搜档网
当前位置:搜档网 › 物理论文【光学发展史】

物理论文【光学发展史】

物理论文【光学发展史】
物理论文【光学发展史】

光学发展史

班级:XXXXX 姓名XXX 学号:XXXXXXX

一.引言

光,在我们生活中扮演着重要的角色,他对我们来说既熟悉又陌生。熟悉的是我们每天接受信息的90%以上都是来源于光,陌生的是我们至今都难以完美的解释什么时光,以及光和时间纠缠在一起的种种问题。既然光对于人类来说这么重要,那么,从古至今对于光的研究也肯定少不了。本论文就将深入探讨人类对于光的认识是如何从零一步一步走向今天的成就。

二.初识光的性质

追溯到古希腊,在欧几里德最早研究了平面镜成象问题,指出反射角等于入射角的反射定律。其他希腊哲学家如毕达哥拉斯、柏拉图、亚里士多德等也发表了有关光学方面的的理论。此后,欧洲的科学发展进入了一个瓶颈时期,光学也因此收到牵连。

三.光学发展的转折点

十七世纪可以称为光学发展史上的转折点。在这时期建立了光的反射定律和折射定律,奠定了几何光学的基础。同时,在此期间出现了光学仪器的雏形,为宇宙学和生物学提供了新的养料。1621年斯涅耳在他的一篇文章中指出,入射角的余割和折射角的余割之比是常数,而笛卡儿约在1630年在《折光学》中给出了用正弦函数表述的折射定律。接着费马在1657年首先指出光在介质中传播时所走路程取极值的原理,并根据这个原理推出光的反射定律和折射定律。综上所述,到十七世纪中叶,基本上已经奠定了几何光学的基础。四.波动说和微粒说的战争

从17世纪中叶开始,人们开始发现有与光的直线传播不完全符合的事实。格里马第首先观察到光的衍射现象,接着胡克也观察到衍射现象,并且和波意耳独立地研究了薄膜所产生的彩色干涉条纹,这些都是光的波动理论的萌芽。

十七世纪下半叶,牛顿和惠更斯等把光的研究引向进一步岁

展的道路。1672年牛顿完成了著名的三棱镜色散试验,并发现

了牛顿圈(如右图所示)。在发现这些现象的同时,牛顿提出了

光是微粒流的理论,他认为这些微粒从光源飞出来。在真空或均

匀物质内由于惯性而作匀速直线运动,并以此观点解释光的反射

和折射定律。然而在解释牛顿圈时,却遇到了困难。同时,这种

微粒流的假设也难以说明光在绕过障碍物之后所发生的衍射现

象。

惠更斯反对光的微粒说,他从声和光的某些现象的相似性出发,认为光是在“以太”中传播的波。所谓“以太”则是一种假想的弹性媒质,充满于整个宇宙空间,光的传播取决于“以太”的弹性和密度.运用他的波动理论中的次波原理,惠更斯不仅成功地解释了反射和折射定律,还解释了双折射现象.但惠更斯没有把波动过程的特性给予足够的说明,他没有指出光现象的周期性,他没有提到波长的概念.他的次波包络面成为新的波面的理论,没有考虑到它们是由波动按一定的位相叠加造成的.归根到底仍旧摆脱不了几何光学的观念,因此不能由此说明光的干涉和衍射等有关光的波动本性的现象.

与此相反,坚持微粒说的牛顿却从他发现的牛顿圈的现象中确定光是周期性的。由于这

点以及牛顿在当时的影响力,使得微粒说在当时占有一定的

主导力。

1801年杨氏最先用干涉原理(右图为杨氏双缝干涉示

意图)令人满意地解释了白光照射下薄膜颜色的由来和用双缝显示了光的干涉现象,并第一次成功地测定了光的波长。1815年菲涅耳用杨氏干涉原理补充了惠更斯原理,形成了人们所熟知的惠更斯—菲涅耳原理。运用这个原理不仅圆满地解释光在均匀的各向同性介质中的直线传播,而且还能解释光通过障碍物时所发生的衍射现象,为波动学说打下了夯实的基础,微粒说和波动说至此成为光学上的两座大山对峙而存。

五.光的电磁理论

1845年法拉第发现了光的振动面在强磁场中的旋转,揭示了光学现象和电磁现象的内在联系。1856年韦伯做的电学实验结果,发现电荷的电磁单位和静电单位的比值等于光在真空中的传播速度。1865年麦克斯韦在理论研究中指出,电场和磁场的改变不会局限在空间的某一部分,而是以数值等于电荷的电磁单位与静电单位的比值的速度传播的,即电磁波以光速传播,这说明光是一种电磁现象。1888年赫兹直接从频率和波长来测定电磁波的传播速度,发现它恰好等于光速,至此就确立了光的电磁理论基础,尽管关于以太问题,要在相对论出现以后才得到完全解决。

光的电磁理论在整个物理学的发展中起着很重要的作用,光和电磁现象的一致性使人们在认识光的本性方面又前进了一大步。

六.量子假说的出现

光的电磁理论的主要困难是不能解释光和物质相互作用的

某些现象,例如炽热黑体辐射中能量随波长分布的问题,特别是

1887年赫兹发现的光电效应(右图为实验示意图,电压表会有偏

转,说明产生了光电子)。

1900年普朗克提出了量子假说,认为各种频率的电磁波(包

括光),只能象微粒似地以一定最小份的能量发生(它称为能量子,

正比于频率),成功地解释了黑体辐射问题,开始了量子光学时期,1905年爱因斯坦发展了普朗克的能量子假说,把量子论贯穿到整个辐射和吸收过程中,提出了杰出的光量子理论、光电效应方程(E=hv),圆满解释了光电效应,并为后来的许多实验例如康普顿效应所证实.但这里所说的光子不同于牛顿微粒说中的粒子,光子是和光的频率(波动特性)联系的,光同时具有微粒和波动两种特性。

至此人们一方面证实了光的波动性;另一方面又证实了光的量子性——粒子性。如何将有关光的本性的两个完全不同的概念统一,人们进行了大量的探索工作,l924年德布罗意创立了物质波学说。他设想每一物质的粒子都和一定的波相联系,这一假设为戴维孙的电子束衍射实验所证实。事实上,一切习惯概念上的实物粒子同样具有这种二重性.也就是说这是微观物质所共有的属性。

