搜档网
当前位置:搜档网 › 单相PWM整流电路设计(电力电子课程设计报告)

单相PWM整流电路设计(电力电子课程设计报告)

单相PWM整流电路设计(电力电子课程设计报告)
单相PWM整流电路设计(电力电子课程设计报告)

重庆大学电气工程学院

电力电子技术课程设计

/

设计题目:单相桥式可控整流电路设计

年级专业:****级电气工程与自动化学生姓名:*****

学号: ****

)

成绩评定:

完成日期:2013年6月 23 日

指导教师签名:年月日

重庆大学本科学生电力电子课程设计任务书

单相桥式可控整流电路设计

摘要:本文主要研究单相桥式PWM整流电路的原理,并运用IGBT去实现电路的设计。概括地讲述了单相电压型PWM整流电路的工作原理,用双极性调制方式去控制IGBT的通断。在元器件选型上,较为详细地介绍了IGBT的选型,分析了交流侧电感和直流侧电容的作用,以及它们的选型。最后根据实际充电机的需求,选择元器件具体的参数,并用simulink进行仿真,以验证所设计的单相电压型PWM整流器的性能。实现了单相电压型PWM整流器的高功率因数,低纹波输出等功能。

关键词:PWM整流 simulink 双极性调制 IGBT

目录

1.引言 ............................................. 错误!未定义书签。

PWM整流器产生的背景........................... 错误!未定义书签。

PWM整流器的发展状况........................... 错误!未定义书签。

本文所研究的主要内容........................... 错误!未定义书签。

2.单相电压型PWM整流电路的工作原理 ................. 错误!未定义书签。

电路工作状态分析................................ 错误!未定义书签。

PWM控制信号分析................................ 错误!未定义书签。

交流测电压电流的矢量关系...................... 错误!未定义书签。

3.单相电压型PWM整流电路的设计 ..................... 错误!未定义书签。

主电路系统设计................................. 错误!未定义书签。

IGBT和二极管的选型设计......................... 错误!未定义书签。

交流侧电感的选型设计........................... 错误!未定义书签。

直流侧电容的选型设计........................... 错误!未定义书签。

直流侧LC滤波电路的设计........................ 错误!未定义书签。

4.单相PWM整流电路的仿真及分析 ..................... 错误!未定义书签。

~

整流电路的simulink仿真....................... 错误!未定义书签。

对simulink仿真结果的分析..................... 错误!未定义书签。5.工作展望 ........................................ 错误!未定义书签。参考文献 ........................................... 错误!未定义书签。

1.引言

PWM整流器产生的背景

电力电子技术是现代电工技术中最活跃的领域,并且在电力系统中得到日益广泛的应用,它是使用电力电子器件对电能进行变换和控制的技术。电力电子技术根据用户对电能要求的不同,对电能进行不同形式的变换,实现电能更好的满足人们的需求,并通过功能和性能的提高,产生经济和社会效益。

电力电子技术的发展,促进了各种电能变换装置的发展,出现了各种以 PWM 变换为基础的电力电子装置,例如逆变电源、变频器、超导储能装置、新能源发电装置、有源电力滤波器、统一潮流控制器等等。这些现代的电力电子装置中,许多都以直流电压为输入,或者中间级需要直流电压。

从最开始的二极管不控整流,到后来出现的晶闸管相控整流方式,这些整流装置都有共同的缺点,都会给电网带来谐波危害,其功率因数也不高。特别是谐波对于电网是一种污染,谐波会影响线路的稳定运行,影响挂在电网中的变压器工作效率,损坏低压开关设备,对通信设备产生干扰等等[1]。

为了减少谐波危害,许多学者对新型整流装置做了大量的研究分析,为了实现整流装置输入电压与电流都正弦化,并且使其功率因数接近1,学者们研制出了高频 PMW 整流器。高频 PWM 整流器不仅能够提供正弦化的输入电流,可控的功率因数,而且能够将直流侧能量逆变至电网侧,实现整流器的四象限运行。

PWM整流器的发展状况

PWM控制技术的应用与发展为整流器性能的改进提供了变革性的思路和手段,结合了PWM控制技术的新型整流器称为PWM整流器。

与传统的整流器相比,PWM整流器不仅获得了可控的AC/DC电能变换性能,而且实现了网侧单位功率因数和正弦电流控制,能使电能双向传输。

从20世纪70年代开始,PWM技术开始应用于采用半控功率开关器件的单相整流电路中。从80年代开始,随着半导体产业的发展,可关断功率开关器件产品日趋完善,对单相PWM整流器有了更加深入的研究,其应用也更加广泛。随着

连续及离散数学模型的提出、拓扑结构的多样化、控制策略的完善、功率半导体技术以及传感器技术的持续发展,单相PWM整流器的研究发展进入一个新的阶段。同时单相PWM整流器的应用也成为一个研究热点,如交流传动、UPS电源、柔性交流电传输、光伏及风能并网发电等,同时,这些应用的研究对单相PWM整流器的研究起到促进作用。

<

PWM 整流器数学模型的建立,是对 PWM 整流器进行研究的基础,等人提出了基于坐标变换的 PWM 整流器连续、离散动态数学模型,这种连续、离散模型的建立极大的扩展了 PWM 整流器的发展,可以用数学语言来描述 PWM 整流器的工作原理。和等比较系统的建立起了 PWM 整流器时域模型,在此基础上,Hengchun Mao 等人建立了降阶小信号模型。各种模型的建立,大大促进了人们对于 PWM 整流器的认识,对 PWM 整流器的工作特性更加清晰,大大促进了对于PWM 整流器的研究。在此同时新的拓扑结构和控制方法得到了快速的发展,并由此将 PWM 整流器的应用拓展到更加广阔的领域,例如风力光伏发电技术、有源电力滤波器、统一潮流控制器、动态电压恢复器、直流输电技术等等[1]。

PWM 整流器非常好的工作特性,其关键在于对整流器输入电流的控制。为了使 PWM 整流器实现单位功率因数和输入电流含有较小的谐波,必须控制整流器输入电流呈现正弦特性,对于整流器的控制策略,关键在于电流内环的设计分析。

本文所研究的主要内容

对于较为复杂的PWM整流器的研究,本文着重在于从课程设计的角度上学习PWM整流原理,并能设计PWM整流电路及其各元器件的参数,最终用simulink

仿真验证所设计的效果。在器件上,本文全控型器件选用IGBT,通过要求计算所需选择IGBT的参数,并简单分析研究其H桥死区问题、损耗问题、开关速度问题。

具体地,本文主要以电动汽车的直流充电机为背景,以直流充电机的所需参数来规范本文的基本参数,选用单相工频交流电源220V/50Hz供电,输出额定功率达到3KW,直流侧电压为400V。

