。 原因4:旋转零件有接触,对策:修改曲路密封的接触部分。

规则噪声 原因1:由于异物造成滚动面产生压痕、锈蚀或伤痕,对策:更换轴承,清洗有关零件,改善密封装置,使用干净的润滑剂。 原因2:(钢渗碳后)表面变形,对策:更换轴承,注意其使用。 原因3:滚道面剥离,对策:更换轴承。 不规则噪声 原因1:游隙过大,对策:研究配合及轴承游隙,修改预负荷量。 原因2:异物侵入,对策:研究更换轴承,清洗有关零件,改善密封装置,使用干净润滑剂。 原因3:球面伤、剥离,对策:更换轴承。 轴承发响的30种原因 1.油脂有杂质; 2. 润滑不足(油位太低,保存不当导致油或脂通过密封漏损); 3. 轴承的游隙太小或太大(生产厂问题); 4. 轴承中混入砂粒或碳粒等杂质,起到研磨剂作用; 5. 轴承中混入水份,酸类或油漆等污物,起到腐蚀作用; 6. 轴承被座孔夹扁(座孔的圆度不好,或座孔扭曲不直); 7. 轴承座的底面的垫铁不平(导致座孔变形甚至轴承座出现裂纹); 8. 轴承座孔内有杂物(残留有切屑,尘粒等); 9. 密封圈偏心(碰到相邻零件并发生摩擦); 10.轴承受到额外载荷(轴承受到轴向蹩紧,或一根轴上有两只固定端轴承); 11.轴承与轴的配合太松(轴的直径偏小或紧定套未旋紧); 12.轴承的游隙太小,旋转时过紧(紧定套旋紧得过头了); 13.轴承有噪声(滚子的端面或钢球打滑造成); 14.轴的热伸长过大(轴承受到静不定轴向附加负荷); 15.轴肩太大(碰到轴承的密封件并发生摩擦);

电机轴承常见7种异常声音的分析与解决

电机轴承常见7种异常声音的分析与解决 交流电机轴承声音异常的分析与解决 1、连续蜂鸣声“嗡嗡……” 原因分析: 电机无负荷运转是发出类似蜂鸣一样的声音,且电动机发生轴向异常振动,开或关机时有“嗡”声音 具体特点: 多发润滑状态不好,冬天且两端用球轴承的电机多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动 解决方法 A、用润滑性能好的油脂 B、提高马达轴承座钢性 C、选用径向游隙小的轴承 D、加预负荷,减少安装误差 E、加强轴承的调心性 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 2、保持器声“唏利唏利……” 原因分析: 由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生 解决方法: A、提高保持器精度 B、降低力矩负荷,减少安装误差 C、选用好的油脂 D、选用游隙小的轴承或对轴承施加预负荷 3、高频、振动声“哒哒…...” 具体特点: 声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: A、改善轴承滚道表面加工质量,降低波纹度幅值

B、减少碰伤 C、修正游隙预紧力和配合,检查自由端轴承的运转,改善轴与轴承座的精度安装方法 4、杂质音 原因分析: 由轴承或油脂的清洁度引起,发出一种不规则的异常音 具体特点: 声音偶有偶无,时大时小没有规则,在高速电机上多发 解决方法: A、选用好的油脂 B、加强轴承的密封性能 C、提高注脂前清洁度 D、提高安装环境的清洁度 5、漆锈 原因分析: 由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音 具体特点: 被腐蚀后轴承表面生锈比第一面更严重 解决方法: A、把转子、机壳、晾干或烘干后装配 B、降低电机温度 C、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起 D、改善电机轴承放置的环境温度 E、采用真空浸漆工艺 具体特点: 轴承运转后,温度超出要求的范围 原因分析: A、润滑脂过多,润滑剂的阻力增大 B、游隙过小引起内部负荷过大 C、安装误差

高速电机抱轴原因分析和解决方法(2021版)

高速电机抱轴原因分析和解决 方法(2021版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0969

高速电机抱轴原因分析和解决方法(2021 版) 分析高速电机抱轴的原因,提出正确的解决方法,取得良好效果。 问题背景 化工集团醋酸分公司隶属于中石油大庆油田有限责任公司,成立于2006年12月,现有在册职工412人,固定资产15.02亿元。主要以甲醇、一氧化碳为原料,采用低压液相羰基合成工艺,生产20万吨/年优质醋酸。共有设备608台,动设备就有220台,其中两极高速电机占75%以上,主要分布于装置的各关键工序,自2007年开工投产以来,两极高速电机故障频出。其中尤其以位于造气车间脱硫脱碳工序的贫液泵P1504电机最为典型(2台国产YB450S3-2型防爆高压电机,功率400kW,电压6000V,转速2985r/min),先后两

次发生抱轴事故,严重制约和影响装置的安全稳定长周期运行。 问题分析 紧急停机后发现电动机盘不动车,电机轴已抱死。引起电机抱轴事故的原因很多,主要分为内部原因和外部原因。电机的内部原因有:轴承质量不好;润滑脂质量不好;润滑脂加入量不合适;检修工艺不当;电机运行时振动超标;转子上有轴电压。电机外部原因主要有:非户外型电机户外安装或用水冲洗电机;电机安装基础不牢固;电机周围环境温度过高。经解体检查发现,轴承润滑脂烧尽,轴承保持架损坏变形,滚子和滑道过热发蓝,轴承座防爆曲路与轴结合处烧结抱死。经分析问题出在以下两方面: 2.1.该电机轴承选用SKF钢制保持架,相对于黄铜保持架,其极限转速有所降低,在同等运行条件下更容易失效损坏。 据轴承有关资料表明,一般情况下,在同种保持架,同种润滑条件下,随着轴承型号的增大,其极限转速相应减小。对于极限转速与电机转速接近的轴承,最好不用。2P高压电机的转速一般为2970~2990r/min,因受两极高压电机轴伸直径的限制与润滑条件,

