搜档网
当前位置:搜档网 › 加氢精制的催化剂

加氢精制的催化剂

加氢精制的催化剂
加氢精制的催化剂

加氢精制的催化剂

加氢精制催化剂一般以钨、镍等为活性组分,以硅、铝等为载体(或担体)。

担体有两大类:

1、中性担体,如活性氧化铝、活性碳、硅藻土等

2、酸性担体,如硅酸镁、硅酸铝、分子筛等。

一般来说担体本身没有活性,在选择担体时一般选择中性担体。因为中性担体本身的裂解活性不高,用它制备的催化剂表现出较强的加氢活性和较弱裂解活性。

担体的作用:

1、担体具有较大的比表面,能使活性组分很好的分散在其表面上,从而更有效地发挥活性组分的作用,节省活性组分的用量。

2、担体做为催化剂的骨架起到提高催化剂的稳定性和机械强度的作用,并保证催化剂具有一定的形状和大小,减少流体阻力。

3、担体能够改善催化剂的导热性,防止活性组分因局部过热而引起烧结失活。

加氢装置催化剂的装填很重要,如果催化剂装填质量差,疏密不均,不但会造成催化剂装填量减少,更重要的是会使物料走“短路”或床层下陷,造成反应器床层物料和温度不均,物料和催化剂接触时间不等,严重影响到催化剂的寿命和产品的质量。

为确保催化剂的运输和装填安全,目前绝大多数催化剂在运

输时是氧化态,活性较低。为了使催化剂具有更高的活性和稳定性,提高催化剂抗中毒能力,催化剂在使用前需要预硫化。预硫化一般使用CS2或其它硫化物,在氢气的存在下先反应生成硫化氢,然后再进一步反应将催化剂中的活性组分转化成较高活性的“硫化态”。

硫化反应方程

CS2+4H2=CH4+2H2S

3NiO+H2+2H2S =Ni3S2+3H2O

WO3+H2+2H2S = WS2+3H2O

催化剂的初活稳定(钝化):硫化后的催化剂活性极高,直接进质量较差的焦化汽柴油会立即积炭,使催化剂活性大幅度下降,因此需要用航煤或直硫柴油进行初活稳定,以适当降低催化剂活性,延长催化剂的使用周期。用直馏航煤做稳定油,因直馏航煤中的烯烃含量很低,进入反应系统后基本不会在催化剂表面积炭,起不到初活稳定的作用或初活稳定的作用很小。而直馏柴油的质量介于航煤和焦化柴油之间,在初活稳定期间可以在催化剂表面形成一定的积炭而适当降低催化剂的活性,从而保证在正常生产期间的温度控制。

催化剂在长期运行中表面会逐步结焦,其活性会逐步降低,因此当催化剂活性降低到一定程度后需要对催化剂进行烧焦再生。目前一般采用器外再生技术。

空速对加氢精制的影响

空速是单位时间的进料量与催化剂藏量之比,有体积空速和重量空速两种表示方式。降低空速意味着原料与催化剂接触时间的增加,加氢深度增加,因此产品质量可提高,但是降低空速可促进加氢裂化反应,降低产品液收,增加氢耗,增加催化剂的积炭,降低空速也意味着在反应器内的催化剂数量不变时,降低了处理量;加大空速会导致反应深度的下降,此时需提高反应温度来提高反应深度。空速高低变化可用提高或降低反应温度来补偿对反应深度的影响。

氢油比对加氢精制的影响

氢气流量(在标准状态下)与加氢进料量之比,有体积和分子比两种表示方法。在加氢精制中,氢作为反应物之一,参加反应,大量氢气的存在起到保护催化剂的作用,可冲淡原料油的浓度,使反应均匀和缓和,大量氢气,急冷氢通过反应器可将加氢反应热带走,起热载体作用,控制床层温升和减轻炉管结焦。提高氢油比也就是增大了氢分压,有利于加氢反应,减少催化剂积炭,将系统反应热带出,防止床层温升过高。但是氢油比过大,原料与催化剂接触的时间过短,不利于加氢反应,导致反应深度下降,产品质量下降,同时使系统压力降增大,增加压缩机负荷。

反应压力对加氢精制的影响

反应压力不仅指总压力,而主要指氢分压,由于加氢是体积减小的反应,因此提高反应压力,可促进加氢反应,增加加氢深度,提高产品质量。压力变化首先影响脱氮反应,高压对脱氮有利,提高反应压力可减少缩合和迭合反应,向着有利于减少积炭方向进行,因此可减少催化剂的积炭,延长其操作周期。但是提高反应压力会促进加氢裂化反应,使液体收率减少,增加动力消耗。

温度对加氢精制的影响

加氢精制总的热效应是放热反应。提高温度对反应化学平衡是不利的,但有利于脱氢和裂化反应。在一定温度范围内,提高反应温度可加快反应速度。另外随着运转时间的延续,催化剂活性逐渐下降,为保证产品质量就要提高反应温度来达到反应深度。但是过高>410℃易产生过多裂化反应,增加催化剂积炭,产品收率下降。反应温度还是调节产品质量的重要手段,当反应产物的含硫,溴价上升此时应提高反应温度。

反应器内部结构及各部分的作用

反应器入口扩散器。将进反应器的流体尽可能扩散到整个反应器截面上;防止高速流体直接冲击液体分配盘,影响分配效果,从而起到预分配的作用;使气液产生预混合。

气液分配盘。使进入反应器的物料均匀分散,与催化剂颗粒有效的接触,充分发挥催化剂的作用。反应器内物流分配极为

关键,分布不均匀,易引起原料油走短路。

反应器内部结构及各部分的作用

积垢篮。为反应器的进料提供更多的流通面积,使催化剂床层可聚集更多的锈垢和沉积物而不引起床层压降过分地增加。

冷氢箱。作用是将上面床层流下来的反应物料和冷氢充分混合,使物料进入下一床层之前重新分布均匀。冷氢箱是安装在冷氢管下面的三快板组成。第一层板是截流盘,在这层板上只开有两个空,使全部物料和氢气都必须从这两个孔通过,使冷氢和反应物料充分混合。第二层板为筛板喷散盘。第三层为泡帽再分布板。

反应器内部结构及各部分的作用

出口收集器。用于支撑下层的催化剂床层作用,以减轻床层的压降和改善反应物料的分配。

催化剂床层支持件和热电偶

支持件有:T形梁、格栅、筛板和磁球

热偶:反应器分上下两个床层。反应器入口一个热偶(炉出口温度),反应器出口一个热偶。

每一床层上下各有两层热偶,每一层有三个热偶。共12个热偶。

反应器轴向设置四层热偶主要是监视反应器温升情况。

反应器径向设置三个热偶,主要是为了反映径向温度差。

径向温度分布是流体分布均匀性的直接反映,是床层内构件及催化剂装填好坏的最好评价。低流速区,反应物与催化剂接触时间长,使得反应深度增加,反应放出的热量多,但携热能力小,形成热量积聚而出现高温区。相反在高流速区,反应物与催化剂接触时间短,使得反应深度低,反应放出的热量低,但携热能力大,出现低温区。径向温度分布是床层内构件及催化剂装填好坏的最好评价。反应器进出口压差反映了床层压降的大小,反映了床层结焦的程度。