至此,微粒说和波动说实现了真正的统一。

七.总结

光学的发展史到这里就算告一段路,从最初到现在,人们对于光学的认识在一步步深入。但直到今天,光对于我们来说仍然十分神秘,我们所掌握的不过是冰山一角,尤其是光速与时间的联系,我们所知道的甚少。光和时间到底有什么关系,中微子超光速的实验到底是否是真的?......等等的这些都等待着我们去接着探索。

光学论文

光学设计性试验《光盘性质的研究》 学院:物理学院 专业:物理学 指导老师:李金环

姓名:陈哲 学号:1221410007

光盘性质的研究

【摘要】CD光盘上的信息是通过压制在光盘上的细小坑点来贮存的,并由这些不同时间长度的细小坑点和坑点之间的平台组成了由里向外分布的螺旋光道.当激光光斑扫描这些坑点组成的光道时,就读出了存储的信息。光盘盘片光道间距为0.74μm,.并且其最小记录点长度为0.4μm,如此小的光道间隔密度和光栅的光栅常量的数量级相当,因此光盘在激光的照射下会像反射光栅一样发生光栅衍射现象。当我们把衍射光斑记录在光屏上,我们就可以根据光的衍射计算出光栅常量b,从而可以计算出光盘的周期。 【关键词】光道反射光栅衍射现像光盘周期光盘厚度 【实验目的】 (一)了解光盘CD,VCD,DVD的构成及光学性质; (二)学会解释出现的光学现象; 【实验要求】 (一)设计实验方案,推导出实验的原理和公式,画出光路图; (二)使用多种方法进行测量; (三)光盘的刻线走向及刻线密度。 【实验仪器】 激光器,废旧光盘三个、没有刻录过的光盘三个、自己制作的可以记录具体位置的光屏一个,光聚座一个,分光计一个。 【实验原理】 1光盘的结构

光盘的物理构造:CD光盘上记录的信息最小单元是比特(bit)。在聚碳酸脂材料上用凹痕和凸痕的形式记录二进制“0”和“1”,然后覆上一层薄铝反射层,最后再覆上一层透明胶膜保护层,并在保护层的一面印上标记。我们通常称光盘的两面分别为数据面和标记面。目前通常用的光盘直径为12cm,厚度约为1mm,中心孔直径为15mm,重约14--18g。光盘由透明塑料PCC聚碳酸酷基片做成,由衬底层、反射层及保护层和最上面的商标层组成。光盘的信息是通过激光反射原理从信息面通过透明塑料来读取的。 图1 光盘的基本结构 在反射层中有四凸坑来表示的信息,当激光头的激光束照射这些凹凸坑时,产生强弱不同的反射光,再将这些反射光变为大小不同的电流,经解码电路还原成信号。光盘的信息坑长为0.9-3.2μm,信息坑宽为0.5μm,信息坑深为0.11μm,信息纹迹间距为1.6μm。 2.光盘的读取原理 光盘的原理是:光盘能以二进制数据(由“0”和“1”组成的数据模式)的形式存储文件和音乐信息。要在光盘上存储数据,首先必须借助电脑将数据转换成二进制,

物理光学期末考试总结

物理光学期末考试总结 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

线偏振光的方位角:线偏振光的振动面与入射面间的夹角称为线偏振光的方位角。 相干时间:⑴光源发出的一个光波列所用的平均时间⑵指光源发出的光波列被一分为二再合二为一时能产生干涉的最大时间差<答对1,2个中的一个即可)(2分>⑶相干时间越大,单色性越好。(1分> 相干长度:⑴指光源发出的光波列的平均长度⑵光源发出的光波列被一分为二,再合二为一时能产生干涉的最大光称差<答对1,2中的一个即可)(2分>⑶是光源单色性的标志(1分>b5E2RGbCAP 惠更斯——菲涅耳原理:任一时刻,波前上的每一点都可看成是新的子波波源,下一时刻的波前就是这些子波的公切面<包络面)。(1分>后来,菲涅耳考虑到惠更斯原理中诸子波既然来自同一波前,它们必定是相干的,因此求出诸子波的干涉效应,也就得出新波前的强度分布了,所以一般把惠更斯原理加干涉原理称为惠更斯——菲涅耳原理。(1分>p1EanqFDPw 夫朗和菲衍射:当光源和衍射物之间的距离和衍射物与观察屏之间距离二者均为无限远时的衍射称为菲涅耳衍射。 菲涅耳衍射:当光源和衍射物之间的距离和衍射物与观察屏之间距 离二者至少有一个是有限的衍射称为菲涅耳衍射。< 没答至少扣一分)DXDiTa9E3d 晶体的磁光效应:媒质因磁场而引起的折射率变化,称为磁光效应。

晶体的电光效应:媒质因电场而引起的折射率变化,称为电光效应。 半波损失:在小角度入射(1分>或掠入射(1分>两种情况下,光波由折射率小的媒质<光疏媒质)进入折射率大的媒质<光密媒质)时,反射光和入射光的振动方向相反,这种现象通常称为“半波损失”。(1分>RTCrpUDGiT 寻常光:Eo∥Do ,lso∥lko (1分>;即折射率与lk方向无关,与各向同性媒质中光传播情况一样(2分>,故称为“寻常 光”5PCzVD7HxA 非寻常光:一般情况下Ee不平行于 De(1分>,lke不平行于lse(1分>,折射率随lk的方向改变,与各方向同性媒质中光传播情况不同,故称为“非寻常光”。(1分>jLBHrnAILg 等厚干涉:各相干光均以同样的角度入射于薄膜(1分>,入射角θo 不变(1分>,改变膜厚度,这时每个干涉条纹对应的是同一个厚度的光干涉的结果。(1分>xHAQX74J0X 等倾干涉:指薄膜<一般板的厚度很小时,均称为薄膜)厚度处处相同(1分>,两光束以各种角度入射时产生的一组干涉条纹(2分>。LDAYtRyKfE 干涉条纹的半宽度:在透射光的情况下,半宽度是指透射光强度下降到其峰值的一半时所对应的位相变化量 圆偏振光:电矢量E的端点所描述的轨迹是一个圆(1分>:即在任一时刻,沿波传播方向上,空间各点E矢量末端在x,y平面上的投