滚动轴承故障诊断频谱分析

滚动轴承故障诊断1(之国外专家版) 滚动轴承故障 现代工业通用机械都配备了相当数量的滚动轴承。一般说来,滚动轴承都是机器中最精密的部件。通常情况下,它们的公差都保持在机器的其余部件的公差的十分之一。但是,多年的实践经验表明,只有10%以下的轴承能够运行到设计寿命年限。而大约40%的轴承失效是由于润滑引起的故障,30%失效是由于不对中或“卡住”等装配失误,还有20%的失效是由过载使用或制造上缺陷等其它 原因所致。 如果机器都进行了精确对中和精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可*。机器的实际寿命也会接近其设计寿命。然而遗憾的是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。你的工作是要检测出早期症状并估计故障的严重程度。振动分析和磨损颗粒分析都是很好的诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同的振动分量——换言之,它们不是同步的分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能是轴承出现故障的警告信号。 振动分析人员应该马上诊断并排除是否是其它故障引起的这些不同步分量。 如果看到不同步的波峰,那极有可能与轴承磨损相关。如果同时还有谐波和边频带出现,那么轴承磨损的可能性就非常大——这时候你甚至不需要再去了解轴承准确的扰动频率。 2、扰动频率计算 有四个与轴承相关的扰动频率:球过内圈频率(BPI)、球过外圈频率(BPO)、保持架频率(FT)和球的自旋频率(BS)。轴承的四个物理参数:球的数量、球的直径、节径和接触角。其中,BPI 和BPO的和等于滚珠/滚柱的数量。例如,如果BPO等于3.2 X,BPI等于4.8 X,那么滚珠/滚柱 的数量必定是8。

电机轴承故障处理及分析

电机轴承故障处理及分析 一、保持器声“唏利唏利……” 原因分析:由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生。 解决方法: 1、提高保持器精; 2、选用游隙小的轴承或对轴承施加预负荷; 3、降低力矩负荷,减少安装误差; 4、选用好的油脂。 二、连续蜂鸣声“嗡嗡……” 原因分析:马达无负荷运转是发出类似蜂鸣一样的声音,且马达发生轴向异常振动,开或关机时有“嗡”声音。 具体特点:多发润滑状态不好,冬天且两端用球轴承的马达多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动。 解决方法: 1、用润滑性能好的油脂; 2、加预负荷,减少安装误差; 4、提高马达轴承座刚性; 5、加强轴承的调心性。 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 三、漆锈 原因分析:由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音。 具体特点:被腐蚀后轴承表面生锈比第一面更严重。 解决方法: 1、把转子、机壳、晾干或烘干后装配; 3、选用适应漆的型号; 4、改善电机轴承放置的环境温度; 5、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起; 6、采用真空浸漆工艺。 四、杂质音 原因分析:由轴承或油脂的清洁度引起,发出一种不规则的异常音。 具体特点:声音偶有偶无,时大时小?有规则,在高速电机上多发。 解决方法: 1、选用好的油脂; 2、提高注脂前清洁度; 3、加强轴承的密封性能; 4、提高安装环境的清洁度。 五、高频、振动声“哒哒......” 具体特点:声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: 1、改善轴承滚道表面加工质量,降低波纹度幅值; 2、减少碰伤;

引风机电机轴承烧毁的原因分析

引风机电机 轴承烧毁的原因分析

X炉XX引风机电机轴承烧毁的原因分析 X炉引风机电机为内馈调速异步电动机绕线式电机,其基本技术参数如下: 其前后端轴承于2009年12月至今先后发生四次烧毁轴承或抱轴的现象。其所用轴承型号:电机驱动端为:SKF NU1044 MA/C3 SKF NU16044 MA/C3;电机非驱动端为:SKF NU1044 MA/C3。经现场观察与分析,造成上述事故的原因有以下几点: 1.2009年12月4日在检修部巡检人员8点班正常的巡检情况下,未 发现异常情况,电机前后端轴承运行温度正常。到晚上19点20分左右,运行人员在巡视时发现电机后端轴承有温度突然升高迹象,最后停机,量取温度达200℃,电机后端轴抱死,轴承内润滑油脂飞溅外溢。在进行抢修打开时发现轴承内保持架断裂,轴承内套与大轴轴颈相粘连。在拆解内套发现轴颈有不同程度的损伤,在轴颈中部有划痕,在通知厂部现场观察后考虑到现场的实际运行情况,决定进行现场修复,用锉刀进行粗略打磨与细砂纸精细打磨。换取同类型号轴承SKF NU1044 MA/C3。 此后端轴承在2008年#2机组大修时打开发现油隙超标,但由于未进行更换,可能是这一次的事故发生的原因。 2. 2010年2月6日在检修部巡检人员8点班正常的巡检情况下,未发 现异常情况,电机前后端轴承运行温度正常。到晚上21点10分左右,运行人员在巡视时发现电机后端轴承有温度突然升高迹象,并且有铜粉