磁球的作用:

1、固定催化剂床层,防止高速的反应介质冲击催化剂床层,

造成床层扰动。

2、能部分起到过滤介质中铁屑、焦质等杂质的作用,以保护催化剂。

3、磁球具有均匀分配物料的作用。

催化剂卸剂

反应器入口人孔密封面及螺栓保护好,防止拆卸内部构件时遭到损坏。

在此次催化剂卸剂工作中,考虑到加氢催化剂没有经过再生,含硫量高,可能会出现硫化亚铁自燃的情况。车间及时联系足量的干冰,以保护催化剂装桶后由干冰封存,隔绝氧气。

反应器在微正压氮气的保护下卸剂,施工人员佩戴正压式呼吸器进行作业。且要求施工单位控制卸剂速度,防止高速摩擦发热导致催化剂自燃。

催化剂装填

为保护催化剂,减少催化剂降落过程中冲击、碰撞造成破碎,催化剂装填公司使用自己携带的带有S形折流板的不锈钢降料管,装填下部床层。由于不锈钢管可有效减缓催化剂降落速度,导致催化剂装填过于疏松,密度过低,为839.8 kg/m3。与石科院提供的900 kg/m3差距较大。

将不锈钢降料管更换为帆布管,使上层催化剂装填堆积比提高到863.3 kg/m3。

装填中催化剂装填公司严格按照催化剂装卸剂技术协议要求,每装填一斗耙平一次,再取四点测量空高,四点数据差值在2cm以内。在安装积垢篮及装填上部瓷球时,对每个积垢篮口用编织袋进行封堵

此次催化剂装填共装填催化剂29520kg,保护剂1500kg,瓷球10640kg

RN—10B催化剂总装填体积为:34.866m3,29.520t。其中上下床层催化剂藏量之比为1:2.412。

RN—10B催化剂总堆比为:846.6kg/ m3。

加氢催化剂的研究进展2详解

加氢催化剂的研究进展 化工12-4 金贞顺 06122533 摘要 综述石油工业中各类加氢催化剂的研究进展,包括汽、柴油加氢催化剂,加氢裂化、加氢异构催化剂, 重油加氢催化剂等。以及加氢过程的各种基本反应(如加氢脱氮、加氢脱硫、烯烃加氢和芳烃饱和等)的热力学研究、基本反应动力学及与催化剂组成及结构特征间的关系、活性组分与载体间的相互作用、反应物分子平均扩散半径与催化剂空间结构的匹配、结焦失活的机理及其抑制措施等。 关键词: 加氢催化剂结焦失活载体 引言 随着环保法规和清洁柴油标准的日益严格,清洁油品的生产将是全球需要解决的重要问题。现有炼油工艺不断改进,创新并开发出一些先进技术以满足生产清洁柴油的需求。加氢裂化技术具有原料适应性强、产品方案灵活、液体产品收率高、产品质量好等诸多优点,催化剂则是加氢裂化技术的核心。重油加氢裂化分散型催化剂主要分为3大类:固体粉末添加剂、有机金属化合物及无机化合物。本文分别对加氢催化剂及载体的研究进展进行简要介绍。 1、汽柴油加氢催化剂研究进展 随着原油的劣质化和环保法规的日益严格,我国在清洁柴油生产方面面临着十分严峻的局面,所以迫切需要研制具有高效加氢精制的催化剂来满足油品深度加氢处理的要求[1-3]。日益提高的环境保护要求促进了柴油标准的不断升级。文中综述了国外炼油企业在柴油加氢催化剂方面的技术进展。 刘笑等综述了国内外有关FCC汽油中硫的存在形态、加氢脱硫反应原理及其催化剂的研究进展。一般认为,FC C汽油中的硫化物形态主要为嚷吩类化合物,且主要集中在重馏分中,汽油的加氢脱硫反应原理的研究也都集中在嚷吩

的加氢脱硫反应上。传统的HDS催化剂由于烯烃饱和率过高不适于FCC汽油的加氢脱硫,可通过改变催化剂的酸性来调整其HDS/HYD选择性。发展高活性、高选择性的催化剂仍是现今研究的热点,同时还应足够重视硫醇的二次生成而影响脱硫深度的问题。 赵西明综述了裂解汽油一段加氢把基催化剂的研究进展。提出在裂解原料劣化的形势下,把基催化剂的研究重点是制备和选择孔容较大、孔分布合理、酸性弱、比表面积适中的载体,并添加助催化剂。从控制拟薄水铝石的制备过程和后处理方法以及添加扩孔剂等角度出发,评述了近年来大、中孔容Alt及其前驱物拟薄水铝石的制备方法。任志鹏等[4]介绍了裂解汽油一段选择加氢催化剂的工业应用现状及发展趋势,综述了新型裂解汽油一段选择加氢Ni系催化剂的研究进展。提出在贵金属价格上涨和裂解原料劣化的形势下,Ni系催化剂是未来裂解汽油一段加氢催化剂的重点发展方向。而Ni系催化剂的研究重点是制备和选择比表面积适中、酸性低、孔体积大、孔分布合理的载体,选择合适的Ni盐前体及浸渍方法,添加第二种金属助剂以及开展硫化和再生方法的研究。 孙利民等介绍了镍基裂解汽油一段加氢催化剂的工业应用状况及研究进展,指出了提高裂解汽油一段镍基催化剂加氢性能的途径及该领域最新发展趋势。文献[5-6]介绍了柴油加氢精制催化剂的研究进展,近年来,随着柴油需求量增加、原油劣化程度加深和环保要求的日益严格,满足特定需求的超低硫柴油仍存在很大挑战,柴油加氢精制催化剂的研制和开发取得较大进展。介绍了载体、活性组分、助剂和制备方法(液相浸渍法、沉淀法和溶胶一凝胶法)等因素对催化剂活性的影响,结果表明,溶胶一凝胶法较其它方法有较优的一面。具体探讨了溶胶一凝胶法的制备条件对催化剂活性的影响,也为设计、开发高活性加氢精制催化剂积累了经验。 马金丽等介绍了柴油加氢脱硫催化剂研究进展。降低柴油中硫含量对于减少汽车尾气排放从而保护环境具有十分重要的意义。介绍了加氢脱硫催化剂的研究进展。张坤等介绍了中国石化抚顺石油化工研究院开发的最大柴油十六烷值改进技术(MCI)、和中国石化石油化工科学研究院研发的提高柴油十六烷值和