2.单相电压型PWM整流电路的工作原理

单相桥式电压型PWM整流电路,其电路如图1所示。每个桥臂由一个全控器件和反并联的整流二极管组成。L为交流侧附加的电感,在PWM整流电路中是一个重要的元件,起平衡电压、支撑无功功率和储存能量的作用。为简化分析,可以忽略L的电阻。直流侧电容C在全控型器件关断时,为电感电流提供电流路径,缓冲冲击电流,同时该电容还储存能量,稳定直流侧电压,抑制直流侧的谐波电压。主要功率将消耗在负载R上。

图 1单相桥式电压型PWM整流电路

除必须具有输入电感外,PWM整流器的电路结构和PWM逆变电路是相同的。按照正弦信号波和三角波相比较的方法对图1中的V1 ~V4 进行SPWM控制,就可以在桥的交流输入端ab间产生一个SPWM波uab 。在uab中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,但

不含有低次谐波。

电路工作状态分析

对于单相电压型PWM整流器而言,其交流侧基波电压控制有两种PWM控制方式,即双极性调制和单极性调制。由于双极性控制简单有效,本文主要讲述采用双极性调试的工作原理。

当采用双极性调制时,把直流侧电压看作基本不变,则交流测电压uab(t)将在Vdc和–Vdc 间切换,以实现交流测电压的PWM控制。因此双极型调制时,单相电压PWM整流过程只存在两种开关模式,并可用双极性二值逻辑开关函数p 进行描述,即

114422331()()1

()()p ?=?

-?V VD 、V VD 导通V VD 、V VD 导通

两种开关模式见表1。

开关模式 1

2

导通器件 V 1(VD 1)、V 4(VD 4)

V 2(VD 2)、V 3(VD 3)

开关函数

. p=1

p=–1

需要注意的是,当网侧电流i(t)方向不同时,同一开关模式将存在不同的电流回路。单相电压型PWM 整流电路双极性不同开关模式时的电流回路如下图2所示。

图 2 双极性调制不同开关模式时的电流回路

a)模式1,且i(t)>0 b)模式2,且i(t)>0

c)模式1,且i(t)<0 d)模式2,且i(t)<0

)

电流为正时,VD1 和VD4 导通,交流电源输出能量,直流侧吸收能量,电路处于整流状态;电流为负时,V1 和V4 导通;交流电源吸收能量,直流侧释放能量,处于能量反馈状态。电流为正时,V2 和V3 导通,交流电源和直流侧都输出能量,L 储能;电流为负时,VD2 和VD3 导通,交流电源和直流侧都吸收能量,L 释放能量。

PWM 控制信号分析

采用双极性PWM 调制方法时,单相PWM 整流器的四个功率开关管通过两个不同的控制信号控制,图1中开关管V1和V4同时开通或关断,而开关管V2和V3

同时开通或关断,其调制的PWM 控制信号如下图3。

图 3 双极性SPWM 调制原理

通过双极性SPWM 调制策略,使得交流测的电压在交流测电压u ab (t)将在V dc

和–V dc 间切换。

交流测电压电流的矢量关系

稳态条件下,PWM 整流电路交流侧电压、电流矢量关系如图4所示。

图 4 稳态条件下PWM 整流电路交流测的电压电流矢量关系

图中,S U 为交流电网侧电压相量,AB U 为交流测电压相量,L U 为交流测电

感电压相量,S I 为交流测电流相量。

为简化分析,对于PWM 整流电路,只考虑基波分量,忽略谐波分量,且不计

交流侧电阻。从上图分析得:当以交流电网侧电压相量为参考时,通过控制交流侧电压相量即可实现PWM 整流电路的四象限运行。若假设交流侧电流相量S I 不变,因此抚L S U wLI 也固定不变,在此情况下,PWM 整流电路交流侧电压相量AB U 端点运动轨迹构成了一个以L U 为半径的圆。

当交流侧电压相量端点位于圆轨迹A 点时,交流侧电流相量将比交流电网侧

电压相量滞后90°,此时,PWM 整流电路电网侧呈纯电感特性,如图4(a)所示。当交流侧电压相量AB U 端点位于圆轨迹B 点时,交流侧电流相量S I 与交流电网侧电压相量S U 平行且同向,此时PWM 整流电路电网侧呈正电阻特性,如图4(b)所示。当交流侧电压相量AB U 端点位于圆轨迹C 点时,交流侧电流相量S U 比交流电网侧电压相量以超前90°,此时PWM 整流电路电网侧呈纯电容特性,如图4(c)所示。当交流侧电压相量AB I 端点位于圆轨迹D 点时,交流侧电流相量S I 与交流电网侧电压相量S U 平行且反向,此时PWM 整流电路电网侧呈负电阻特性,如图4(d)所示。

3.单相电压型PWM 整流电路的设计

主电路系统设计

为了结合实际情况,本设计将考虑直流侧电感的电阻,在输出侧增加一个LC 滤波电路,是输出的结果纹波更小。其电路如下图5所示。

图 5 所设计单相PWM整流的主电路

IGBT和二极管的选型设计

此电路的输入电压为交流220V,输出功率要达到3KW。交流电压的峰值为311V,考虑到一定的裕量,IGBT的耐压值可取600V。另外由于此PWM整流电路为升压boost电路,输出的电流最大值平均10A,考虑一定的裕量,可选择最大电流为20A的IGBT。对于整流二极管,可根据上述电压电流的分析,可以选择二极管的反向击穿电压为600V,电流20A。

交流侧电感的选型设计

@

在单相电压型 PWM 整流器工作过程中,整流器交流侧电感在电路中起着能量传输的作用,肩负着将交流侧能量传递至直流侧的任务,交流侧电感的选型对于整流器输入电流波形的控制起着至关重要的作用。交流侧电感的取值不仅影响到电流环的动、静态性能,而且还决定着电压型整流器的输出功率、功率因数以及整流器输出直流电压的好坏。交流侧电抗器隔离电网电压与整流器交流侧电压,通过对整流器交流侧电压的控制,实现 PWM 整流器的四象限运行,同时滤除电压源型整流器交流侧谐波电压,从而实现电压源型整流器交流侧电流正弦,使电压型整流器具有 Boost 特性的 PWM AC/DC 电源,在 PWM 整流器获得良好的直流电压同时,还可以实现系统功率因数可调,谐波电流小等特性。