溢出,最后停机,量取温度达145℃之高,被迫停机进行检修,在打开电机后端轴承发现轴承保持架磨损,更换相同型号怕轴承:SKF NU1044 MA/C3。这一次事故的发生有前次轴承抱死,造成大轴损伤,虽然在现场用锉刀进行粗略打磨与细砂纸精细打磨修复。但轴颈是否有弯曲没有进行会诊;所换轴承为同一类型,其运行时间不足三个月的时间,轴承质量问题有待考虑。 3. 2010年7月13日,在各项巡检正常工作下,电机前后端轴承运行 温度正常。在次日凌晨4点40分左右前端轴承运行温度突然盘升造成大轴抱死,被迫停机。考虑到可能造成大轴弯曲,进行隔半小时进行强行盘车。在打开前轴发现轴承保持架磨损。这次考虑到前二次的事故发生,决定进行外委检修,由新乡电机厂进行了检修,对电机大轴进行修正。为保障电机的安全运行,对电机前后端轴承进行重新更换。换取同一类型号轴承:电机驱动端为:SKF NU1044 MA/C3 SKF NU16044 MA/C3; 电机非驱动端为:SKF NU1044 MA/C3。这一次事故的发生有前二次的事故,可能造成电机大轴弯曲,使电机与风机机械相连不为同心运行所致,但电机轴承的质量问题是不得不考虑的。在2010年7月26日恢复安装使用。 4. 2010年11月26日凌晨5点20分左右,运行人员巡视发现电机后 端轴承有铜粉磨出,但电机运行温度在40℃左右。考虑到电机运行的安全,进行停机。在打开后端轴承时发现,电机的轴承外径与轴承室内径之间有油脂与铜粉磨出,呈比较规律性的分布特性。在现场经相关职能部门与修复厂家的会诊,厂家不为其电机才运行不足两个月的时间承认

烧电机的原因总结起来都有哪些呢

烧电机的原因总结起来都有哪些呢 电源问题or负载问题... ①电源电压过高,使铁芯发热大大增加;②电源电压过低,电动机又带额定负载运行,电流过大使绕组发热;③修理拆除绕组时,采用热拆法不当,烧伤铁芯;④定转子铁芯相擦;⑤电动机过载或频繁起动;⑥笼型转子断条;⑦电动机缺相,两相运行;⑧重绕后定于绕组浸漆不充分;⑨环境温度高电动机表面污垢多,或通风道堵塞;⑩电动机风扇故障,通风不良;定子绕组故障(相间、匝间短路;定子绕组内部连接错误)。 2.故障排除:①降低电源电压(如调整供电变压器分接头),若是电机Y、Δ接法错误引起,则应改正接法;②提高电源电压或换粗供电导线;③检修铁芯,排除故障;④消除擦点(调整气隙或挫、车转子);⑤减载;按规定次数控制起动;⑥检查并消除转子绕组故障;⑦恢复三相运行;⑧采用二次浸漆及真空浸漆工艺;⑨清洗电动机,改善环境温度,采用降温措施;⑩检查并修复风扇,必要时更换 这个原因很多。 1.电源问题 a.三相电源不对称 b.接法错误包括三角形接成星形,星形接成三角形 c.电压过高或过低 2.负载问题 过载; 负载被卡住 3.电机问题 线圈匝间短路 线圈断开 电机内有异物 定转子相擦 4.其它问题 轴承问题 油脂不好 通风有问题 楼上的比较全面。一般在用户使用过程中烧毁的电机主要原因是:过载、单相、缺相、匝间。拆开电机后检查绕组线包,可以判断出烧毁的大致原因: 1、过载机过载烧毁时,线包一般会全部烧黑。 2、单相、缺相烧毁一相线圈或两相线圈 3、匝间在线包或是线槽上会有铜线烧熔化后烧出来的洞和铜珠 另外轴承内盖配合不好或是轴承故障抱死轴烧坏电机的情况也会有,这个可以直接看到。这个属于机械方面的故障 造成电动机过负荷的原因主要有: (1)电源电压低。当机械负载不变时,电源电压降低,就会造成电动机工作电流加大。由于

轴承几种噪音分析解决

1.滚道声 滚道声是由于轴承旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25~27dB。这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点: a.噪声、振动具有随机性; b.振动频率在1kHz以上; c.不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高; d.当径向游隙增大时,声压级急剧增加; e.轴承座刚性增大,总声压级越低,即使转速升高,其总声压级也增加不大; f.润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。滚道声产生源在于受到载荷后的套圈固有振动所致。由于套圈和滚动体的弹性接触构成非线性振动系统。当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。众所周知,即使是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与滚动体间产生微小波动激发振动系统固有振动。尽管它是不可避免的,然而可采取高精度加工零件工作表面,正确选用轴承及精确使用轴承使之降噪减振。 2.落体滚动声 该噪声一般情况下,大都出现在低转速下且承受径向载荷的大型轴承。当轴承在径向载荷下运转,轴承内载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区的滚动体与内滚道不接触,但因离心力的作用则可能与外圈接触,为此,在低转速下,当离心力小于滚动体自重时,滚动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点: a.脂润滑时易产生,油润滑时不易产生。当用劣质润滑脂时更易产生。 b.冬季常常发生。 c.对于只作用径向载荷且径向游隙较大时也易产生。 d.在某特定范围内也会产生且不同尺寸的轴承其速度范围也不同。 e.可能是连续声亦可能是断续声。