C9馏分油加氢精制工艺研究

C9馏分油加氢精制工艺研究 一、前言 C9馏分油存在的主要问题是异味大,颜色深,烯烃和二烯烃多,通过加氢可以改善其性质,现在国内很多企业是将C9切割出60%~80%左右进行加氢生产优质的化工产品,但切割剩余的馏分只能做黑树脂处理,其经济效益受到很大的影响。辽宁国隆石油化工有限公司(以下简称“国隆石化”)是一家经营C9馏分油多年的企业,为了提高产品质量,使C9馏分油得到有效利用特委托抚顺新瑞催化剂有限公司(以下简称“新瑞公司”)开发C9全馏分加氢项目,为此新瑞公司在200ML加氢装置上进行C9全馏分油加氢精制工艺研究。 二、试验部分 1、原料油 试验用原料油是国隆石化提供的抚顺乙烯厂的裂解C9,其中用2010年1月送来的第一批原料作了大量的试验均没有达到试验要求的目的,后了解到装C9馏分油原料的包装桶内有异物,将原料油污染了。2010年2月下旬国隆石化再次送抚顺乙烯厂C9原料,其物化性质见表1。 表1 C9馏分油性质 从表1可以看出C9馏分油溴值高、密度大、原料不饱和烃含量高等特点,因此加氢难度较大。

2、催化剂的性质 C9馏分油加氢工艺研究过程中新瑞公司根据原料油的物化性质研究制备了14种催化剂,经过探索性评价试验,最后筛选出C-11、C-13、C-14三个一段加氢催化剂并和国内外的四种催化剂进行了对比试验,催化剂的物化性质见表2。 表2 催化剂物化性质 试验在实验室200mL连续加氢固定床小试装置上进行。反应器由六段电炉加热,可分段由数显温控表控制床层温度,使反应在等温床层中进行;进油量用计量管计量,可准确指示进油的速率;原料油和氢气混合后一次通过反应器;废气用浮子流量计计量,并用湿式气体流量计定时校正流量。试验所用氢气为甲醇制氢,氢纯度>99.5%。装置的原则示意流程见图1 。 1、压力调节器 2、计量管 3、计量泵4-1、4-2反应器 5、高压分离器 6、低压分离器 7、气体流量计

馏分油加氢处理 精品

馏分油加氢处理 加氢处理工艺的目的在于在高温高压和催化剂存在下用氢气处理原料,从馏分燃料—石脑油,煤油和柴油中脱出硫和氮等杂质。最近几年,加氢处理已扩展到常压渣油,以减少渣油的硫和金属含量,生产低硫燃料油。加氢处理的操作条件依赖于原料类型和处理产品希望的脱硫水平。原料类型包括:石脑油、煤油、瓦斯油、常压渣油、拔顶油。 需要脱出的杂质通常是:硫、氮、氧、烯烃、金属。 加氢处理涉及的基本反应概括于图2-1 脱硫 甲基噻吩正戊烷 戊硫醇正戊烷 二丙基二硫 脱氮 甲基吡咯正戊烷

喹啉 加氢饱和 加氢脱氧 图2-1 基本反应 硫 含硫化合物主要是硫醇、硫化物、二氧化硫、多硫化物和噻吩类。噻吩比大多数其它类型硫更难于脱出。 氮 氮化物严重抑制催化剂的酸性功能。它们通过与氢气反应转化为氨。 氧 溶解的或以酚或过氧化物等化合物形式存在的氧与氢气反应后以水的形式脱除。 烯烃 烯烃在高温下能引起催化剂上或加热炉中焦炭沉积物的形成。他

们易于转化为稳定的烷烃。这样的反应是强放热反应。来自原油蒸油装置的直馏原料通常不含烯烃。然而,如果原料有大量烯烃,加氢反应器内要使用急冷液体来控制反应器出口温度在设计操作范围内。金属 石脑油原料中含有的金属是砷、铅、很少量的铜和镍。他们能对重整催化剂造成永久性破坏。减压瓦斯油和渣油原料可能含有大量的矾和镍。在加氢处理过程中,含有这些金属的化合物分解,金属沉积到加氢催化剂上。 操作参数 加氢脱硫(HDS)反应的基本操作参数是温度、反应器总压、氢分压(PPH2)、氢气循环比和空速(VVH)。 温度 提高反应温度对加氢反应是有利的,但同时高温引起结焦反应,降低催化剂的活性,脱硫反应是放热反应,反应热大约为22-30Btu/mol氢。必须找到反应速率和催化剂总寿命之间的一个折中温度。根据进料的性质,操作温度(开工初期/开工末期)大约为625-698℉。在运转过程中,逐渐升高催化剂温度以补偿由于焦炭沉积造成的催化剂活性下降,直到达到加氢脱硫催化剂限制温度。这时催化剂必须再生或卸出。 压力 氢分压增加能增加加氢脱硫速率,减轻焦炭在催化剂上的沉积,因而减轻催化剂的失活速率,增加催化剂的寿命。很多不稳定的化合

预加氢催化剂方案 2017.3.18

四、保护剂及催化剂物化性质 (1) LYTB-1加氢保护剂 LYTB-1加氢保护剂是以惰性的硅铝氧化物为载体,外观呈方块规整蜂窝状,并浸渍Mo、Ni为活性组分,具有强度大,抗结炭,物料分布均匀等特点。对于含焦化汽柴油馏分的加氢装置,可以起到脱出进料中的焦粒,延缓床层压力降上升的作用。 表3 LYTB-01加氢保护剂主要质量指标 (2) LYT-704加氢保护剂 LYT-704加氢保护剂是以惰性的硅铝氧化物为载体,外观呈蜂窝状,并浸渍Mo、Ni为活性组分,具有强度大,抗结炭,脱金属,容垢等特点。对于含焦化汽柴油馏分的加氢装置,可以起到脱出进料中的焦粒和铁离子,延缓床层压力降上升的作用。 表4 LYT-704加氢保护剂主要质量指标

(3) LYT-704A加氢保护剂 LYT-704A加氢保护剂以大孔Al 2O 3 为载体,以Mo、Ni为活性组分制备而成。 该催化剂采用拉西环外形,孔隙率大于50%。具有脱金属活性高、容垢能力大,床层压降低等特点。 表5 LYT-704A加氢保护剂主要质量指标 (4) LYT-704B加氢保护剂 LYT-704B加氢保护剂以大孔Al 2O 3 为载体,以Mo、Ni为活性组分制备而成。 该催化剂采用齿球外形,孔隙率大于45%。具有脱金属活性高、容垢能力大,床层压降低等特点。 表6 LYT-704B加氢保护剂主要质量指标

(5) LYT-708 脱二烯烃催化剂 LYT-708以惰性碳化法γ-Al 2O 3为载体,以镍为活性组分的石脑油选择加氢脱二烯烃催化剂。该催化剂具有二烯烃低温选择加氢活性高,降低选择加氢精制反应器结焦速率,延长装置运行周期的作用。 表7 LYT-708选择加氢脱二烯烃催化剂主要质量指标 五、催化剂装填方案及装填量 根据潍坊三昌化工科技有限公司提供的原料性质和产品性质要求(按全部加工环-3 石脑油考虑)。推荐本装置 预加氢反应器使用 LYTB-01/LYT-704/LYT-04A/LYT-704B 保护剂和LYT-708脱二烯烃催化剂装入第一反应器,反应器设两个床层,层间设冷氢盘。 表8 第一反应器(预加氢)催化剂装填方案(反应器直径2000mm)