选型考虑因素一:整流器交流侧电感压降不能太大,一般小于电网额定电压的 30%。可以查阅相关书籍[2]可得:

2

0.30.3SN SN

SN U U L wI wP <=

所给实际参数为220SN U V =,ω=314rad/s ,0P =3KW ,带入上述公式可得:

15.4L mH <。

选型考虑因素二:交流侧电流在一个开关周期内电流的最大超调量尽可能小,一般小于交流侧额定基波电流峰值的10~20%。可以查阅相关书籍[2]可得:

L ≥

所给实际参数为220SN U V =,10s f KHz =,0P =3KW ,400dc U V =带入上述公式

可得:9.22L mH ≥。

#

所以选择的交流侧电感的值9.2215.4mH L mH ≤<,此处选择中间值

12L mH =。

如果根据以上约束条件计算出的电感取值存在矛盾时,表示电感选型限制条件过于苛刻,应当根据实际情况放宽条件,然后再重新计算。总之,电感较大时,对于整流器输入电流波形控制会有好处,但是同样会带来动态响应慢的缺点。电感较小时,整流器输入电流动态响应快,但是不利于电流波形的控制。所以在实际设计电感时,综合考虑上述各因素,可以将整流器输入电感设计稍微大一点,便于对整流器输入电流的控制。

直流侧电容的选型设计

直流侧支撑电容的主要作用是当开关管关断时,为电感电流提供电流路径,缓冲冲击电流,同时该电容还储存能量,稳定直流侧电压,抑制直流侧的谐波电压。直流电容的选择是单相电压型 PWM 整流器功率电路中的重要环节,选择是否合适直接影响系统的输出特性及系统工作的安全性。

在单相电压型 PWM 整流器中,引起电容电压波动的原因在于负载变化引起的瞬态过程中输入及输出的功率不平衡。特别是当整流器的工作模式是能量最大功率由交流侧流向直流侧,到能量最大功率由直流侧流向交流侧时刻(或者相反的工作状态)。此时输入输出功率偏差最大,瞬态过程最长,并且瞬态过程引起的能量偏差将全部积累在直流母线支撑电容上面,这将引起直流电容上较大的电

压波动。由能量守恒定律,交流侧开关频率次电流脉动能量变化最大值等于直流支撑电容上能量脉动最大值。可由相关文献[2]可得,在选择直流母线支撑电容的时候,为了减小直流侧电压纹波,选择直流电容标准为:

22S Sr dc dcr

LI I C U U ≥

所给实际参数为400dc U V =,12L mH =,S I 为交流测输入的电流值,取3000/220=,Sr I 为交流侧输入电流的纹波系数,取10%,dcr U 为直流侧输出电压的纹波系数,取2%。

带入上述公式可得:139C uF ≥,为了使输出直流成分更大,此处可取大于10倍,即取1600C uF =。

直流侧LC 滤波电路的设计

分析整流器工作在单位功率因数,忽略整流器损耗。从电网提供的瞬时功率可以看到,整流器输入功率包含恒定的直流分量和 2 倍电源频率脉动的交流分量。如果直流侧瞬时功率存在 2 倍于电网频率的交流分量,此 2倍于电网频率的交流分量会在直流母线支撑电容上产生 2 倍于电网频率的交流电压,即直流母线支撑电容上的电压是一个直流电压叠加一个 2 倍于电网频率的交流电压。 如果在直流支撑电容两端并联一个谐振频率为 2 倍电网频率的LC 滤波器,使得 2 倍频交流电流分量流过该谐振滤波器,使得流入直流母线支撑电容的电流仅仅是直流分量,那么直流母线电压必然是稳定的直流电压。因此,为了使 单相电压型 PWM 整流器输出电压仅为稳定的直流电压,需要在直流母线电容两端并联谐振频率为 2 倍于电网频率的 LC 谐振滤波器。

在实际问题中,设计直流侧 LC 谐振电路时,主要考虑以下两个方面的问题: (1)LC 谐振滤波器的谐振频率是 2 倍于交流侧输入电压频率。 (2)将电容 C 取得稍微大一点。 谐振频率为:

'

f =

4.单相PWM整流电路的仿真及分析

整流电路的simulink仿真

运用matlab/simulink对此单相PWM电压型整流电路进行仿真,可由上述参数选择公式计算出参数,其仿真参数如下:

单相交流电压220V整流器输入侧电感|

12mH

整流器输入侧电阻Ω直流侧电容1600uF

直流侧负载电阻50Ω直流侧负载电阻)

400V IGBT开关频率10kHz输出功率3KW

仿真电路控制信号方式采用直接电流控制,仿真电路图如图6所示。

图 6 单相电压型PWM整流电路仿真

通过电压和电流反馈,然后再与三角载波做比较,得到两组互补的PWM控制信号,去控制IGBT的通断,已达到最后输出电压维持在400V附近。仿真后的输出电压波形如下图7所示,可以看出在秒之前上升的非常快,之后就基本维持在400V左右,有一定的纹波,其直流成分相当高。

图 7 单相电压型PWM整流输出的电压波形

直流侧电压稳定时输出直流电压波形的效果,可见输出直流侧电压波形较理想,与理论分析的基本一致。下图7为单相电压型PWM整流输入电压电流波形,从中可以看出两者之间的关系。

图 8 单相电压型PWM整流输入电压电流波形

经过PWM整流器后,稳定时输入电流与输入电压基本同相位,在同时取得最大值和最小值。出仿真电路稳定运行后交流侧电流为规则正弦波且与交流侧电压同相位。这样,输入效率也就提高了,经这种方式整流,其功率因数可以无限接近于1,对电网的谐波干扰很小。

对于控制信号PWM,四个IGBT的触发信号如下图9所示,其中VT1与VT2的

控制信号互补,VT3与VT4的控制信号互补。

图 9 调制后控制信号PWM的波形

对simulink仿真结果的分析

仿真中,若交流测电感或者直流侧电容参数设计的不合理,那么仿真的波形将相差甚远,这说明了电感电容的参数是PWM整流电路实现功能的关键因素。另外对于IGBT来说,其开关频率一般不超过20kHz,此仿真中使用的是10kHz 的开关频率。可以看出输出电压的纹波还是比较大,其输入电流的脉动也比较明显,这与开关频率直接相关。