电动机轴承异响故障分析及应对措施

电动机知识 电动机轴承异响故障分析及应对措施 1.电动机轴承声音异常 一台给水泵高压(6kV)电动机YKK400-2,功率450kW,转速2975r/min.轴伸端用深沟柱NU3E222型轴承,非负荷端用深沟球6222型轴承。运行中轴伸端声音尖锐刺耳,不像是电磁噪声,也不像轴承缺油干磨的声音,噪声持续约2min,然后间歇2min.用测振仪(VA-80A)测出轴承的振动幅值为0.021mm,声响异常时,测得振动速度值为53.6m/s,有时甚至达到97m/s,远远超过标准值28 m/s,且电流波动较大。 由于轴伸端采用间隙配合,无法调整轴承的轴向定位尺寸。在检修过程中发现内油盖有不均匀的磨损痕迹,轴承有两个深沟柱损伤。测量轴承、端盖和内外挡油小盖的定位尺寸,并经过计算,轴承的允许间隙为0.7mm,当电动机的轴承温度达到100℃,轴承的膨胀值约0.9mm,不能满足电动机正常运行要求。多次更换深沟柱轴承后,电动机噪声不仅没有消失,而且异响周期变为4min. 2.故障分析与处理 根据轴承的特点分析:由于电动机原来采用NU型深沟柱轴承,允许电动机轴向窜动。轴承内圈两侧有挡边,外圈无挡边,因此允许轴相对轴承双向位移,可以承受轴热膨胀引起的伸长。同时轴承的间隙相对深沟球轴承来说偏大,但轴承的受力为线形,比深沟球轴承的点受力好。轴承运动轨迹不是一个圆形而是一个椭圆,这是由干深沟柱(或深沟球)和滚道之间存在间隙,运行时受力的不同,使得运动轨迹成椭圆形。轴承的受力主要是在下部,对于深沟柱轴承其受力点为一条直线,高速运转中,由于轴承的间隙,受力点改变,受力运动轨迹变

成抛物曲线形。 给水泵电动机运行时主要受轴向力作用,且拖动的负载平稳,深沟柱轴承允许的径向窜动必要性减弱,因此将前轴承更换为深沟球轴承,轴承的间隙仍为C3,约0.04mm,可以满足运行要求。同时考虑轴承的膨胀,在挡油环小盖处加一块厚度约0.8mm垫片,克服来自于给水泵和轴承温度升高引起的窜动。 轴承滚动体及滚道的微观表曲是粗糙不平的,运动中会发生一定的冲击,但这种冲击产生的脉冲是高频的,因而使用测振仪测量电动机运行的高频干扰的参数值比标准的大。深沟柱轴承与滚道的接触较多,产生的高频冲击就大,而深沟球轴承与滚道的接触是点,产生的高频冲击相对较小,因而本例的电动机可以使用深沟球轴承代替深沟柱轴承,解决设备出现的异响。 将深沟柱轴承更换为深沟球轴承后,轴承异响消失。运行一段时间噪声没有再出现,测电动机的振动幅值为0.013mm,加速度值为2.8m/s2,带负荷性能稳定,电流也没有较大波动。·基于UC3637的直流电动机PWM控制电路图_ ·多台电动机逐一星形三角形起动电路_电 ·变频器的暂停减速功能 ·变频器过压类故障的分析 ·变频器启动前的直流制动功能 ·变频器与电动机的距离 ·变频调速控制方式的选择 ·变频器常见故障原因及处理方法 ·变频器为什么要求可靠接地? ·变频器怎样利用多功能输出控制端? ·NDJ-79旋转粘度计仪器的工作原理

高速电机抱轴原因分析和解决方法

高速电机抱轴原因分析和解决方法 分析高速电机抱轴的原因,提出正确的解决方法,取得良好效果。问题背景化工集团醋酸分公司隶属于中石油大庆油田有限责任公司,成立于2006年12月,现有在册职工412人,固定资产15.02亿元。主要以甲醇、一氧化碳为原料,采用低压液相羰基合成工艺,生产20万吨/年优质醋酸。共有设备608台,动设备就有220台,其中两极高速电机占75%以上,主要分布于装置的各关键工序,自2007年开工投产以来,两极高速电机故障频出。其中尤其以位于造气车间脱硫脱碳工序的贫液泵P1504电机最为典型,先后两次发生抱轴事故,严重制约和影响装置的安全稳定长周期运行。问题分析紧急停机后发现电动机盘不动车,电机轴已抱死。引起电机抱轴事故的原因很多,主要分为内部原因和外部原因。电机的内部原因有:轴承质量不好;润滑脂质量不好;润滑脂加入量不合适;检修工艺不当;电机运行时振动超标;转子上有轴电压。电机外部原因主要有:非户外型电机户外安装或用水冲洗电机;电机安装基础不牢固;电机周围环境温度过高。经解体检查发现,轴承润滑脂烧尽,轴承保持架损坏变形,滚子和滑道过热发蓝,轴承座防爆曲路与轴结合处烧结抱死。经分析问题出在以下两方面: 2.1.该电机轴承选用SKF钢制保持架,相对于黄铜保持架,其极限转速有所降低,在同等运行条件下更容易失效损坏。据轴承有关资料表明,一般情况下,在同种保持架,同种润滑条件下,随着轴承型号的增大,其极限转速相应减小。对于极限转速与电机转速接近的轴承,最好不用。2P高压电机的转速一般为2970~2990r/min,因受两极高压电机轴伸直径的限制与润滑条件,轴承只能在NU216219与6216~6219、6316~6318中选取。对于6216~6219、6316~6319球轴承,各种保持架的轴承都有较高的极限转速;而NU216、NU217柱轴承,各种保持架也都有较高的极限转速,可以任意选择;而NU218~NU219情况却不同,例如NSK轴承以黄铜保持架作为标准保持架,NU218M、NU219M分别为4000r/min与3800r/min,而钢保持架(无后缀或后缀为w)轴承,NU218、NU219分别对应为3200r/min和3040r/min;SKF较少供应黄铜保持架轴承,其钢保持架轴承因设计时适当提高了承载力,故SKF轴承与NSK同型号轴承相比,其极限转速便有所降低。因此对SKF钢保持架的NU218、