加氢催化剂再生

催化剂再生 12.1 就地催化剂再生 注意,以下规程旨在概括催化剂再生的步骤和条件。催化剂供应商提供的具体 规程可取代此概述性规程。须遵守催化剂供应商规定的临界参数,例如温度限 制。 在COLO加氢处理单元中,使用NiMo和CoMo两种催化剂,有些焦碳沉积 是不可避免的。这会引起载体的孔状结构逐渐堵塞,导致催化剂活性降低。则 必须提高苛刻度(通常通过提高反应器温度),以使产品达到技术要求,而提 高温度会加速焦碳的产生。 当达到反应系统的最高设计温度(机械或反应限)时,需要停车进行催化剂再 生或更换催化剂。在正常操作时,这种事情至少在12个月内不应发生。 o催化剂再生燃烧在正常操作期间沉积的使催化剂失活的焦碳。 o再生的主要产物是CO2、CO和SO2。 12.2 再生准备 按照与正常停车相同的步骤,但反应器无需进行冷却。反应器再生可不分先后。 仅取R-101为例。 单元状态:按照正常停车规程的要求或根据再生放空气体系统规范,反应器在 吹扫净其中的H2和烃类后被氮气填充。将R-102的压力降低至略低于随后将 使用的蒸汽的压力。T-101已关停,且E-101排放至塔。T-102可根据再生过 程的下一步骤进行全回流或启动,以便实现石脑油安全循环。 12.3 蒸汽-空气再生程序 1. 在压缩机-反应器回路中建立热氮气循环。利用B-101加热带有循环氮气 的催化剂床,使其温度以25 oC/小时的速度上升至315oC。绝不可让催化 剂床内的温度降至260oC以下,否则,随后置换氮气的蒸汽会出现冷凝, 从而要求在进行下一操作前采取干燥措施。 2. 再次检查吹扫气中的可燃物并继续进行吹扫,直至反应器出口气体中的氢 气浓度低于0.5% vol。在E-107的壳程入口和压缩机的排放侧将压缩机 和D-103系统与反应器B-101系统隔离,并关停压缩机。反应器系统此 时处于氮气条件下。进一步关闭压缩机系统。两个分隔的工段均应处于氮 气正压下,这点至关重要。 3. 将蒸汽从E-104入口引至R-102,将反应器流出物导至再生排气系统。 逐渐加快速度,同时利用B-101控制温度,将反应器入口温度升至并保 持在330-370oC。蒸汽宜为7000 kg/hr左右的速度,这高于CRI(催化 剂供应商)推荐的反应器横截面每平方米1950 kg/hr的最低速度,此最 低速度使R-101和R-102的最低流量分别达到2000 kg/hr和3700 kg/hr。 此时R-102已做好下一步的蒸汽和空气燃烧准备。 4. 启动含0.3-0.5 mole%氧气的空气流,将其导入R-102。 5. 焰锋的建立表现为催化剂床的温度上升,此后,氧气含量最大可增加至1 mole%,但焰锋温度须保持在400oC以下。根据经验,氧气含量每高于

加氢精制的催化剂

加氢精制的催化剂 加氢精制催化剂一般以钨、镍等为活性组分,以硅、铝等为载体(或担体)。 担体有两大类: 1、中性担体,如活性氧化铝、活性碳、硅藻土等 2、酸性担体,如硅酸镁、硅酸铝、分子筛等。 一般来说担体本身没有活性,在选择担体时一般选择中性担体。因为中性担体本身的裂解活性不高,用它制备的催化剂表现出较强的加氢活性和较弱裂解活性。 担体的作用: 1、担体具有较大的比表面,能使活性组分很好的分散在其表面上,从而更有效地发挥活性组分的作用,节省活性组分的用量。 2、担体做为催化剂的骨架起到提高催化剂的稳定性和机械强度的作用,并保证催化剂具有一定的形状和大小,减少流体阻力。 3、担体能够改善催化剂的导热性,防止活性组分因局部过热而引起烧结失活。 加氢装置催化剂的装填很重要,如果催化剂装填质量差,疏密不均,不但会造成催化剂装填量减少,更重要的是会使物料走“短路”或床层下陷,造成反应器床层物料和温度不均,物料和催化剂接触时间不等,严重影响到催化剂的寿命和产品的质量。 为确保催化剂的运输和装填安全,目前绝大多数催化剂在运

输时是氧化态,活性较低。为了使催化剂具有更高的活性和稳定性,提高催化剂抗中毒能力,催化剂在使用前需要预硫化。预硫化一般使用CS2或其它硫化物,在氢气的存在下先反应生成硫化氢,然后再进一步反应将催化剂中的活性组分转化成较高活性的“硫化态”。 硫化反应方程 CS2+4H2=CH4+2H2S 3NiO+H2+2H2S =Ni3S2+3H2O WO3+H2+2H2S = WS2+3H2O 催化剂的初活稳定(钝化):硫化后的催化剂活性极高,直接进质量较差的焦化汽柴油会立即积炭,使催化剂活性大幅度下降,因此需要用航煤或直硫柴油进行初活稳定,以适当降低催化剂活性,延长催化剂的使用周期。用直馏航煤做稳定油,因直馏航煤中的烯烃含量很低,进入反应系统后基本不会在催化剂表面积炭,起不到初活稳定的作用或初活稳定的作用很小。而直馏柴油的质量介于航煤和焦化柴油之间,在初活稳定期间可以在催化剂表面形成一定的积炭而适当降低催化剂的活性,从而保证在正常生产期间的温度控制。 催化剂在长期运行中表面会逐步结焦,其活性会逐步降低,因此当催化剂活性降低到一定程度后需要对催化剂进行烧焦再生。目前一般采用器外再生技术。 空速对加氢精制的影响 空速是单位时间的进料量与催化剂藏量之比,有体积空速和重量空速两种表示方式。降低空速意味着原料与催化剂接触时间的增加,加氢深度增加,因此产品质量可提高,但是降低空速可促进加氢裂化反应,降低产品液收,增加氢耗,增加催化剂的积炭,降低空速也意味着在反应器内的催化剂数量不变时,降低了处理量;加大空速会导致反应深度的下降,此时需提高反应温度来提高反应深度。空速高低变化可用提高或降低反应温度来补偿对反应深度的影响。 氢油比对加氢精制的影响

催化剂的活化与再生

催化剂的活化与再生 加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 在推出EasyActive器外预硫化催化剂后,Eurecat和Akzo Nobel公司又进一步改进器外预硫化技术。为简化预硫化过程和减少对环境的污染,研究了水溶性硫化物生产器外预硫化催化剂以及将器外预硫化和原位预硫化结合的预硫化技术。 水溶性硫化剂有1,2,2-二亚甲基双二硫代氨基甲酸二酸盐、二巯基二氨硫杂茂、二乙醇二硫代物、二甲基二硫碳酸二甲氨和亚二硫基乙酸等。下表列举了几种水溶性硫化剂器外预硫化的催化剂的活性比较。 水溶性硫化剂进行器外预硫化的催化剂活性 可见水溶性硫化剂完全可以作为器外预硫化的硫化剂。 为了降低器外预硫化的成本和提高硫的利用率,又开发一种将S作为硫化剂的器外预硫化方法及将S与有机硫化物相结合的技术,目前多采用这一方法。