当改变参数时,其仿真结果有较大的变化,例如将直流侧电容改为C=160uF 时,其稳态输出电压的纹波较大,如下图10。

图 10 当直流侧电容参数取值偏小时(C=160uF)的输出电压波形

另外,对于IGBT的模型,仿真中的参数与真实器件的参数有差别,其开通和关断需要一定的时间,这将导致器件的功率损耗。要降低损耗,可以探索采用零电压零电流开断的软开关技术。

5.工作展望

此次课程设计收获非常大,了解了PWM整流的优越性能,明白了单相电压型PWM整流器的工作原理,能够对主电路进行设计和元器件参数计算,掌握了间的的PWM控制方法,从simulink软件仿真的角度上实现了单相电压型PWM整流电路的功能,从而理解到PWM整流器的优越性能。

虽然这次初试PWM整流电路取得了一些收获和成就,但PWM整流器还有许多更深奥的知识。包括电流型PWM整流、逆变,其控制策略又有各种样式,这都学要我们在今后的生活中逐渐去学习和掌握。

参考文献

[1] 王兆安,黄俊. 电力电子技术(第4版) [M]. 北京:机械工业出版社,2004.

[2] 张兴,张宗巍.PWM整理器及其控制[M].北京:机械工业出版社,2003:23.70.

[3] 李方正等.单相电压型PWM整流器控制系统设计与仿真[J].装甲兵工程学院学报,2007,21(3):65—68.

[4] 张军伟,王兵树等.单相电压型PWM整流电路原理分析与仿真[J].现代电子技术.2009,32(8).

[5] 黄卫平,谢运祥等.基于DSP的单相PWM整流器研究[J].通信电源技术.(1).

电力电子技术课程设计范例

电力电子技术课程设计 题目:直流降压斩波电路的设计 专业:电气自动化 班级:14电气 姓名:周方舟 学号: 指导教师:喻丽丽

目录 一设计要求与方案 (4) 二设计原理分析 (4) 2.1总体结构分分析 (4) 2.2直流电源设计 (5) 2.3主电路工作原理 (6) 2.4触发电路设计 (10) 2.5过压过流保护原理与设计 (15) 三仿真分析与调试 (17) 3.1 Matlab仿真图 (17) 3.2仿真结果 (18) 3.3 仿真实验结论 (24) 元器件列表 (24) 设计心得 (25) 参考文献 (25) 致谢 (26) 一.设计要求与方案 供电方案有两种选择。一,线性直流电源。线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电源进行稳压。线性电源体积重量大,很难实现小型化、损耗大、效率低、输出与输入之间有公共端,不易实现隔离,只能降压,不能升压。二,升压斩波电路。由脉宽调制芯片TL494为控制器构成BOOST原理的,实现升压型DC-DC变换器,输出电压的可调整与稳压控制的开关源是借助晶体管的开/关实现的。因此选择方案二。 设计要求:设计要求是输出电压Uo=220V可调的DC/DC变换器,这里为升压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。MOSFET的通断用PWM控制,用PWM方式来控制MOSFET的通断需要使用脉宽调制器TL494来产

生PWM控制信号。 设计方案: 1、电源电路 电源电路采用电容滤波的二极管不控整流电路,220V单相交流电经220V/24V变压器,降为24V交流电,再经二极管不控整流电路及滤波电容滤波后,变为平直的直流电,其幅值在22V~36V之间。 2、主电路 2.1主电路选用升压斩波电路,开关管选用电力MOSFET。 2.2Boost电路的负载为110V、25W白炽灯, 2.3boost电路中,占空比不要超过65%,否则电压大于100V。 3、控制电路的选择与确定 3.1 脉冲发生器TL494 3.2 驱动电路IR2110 二.设计原理分析 2.1总体结构分析 电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断。来完成整个系统的功能。因此,一个完整的降压斩波电路也应包括主电路,控制电路,驱动电路和保护电路这些环节。 直流斩波电路由电源、变压器、整流电路、滤波电路、主电路、控制和驱动电路及保护电路组成。如图2—1所示:

基于Matlab的电力电子技术课程设计报告

《电力电子技术》 课程设计报告 题目:基于Matlab的电力电子技术 仿真分析 专业:电气工程及其自动化 班级:电气2班 学号:Z01114007 姓名:吴奇 指导教师:过希文 安徽大学电气工程与自动化学院 2015年 1 月7 日

中文题目 基于Matlab 的电力电子技术仿真分析 一、设计目的 (1)加深理解《电力电子技术》课程的基本理论; (2)掌握电力电子电路的一般设计方法,具备初步的独立设计能力; (3)学习Matlab 仿真软件及各模块参数的确定。 二、设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: (1)根据设计题目要求的指标,通过查阅有关资料分析其工作原理,设计电路原理图; (2)利用MATLAB 仿真软件绘制主电路结构模型图,设置相应的参数。 (3)用示波器模块观察和记录电源电压、控制信号、负载电压、电流的波形图。 三、设计内容 (1)设计一个降压变换器(Buck Chopper ),其输入电压为200V ,负载为阻感性带反电动势负载,电阻为2欧,电感为5mH ,反电动势为80V 。开关管采用IGBT ,驱动信号频率为1000Hz ,仿真时间设置为0.02s ,观察不同占空比下(25%、50%、75%)的驱动信号、负载电流、负载电压波形,并计算相应的电压、电流平均值。 然后,将负载反电动势改变为160V ,观察电流断续时的工作波形。(最大步长为5e-6,相对容忍率为1e-3,仿真解法器采用ode23tb ) (2)设计一个采用双极性调制的三相桥式逆变电路,主电路直流电源200V ,经由6只MOSFET 组成的桥式逆变电路与三相阻感性负载相连接,负载电阻为1欧,电感为5mH ,三角波频率为1000Hz ,调制度为0.7,试观察输入信号(载波、调制波)、与直流侧假想中点N ‘的三相电压Uun ’、Uvn ’、Uwn ’,输出线电压UV 以及负载侧相电压Uun 的波形。 四、设计方案 实验1:降压变换器 dc-dc 变流电路可以将直流电变成另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又称为斩波电路,功能是将直流电变为另一直流电。本次实验主要是在Matlab 中设计一个降压斩波电路并仿真在所给条件下的波形和数值与理论计算相对比。降压斩波电路原理图如下所示,该电路使用一个全控型器件V ,这里用IGBT ,也可采用其他器件,例如晶闸管,若采用晶闸管,还需设置使晶闸管关断的辅助电路。为在V 关断时给负载中电感电流提供通道,设置了续流二极管VD 。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,后两种情况下负载中均会出现反电动势,图中用m E 表示。若无反电动势,只需令0m E ,以下的分析和表达式中均适用。