近代物理学史论文

关于经典力学体系的建立的思索 【摘要】:力学又称经典力学,是物理学发展的最早的分支学科。力学知识最早起源于人们对自然现象和生产劳动的经验。经典力学体系的建立和古代劳动人民日常物理经验和科学家的努力探索精神是分不开的。经典力学的研究对象是天体和地面上物体的机械运动。、现在主要就以下几个方面谈谈本人关于经典力学体系的建立的思索:古希腊对物理学的贡献、中国古代的力学成就、伽利略的运动理论、牛顿与经典力学的建立。 【关键词】:第谷与开普勒奠基人——伽利略牛顿力学 首先谈谈古希腊对物理学的贡献。古希腊人在文化领域取得光辉夺目成就的同时,也对科学做出巨大的贡献。亚里士多德(公元前384~前322年)和阿基米德(前287—前212)是古希腊的伟大学者,是古希腊力学知识的集大成者。 亚里士多德研究了在重力作用下物体的运动,论证了运动、时间和空间的关系,区分了物质方面的运动、量方面的运动和空间方面的运动。他的主要成就有时提出了以下五点:(1)物体的运动:物体永远在运动变化,变化就是运动;(2)将自然界的运动分为自然运动和非自然运动;(3)①力是产生物体运动的原因,②力是维持物体运动的原因;(4)对抛体运动的解释:自然界害怕虚空,填补空虚推动物体;(5)自由落体:物体越重,下落速度应该越大。 在我看来,亚里士多德对经典力学体系的建立,和他的以下几点精神十分不开的:(1)亚里士多德能够摆脱神的意志,并能形成一套自圆其说的体系,在当时是有非常重要意义的;(2)亚里士多德重视近身事物的观察,强调思辨的作用,并总结出结论解释现象,引起众多的讨论与研究。与亚里士多德从小对自然科学特别爱好,也很钻研、好学多问、才华横溢、成绩优异也是分不开的。在那个物理理论贫瘠的年代,亚里士多德的成就是璀璨的,虽然由于他自身的局限性,提出的一些错误的观点,阻碍了物理学的快速发展,但是他对物理的贡献仍然是不可否认的。 阿基米德是古希腊继亚里士多德之后又一科学巨匠,他从生产实践出发,运用数学的方法建立起静力学,被誉为“力学之父”,还有人认为他是近代型的物理学家。阿基米德在力学上的贡献主要是严格地证明了杠杆定律的浮力定律,后

【毕业论文选题】物理学本科毕业论文题目

物理学本科毕业论文题目 20世纪是科学技术飞速发展的时代。在这个时代,目睹了人类分裂原子、拼接基因、克隆动物、开通信息高速公路、纳米加工和探索太空。很难设想,若没有科学技术的飞速发展,现代生活将是什么样子。与科学技术的发展一样,物理学也经历了极其深刻的革命。可以说,物理学每时每刻都在不停的发展,其活跃的前沿领域很多,是最有生命力、成果最多的之一。下面学术堂为你提供了物理学本科毕业论文题目,希望对你有所帮助。 1

物理学本科毕业论文题目一: 1、MATLAB在大学物理实验仿真中的应用 2、基于Flash的大学物理电学仿真实验的设计与实现 3、量子点和一维量子线相耦合系统在Kondo区物理性质的研究 4、基于时域物理光学方法的半空间上方目标散射研究 5、有机光电材料的光物理特性研究 6、基于激光混沌的全光物理随机数发生器 7、基于超导电路系统的量子模拟和基础量子物理研究 8、金属亚波长结构阵列电磁场增强及光学异常透射的机理研究 9、微型热电系统的多物理场耦合模型与性能优化研究 10、外尔半金属的反常物理性质研究 11、中子光子输运物理过程蒙特卡罗处理方法研究 12、红外视景仿真关键技术研究 13、关于拓扑物理的量子模拟研究 14、高真实感红外场景实时仿真技术研究 15、氢化非晶硅薄膜结构及其物理效应 16、PIC数值方法以及激光-物质相互作用若干物理研究 17、目标电磁散射特性的快速计算方法研究 18、钙钛矿半导体中的瞬态物理过程研究 19、基于激光自混合效应的多物理参数同步测量方法研究 20、高性能多物理场数值算法研究及其应用 21、超薄Bi薄膜的电子态研究 22、铁电基复合薄膜的光伏效应及其调控研究 23、高增益短波长自由电子激光相关物理研究 2

物理光学秋季期末考试题及答案

一、填空题(每小题3分,总共24分) 1.玻璃的折射率为n=1.5,光从空气射向玻璃时的布儒斯特角为_________;光 从玻璃射向空气时的布儒斯特角为_________。 2. 在双缝杨氏干涉实验中,两缝分别被折射率为n1和n2的透明薄膜遮盖,二者 的厚度均为e。波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相 干光的相位差为_________。 3. 如图所示,左图是干涉法检查平面示意图,右图是得到的干涉图样,则干涉 图中条纹弯曲处的凹凸情况是_________。 4. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上, 因而实际上不出现(即缺级),那么此光栅每个透光缝宽度a和相邻两缝间不透光 部分宽度b的关系为_________。 5. 波长为λ=600nm的单色光垂直入射于光栅常数d=1.8×10-4 cm的平面衍射光 栅上,可能观察到的光谱线的最大级次为_________。 6.在双折射晶体内部,频率相同而光矢量的振动方向不同的线偏振光。①沿光轴 传播时,它们的传播速度是_______的;②沿垂直光轴传播时,它们的传播速度 是_______的。 7.对于观察屏轴上P0点,设光阑包含10个波带,让奇数波带通光,而偶数波带 不通光,则P0点的光强约为光阑不存在时的_________倍。 8. 光栅方程的普遍形式为________________。 二、简答题(每小题6分,总共36分) 1. 何谓复色波的群速度?何谓复色波的相速度?什么介质中复色波的群速度大于其相速度?什么介质中复色波的群速小于其相速度? 2.简述光波的相干条件。

3. 汽车两前灯相距1.2m ,设灯光波长为 λ=600nm ,人眼瞳孔直径为D =5mm 。试问:对迎面而来的汽车,离多远能分辨出两盏亮灯? 4. 一束线偏振光垂直于晶面射入负单轴晶体后,分解成o 光和e 光,传播速度快的是o 光还是e 光?为什么? 5. 简述法拉第效应及其不可逆性。 6. 用散射理论解释蓝天的形成缘故。 三、透镜表面通常覆盖一层氟化镁(MgF 2)(n =1.38)透明薄膜,为的是利用干涉来降低玻璃(n =1.50)表面的反射,使波长为λ=632.8nm 的激光毫不反射地透过。试问:覆盖层氟化镁至少需要多厚?(10分) 玻璃 MgF 2 入射光