加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。 3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 国外催化剂器外再生的主要工艺 目前,国外主要有三家催化剂再生公司:Eurecat、CRI和Tricat。其中Eurecat和CRI两家公司占国外废催化剂再生服务业的85%,余下的为Tricat公司和其他公司所分担。CRI公司的再生催化剂中,约60%来自加氢处理装置,15%来自加氢裂化装置,25%来自重整和石化等其他领域。 Eurecat、CRI和Tricat公司采用不同的再生工艺。Eurecat公司使用一个旋转的容器使催化剂达到缓慢烧炭的目的;CRI公司采用流化床和移动带相结合的工艺,如最新的OptiCAT 工艺;Tricat公司应用沸腾床工艺。 非贵金属废加氢催化剂的金属回收 从非贵金属废加氢催化剂中回收金属有两种方法:一种是湿法冶金,用酸或碱浸析废催化剂,然后回收可以销售的金属化合物或金属。另一种是火法(高温)冶金,用热处理(焙烧或熔炼)使金属分离。 非贵金属废加氢处理/加氢精制催化剂通常都有3~5种组分:钼、钒、镍、钴、钨、氧化铝和氧化硅。 美国有两家领先的非贵金属回收商:一家是海湾化学和冶金公司(GCMC),从1946年开始回收金属业务;另一家是Cri-met公司(Cyprus Amax矿业公司和CRI国际公司的合资公司),从1946年开始回收金属业务。有些废非贵金属加氢裂化催化剂中含有钨,回收的费用高,且数量不大。目前奥地利的Treibacher工业公司是钨的主要回收商。 另外,美国的ACI工业公司、Encycle/texas公司、Inmetco公司,法国的Eurecat公司,德国的Aura冶金公司、废催化剂循环公司,比利时的Sadaci公司,日本的太阳矿工公司、

加氢精制催化剂的组成、制备及其性能评价

加氢精制催化剂的组成、制备及其性能评价 前言: 加氢精制是石油加工的重要过程之一,它主要是通过催化加氢脱除原油和石油产品中的S、N、O以及金属有机化合物等杂质[1]。加氢精制主要包括加氢脱硫(HDS)、加氢脱氮(HDN)和加氢脱金属(HDM)等工艺,一般在催化加氢过程中是同时进行的。其具体流程图[1]如下所示: 近年来,由于原油的质量逐渐变差以及对重油的加工利用的比例逐渐增大,给加氢精制过程提出了更高的要求。出于对环保的重视,世界各国普遍制订了严格的环保法规,对汽油、柴油等燃料油中N和S含量作出了严格的限制。此外,又对汽油中的苯、芳烃、烯烃含量、含氧化合物的加入量以及柴油十六烷值和芳烃含量等也有严格的限制指标。这些清洁燃料的生产均与加氢技术的发展密切相关[2]。因而加氢精制技术已成为石油产品改质的一项重要技术,其核心又在于加氢精制催化剂的性能。 一、催化加氢催化剂的组成及其制备方法 1.加氢催化剂的组成 加氢精制催化剂一般都是负载型的,是有载体浸渍上活性金属组分而制成[3]。载体一般均是Al2O3。 (1)活性组分 其活性组分主要是由钼或钨以及钴或镍的硫化物相结合而成[4]。目前工业上常用的加氢精制催化剂是以钼或钨的硫化物为主催化剂,以钴或镍的硫化物为助催化剂所组成的。对于少数特定的较纯净的原料,以加氢饱和为主要目的时,也有选用含镍、铂或钯金属的加氢催化剂的。 钼或钴单独存在时其催化活性都不高,而两者同时存在时互相协合,表现出很高的催化活性。所以,目前加氢精制的催化剂几乎都是由一种VIB族金属与一种VIII族金属组合的二元活性组分所构成。 (2)载体 γ-Al2O3是加氢精制催化剂最常用的载体。一般加氢精制催化剂要求用比表面积较大的氧化铝,其比表面积达200~400m2/g,孔体积在0.5~1.0cm3/g之间。[1]氧化铝中包含着大小不同的孔。不同氧化铝的孔径分布是不同的,这取决于制备的方法和条件。此

加氢催化剂再生

中国石油股份有限公司乌鲁木齐石化分公司 失活AT-505、FH-5加氢催化剂 器外再生技术总结 受中国石油股份有限公司乌鲁木齐石化分公司的委托,温州瑞博催化剂有限公司于2009年9月23日至9月26日,在山东再生基地对该公司失活AT-505、FH-5加氢催化剂进行了器外再生,现将有关技术总结如下: 一、催化剂再生前的物性分析及再生后催化剂指标要求 根据合同和再生的程序要求,首先对待生剂进行了硫、碳含量、比表面、孔容、强度等物性分析,其结果如下表: AT-505加氢催化剂再生前物性分析表 ◆中国石油股份有限公司乌鲁木齐石化分公司对再生后AT-505、FH-5加氢催化剂质量要求如下: 催化剂碳含量:≯0.5m% 硫含量不大于实验室数据+0.3 m% 三项指标(比表面、孔体积、强度)达到在实验室再生结果的95%以上。

二、实验室和工业再生 温州瑞博催化剂有限公司加氢催化剂器外再生是网带炉式集预热脱油、烧硫、烧碳和冷却降温于一体,实现电脑控制、上位管理的临氢催化剂烧焦再生作业线,系半自动、全密封、进行颗粒分离并实施除尘和烟气脱硫的清洁工艺生产的作业线。 针对中国石油股份有限公司乌鲁木齐石化分公司提出的再生后催化剂质量要求,在物性分析检查的基础上,温州瑞博催化剂有限公司首先对AT-505、FH-5加氢催化剂进行了实验室模拟再生,并根据本公司设备特点制定出了工业再生的方案和操作条件。在确保安全和再生剂质量的前提下组织了本次工业再生工作。现将催化剂再生前后,实验室再生和工业再生的综合样品分析结果列于下表: AT-505加氢催化剂物化分析数据

FH-5加氢催化剂物化分析数据 三、催化剂再生前后物料平衡

催化加氢技术及催化剂

一、意义 1.具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2.产品收率高、质量好,普通的加氢反应副反应很少,因此产品的质量很高。 3.反应条件温和; 4.设备通用性 二、催化加氢的内容 1.加氢催化剂 Ni系催化剂 骨架Ni (1)应用最广泛的一类Ni系加氢催化剂,也称Renay-Ni,顾名思义,即为Renay发明。具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。 (2)具体的制备方法:将Ni和Al, Mg, Si, Zn等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。 (3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3, Ni2Al3, NiAl, NiAl2等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAl3>Ni2Al3>NiAl>NiAl2,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni催化剂的活性。 (4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。 (5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。也可以采用钝化的方法,降低催化剂活性和保护膜等,如加入NaOH稀溶液,使骨架镍表面形成很薄的氧化膜,在使用前再用氢气还原,钝化后的骨架镍催化剂可以与空气接触。