电力电子课设(参考版)

一总体方案设计级总体框图 1、1总体方案设计 根据任务湖中的,本次设计的是dcdc降压变换器。DC-DC变换 器有两类:一类由两级电路组成DC-AC-DC变换,第一级为逆变,实现DC-AC变换,第二级为整流,实现AC-DC变换。另一类变 换器由晶体管和二极管开关组合成PWM开关,将输入直流电 压斩波后,再经滤波后输出。由于第一类比较复杂,方针起来 比较麻烦。第二类简单方便,比较贴合课本中的知识。第二类 dcdc降压电路有以下几种: BUCK PWM变换器在CCM下的工作原理(如图2-2):一个开 关周期内,开关晶体管的开,关过程将直流输入电压斩波,形 成脉宽为onT的方波脉冲(onT为开关管导通时间)。当开关晶 体管导通时,二极管关断,输入端直流电流电源Vi将功率传送 到负载,并使用电感储能(电感电流上升):当开关晶体管关断 时,二极管导通,续流,电感储能向负载释放(电感电流下降)。 一个开关周期内,电感电流的平均值等于负载电流OI(忽略滤 波电容C的ESR)。根据原理和电路拓扑可以推导出工作在CCM 下的DC-DC PWM变换器的输出-输入电压变换比: DVi Vo (2-1)

占空比D总是小于1的,所以BUCK变换器是一种降压变换器。 升降压型BUCK-BOOST技术 图2-4 升降压反极性(BUCK-BOOST)变换器电路拓扑 如图2-4所示,极性反转型(BUCK-BOOST)变换器主电路如用 元器件与BUCK,BOOST变换器相同,由开关管,储能电感,整 流二极管及滤波电容等元器件组成。这种电路具有BUCK变换 器降压和BOOST变换器升压的双重作用。升压还是降压取决与 PWM驱动脉冲的占空比D。虽然输入与输出共用一个连接端,但输出电压的极性与输入电压是相反的,故称为降压反极性变 换器。,根据我们的设计要求,是要求把12-18V的直流电压转 换到5V的直流电压,那么分析后可得降压型BUCK转换技术最 适合这次设计。 1、2总体框图设计

电力电子课程设计.doc

姓名: 李渺 学号: 1002160112 系(院): 邮电与信息工程学院专业: 电气自动化 班级: 01班 授课老师: 胡为兵 总成绩:

变频技术简介 设计说明,含设计题目,作用,设计依据(技术要求) 正文 小结 参考资料 一、变频技术简介 随着科学的发展,变频器的使用也越来越广泛,不管是工业设备上还是家用电器上都会使用到变频器,可以说,只要有三相异步电动机的地方,就有变频器的存在,要熟练地使用变频器,还必须掌握三相异步电动机的特性,因为变频器与三相异步电动机有着密切的联系。 1、变频调速基本原理 交流变频调速器(简称变频器)是建立在微处理器、电力电子学、电机学、现代控制理论基础之上的现代机电一体化高新技术产品。其工作原理是将三相工频交流电整流成直流电,再由直流电转换成交流电(交-直-交)。根据要求,可以从0~50Hz(或更高频率)之间输出任意频率。因此,通过对变频器输出频率的控制,实现交流电动机的调速,最终达到对传动负载的精确定量控制。:是应用当今国际最新变频技术产品——交流变频调速器,对交流电机进行无级调速控制的高新技术。变频调速控制系统主要由电控设备、变频器、交流电动机、传动机械及传感器等部分组成。变频控制系统可进行开环控制,也可进行闭环控制。开环系统的控制是通过设定值的改变,来实现对被控制对象输出值的直接控制。闭环控制系统是通过被控制对象反馈系统与设定值的动态比较,自动调节被控电机的转速,从而实现对被控制对象输出的控制。 2、变频调速的特点 变频调速的主要特点是通过变频器改变输出频率及输出电压,实现交流电机转速或被控对象输出的控制。此外,还具有以下优点: ①.由于变频器在启动过程中,输出频率由0Hz平滑地逐渐上升,电压从0V按比例上升到额定电压,电机无任何启动冲击,避免了由于电机启动产生的大电流对电机、电网、电气元件及所拖动机械设备的冲击和损坏。变频器在停止过程中,输出频率由运行频率平滑地逐渐下降到0Hz,电压从运行电压按比例逐渐到0V,实现了电动机软停止。 ②.变频启动可防止运输机械类载重物体受冲击和翻滚,提高传动设备的使用寿命。

电力电子技术课程设计报告

课程设计说明书 设计题目:单相交流调压技术 专业班级: 2009级电气工程及其自动化 姓名:王昊 学号: 0915140068 指导教师:褚晓锐 2011年12月23日 (提交报告时间)

一.课程设计题目:单项交流调压技术的工程应用 二.课程设计日期: 2011年12月19日 三.课程设计目的: “电力电子技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。因此,要求学生能综合应用所学知识,设计出具有电压可调功能的直流电源系统,能够较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。培养学生独立思考、独立收集资料、独立设计的能力;培养分析、总结及撰写技术报告的能力。 四.课程设计要求: :按课程设计指导书提供的课题,根据第下表给出的基本要求及参数独立完成设计,课程设计说明书应包括以下内容: 1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的具体型号。 4、确定变压器变比及容量。 5、确定平波电抗器。 7、触发电路设计或选择。 8、课程设计总结。 9、完成4000字左右说明书,有系统电气原理图,内容完整、字迹工整、图表整齐规范、数据详实。 设计技术参数工作量工作计划 1、单相交流220V电源。 2、交流输出电压U d 在0~220V连续可调。 3、交输出电2000W。1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的 具体型号。 第一周: 周一:收集资料。 周二~三:方案论证。 周四:主电路设计。

4、触发电路设计。 5、绘制主电路图。 周五:理论计算。 第二周: 周一:选择器件的具体型号 周二~三:触发电路设计。。 周四~五:总结并撰写说明书。 五.课程设计内容: 设计方案图及论证 将一种交流电能转换为另一种交流电能的过程称为交流-交流变换过程,凡能实现这种变换的电路为交流变换电路。对单相交流电的电压进行调节的电路。用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。结构原理简单。该方案是由变压器、触发电路、整流器、以及一些电路构成的,为一台电阻炉提供电源。输入的电压为单相交流220V ,经电路变换后,为连续可调的交流电。 各部分电路作用 220V 交流输入部分作用:为电路提供电源,主要是市电输入。 调压环节的作用:将交流220V 电源经过变压器、整流器等电路转换为连续可调的交 220V 交流输入 调压环节 输出连续可调的交流电 触发电路