电动机常见故障分析及处理方法_万萍英

摘要:针对电机出现故障各种现象和相应对策做一分析和研究。 关键词:电动机故障维护检修 0引言 运作中的电动机要严格按照国家相关质量标准进行检查维护以确保电动机的正常使用,运作的电动机与被拖动的设备位置要恰当,保证运行的稳定性,不能有震动、窜轴,保证通风性能良好。有些电动机因为各种原因需要经常的挪动,搬运等,对于这种电动机要加强日常的维护和检查,保证电动机运转的稳定性。 1电动机电气常见故障的分析和处理 1.1电动机接通电源起动,电动机不转但有嗡嗡声音可能原因: ①由于电源的接通问题,造成单相运转;②电动机的运载量超载;③被拖动机械卡住;④绕线式电动机转子回路开路成断线;⑤定子内部首端位置接错,或有断线、短路。处理方法:第一种情况需检查电源线,主要检查电动机的接线与熔断器,是否有线路损坏现象;第二种情况将电机卸载后空载或轻载起动;第三种情况估计是由于被拖动器械的故障,卸载被拖动机械,从被拖动机械上找故障;第四种情况检查电刷,滑环和起动电阻各个接触器的接合情况;第五种情况需重新判定三相的首尾端,并检查三相绕组是否有断线和短路。 1.2电动机启动后发热超过温升标准或冒烟可能原因:①电源电压达不到标准,电动机在额定负载下升温过快;②电动机运转环境的影响,如湿度高等原因;③电动机过载或单相运行;④电动机启动频繁、正反转过多。处理方法:第一种情况调整电动机电网电压,使电机尽量在额定电压下运行;第二种情况检查风扇运行情况,加强对环境的检查,保证环境的适宜;第三种情况检查电动机启动电流,发现问题及时处理;第四种情况减少电动机正反转的次数,及时更换适应正反转的电动机。 1.3绝缘电阻低可能原因:①电动机内部进水,受潮;②绕组上有杂物,粉尘影响;③电动机内部绕组老化。处理方法:第一种情况电动机内部烘干处理;第二种情况处理电动机内部杂物;第三种情况需检查并恢复引出线绝缘或更换接线盒绝缘线板;第四种情况及时检查绕组老化情况,及时更换绕组。 1.4电动机外壳带电可能原因:①电动机引出线的绝缘或接线盒绝缘线板损坏;②绕组端盖接触电动机机壳;③电动机接地问题。处理方法:第一种情况恢复电动机引出线的绝缘或更换接线盒绝缘板;第二种情况如卸下端盖后接地现象即消失,可在绕组端部加绝缘后再装端盖;第四种情况按规定重新接地。 1.5电动机运行时声音异常主要是因为:①电动机内部一相绕组突然断路,造成电机单相运行,电流不稳引起噪音;②电动机内部轴承磨损严重、间隙不合格,或轴承里面有杂物。处理措施:如果是第一种情况,则要进行全面检查;如果是第二种情况,必须将轴承内的杂物清理干净,或更换新轴承。 1.6电动机振动可能原因:①电动机安装的地面不平;②电动机内部转子不稳定;③皮带轮或联轴器不平衡;④内部转头的弯曲;⑤电动机风扇问题。处理方法:第一种需将电动机安装平稳底座,保证平衡性;第二种情况需校对转子平衡;第三种情况需进行皮带轮或联轴器校平衡;第四种情况需校直转轴,将皮带轮找正后镶套重车;第五种情况对风扇校静。 2电动机机械常见故障的分析和处理 2.1定子和转子铁芯故障检修。 相互绝缘的硅钢片叠成了定子和转子,并由此构成了电动机的磁路部分。导致定子和转子铁芯出现故障的因素有:①经长时间的使用轴承出现严重的磨损,进而使定子和转子相互摩擦,损坏铁芯表面,导致硅钢片之间发生短路,加大了电动机的铁损程度,使其温度快速上升,这时要通过细锉等工具将毛刺搓掉,消除硅钢片短接,然后将绝缘漆涂刷在表面,再加热烘干。②对旧绕组进行拆除的过程中,由于用力较大,造成倒槽出现歪斜现象并向外张开。可使用木榔头、小嘴钳等工具纠偏,使齿槽恢复原位,有的存在缝隙的硅钢片难以复位,可将硬质绝缘材料(如胶木板或青壳纸)夹在钢片之间。③由于空气潮湿或受其他因素的影响,铁芯表面如果锈蚀,则要使用砂纸打磨干净,再将绝缘漆涂刷在铁芯表面。④若是高热的绕组接地会将齿部和铁芯烧毁,则要通过刮刀、凿子之类的工具剔除熔积物,并将绝缘漆涂刷在其表面,然后烘干。⑤机座和铁芯之间连接不紧密,则必须重新固定。用于定位的螺钉若是无法二次利用,则重新定位,并将定位螺钉旋紧。 2.2电机轴承故障检修。 转轴在轴承的支撑下才能转动,是负载最重的部分,但极易磨损。 2.2.1故障检查运行中检查:若滚动轴承缺油,则可按照以往经验对注意其声音的变化,如果轴承断裂,运行时的声音肯定是异常的。轴承中若是有沙子等杂物,运行时会产生杂音。拆卸后检查:查看轴承的磨损程度,用手将轴承内圈捏紧,同时利用轴承摆平,然后用另一只手用力推外钢圈,如果一切正常,则轴承的外钢圈是平稳运转的,且运转时不会卡滞或振动;当轴承停止运行时也不会倒退,说明轴承彻底坏掉了,应该及时更换。用左手将外圈卡住,右手则捏住内钢圈,稍稍施加推力,如果轴承转动,则说明磨损程度较大。 2.2.2故障修理通过砂布处理轴承表面的锈斑,再在上面涂抹一层汽油;当轴承的磨损程度太深或轴承表面产生裂纹时,就要选用符合标准的新的轴承进行更换。 2.3转轴故障检修。 2.3.1对于弯曲程度较小的轴弯曲,可通过打磨的方式进行修整;若弯曲程度在0.2mm以上,则要利用压力机来修整,修整后将表面磨光,使其还原成原样即可;若肘弯曲程度超过了修整的范围,则要考虑及时更换。 2.3.2如果轴颈处未出现较大的磨损,则可将一层铬涂刷在轴颈处之后,再根据设计尺寸进行打磨;如果磨损过大,可先堆焊,再按照标准尺寸通过车床进行修整;如果轴颈处的磨损超出了可修整的程度,就必须予以更换。 2.3.3轴裂纹或断裂轴的横向裂纹深度不到轴直径的10%~15%,纵向裂纹不大于轴长的10%,则在堆焊之后再修整,直至满足设计要求。若裂纹或断裂超过了了修整的范围,则要及时更换。 2.4端盖、机壳的检修。 如果端盖与机壳之间的缝隙太大,则可采取先堆焊后修整的途径进行处理,如端盖与轴承之间配合不紧密,可先通过冲子进行修整,再在端盖上打入轴承,若采用的电动机是大功率的,则可利用电镀加以修整。 3故障的诊断及处理 3.1我厂生产8#泵站300S-90水泵,用Y2-355L1-4280KW电机拖动的故障。 3.1.1故障的现象 生产8#泵站300S-90水泵,原是用JO系列的电机拖动,JO系列的电机是老产品,能耗较高,最近几年随着老产品的淘汰,几乎买不到这种型号的电机,同时也为了节能降耗,改用节能型Y132M-4280KW电机拖动。在冬季还好,特别是天气稍热,电机就不断的出现故障,曾经一月电机故障三台,解体后统一现象都定子绕组整体过热,匝间短路。 3.1.2故障原因的分析 ①电源电压过高。从解体状况来看,是由于绕组过热造成的电机故障;由于生产8#泵站供电电源来源于垣曲县828#线路,并且828#线路供电电压略高于国家标准电压,二次线电压经常在410V以上;电压过高导致电动机的定子磁通接近饱和状态,出现电流急剧增大,电机效率下降而发热严重。导致定子绕组过热而超过允许范围国家标准规定。电动机只有在电源电压波动范围正负5%之内,才能 电动机常见故障分析及处理方法 万萍英(中条山北方铜业股份有限公司热电厂) 科学实践 297