近代物理学史小论文

近代物理学史小论文 浅谈大学教育 关键词:大学教育知识问题 摘要:通过对现今大学教育的了解~加上自己所处学校的教育情况~提出一些小小的看法,同时对大学的教育方法与方式就自己的认为讲述一下自己的见解~并且对现今的大学教育中存在的问题结合自己的所见略微加以提出。 大学教育是每一个学子都渴望经历的一个过程,在中国,学生对大学特别是名牌大学更是趋之若鹜,都希望上一个好的大学,接受好的教育。这是无可厚非的。然而,就现今的大学教育,虽然是那么的让人向往,但是有些方面还是有必要去做深深地思考。 就我的看法而言,大学之所以区别于高中,主要在一个“大”字上,这里的“大”有几层含义,最表面也是最简单的那就是因为大学的校园之大,面积之广,建筑之多;其次,深一层次,是因为大学所涉及的知识面之广和全,所传授的知识是直接运用于各个领域的;最后,“大”字再某种层次还可以理解为“高”的意思,即大学里所学的知识不再像以前那样,以前学的基本都是一些表面的浅显的知识,重在的是了解而不是深究,然而在大学里,我们更注重的是有深入知识的内部层面,要知其然并知其所以然。举个例子,就我们理科生而言,在中学时代,像有些课程,比如物理,我们只是简单的套用课本上的一些物理公式用来解题,只要知其然已达要求,不必深究这么东西是从何而来,在大学就不一样了,对于物理专业的学生,也许一个简单的公式就需要大量的时间来推演与深究,每个细节都必不可少。还有,在中学数学课程上有些内容,例如微积分,只是提出,给些公式并一笔带过,很少就其具体的推导方法,在大学,却几乎要用一到两个学期都不能系统的

学完这门课。总之,我们在大学我们更注重的是对知识更深一层次的剖析,究其本质来说明问题。正因为如此,我们才说大学教育是一种高等教育。 大学教育不仅在教育的内容上有所不同,同时在教育的方法和手段上与中学更是大不相同。我们知道,在中学阶段,大都数学生都是在被动的学习,接受知识。是因为有强大的压制力和学校老师的监督管理,学生才不得不去学习,努不努力那就另当别论了。而在大学,我们倡导的是学习自主自觉,没有人再会太大的干预你的学习,一切都是自主,只不过最后通过学期末的考试来检查你的学习情况。也许有时候在某门课没通过,最大的“处罚”就是重修及取消一切评优资格,最后只要过了就达到了要求。至于你做的好不好,并不受限制,只要过了最低标准就行。所以,人们常说,大学是很轻松的。其实不然。 在大学里,虽然学校或者是学院对学生的学习的要求并不是那么的严格,但是在某些方面还是有一些强制性的规定。比如说,学校规定每个在校生必须按照要求完成大学四年内所需的学分,不仅仅在与自己的专业有关课程上,而且在公共选修课程上。这就需要学生规定的时间内尽可能学到更多的知识,即扩大知识面,这不仅仅局限于自己的专业方面。这也许就大学教育的一个较大的特点。 就我自己这个专业来讲,要求大体上和学校规定的一样,在前两个学年这个阶段,主要是学习一些通识课加上必要的专业基础课,并没有更加全面的接触专业课程,所以学习要求基本和全校其他各学院系同届的学生一样,所以我觉得大学更重要的时期是在接受专业课程教育的阶段,虽然只有一年,但在我认为,这应该是大学四年的核心内容。所以,在大学,最能凸显各个专业特点的时期就应在这宝贵的一年。同时,要想在大学里学有所得,重要的是把我专业课的这一年,这也是以后能够融入社会参加工作的保证。 国家对教育事业的关注应该是很重视的,因为一个国家要发展,必须要有技术人才,而高等院校正是国家所需各行各业的人才的来源地,教育事业得不到发展,

物理系论文格式(DOC)

学士学位论文 系别:物理与电子工程系 学科专业: 姓名: 2014年06月

量子纠缠 系别:物理与电子工程系 学科专业: 姓名: 学号: 2015年06月 2

论文题目□□□□□【宋体二号加粗居中】【段前24磅段 后18磅】 摘要:【此二字黑体四号加粗】□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□【宋体四号,1.5倍行距】 【空一行】 关键词:【此三字黑体四号加粗】□□□;□□□;□□□【宋体四号, 1.5倍行距,关键词至少3个】【段前0磅段后0磅】 【以上单独一页】

Title(英文题目)□□□□□【Times New Roman二 号居中加粗】【段前24磅段后18磅】 Abstract:【此单词加粗】□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□.【Times New Roman 四号,1.5倍行距】 【空一行】 Keywords:【此单词加粗】□□□;□□□;□□□【Times New Roman 四号】【以上单独一页,中英文摘要A4纸单双面打印】 4

目录【黑体二号加粗居中,单倍行距】【段前24磅段后18磅】 1 引言 (1) 2量子纠缠 (2) 2.1 量子力学基础 (2) 2.2 量子纠缠态的定义 (3) 2.3 量子纠缠态的分类 (6) 2.3.1纯态量子纠缠态 (6) 2.3.2混合态量子纠缠态 (6) 2.4 量子纠缠态的物理表现 (7) 3 量子纠缠态的度量 (8) 3.1 纠缠度的描述 (8) 3.2 形成纠缠度 (11) 4 量子纠缠在量子信息中的作用 (12) 4.1 量子通信 (13) 4.3 量子密码 (18) 5 结束语 (20) 致谢 (20) 参考文献 (21) 【1级标题宋体三号,1.5行距】【2级标题宋体四号,1.5行距,左缩进2字符】【3 级标题宋体四号,1.5行距,左缩进4字符】 【以上单独一页】

大学物理热力学论文[1]