加氢精制再生催化剂的合理使用

加氢精制再生催化剂的合理使用 摘要:简要讨论了加氢精制再生催化剂的特点,说明了再生催化剂降级使用的技术方案是完全可行的,并介绍了在再生催化剂装填和硫化过程中,与新鲜催化剂的差别,及应该注意的事项。 关键词:加氢精制再生催化剂合理使用 前言 石油馏分的加氢工艺技术是目前生产清洁燃料应用最广泛、最成熟的主要加工手段之一,在石油化工企业中所占的地位越来越重要。近年来,随着炼油企业加氢精制工业装置加工量的逐渐增加,所使用加氢催化剂的品种越来越多,数量也越来越大,经过烧焦再生后继续使用的再生催化剂的品种和数量也越来越多。目前,全世界约有18 kt/a加氢催化剂需要再生[1],而预计其中的加氢精制催化剂至少在10 kt/a以上。因此,如何合理使用加氢精制再生剂,使之发挥更大的作用,提高炼油企业的经济效益变得越来越重要。 加氢精制催化剂经过1 个周期的运转,由于积炭等原因造成活性下降,必须经过烧焦再生处理后才能使催化剂的活性得到恢复,并继续使用。在正常使用的情况下,加氢精制催化剂可以再生1~2 次,催化剂总寿命在6~9 a之间。加氢精制再生催化剂的开工过程原则上与新鲜催化剂是一致的,但是也有一些不同之处。这主要是因为:再生催化剂的物理性质,如比表面积、孔容积和机械强度等都发生了变化;再生剂的催化活性要比新鲜剂低一些;再生剂上残留的硫、炭和其它杂质,对开工中催化剂的硫化过程会产生一定的影响。如果再生催化剂完全按新鲜催化剂的开工方法进行,将会造成开工成本提高,和因过量的硫化氢对设备腐蚀而造成的安全隐患,以及不能充分发挥催化剂的活性和稳定性,影响工业装置长周期安全稳定运转。本文主要讨论了加氢精制催化剂再生剂的合理使用及开工工艺过程中应当注意的一些问题。 1 加氢精制再生催化剂的特点 再生催化剂与新鲜催化剂相比,孔容积和比表面积都比新催化剂略有降低。这主要是由于积炭和杂质沉积堵塞催化剂孔道,降低了孔容积和比表面积,使催化剂活性金属的利用率降低,造成再生后的催化剂活性有所下降。表1列出了某柴油加氢精制催化剂新鲜剂与再生剂的理化性质。 表1 新鲜催化剂与再生剂的理化性质 Table1 The physicochemical properties of fresh catalyst and regenerated catalyst 催化剂再生剂新鲜剂 孔容积/(mL?g-1) 0.46 0.48 表面积/(m2?g-1) 218 226 耐压强度/(N?cm-1) 172 168 堆积密度/(g?cm-3) 0.90 0.88 硫含量,% 0.58 - 碳含量,% 0.22 - 由表1可以看出,再生催化剂的孔容积和表面积较新鲜催化剂要小;新催化剂上没有硫和碳,

加氢精制催化剂及工艺技术

加氢精制催化剂及工艺技术 ?加氢精制技术应用概况 ?加氢精制主要反应及模型化合物加氢反应历程 主要反应 模型化合物加氢反应历程 典型工艺流程 ?加氢精制工艺技术 重整原料预加氢催化剂及工艺 二次加工汽油加氢精制催化剂及工艺 煤油加氢精制催化剂及工艺 劣质二次加工柴油加氢精制催化剂及工艺 进口高硫柴油加氢精制催化剂及工艺 焦化全馏分油加氢精制催化剂及工艺 石蜡加氢精制催化剂及技术 ?加氢精制催化剂 加氢精制技术应用概况 抚顺石油化工研究院(FRIPP)是国内最早从事石油产品临氢催化技术开发的科研机构。几十年来,FRIPP在轻质馏分油加氢精制、重质馏分油加氢处理、石油蜡类加氢精制、渣油加氢处理和临氢降凝等领域已开发成功5大类共30个品牌的商业催化剂,先后在国内45个厂家共115套加氢精制/加氢处理工业装置上应用,累计加工能力超过4000万吨/年。 FRIPP加氢精制技术开发的经历:

?1950s 页岩油加氢技术 ?1960s 重整原料预精制技术 ?1970s 汽、煤、柴油加氢精制技术 ?1980s 石油蜡类加氢精制技术 ?1990s 重质馏分油加氢精制技术、渣油加氢处理技术 FRIPP加氢精制系列催化剂: ?轻质馏分油 481、481-3、FH-5、FH-5A、FDS-4、FDS-4A、FH-98 ?重质馏分油 3926、3936、CH-20、3996 ?柴油临氢降凝 FDW-1 ?石油蜡类 481-2、481-2B、FV-1 ?渣油 FZC-10系列、FZC-20系列、FZC-30系列、FZC-40系列、FZC-100系列、 FZC-200系列、FZC-300系列 FRIPP加氢精制催化剂工业应用统计(1999年): 加氢精制主要反应及模型化合物加氢反应历程 加氢精制主要反应 加氢精制主要反应为加氢脱硫、加氢脱氮、加氢脱氧、烯烃与芳烃的饱和加氢,以及加氢脱金属。其典型反应如下:

催化加氢技术及催化剂讲解

催化加氢技术及催化剂 作者: buffaloli (站内联系TA) 发布: 2009-03-03 一、意义 1.具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2.产品收率高、质量好,普通的加氢反应副反应很少,因此产品的质量很高。 3.反应条件温和; 4.设备通用性 二、催化加氢的内容 1.加氢催化剂 Ni系催化剂 骨架Ni (1)应用最广泛的一类Ni系加氢催化剂,也称Renay-Ni,顾名思义,即为Renay发明。具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。 (2)具体的制备方法:将Ni和Al, Mg, Si, Zn等易溶于碱

的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。 (3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3, Ni2Al3, NiAl, NiAl2等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAl3>Ni2Al3>NiAl>NiAl2,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni催化剂的活性。 (4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。 (5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。也可以采用钝化的方法,降低催化剂活性和保护膜等,如加入NaOH稀溶液,使骨架镍表面形成很薄的氧化膜,在使用前再用氢气还原,钝化后的骨架镍催化剂可以与空气接触。 其它镍系催化剂 从1897年Sabatier将乙烯和氢气通到还原镍使之生成乙烷开