电机轴承问题

电机轴承常见问题 (2012-06-15 20:52:37) 转载▼ 分类:业系轴承 标签: 杂谈 1.电机轴窜问题,导致轴承过热? 第一,电机的轴窜问题:一般的电机,用得最多的是深沟球轴承和圆柱滚子轴承。安装时,一端做轴向定位,另一端做轴向浮动。你说的窜动,首先我觉得你应该查一下,你的轴向定位做得怎么样?定位是否可靠?如果可靠,对于深沟球轴承来说,它的轴向窜动量就应该是它的轴向游隙。一般不会太大,但是取决于你选的径向游隙。对于圆柱棍子轴承,对于N和NU系列的,不能作为定位轴承,如果你用他 们做定位,那一定窜动过大。 第二:你说的轴窜动轴承着了,我想,如果定位轴承承受了过大的轴向负荷,会 导致轴承烧毁。所以,选择定位轴承的时候要看看轴向负荷有多大。你选的轴承是否承受得了。如果是NJ系列的圆柱棍子轴承,这种轴向负荷完全是由滑动部分承受的,所以不行。对于深沟球轴承,它的轴向能力最多有径向的四分之一,对于不同的轴承各有不同。 2.如果用深沟球轴承,有没必要把一端轴承与轴固定死,然后轴承又固定在端盖上以限制轴窜动?现在很多都是轴可以来回窜动的,靠一个波纹垫片来垫,但是还是能够窜动轴系一般会要求轴向定位。所以会需要有一段作为定位端,一端作为游动端。你说的靠波形弹簧来垫,那个波形弹簧不是用于定位的,是用于加轴向预负