《大学物理》课程论文 热力学基础 摘要: 热力学第一定律其实是包括热现象在内的能量转换与守恒定律。热力学第二定律则是指明过程进行的方向与条件的另一基本定律。热力学所研究的物质宏观性质,特别是气体的性质,经过气体动理论的分析,才能了解其基本性质。气体动理论,经过热力学的研究而得到验证。两者相互补充,不可偏废。人们同时发现,热力学过程包括自发过程和非自发过程,都有明显的单方向性,都是不可逆过程。但从理想的可逆过程入手,引进熵的概念后,就可以从熵的变化来说明实际过程的不可逆性。因此,在热力学中,熵是一个十分重要的概念。关键词: (1)热力学第一定律(2)卡诺循环(3)热力学第二定律(4)熵 正文: 在一般情况下,当系统状态变化时,作功与传递热量往往是同时存在的。如果有一个系统,外界对它传递的热量为Q,系统从内能为E1 的初始平衡状态改变到内能为E2的终末平衡状态,同时系统对外做功为A,那么,不论过程如何,总有: Q= E2—E1+A 上式就是热力学第一定律。意义是:外界对系统传递的热量,一部分

是系统的内能增加,另一部分是用于系统对外做功。不难看出,热力学第一定律气其实是包括热量在内的能量守恒定律。它还指出,作功必须有能量转换而来,很显然第一类永动机违反了热力学第一定律,所以它根本不可能造成的。 物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程称为循环过程,或简称循环。经历一个循环,回到初始状态时,内能没有改变,这是循环过程的重要特征。卡诺循环就是在两个温度恒定的热源(一个高温热源,一个低温热源)之间工作的循环过程。在完成一个循环后,气体的内能回到原值不变。卡诺循环还有以下特征: ①要完成一次卡诺循环必须有高温和低温两个热源: ②卡诺循环的效率只与两个热源的温度有关,高温热源的温 度越高,低温热源的温度越低,卡诺循环效率越大,也就 是说当两热源的温度差越大,从高温热源所吸取的热量Q1 的利用价值越大。 ③卡诺循环的效率总是小于1的(除非T2 =0K)。 那么热机的效率能不能达到100%呢?如果不可能到达100%,最大可能效率又是多少呢?有关这些问题的研究就促进了热力学第二定律的建立。 第一类永动机失败后,人们就设想有没有这种热机:它只从一个热源吸取热量,并使之全部转变为功,它不需要冷源,也没有释放热量。这种热机叫做第二类永动机。经过无数的尝试证明,第二类永动

光学论文

理学院电子科学与技术120131326 刘玉光 浅谈光学概论 【简介】光学已成为为现代科研的重要内容,传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。光学将成为今后光学工程学科的重要发展方向。 【英文译文】Optical has become the important contents for the modern scientific research, the traditional optical only research visible light, and modern optical already expanded to whole wavelength electromagnetic wave of research. Light is an electromagnetic wave, in physics, electromagnetic wave by electrodynamics of maxwell's equations describing, At the same time, the light has wave-particle duality, need to use the quantum mechanics expression. Optical will become future optical engineering discipline of important development direction. 【关键词】光学、现代科技、应用、研究、历史、前景 【正文】 一、光学简介 在早期,主要是基于几何光学和波动光学拓宽人的视觉能力,建立了以望远镜、显微镜、照相机、光谱仪和干涉仪等为典型产品的光学仪器工业。这些技术和工业至今仍然发挥着重要作用。本世纪中叶,产生了全息术和以傅里叶光学为基础的光学信息处理的理论和技术。特别是六十年代初第一台激光器的问世,实现了高亮度和高时一空相干度的光源,使光子不仅成为了信息的相干载体而且成为了能量的有效载体,随着激光技,本和光电子技术的崛起,光学工程已发展为光学为主的,并与信息科学、能源科学、材料科学。生命科学、空间科学、精密机械与制造、计算机科学及微电子技术等学科紧密交叉和相互渗透的学科。它包含了许多重要的新兴学科分支,如激光技术、光通信、光存储与记录、光学信息处理、光电显示、全息和三维成像薄膜和集成光学、光电子和光子技术、激光材料处理和加工、弱光与红外热成像技术、光电测量、光纤光学、现代光学和光电子仪器及器件、光学遥感技术以及综合光学工程技术等。这些分支不仅使光学工程产生了质上的跃变,而且推动建立了一个规模迅速扩大的前所未有的现代光学产业和光电子产业。 近些年来,在一些重要的领域,信息载体正在由电磁波段扩展到光波段,从而使现代光学产业的主体集中在光信息获取、传输、处理、记录、存储、显示和传感等的光电信息产业上。这些产业一般具有数字化、集成化和微结构化等技术特征。在传统的光学系统经不断地智能化和自动化,从而仍然能够发挥重要作用的同时,对集传感、处理和执行功能于一体的微光学系统的研究和开拓光子在信息科学中作用的研究,将成为今后光学工程学科的重要发展方向。

物理光学期末试题

1.波动方程,光程、光程差、相位差 2.杨氏干涉、薄膜干涉(等倾、等厚) (重点) 3.单缝衍射、圆孔衍射(半波带、分辨本领)、光栅 4.马吕斯定律、布儒斯特定律、偏振光之间转换 1.)](ex p[0kz t i E E --=ω与)](ex p[0kz t i E E +-=ω描述的是 传播的光波。 A .沿正方向 B .沿负方向 C .分别沿正和负方向 D .分别沿负和 正方向 2.牛奶在自然光照射时呈白色,由此可以肯定牛奶对光的散射主要是 A .瑞利散射 B .分子散射 C .Mie 散射 D .拉曼散射 3.在白炽光入射的牛顿环中,同级圆环中相应于颜色蓝到红的空间位置是 A .由外到里 B .由里到外 C .不变 D .随机变化 5. F-P 腔两内腔面距离h 增加时,其自由光谱范围λ? A .恒定不变 B .增加 C .下降 D .=0 6.光波的能流密度正比于 A . E 或H B .2E 或2H C .2E ,与H 无关 D . 2H ,与 E 无关 7.光在介质中传播时,将分为o 光和e 光的介质属 A .单轴晶体 B .双轴晶体 C .各向同性晶体 D .均匀媒质 8.两相干光的光强度分别为I 1和I 2,当他们的光强都增加一倍时,干涉条纹的可见度 A .增加一倍 B . 减小一半 C .不变 D . 增加1/2 倍 9.线偏振光可以看成是振动方向互相垂直的两个偏振光的叠加,这两个偏振光是 A .振幅相等,没有固定相位关系 B .振幅相等,有固定相位关系 C .振幅可以不相等,但相位差等于0度或180度 D .振幅可以不相等,但相位差等于90度或270度 10.等倾干涉图样中心圆环 。(区分迈克尔孙和牛顿环) A .级次最高,色散最弱 B .级次最高,色散最强 C .级次最低 色散最弱 D .级次最低,色散最强 11.在单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为λ4=a 的单 缝上,对应于衍射角为30o的方向,单缝处波阵面可分成的半波带数目为 A .2 个 B .4 个 C .6 个 D .8 个 14.闪耀光栅中,使刻槽面与光栅面成角,目的是使