加氢裂化催化剂再生技术总结

加氢裂化催化剂再生技术总结 摘要:催化剂是加氢裂化工艺的核心,特别是加氢裂化催化剂,直接决定了油品 转换的方向。在精制反应器与裂化反应器串联使用的生产工艺中,裂化催化剂失 活的主要原因为结焦或积碳,通过再生处理能够使其恢复活性。加氢裂化催化剂 选择专业的公司进行器外再生,再生剂质量好、活性损失少,能够满足装置生产 运行要求。 关键词:加氢裂化催化剂结焦积碳再生 1前言 加氢裂化催化剂不仅要求有加氢性能,且有适宜的酸性,因此多含有沸石酸 性组分。加氢处理和加氢裂化操作中,多种因素导致催化剂暂时或永久失活,运 转周期一般为6个月到4~5年,视装置类型和操作条件苛刻度而定,在运转过 程中催化剂失活,可由提高反应温度来弥补,直至产品质量、数量限制而停止升温,确定停运进行再生。再生可以除去焦炭、清除覆盖活性中心及堵塞孔口的焦 炭和杂质,同时使活性金属重新分散,恢复催化剂活性[1]。通过分析裂化催化剂 使用情况,委托专业厂家对催化剂进行再生,再生剂活性较好,使用效果满足生 产需求。 2加氢裂化催化剂失活现象 造成加氢裂化催化剂失活的主要原因有催化剂结焦、催化剂中毒以及催化剂 中金属聚集、分散变差[2]。结合催化剂使用情况来看,该裂化剂串联在精制催化 剂之后使用,其发生催化剂中毒和金属沉积的可能性较小。通过收集分析催化剂 运行数据,显示该裂化剂在第一运行周期中未出现局部热点,通过温度补偿的方 式基本能够满足反应深度的需求。因此,该裂化剂失活的主要原因为结焦或积碳,通过再生处理能够使其恢复活性。 3加氢裂化催化剂再生的要求 加氢裂化催化器外再生需要确保催化剂晶体结构稳定、损坏程度微小,活性 金属凝聚度降至最低,使得比表面积、孔容及径向压碎强度得到良好的恢复。通 常要求如下; 表 1 再生剂性能指标要求 注:Rx—实验室再生样品的分析值。 一般通过过筛分离脱除反应器卸下催化剂中的碳粉、杂质、瓷球等物,将剩 余的待生剂进行烧焦再生,烧焦脱除待生剂中的碳和硫,使其比表面积、孔体积 得以恢复。最后还要对完成烧焦的再生剂再次进行过筛分离,脱除粉尘和碎粒, 确保其颗粒完整,回装反应器后不影响流体分布。由于多数加氢裂化催化是分子 筛型催化剂,其特殊的分子筛结构决定了对其再生过程温度的控制要更加严格, 必须防止再生过程中超温对催化剂载体结构的破坏[3]。因此,催化剂再生时要求 厂家严格控制预热的空气流量和烧嘴条件,准确控制温度使催化剂得以良好再生。3再生剂效果评价 3.1物理性质评价 将某加氢裂化催化剂HC-A待生剂、HC-A实验室再生剂及HC-A再生剂的物 化性能汇总于表1。由表1可见,通过再生后的HC-A裂化催化剂S、C含量大幅 降低,比表面积、孔容及径向压碎强度均有了明显改善。积碳是催化剂活性下降 的主要原因,但催化剂通过再生,随着积碳的烧除,催化剂活性将得到一定程度

加氢催化剂

加氢催化剂 加氢精制催化剂是由活性组分、助剂和载体组成的。其作用是加氢脱除硫、氮、氧和重金属以及多环芳烃加氢饱和。该过程原料的分子结构变化不大,,根据各种需要,伴随有加氢裂化反应,但转化深度不深,转化率一般在10%左右。加氢精制催化剂需要加氢和氢解双功能,而氢解所需的酸度要求不高。 一、加氢精制催化剂的活性组分 加氢精制催化剂的活性组分是加氢精制活性的主要来源,属于非贵金属的主要有ⅥB族和Ⅷ族中几种金属氧化物和硫化物,其中活性最好的有W,Mo和Co,Ni;贵金属有Pt,Pd等。 催化剂的加氢活性和元素的化学特征有密切关系。加氢反应的必要条件是反应物以适当的速度在催化剂表面上吸附,吸附分子和催化剂表面之间形成弱键后再反应脱附。这就要求催化剂应具有良好的吸附特性。而催化剂的吸附特性与其几何特性和电子特性有关。催化剂的电子特性决定了反应物与催化剂表面原子之间键的强度。 研究表明,提高活性组分的含量,对提高活性有利。但综合生产成本及活性增加幅度分析,活性组分的含量应有一最佳范围。目前加氢精制催化剂活性组分含量一般在15%~35%之间。 在工业催化剂中,不同的活性组分常常配合使用。例如,钼酸钴催化剂中含钼和钴,铝酸镍催化剂中含钼和镍等。在同一催化剂内,不同活性组分之间有一个最佳配比范围。 2、加氢精制催化剂中的助剂 为了改善加氢精制催化剂某方面的性能,在制备过程中,常常添加一些助剂。大多数助剂是金属化合物在制备过程中,也有非金属元素。 助剂的作用按机理不同可分为结构性助剂和调变性助剂。结构性助剂的作用是增大表面,防止烧结,提高催化剂的结构稳定性;调变性助剂的作用是改变催化剂的电子结构、表面性质或者晶型结构。

临氢装置催化剂器外再生技术规范

临氢装置催化剂器外再生技术规范 目录 1. 总则 2. 器外再生基本原则 3. 器外再生的工艺技术要求 4. 器外再生装置的技术标准 5. 器外再生的环保要求 6. 器外再生企业技术质量管理标准 7. 再生后临氢催化剂质量指标及分析方法 8. 临氢催化剂卸剂技术要求 9. 再生后催化剂的运输、包装 10. 附则

第一章总则 第一条为了规范炼油企业临氢装置催化剂器外再生的技术管理、保证再生质量,充分发挥催化剂在优化装置运行、实现清洁生产等方面的作用,特制定本标准。 第二条本标准适用于公司炼油企业临氢装置固定床催化剂的器外烧焦再生过程技术管理,并作为再生后催化剂的检验、包装、运输和验收的标准。 第三条临氢装置是指加氢裂化、加氢精制、加氢改质、加氢处理、临氢降凝、催化重整、歧化、异构化等装置。 第二章器外再生基本原则 第四条催化剂是加氢技术的核心,对失活加氢催化剂的再生并重复使用,符合节约资源,降低生产成本的循环经济理念。 催化剂的再生质量直接影响临氢装置的产品质量,产品收率、产品分布,能耗高低和装置运行周期的长短。 第五条临氢催化剂器外再生技术,是现代加氢工艺的配套技术,与器内再生相比,具有许多优点: ●有利于优化烧焦再生条件,再生剂的质量有保证; ●占用反应系统的时间短,有利于维修、处理高压设备问题, 缩短检修时间,提高装置利用率; ●无需器内再生所需的设备和占用的公用工程系统、节省分 析化验及操作费用,减少投资;

●避免了再生气体对高压设备的腐蚀和对炼厂环境的污染; ●降低了装置的能耗、物耗。 催化剂的器外烧焦再生,应遵循烧焦再生的科学规律和相应的技术质量标准和管理规范。 第六条器外再生定义: 临氢装置的催化剂器外再生是指积碳复盖型暂时失活的催化剂,在异地专用装置上,在受控的高温含氧气流中对沉积在催化剂表面和微孔中的积碳、硫化物进行氧化燃烧,使催化剂的活性基本恢复的过程。 第七条烧焦反应特点: 临氢催化剂的烧焦反应是在有氧存在条件下催化剂上积炭、金属硫化物进行氧化脱炭、脱硫的气固两相反应过程,并伴随有强放热,产生强腐蚀性有毒有害气体。 第八条烧焦过程中首先要保护好催化剂。要确保催化剂载体的骨架结构不受到破坏,防止活性金属组份的聚集和流失。 第九条催化剂再生,只能基本恢复活性,既不能提高也不能产生新的活性,被判断为永久性失活的催化剂,烧焦后不能恢复其活性,不具有使用价值。 ●在工业生产运行中,受到铁、砷、硅、钙、镁、钠或重金属镍、钒等中毒或严重污染的催化剂,不适宜进行烧焦再生使用。 ●在工业生产运行中,催化剂床层发生严重超温,物化性质