荷的。所以,对于交叉定位得电机,一定会存在这个由于弹簧垫圈引起的轴向窜动。如果你要控制,那就该做传统的一个定位端,一个非定位端。然后再非定为段加弹簧垫圈,就好了! 4.小功率直流有刷电机中,一端采用滚珠轴承,另一端采用球形含油轴承,请问这样的结构如何选用滚珠轴承以及与轴、轴承室的配合的松紧。(轴径8mm,轴承厚8mm,两轴承档开档约90mm,电机噪声要求很高) 一般而言,j5\6用于内圈, H7用于外圈,但这不是绝对的,我只是大略的给你说。另外,控制电机噪声,从轴承而言,你已经需要选择特殊的游隙和润滑脂了(如果噪声要求很高的话)。游隙可以选小一点的,不要太小否则抱死。润滑脂选粘度低一些的。不知道你用的是不是进口轴承,如果是的话,我可以给你些他们的推荐。对于国产轴承,如果谈到噪声,他们恐怕没有什么特殊的解决方案,除非你提出来。 5. 轴承跑外圈的情况? 分两种情况说:第一,你用的是铝轴承室,第二,一般的铸铁,或者别的铁质轴承室。 对于第一条,由于铝的膨胀系数比铁的大一倍,所以,你在安装的时候使用的正确配合,在温度升高以后就变松了,跑圈也就产生了。办法两个,第一,在安装的时候加紧配合,这个办法我不推荐,虽然可以解决,但是,安装的时候比较烦人,那么紧工人要叫的。第二、使用一个橡胶圈,在轴承室内开个槽,槽深是橡胶圈厚度的0.8倍,宽1.4倍。这样就好了。记住,我给的数据不能变,要不会有问题,

轴承的轴向定位及几种定位方法

轴承的轴向定位及几种定位方法?? 2011-12-16 10:38:21|??分类:SKF轴承相关知识|??标签:轴承??轴承定位?? | 仅仅靠过盈配合来对轴承圈进行轴向定位是不够的。通常,需要采用一些合适的方法来对轴承圈进行轴向定位。定位轴承的内外圈应该在两侧都进行轴向固定。对于不可分离结构的非定位轴承,例如角接触球轴承,一个轴承圈采用较紧的配合(通常是内圈),需要轴向固定;另一个轴承圈则相对其安装面可以自由地轴向移动。对于可分离结构的非定位轴承,例如圆柱滚子轴承,内外圈都需要轴向固定。 在机床应用中,工作端轴承通常从轴到轴承座传递轴向负荷来定位主轴。因此,通常工作端轴承轴向定位,而驱动端轴承则可轴向自由移动。 定位方法 锁紧螺母定位法 采用过盈配合的轴承内圈安装时,通常使内圈一侧靠着轴上的挡肩,另一侧则一般用一个锁紧螺母(KMT或KMTA系列)固定(见图9)。 带锥形孔的轴承直接安装在锥形轴颈上,通常用锁紧螺母固定在轴上。 隔套定位法 在轴承圈之间或轴承圈与邻近零件之间的采用隔套或隔圈,代替整体轴肩或轴承座肩是很便利的(图10)。在这些情况下,尺寸和形状公差也适用于相关零件。 阶梯轴套定位 另一种轴承轴向定位的方法是采用阶梯轴套(图11)。这些轴套特别适合精密轴承配置,与带螺纹的锁紧螺母相比,其跳动更小且提供更高的精度。阶梯轴套通常用于超高速度主轴,对于这种主轴,传统的锁紧装置无法向其提供足够的精度。 固定端盖定位法 采用过盈配合的轴承外圈安装时,通常使外圈的一侧靠着轴承座上的挡肩,另一侧则用一个固定端盖固定。 固定端盖和其固定螺钉在一些情况下对轴承形状和性能产生负面影响。如果轴承座和螺钉孔间的壁厚太小,或者螺钉紧固太紧,外圈滚道可能会变形。最轻的ISO尺寸系列19系列比10系列或更重系列更容易受到此类损伤的影响。 采用大量小直径的螺钉是有利的。应避免仅仅用3或4个螺钉,由于紧固点少,可能会在轴承座孔中形成凸起。这将产生易变的摩擦力矩、噪声和不稳定的预负荷(使用角接触球轴承时)。对于设计复杂、空间有限、仅可采用薄壁轴承和有限的螺钉数量的主轴。在这些例子中,建议通过FEM(有限元法)分析对变形进行精确检查。 另外,轴承座端面和端盖法兰间的轴向间隙也应该检查。指导值为10-15μm/100mm 轴承座孔径(图12)。 滚动轴承的轴向定位和固定 发布时间:2010-07-08T15:04:00 来源:亚洲泵网浏览:1950 编辑: 小唐