电力电子课程设计

电力电子应用课程设计 课题:50W三绕组复位正激变换器设计 班级电气学号 姓名 专业电气工程及其自动化 系别电气工程系 指导教师 淮阴工学院 电气工程系 2015年5月

一、设计目的 通过本课题的分析设计,可以加深学生对间接的直流变流电路基本环节的认识和理解,并且对隔离的DC/DC电路的优缺点有一定的认识。要求学生掌握单端正激变换器的脉冲变压器工作特性,了解其复位方式,掌握三绕组复位的基本原理,并学会分析该电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,掌握脉冲变压器的设计和基本的绕制方法,熟悉变换器中直流滤波电感的计算和绕制,建立硬件电路并进行开关调试。 需要熟悉基于集成PWM芯片的DCDC变换器的控制方法,并学会计算PWM控制电路的关键参数。输入:36~75Vdc,输出:10Vdc/5A 二、设计任务 1、分析三绕组复位正激变换器工作原理,深入分析功率电路中各点的电压 波形和各支路的电流波形; 2、根据输入输出的参数指标,计算功率电路中半导体器件电压电流等级, 并给出所选器件的型号,设计变换器的脉冲变压器、输出滤波电感及滤波电容。 3、给出控制电路的设计方案,能够输出频率和占空比可调的脉冲源。 4、应用protel软件作出线路图,建立硬件电路并调试。 三、总体设计 3.1 开关电源的发展 开关电源被誉为高效节能电源,代表着稳压电源的发展方向,现已成为稳压电源的主流产品。 开关电源分为DC/DC和AC/DC两大类。前者输出质量较高的直流电,后者输出质量较高的交流电。开关电源的核心是电力电子变换器。按转换电能的种类,可分为直流-直流变换器(DC/DC变换器),是将一种直流电能转换成另一种或多种直流电能的变换器;逆变器,是将直流电能转换成另一种或多种直流电能的变换器;整流器是将交流电转换成直流电的电能变换器和交交变频器四种。 开关电源的高频化是电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前的小型化,并使开关电源进入更广泛的领域,特别是在高新技术领

电力电子课程设计报告模板

西安交通工程学院 《电力电子技术》课程设计报告 题目: 专业班级: 姓名: 时间: 指导教师: 完成日期:年月日

设计任务书 1.设计目的与要求 设计一个交通灯控制器,要认真并准确地理解有关要求,独立完成系统设计,在双干线的路口上,交通信号灯的变化按照下面假定进行计时: (1)放行线,绿灯亮放行25秒,黄灯亮警告5秒,然后红灯亮禁止。 (2)禁止线,红灯亮禁止30秒,然后绿灯亮放行。 使两条路线交替的成为放行线和禁止线,便可实现交通控制。 (3)特殊情况下能实现手动操作。 2.设计内容 (1)画出电路原理图,正确使用逻辑关系; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出。 3.编写设计报告 写出设计的全过程,附上有关资料和图纸,有心得体会。 4.答辩 在规定时间内,完成叙述并回答问题。

目录(四号仿宋_GB2312加粗居中) (空一行) 1 引言 (1) 2 总体设计方案 (1) 2.1 设计思路 (1) 2.1.1交通灯控制系统的流程图 (2) 2.1.2 交通灯控制系统的流程 (2) 2.2总体设计框图 (2) 3 设计原理分析 (3) 3.1 秒脉冲产生器 (3) 3.2分频器 (4) 3.3 总控制电路 (4) 3.4预置校正电路 (8) 3.5译码显示电路 (8) 4 总结与体会 (11) 参考文献 (11) 附录1 (12) 附录2 (13) (目录内容左右顶格,小四仿宋_GB2312,行距固定值20磅) (页码从正文部分开始)

多功能电子表(三号仿宋_GB231,居中) (空一行) 摘要:本设计提出使交通灯的控制电路用数字信号自动控制十字路口的东西,南北方向两组红、绿、黄车辆行驶和人行道交通信号灯以及LED显示倒记时的状态转换的新方法,指挥各种车辆和行人安全通行,实现十字路口交通管理的自动化。{五号仿宋_GB231,行距固定值20磅} (一般3~5行) 关键词:交通灯控制;秒脉冲发生;译码显示;LED信号灯(一般3~4个)(空一行) 1 引言(1级标题:顶格,四号仿宋_GB2312加粗) 随着社会经济的发展,交通问题越来越引起人们的关注。人、车、路三者关系的协调,已成为交通管理部门需要解决的重要问题之一。交通控制系统是用于交通流量数据监测、……………..。 (正文:小四仿宋_GB2312,每段首行缩进2字符,行距固定值20。下同) 2 总体设计方案 2.1 设计思路(2级标题:顶格,小四仿宋_GB2312 加粗) 为了克服常规设计思想中的弊端,本电路采用了建模的灰箱系统模型的设计思想…………。 交通灯的控制系统主要由总控制电路、东西向及南北向的译码显示电路和秒脉冲信号发生电路等部分组成…………。 2.1.1 交通灯控制流程(3级标题:顶格,小四仿宋_GB2312) 交通灯控制系统流程图如图1所示。 图 1 交通灯控制系统流程图 (图与图名均居中,图要有名称,图名五号仿宋_GB231,图中字符不大于正文字体大小) (注意:文中所有插图的图序依次为图1 、图2、图3......)