近代物理发展史论文

近代物理发展史论文 ---近代光学发展简史 近代光学发展简史-几何光学时期 在这个时期建立了光的反射定律和折射定律,奠定了几何光学的基础。同时为了提高人眼的观察能力,人们发明了光学仪器,第一架望远镜的诞生促进了天文学和航海事业的发展,显微镜的发明给生物学的研究提供了强有力的工具。 荷兰的李普塞在1608年发明了第一架望远镜。开普勒于1611年发表了他的著作《折光学》,提出照度定律,还设计了几种新型的望远镜,他还发现当光以小角度入射到界面时,入射角和折射角近似地成正比关系。折射定律的精确公式则是斯涅耳和笛卡儿提出的。1621年斯涅耳在他的一篇文章中指出,入射角的余割和折射角的余割之比是常数,而笛卡儿约在1630年在《折光学》中给出了用正弦函数表述的折射定律。接着费马在1657年首先指出光在介质中传播时所走路程取极值的原理,并根据这个原理推出光的反射定律和折射定律。综上所述,到十七世纪中叶,基本上已经奠定了几何光学的基础。 关于光的本性的概念,是以光的直线传播观念为基础的,但从十七世纪开始,就发现有与光的直线传播不完全符合的事实。意大利人格里马第首先观察到光的衍射现象,接着,胡克也观察到衍射现象,并且和波意耳独立地研究了薄膜所产生的彩色干涉条纹,这些都是光的波动理论的萌芽。 十七世纪下半叶,牛顿和惠更斯等把光的研究引向进一步岁展的道路。1672年牛顿完成了著名的三棱镜色散试验,并发现了牛顿圈(但最早发现牛顿圈的却是胡克)。在发现这些现象的同时,牛顿于公元1704年出版的《光学》,提出了光是微粒流的理论,他认为这些微粒从光源飞出来。在真空或均匀物质内由于惯性而作匀速直线运动,并以此观点解释光的反射和折射定律。然而在解释牛顿圈时,却遇到了困难。同时,这种微粒流的假设也难以说明光在绕过障碍物之后所发生的衍射现象。 惠更斯反对光的微粒说,1678年他在《论光》一书中从声和光的某些现象的相似性出发,认为光是在“以太”中传播的波.所谓“以太”则是一种假想的弹性媒质,充满于整个宇宙空间,光的传播取决于“以太”的弹性和密度.运用他的波动理论中的次波原理,惠更斯不仅成功地解释了反射和折射定律,还解释了方解石的双折射现象.但惠更斯没有把波动过程的特性给予足够的说明,他没有指出光现象的周期性,他没有提到波长的概念.他的次波包络面成为新的波面的理论,没有考虑到它们是由波动按一定的位相叠加造成的.归根到底仍旧摆脱不了几何光学的观念,因此不能由此说明光的干涉和衍射等有关光的波动本性的现象.与此相反,坚持微粒说的牛顿却从他发现的牛顿圈的现象中确定光是周期性的.综上所述,这一时期中,在以牛顿为代表的微粒说占统治地位的同时,由于相继发现了干涉、衍射和偏振等光的被动现象,以惠更斯为代表的波动说也初步提出来了,因而这个时期也可以说是几何光学向波动光学过渡的时期,是人们对光的认识逐步深化的时期. 近代光学发展简史-波动光学时期

大学物理下小论文

电磁感应在生活中的应用 摘要:电磁学已成为物理学的一个重要分支,是研究电磁运动基本规律的学科。电磁学理论的发展不仅是电工学、无线电电子学、电子计算机技术及其他新科学、新技术发展的理论依据,而且也与人们的日常生活和生产技术有着十分密切的关系。 关键词:电磁感应熔炼金属磁悬浮技术电磁炮 正文: 电磁感应是指因为磁通量变化产生感应电动势的现象。电磁感应现象的发现,是电磁学领域中最伟大的成就之一。它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。 熔炼金属 交流的磁场在金属内感应的涡流能产生热效应,这种加热方法与用燃料加热相比有很多优点:加热效率高,达到50~90%;加热速度快;用不同频率的交流可得到不同的加热深度,这是因为涡流在金属内不是均匀分布的,越靠近金属表面层电流越强,频率越高这种现象越显著,称为“趋肤效应”。工业上把感应加热依频率分为四种:工频(50赫);中频(0.5~8千赫);超音频(20~60千赫);高频(60~600千赫)。工频交流直接由配电变压器提供;中频交变电流由三相电动机带动中频发电机或用可控硅逆变器产生;超音频和高频交流由大功率电子管振荡器产生。 磁悬浮技术 随着航天事业的发展,模拟微重力环境下的空间悬浮技术已成为进行相关高科技研究的重要手段。目前的悬浮技术主要包括电磁悬浮、光悬浮、声悬浮、气流悬浮、静电悬浮、粒子束悬浮等,其中电磁悬浮技术比较成熟。电磁悬浮技术(electromagnetic levitation)简称EML技术。它的主要原理是利用高频电磁场在金属表面产生的涡流来实现对金属球的悬浮。 磁悬浮技术的系统,是由转子、传感器、控制器和执行器4部分组成,其中执行器

中北大学物理光学期末考试——计算题

本复习资料专门针对中北大学五院《物理光学与应用光学》石顺祥版教材,共有选择、填空、简答、证明、计算五个部分组成,经验证命中率很高,80分左右,不过要注意,证明题可能变成计算题,填空题变成选择题。 1-1: 8 610) (2)y t E i e++? =-+ 方程:y= y+= 方向向量:一个可以表示直线斜率的向量,这个向量就是方向向量。 Ax+By+C=0:若A、B不全为零,其方向向量:(- B,A)。 8 610) (2)y t E i e++? =-+ ) ( r k E E?- - =t i eω) ( r k E E?- =t i eω) ( r k E E?+ - =t i eω) ( r k E E?+ =t i eω 1-3 试确定下列各组光波表达式所代表的偏振态及取向 ①E x=E0sin(ωt-kz), E y= E0cos(ωt-kz) ②E x= E0cos(ωt-kz), E y= E0cos(ωt-kz+π/4) ③E x= E0sin(ωt-kz), E y=-E0sin(ωt-kz) E x=E0sin(ωt-kz), E y= E0cos(ωt-kz) 相位差π/2,E x=E y,圆。讨论xy平面的偏振情况 t=0时:合成矢量? t=T/4时:合成矢量? 右圆 E x= E0cos(ωt-kz), E y= E0cos(ωt-kz+π/4) 相位差π/4,椭圆。 t=0时:合成矢量? t=T/4时:合成矢量? 右椭圆,长半轴方向45o 见p25页。