催化加氢过程中催化剂的选择

催化加氢过程中催化剂的选择 从事催化的各位虫友,经常会面临催化剂种类的选择,先将我用过的催化剂的优缺点和大家分享,有不足的和错误的,请大家补充和指正。 催化剂定义:又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。 从用途上分,可以分成加氢催化剂、氧化催化剂和异构化催化剂等。加氢镍催化剂又分为:1.骨架镍催化剂(镍-铝合金粉);2.负载碳酸镍与碳酸铜催化剂;3.负载型镍催化剂。 我们常用到的催化剂有钯碳、雷尼镍、德国6504K、C207(铜类)催化剂、KT-02镍催化剂等。先将各催化剂的优缺点陈列如下,给各位从事催化加氢的虫友做个参考。 (1)从价格上分析:钯碳最贵,价格为450万元/吨左右;雷尼镍价格为20万元/吨左右;6504K催化剂为30万元/吨;C207催化剂价格不详,但因其主要催化成份为铜,估计是这里面最便宜的;KT-02型镍催化剂价格在35万元左右。 (2)从活性上分析:钯碳>KT-02>雷尼镍>6504K>C207。 (3)从催化反应温度分析:钯碳反应温度很低,在常温下也可以催化反应;KT-02镍催化剂在40左右就可以进行催化;雷尼镍催化反应温度稍高,60度左右;6504K催化反应温度在80度左右;C207催化反应温度一般不低于150度。 (4)从使用安全按角度分析:KT-02型镍催化剂150摄氏度下空气中不自燃;6504K 也可以在空气中120摄氏度下保存;钯碳常温下暴露在空气中容易自燃;雷尼镍暴露在空气中容易着火。 (5)从催化反应的选择性上分析:钯碳活性太高,在多基团的时候选择性低,生成副产物;KT-02型镍催化剂选择性很好;雷尼镍加氢选择性比钯碳要好,但是比KT-02稍差;C207选择性很好。 (6)从转化率分析:钯碳>KT-02>雷尼镍>6504K>C207。 (7)从使用方便角度分析:KT-02和6504K在使用前都不需要活化,直接投入反应体系即可进行催化;钯碳不需要催化,但是必须密封隔绝空气保存;雷尼镍和C207使用前必须先进行活化,用碱处理溶去铝方可投入反应进行催化,而且雷尼镍在保存时也必须隔绝空气。 (8)从与产物进行分离来分析:催化加氢完毕后,必须将产物与催化剂进行分离,从分离难易程度来看:KT-02>雷尼镍>6504K>钯碳,C207一般用于固定床加氢,分离不存在太大的问题。 (9)从重复使用次数来看:KT-02>雷尼镍>6504K>钯碳>C207。这里综合考虑反应过程中的失活及后分离过程中的损失。KT-02重复使用次数不少于100次;雷尼镍重复使用次数在70次左右;6504K重复使用次数为30-35次;C207在固定床上使用;一般用一段时间后重新换新催化剂;具体使用次数不好估计,钯碳一般在使用后需要进行活化。 (10)催化剂形式:钯碳、KT-02、6504K、C207为负载型催化剂,雷尼镍为镍铝合金。 以上主要是对各催化剂的特性进行比较,如有不合适的地方,请多指点。各位虫友可以根据自己所要加氢的原料及产物特点,选择合适的催化剂。

由废催化剂制备加氢处理催化剂的方法

xxxxxxxx 1/5页一种由废催化剂制备加氢处理催化剂的方法技术领域 [0001] 本发明涉及一种由废催化剂制备加氢处理催化剂的方法,特别是由废加氢催化剂制备的渣油沸腾床加氢处理催化剂的方法。 技术背景 [0002] 在石油化学工业中需要大量的催化剂,催化剂在使用过程中,由于失去其原有活 性而成为废弃物,这些富含金属的废催化剂弃之不用,不仅是资源上的浪费,而且污染环境。最近,环保法规对废催化剂的丢弃越来越严格。废加氢催化剂被美国环境保护机构(USEPA)认为是危险废弃物。废催化剂有几种处理方法,如填埋处置、回收金属,再生或重复使用,利用其作为原材料生成其它有用产品来解决废催化剂问题。从环境和经济的观点,利用废催化剂为原料来生成其它有价值的产品是一个理想的选择。 [0003] USP7335618公开了一种生成加氢处理催化剂及金属回收的方法。该方法是将加氢处理工艺中的废催化剂经过热处理,研磨后得到再生粉末。再生粉末根据金属含量进行筛分、成型、干燥和焙烧得到再生催化剂,该再生催化剂中直径5-200nm 的孔所占孔容至少为0.2mL/g ,直径>200nm 的孔所占孔容小于0.1mL/g 。该工艺中要求再生后金属含量(Ni+V)总和为1.5~10wt %,同时对废催化剂粉末进行筛分,原料范围较窄且工艺过程较为复杂。 [0004] USP6030915公开了一种大孔加氢处理催化剂的制备工艺。该工艺包括废加氢处理催化剂通过热处理除去部分碳和硫,研磨热处理后的催化剂,把研磨后催化剂与至少一种添加剂混合,混合物料成型形成新的加氢催化剂。催化剂中氧化铝作为粘结剂,添加剂为铝矾土、硅藻土、高岭土及海泡石等。该工艺特别适用于制备沸腾床催化剂。该专利仅仅解决了催化剂孔结构和酸性质的改变,没有对活性金属进行恢复,来提高其加氢活性。并且处理过程复杂,能耗较高。 [0005] CN03133558.6公开了一种废催化剂制备加氢精制催化剂的方法。该方法是将废的加氢催化剂研磨后,加入加氢活性金属氧化物或活性金属盐类,加入粘结剂混捏成型。将成型后的物料经过再生处理来得到新的加氢精制催化剂。该专利中催化剂的再生处理要经过四个阶段,且需要对活性金属进行补充,对催化剂的孔结构上改变很少。 发明内容 [0006] 针对现有技术的不足,本发明目的是提供一种有效利用废加氢处理催化剂的方法,该方法不仅解决了废弃催化剂的污染问题,而且制备出适用于沸腾床加氢工艺的新催化剂,且技术容易实施,催化剂加氢活性高。 [0007] 本发明由废加氢处理催化剂制备新加氢处理催化剂的方法包括以下步骤: [0008] (1)将废加氢处理催化剂研磨粉碎; [0009] (2)向步骤(1)中的粉末加入氧化铝、粘结剂及酸溶液或碱性溶液等原料混捏、成型; [0010] (3)将步骤(2)中得到的样品经过干燥、焙烧得到新加氢处理催化剂。 说 明 书 CN 102441440 A 3

相关主题