轴承损坏原因主要分析

轴承损坏原因主要分析 引风机试转时轴瓦出现的问题徐塘发电有限公司2×300MW扩建工程6号机组引风机是成都电力机械厂制造的型号为AN28e6静叶可调式轴流风机,风量为268.74m3/s,风压为4711Pa;电机是沈阳电机股份有限公司提供的型号为YKK710-8电机,电机转速为744r/min,功率为1 800kW,电压为6000V。电机两端为滑动轴承结构,瓦宽为220mm,甩油环外径为363mm,厚度为11.5mm,宽度为30mm,质量为3060g;轴颈外径为200mm,椭圆度偏差为0.2mm。油室两侧各有一个油位计,轴承座与下轴瓦之间有一个电加热器,下轴瓦下面有一个测温元件。电机轴承的冷却方式为自然冷却。第一次试转时,甲侧引风机电机推力端轴瓦温度升高,定值保护停机;乙侧引风机电机膨胀端轴瓦温度升至报警值,为了防止设备严重损坏,手动停机。检查发现甲侧引风机电机推力端轴瓦有烧瓦现象,乙侧引风机电机膨胀端轴瓦局部有磨痕。现场消缺,重新安装后,电机试运转4h无异常现象。锅炉空气动力场试验时,2台引风机电机的轴瓦温度稳定在61.9℃(甲)、59.5℃(乙)后略微下降,转动正常。 2005年4月1日,电除尘气流分布试验过程中除电机轴瓦温度稍高外,其他正常。但是在气流分布试验快结束后,16∶ 00,62号引风机电机侧轴瓦温度快速攀升至62.4℃时;16∶ 30,61号引风机风机侧轴瓦温度快速攀升至61.2℃,都有进一步上升的趋势。为了保护设备,手动停机。2台电机气流分布试验时引风机轴瓦温升值见表1。 4月2日~4月5 日对电机轴瓦解体检查,发现2台电机端外侧和风机端外侧轴瓦均有磨瓦现象,但内侧没有磨瓦现象。同时发现油挡附近轴颈处油润滑明显不足。对瓦面作刮瓦处理试转,当温度达到56~60℃后,瓦温快速攀升。前后试运转达11次,每次情况都差不多。解瓦检查发现,瓦面痕迹一致。加大冷却油量后,不再烧瓦,但温度仍然升至62℃,并且随着气温的波动而波动。整个过程中,2台风机轴系振动很好,最大振动均为1丝左右。 2 原因分析打开轴瓦对轴承进行了仔细检查,如压力角、间隙、椭圆度等,甲、乙侧引风机电机轴承检查数据见表2。所有数据都符合规范和厂家技术要求,可以排除安装不当的原因。由于2台引风机轴系轴向、水平、垂直方向振动都很小,所以排除了轴系不对中、磁力线中心、电机基础等问题。瓦面没有被电击的痕迹,所以也排除了轴承座绝缘不够和转子磁通量轴向分布不均等原因。2台风机为同一批产品,且烧瓦发生的过程和症状非常相似,所以初步认定故障原因是一致的。由这2台引风机电机轴瓦温升高直至烧瓦整个过程,通过对原始记录的数据资料进行分析,初步判断故障是由于甩油环转动带上来的油量太少,在下瓦压力角内无法形成和保持一定厚度的油膜,导致轴颈与轴瓦接触摩擦。瓦温、油温升高后,润滑油的黏度下降,加剧了油膜的破坏,直至轴瓦与轴颈摩擦,温度急剧升高。当温度达到某一临界数值时,油膜承压能力低于轴颈压力,由此将引起恶性循环,导致轴瓦温度快速攀升。加大润滑冷却油量后,润滑油位高于轴瓦下瓦面,这虽然缓解了油膜的破坏,在一定程度上避免了轴与轴瓦的直接接触,但是此时的平衡温度达到62℃,是一种高位平衡,轴承运行风险太大。 3 改进措施(1)更换润滑油。用46号机械油代替46号透平油,目的是为了提高润滑油的黏度,使得在甩油环转动时可以带上更多的油。但高温时, 机械油黏度的下降程

轴承噪声的产生原因和控制办法

轴承噪声的产生原因和控制办法 轴承的振动噪声,是考核轴承综合质量的主要指标之一。轴承噪声不仅直接影响主机的性能,而且过大的噪声还会对操作者造成噪声疲劳。随着我国机械工业的高速发展,提供低噪声的轴承,是轴承行业的一项重要任务,也是我公司的努力方向。1.产生原因: 噪声来源主要有以下几种。一种是轴承的结构形式、套圈壁厚、原始游隙、保持架形状、滚动体数量等固有因素所引起。另一种是因轴承零件制造时所产生的种种缺陷(如套圈和滚动体波纹、内圈滚道宽度不一致、保持架底高变动量超差、成品清洁度不好、滚道磕碰伤、中外径斜面磕碰以及残磁超标等)。 2.应对措施: (1)对设计方案进一步研究,力求设计更合理。 (2)加强对车加工产品质量的控制,特别是对小挡边宽度的控制,确保滚道宽度的一致性。从现在起,车加工产品的滚道宽度作为一个必检项目,从严进行控制,确保滚道宽度符合产品图的要求。 (3)加强对保持架质量的控制,对没有光饰的保持架或虽光饰但毛刺很大的保持架,坚决拒收。对保持架底高变动量超标的保持架也坚决拒收。 (4)加强工序间产品质量的控制,杜绝滚道磕碰伤,最大限度

地降低滚动面(内外圈滚道和滚子表面)的振纹,降低波纹度。 (5)加强工艺研究,提高产品的加工工艺水平,特别是内圈壁厚差的控制要符合要求。 (6)加强对设备的维护和保养,确保关键设备的加工能力和质量,确保关键设备的能力保障系数Cpk≥1.33。 (7)提高操作工的技能,提高他们调整机床的操作技能,使产品的加工精度有一个质的飞跃。 (8)配备应有的工位器具,减少运输过程中的磕碰伤,尽量减少产品返工,减少装卸次数。加强转运过程中的管理,做到轻拿轻放,杜绝人为磕碰。 (9)提高成品的清洁度,首先从提高零件清洁度开始,清洗剂和清洗煤油要按规定定期更换。 各单位要加强管理,树立“质量第一”思想。头脑中始终牢记质量是企业的生存之本,立足之根,发展之源。质量就是效益,没有质量,企业就没有效益,质量是企业追求的永恒主题,时刻抓牢质量这根弦。各单位主管是质量的第一责任人,质量的好坏,主要取决于部门主管的思想认识。部门主管重视,产品质量就好;部门主管不重视,或者重视不够,产品质量就不可能好。我们一定要花大力气,积极引导全体员工,切实把提高产品质量放在事关企业生存和发展的战略高度上来,确保产品质量的稳定合格。

相关主题