E x = E 0sin(ωt -kz ), E y =-E 0sin(ωt -kz ) 相位差0,直线。y =-x 方向向量:(-1,1) 1-4:两光波的振动方向相同,它们的合成光矢量为: 1268+=10[cos cos()] 10102 10[cos(53.13)cos sin(53.13)sin ]10cos(53.13)t t t t t π ωωωωω+-=?+?=?-E E 1-5:+=cos()cos()4x y iA kz t jA kz t π ωω-+--E =E E ;因此有: =,4 y x π ???=-- =, =ox oy E A A E , tan 1,α= 得到: tan 2tan(2)cos ,,4 π ψα?ψ== sin 2sin(2)sin ,,8 π χα?χ==- 222tan()0.4142,2,8b a b A a π-=-≈-+= 得到: 2220.17162, 1.31,0.5412a a A a A b A +===。 1-8:(2)解:g dv v v k dk =+,g dv dv d dv v dk d dk d ωωω==,g g dv dv v v k v kv dk d ω =+=+ g g dv v kv v d ω-=,11g v v v dv dv k d v d ωωω == -- ,v =,3 2()()2r r r r c dv d εμεμ-=- 2 2() /[1]()()211[1]22r r r r g r r r r r r r r r r r r c d v v c v v dv d d d v v d d d εμεμωωεμεμωωεμεμωωεμωεμω ====+-++ 1-11 一左旋圆偏振光,以50o角入射到空气-玻璃分界面上,见下图,试求反射光和透射光的偏振态

近代物理发展史论文

近代物理进展作业物理学发展永无止境 班级: 学号: 姓名: 日期:

物理学发展永无止境 摘要: 经典力学,经典电动力学,经典热力学形成物理世界三大支柱。它们紧紧结合在一块,构建起一座华丽而雄伟的殿堂。物理学家甚至相信:这个世界的基本原理都已被发现,物理学已尽善尽美,已经走到了尽头,再也不可能有任何突破性的进展,如果说还有什么要做的事,那就是在一些细节上进行补充与修正。新的物理结论代替旧的物理结论也是必然,没有一种理论可以说绝对完美,即使我们提出的理论在完美,也终会有受局限的一天,所以我们没有必要一定要提出十分完美,别人永远攻不破的理论,我们要做的只是使物理大厦更加完善,所以我们要做只是努力向前看! 物理学的开端源溯深远,但若说物理学真正意义上的征服世界还是在19世纪末,他的力量控制着一切人们所未知的现象。古老的牛顿力学城堡历经岁月磨砺风雨吹打依旧屹立不倒,反而更凸显他的伟大与坚固。从天上的行星到地上的石头,万物皆毕恭毕敬的遵循它的规律。1846年海王星的发现更是它取得的伟大胜利之一。光学方面,波动论统一天下,神奇的麦式方程完美的诠释了这个理论并将其扩大到整个电磁领域。热学方面,热力学三大定律已基本建立,而在克劳修斯,范德瓦尔斯的努力下,分子动理论和统计热力学成功建立。

当然,更令人惊奇的是这一切似乎都彼此包含,形成了以经典物理联盟。经典力学,经典电动力学,经典热力学形成物理世界三大支柱。它们紧紧结合在一块,构建起一座华丽而雄伟的殿堂。 那当然是一段伟大而光荣的日子,是经典物理的黄金时代。科学的力量从这一时期开始才真正变得如此强大,如此令人神往。我们认为自己已掌握了上帝造物的奥秘,在没有遗漏,我们所熟知的一切物理现象几乎都可以从现成的物理理论里得到解释。力,热,声,光,电等等一切的一切,似乎都被同一种手法控制。物理学家甚至相信:这个世界的基本原理都已被发现,物理学已尽善尽美,已经走到了尽头,再也不可能有任何突破性的进展,如果说还有什么要做的事,那就是在一些细节上进行补充与修正。一位著名的科学家说:“物理学的未来,将在小数点第六位后面去寻找.。”而普朗克的导师甚至劝他不要浪费时间去研究这个已经高度成熟的体系。 但历史再次体现了他惊人的不确定性,致使19世纪物理世界所闪烁的金色光芒注定只是昙花一现,而那喧嚣一时的空前繁盛的经典物理终究要像泡沫那样破败凋零! 其实,今天回头来看,赫兹1887年的电磁波实验的意义远比实际得出的结论复杂而深远。它一方面彻底的建立了电磁理论,为经典物理的繁荣添加了浓重的一笔;另一方面,它又埋下了促使经典自身毁灭的武器,孕育了革命的种子。当赫兹在卡尔斯鲁厄大学的那件实验室里通过铜环接收器的缺口爆发的电火花证明电磁波存在时,还发现了一个奇怪的现象:当有光照射到这个缺口上时,似乎火花出现

大学物理小论文

九江学院 Jiu jiang university 课程小论文(设计)题目:机械振动 院系:******** 专业:机械设计制造及其自动化 姓名:陈冬 年级:****** 学号:***号 指导老师:**** *****年**月**号

机械振动: 机械振动在介质中的传播称为机械波(mechanical wave)。机械波与电磁波既有相似之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生;机械波的传播需要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波(例如光波)可以在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械波与电磁波的许多物理性质,如:折射、反射等是一致的,描述它们的物理量也是相同的。常见的机械波有:水波、声波、地震波。关键字:波源介质横波纵波 波源 波源也称振源,指能够维持振动的传播,不间断的输入能量,并能发出波的物体或物体所在的初始位置。波源即是机械波形成的必要条件,也是电磁波形成的必要条件。波源可以认为是第一个开始振动的质点,波源开始振动后,介质中的其他质点就以波源的频率做受迫振动,波源的频率等于波的频率。 介质 广义的介质可以是包含一种物质的另一种物质。在机械波中,介质特指机械波借以传播的物质。仅有波源而没有介质时,机械波不会产生,例如,真空中的闹钟无法发出声音。机械波在介质中的传播速率是由介质本身的固有性质决定的。在不同介质中,波速是不同的。横波 物理学中把质点的振动方向与波的传播方向垂直的波,称作横波。在横波中,凸起的最高处称为波峰,凹下的最低处称为波谷。