电力电子课设报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:电力电子技术 设计题目:可逆直流PWM驱动电源的设计 院系:电气工程系 班级:0706111 设计者:王勃 学号:1070610602 指导教师:李久胜 设计时间:2010年11月 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

H型单极性同频可逆直流PWM驱动电源的设计 技术指标:被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转 速2000rpm。驱动系统的调速范围:大于1:100。驱动系统应具有软启动功能,软启动时间约为2s。详细设计要求见附录2. 1.整体方案设计 本文设计的H型单极性同频可逆直流PWM驱动电源由四部分组成:主电路,H 型单极模式同频可逆PWM控制电路,IPM接口电路及稳压电源。同时具有软启动功能,软启动时间为2s左右。控制原理如图1所示: 功率转换电路 图1 直流PWM驱动电源的控制原理框图 脉宽调制电路以SG3525为核心,产生频率为5KHz的方波控制信号,占空比可调。经用门电路实现的脉冲分配电路,转换成两列对称互补的驱动信号,同时具有5us的死区时间,该信号驱动H型功率转换电路中的开关器件,控制直流永磁电动机。稳压电源采用LM2575-ADJ系列开关稳压集成电路,通过调整电位器,使其稳定输出15V直流电源。 2.主电路设计 2.1主电路设计要求 直流PWM驱动电源的主电路图如图2所示。此部分电路的设计包括整流电路和H桥可逆斩波电路。二极管整流桥把输入的交流电变为直流电。四只功率器件构成H 桥,根据脉冲占空比的不同,在直流电机上可得到不同的直流电压。 主电路部分的设计要求如下: 1)整流部分采用4 个二极管集成在一起的整流桥模块。 2)斩波部分H 桥不采用分立元件,而是选用IPM(智能功率模块)PS21564来实现。该模块的主电路为三相逆变桥,在本设计中只采用其中U、V 两相即可。

江苏大学电力电子课程设计

电力电子课程设计 学院:电气信息工程学院 专业: 学号: 姓名:

一. 设计要求 (1)根据给定的参数范围,设计BOOST 电路的参数; (2)根据给定的参数范围,设计CUK 电路的参数; (3)利用MATLAB 对上述电路图仿真实验得出波形; (4)在实验室平台上试验,观测数据与波形,并与仿真图形进行比对; (5)撰写实验报告; 二. 电路设计 1.电路工作原理 (1)Boost 电路 Boost 电路原理图 基本原理 假设L ,C 值很大。当可控开关V 处于通态的时候,电源E 向电感L 充电,充电的电流基本恒定不变I 1,同时电容C 向负载R 放电。因为C 很大,基本保持输出电压U 0不变。当可控开关处于断态的时候,E 和电感L 上积蓄的能量共同向电容C 充电并向负载R 提供能量。当电路工作处于稳态时,一个周期T 中电感L 积蓄的 能量与释放的能量相等,即: 化简得: ()off o on t I E U t EI 11-=E t T E t t t U off off off on o =+=

基本数值计算: 输出电压U 0与输入电压E 关系: 01 1 1U E E βα==- 输出电流I0与输入电流I1的关系: 01021U I I E E β== 输出电流I0与输出电压U0的关系: 001U E I R R β== (2)Cuk 电路 Cuk 电路原理图 基本原理 当可控开关V 处于通态的时候,E-L1-V 回路和R-L2-C-V 回路分别流过电流。当V 处于断态的时候,E-L1-C-VD 回路和R-L1-VD 回路分别流过电流。输出电压的极性与电源电压极性相反。

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

电力电子技术课程设计报告

成都理工大学工程技术学院T h e E n g i n e e r i n g&T e c h n i c a l C o l l e g e o f C h e n g d u U n i v e r s i t y o f T e c h n o l o g y 电力电子技术课程设计报告 姓名 学号 年级 专业 系(院) 指导教师

三相半波整流电路的设计 1设计意义及要求 1.1设计意义 整流电路是出现最早的电力电子电路,将交流电变为直流电,电路形式多种多样。当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。其交流侧由三相电源供电。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。 1.2初始条件 设计一三相半波整流电路,直流电动机负载,电机技术数据如下:220nom U V =, I =308A nom ,=1000r/min nom n ,C =0.196V min/r e ,0.18a R =。 1.3要求完成的主要任务 1)方案设计 2)完成主电路的原理分析 3)触发电路、保护电路的设计 4)利用MATLAB 仿真软件建模并仿真,获取电压电流波形,对结果进行分析 5)撰写设计说明书

2方案设计分析 本文主要完成三相半波整流电路的设计,通过MATLAB软件的SIMULINK模块建模并仿真,进而得到仿真电压电流波形。 分析采用三相半波整流电路反电动势负载电路,如图1所示。为了得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波流入电网。三个晶闸管分别接入b c a、、三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。 图1 三相半波整流电路共阴极接法反电动势负载原理图 直流电动机负载除本身有电阻、电感外,还有一个反电动势E。如果暂不考虑电动机的电枢电感时,则只有当晶闸管导通相的变压器二次电压瞬时值大于反电动势时才有电流输出。此时负载电流时断续的,这对整流电路和电动机负载的工作都是不利的,实际应用中要尽量避免出现负载电流断续的工作情况。 3主电路原理分析及主要元器件选择 3.1主电路原理分析 主电路理论图如图1所示。假设将电路中的晶闸管换作二极管,并用VD表示,该电路就成为三相半波不可控整流电路。此时,三个二极管对应的相电压中哪一个的值最大,则该相对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压。在相电压的交点处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。自然换相点是各相晶闸管能触发导通的最早时刻,将其作 α=。,要改变触发角只能是在此基础上增大它,即为计算各晶闸管触发角α的起点,即0 沿时间坐标轴向右移。

电力电子课程设计模板

电气工程学院 电力电子课程设计 设计题目:MOSFET降压斩波电路设计专业班级:电气0907 学号:09291210 姓名:李岳 同组人:刘遥(09291212 ) 指导教师: 设计时间:2012年6月25日-29日 设计地点:电气学院实验中心

电力电子课程设计成绩评定表 指导教师签字: 年月日

电力电子课程设计任务书 学生姓名:李岳,刘遥专业班级电气0907 指导教师: 一、课程设计题目: MOSFET降压斩波电路设计(纯电阻负载) 设计条件:1、输入直流电压:U d=100V 2、输出功率:300W 3、开关频率5KHz 4、占空比10%~90% 5、输出电压脉率:小于10% 二、课程设计要求 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真; 3. 完成预习报告,报告中要有设计方案,还要有仿真结果; 4. 进实验室进行电路调试,边调试边修正方案; 5. 撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形(比较实际波形与理论波形),绘出触发信号(驱动信号)波形,说明调试过程中遇到的问题和解决问题的方法。 三、进度安排

2.执行要求 电力电子课程设计共6个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告雷同,甚至完全一样。 四、课程设计参考资料 [1]王兆安,黄俊.电力电子技术(第四版).北京:机械工业出版社,2001 [2]王文郁.电力电子技术应用电路.北京:机械工业出版社,2001 [3]李宏.电力电子设备用器件与集成电路应用指南.北京:机械工业出版社,2001 [4] 石玉、栗书贤、王文郁.电力电子技术题例与电路设计指导. 北京:机械工业出版社,1999 [5] 赵同贺等.新型开关电源典型电路设计与应用.北京:机械工业出版社,2010 摘要 关键词:整流、无源逆变、晶闸管