绳波是常见的横波。 纵波 物理学中把质点的振动方向与波的传播方向在同一直线的波,称作纵波。质点在纵波传播时来回振动,其中质点分布最密集的地方称为密部,质点分布最稀疏的地方称为疏部。 声波是常见的纵波。 波长 沿着波的传播方向,两个相邻的、相对平衡位置的位移和振动方向总是相同的质点间的距离称作波长,常用λ表示。在横波中,波长等于“波峰-波峰”的长度或“波谷-波谷”的长度;在纵波中,波长等于“密部-密部”或“疏部-疏部”的长度。 频率与周期 波上任意一个质点完成一次全振动所需时间称为周期,常用T 表示;介质中的质点每秒完成全振动的次数叫做波的频率,常用f 表示。频率是周期的倒数。 波速 波速为波长和频率的乘积(v=λf ),表示波在的传播速度。机械波在特定介质中的传播速度是固定的。 所以m k 1412.0+= λ ,则f=Hz k v )14(50+=λ (K=0,1,2,3,……) 例.一列横波沿x 轴传播,波速大于6m/s ,当位移x 1=3cm 处的 A 质点在x 轴上方最大位移处时,位于x 2=6cm 处的 B 质点恰好在平衡 位置,并且振动方向沿y 轴负方向,试求这列波的频率f. 解:

物理光学

物理光学作业习题答案 第一章光波的基本性质 (1)作业习题 1、试说明下列各组光波表达式所代表的偏振态。 ⑴Ex =Eo sin (ωt-kz ),Ey =Eo cos (ωt-kz ) ⑵Ex =Eo cos (ωt-kz ),Ey =Eo cos (ωt-kz+4π) ⑶Ex =Eo sin (ωt-kz ),Ey =-Eo sin (ωt-kz ) 解:(1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω )2 cos(0π ω--=kz t E E x ,0E E E oy ox == ∴2πδ=,∴y E 超前x E 2 π ,∴为右旋圆偏振光 (2))cos(0kz t E E x -=ω,)4 cos(0π ω+-=kz t E E y 4 π δ= ,2022E E E y x ≠+,y E 超前x E 且1== ox oy E E tg α,∴4 π α= 4 cos 2cos 22π π δαψ?=?=tg tg tg ,∴4 π ψ= ∴ 为右旋椭圆偏振光,长轴在y=x 方向上 (3))sin(0kz t E E x -=ω,)cos(0kz t E E y --=ω )sin(0πω+-=kz t E E y ,π δ=, 0E E E oy ox == 1== ox oy E E tg α,∴4 π α= ,ππ δαψcos 2 cos 22?=?=tg tg tg ∴4 π ψ-= ∴ 为线偏振光,振动方向为y=-x 2、试证明:频率相同,振幅不同的右旋与左旋圆偏振光能合成一椭圆偏振光。

哈尔滨工业大学2009至2010学年第一学期物理光学期末考试试题

哈尔滨工业大学2009至2010学年第一学期物理光学期末考试试题 一、填空题(每小题2分,总共20分) 1、测量不透明电介质折射率的一种方法是,用一束自然光从真空入射电介质表面,当反射光为()时,测得此时的反射角为600,则电介质的折射率为()。 2、若光波垂直入射到折射率为n=1.33的深水,计算在水表面处的反射光和入射光强度之比为()。 3、光的相干性分为()相干性和()相干性,它们分别用 ()和()来描述。 4、当两束相干波的振幅之比是4和0.2时,干涉条纹对比度分别是()、和()。 5、迈克尔逊干涉仪的可动反光镜移动了0.310mm,干涉条纹移动了1250条,则所用的单色光的波长为()。 6、在夫朗禾费单缝衍射实验中,以波长为589nm的钠黄光垂直入射,若缝宽为0.1mm,则第一极小出现在()弧度的方向上。 7、欲使双缝弗琅禾费衍射的中央峰内恰好含有11条干涉亮纹,则缝宽和缝间距需要满足的条件是()。 8、一长度为10cm、每厘米有2000线的平面衍射光栅,在第一级光谱中,在波长500nm附近,能分辨出来的两谱线波长差至少应是()nm。 9、一闪耀光栅刻线数为100条/毫米,用l=600nm的单色平行光垂直入射到光栅平面,若第2级光谱闪耀,闪耀角应为多大()。 10、在两个共轴平行放置的透射方向正交的理想偏振片之间,再等分地插入一个理想的偏振片,若入射到该系统的平行自然光强为I0,则该系统的透射光强为()。 二、简答题(每小题4分,总共40分) 1、写出在yOz平面内沿与y轴成q角的r方向传播的平面波的复振幅。 2、在杨氏双缝干涉的双缝后面分别放置n1=1.4和n2=1.7,但厚度同为d的玻璃片后,原来 的中央极大所在点被第5级亮条纹占据。设l=480nm,求玻璃片的厚度d及条纹迁移的方向。 3、已知F-P标准具的空气间隔h=4cm,两镜面的反射率均为89.1%;另一反射光栅的刻线面 积为3′3cm2,光栅常数为1200条/毫米,取其一级光谱,试比较这两个分光元件对 l=632.8nm红光的分辨本领。 4、平行的白光(波长范围为390-700nm)垂直照射到平行的双缝上,双缝相距1mm,用一个 焦距f=1m的透镜将双缝的衍射图样聚焦在屏幕上。若在屏幕上距中央白色条纹3mm处开一个小孔,在该处检查透过小孔的光,则将缺少哪些波长? 5、一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱。钠黄光包含两条谱线, 其波长分别为589.6nm和589.0nm。求在第二级光谱中这两条谱线互相分离的角度。6、若菲涅耳波带片的前10个奇数半波带被遮住,其余都开放,则求中心轴上相应衍射场点 的光强与自由传播时此处光强的比值。 7、一束汞绿光以600入射到KDP晶体表面,晶体的n o=1.512,n e=1.470。设光轴与晶体表面 平行,并垂直于入射面,求晶体中o光和e光的夹角。 8、画出沃拉斯顿棱镜中双折射光线的传播方向和振动方向。(设晶体为负单轴晶体)

相关主题