电力电子实训心得体会

电力电子技术实验总结 随着大功率半导体开关器件的发明和变流电路的进步和发展,产生了利用这类器件和电路实现电能变换与控制的技术——电力电子技术。电力电子技术横跨电力、电子和控制三个领域,是现代电子技术的基础之一,是弱电子对强电力实现控制的桥梁和纽带,已被广泛应用于工农业生产、国防、交通、能源和人民生活的各个领域,有着极其广阔的应用前景,成为电气工程中的基础电子技术。 本学期实验课程共进行了四个实验。包括单结晶体管触发电路实验,单相半波整流电路实验,三相半波有源逆变电路实验,单相交流调压电路实验. 单结晶体管触发电路实验 实验目的 (1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。 (2)掌握单结晶体管触发电路的基本调试步骤。 实验线路及原理单结晶体管触发电路利用单结晶体管(又称双基极二极管)的负阻特性和rc充放电特性,可组成频率可调的自激振荡电路。v6为单结晶体管,其常用型号有 bt33和bt35两种,由等效电阻v5和c1组成rc充电回路,由c1-v6-脉冲变压器原边组成电容放电回路,调节rp1电位器即可改变c1充电回路中的等效电阻,即改变电路的充电时间。由同步变压器副边输出60v的交流同步电压,经vd1半波整流,再由稳压管v1、v2 进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过r7及等效可变电阻v5向电容c1充电,当充电电压达到单结晶体管的峰值电压up时,v6导通,电容通过脉冲变压器原边迅速放电,同时脉冲变压器副边输出触发脉冲;同时由于放电时间常数很小,c1两端的电压很快下降到单结晶体管的谷点电压uv,使得v6重新关断,c1再次被充电,周而复始,就会在电容c1两端呈现锯齿波形,在每次v6导通的时刻,均在脉冲变压器副边输出触发脉冲;在一个梯形波周期内,v6可能导通、关断多次,但对晶闸管而言只有第一个输出脉冲起作用。电容c1的充电时间常数由等效电阻等决定,调节rp1电位器改变c1的充电时间,控制第一个有效触发脉冲的出现时刻,从而实现移相控制。 实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察。 单相半波整流电路实验 实验目的 1、熟悉强电实验的操作规程; 2、进一步了解晶闸管的工作原理; 3、掌握单相半波可控整流电路的工作原理。 4、了解不同负载下单相半波可控整流电路的工作情况。 实验原理 1、晶闸管的工作原理晶闸管的双晶体管模型和内部结构如下:晶闸管在正常工作时,承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降 到接近于零的某一数值一下。 2.单相半波可控整流电路(电阻性负载) 2.1电路结构若用晶闸管t替代单相半波整流电路中的二极管d,就可以得到单相半波可控整流电路的主电路。变压器副边电压u2为50hz正弦波,负载 rl为电阻性负载。 三相半波有源逆变电路实验 实验目的 1、掌握三相半波有源逆变电路的工作原理,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。

电力电子技术课程设计报告

电力电子技术课程设计 报告书 专业班级:16电气2班 姓名:王浩淞 学号:2016330301054 指导教师:雷美珍

目录 1、webench电路设计 1.1设计任务要求 输入电压为(8V-10V),输出电压为5V,负载电流为1A 1.2设计方案分析 图1.3.1主电路原理图 图1.3.2元器件参数 图1.3.3额定负载时工作值

图1.3.4输出电流和系统效率间的关系 如图1.3.4所示,在输出电流相同的情况下,输入电压越小,系统的稳态效率越高,因此提高效率的最直接方式就是降低系统的输入电压,其次在输入电压相同的情况下,我们可以调节输出电压的大小,使系统效率达到最大,例如当输入电压为9.0V时,根据图像输出电流为0.40A的时候效率最高。第二种方法是改变元器件的参数,通过使用DCR(直流电阻)小的电感元件来实现输出纹波电压降低。 1.3主芯片介绍 TPS561201和TPS561208采用SOT-23封装,是一款简单易用的1A同步降压转换器。这些器件经过优化,可以在最少的外部元件数量下工作,并且还经过优化以实现低待机电流。这些开关模式电源(SMPS)器件采用D-CAP2模式控制,可提供快速瞬态响应,并支持低等效串联电阻(ESR)输出电容,如特种聚合物和超低ESR陶瓷电容,无需外部补偿元件。TPS561201以脉冲跳跃模式工作,在轻负载操作期间保持高效率。TPS561201和TPS561208采用6引脚1.6×2.9(mm)SOT(DDC)封装,工作在-40°C至125°C的结温范围内。 1.4电气仿真结果分析

图1.4.1启动仿真图1.4.2稳态仿真 图1.4.3暂态仿真图1.4.4 负载暂态仿真 二、基于电力系统工具箱的电力电子电路仿真 2.1 设计要求和方案分析 本课程设计主要应用了MATLAB软件及其组件之一Simulink,进行系统的设计与仿真系统主要包括:Boost升压斩波主电路部分、PWM控制部分和负载。Boost升压斩波主电路部分拖动带反电动势的电阻,模拟显示中的一般负载,若实际负载中没有反电动势,只需令其为零即可。负载为主电路部分提供脉冲信号,控制全控器件IGBT的导通和关断,实现整个系统的运行。在Simulink中完成各个功能模块的绘制后,即可进行仿真和调试,用Simulink 提供的示波器观察波形,进行相应的电压和电流等的计算,最后进行总结,完成整个Boost 变换器的研究与设计。 2.2 simulink仿真模型分析 电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。占空比越大,Boost Chopper的输出电压值

电力电子技术课程设计心得体会

电力电子技术课程设计心得体会 电力电子技术课程设计时候学习机电的人需要接触的,我们看看下面的心得体会,大家一起阅读吧! 电力电子技术课程设计心得体会本学期实时测量技术实验以电子设计大赛的形式,老师命题,学生可以选择老师的题目也可以自己命题,并且组队操作其他的事情。趣味性强,同时也可以学到很多东西。 我们认为,在这学期的实验中,在收获知识的同时,还收获了阅历,收获了成熟,在此过程中,我们通过查找大量资料,请教老师,以及不懈的努力,不仅培养了独立思考、动手操作的能力,在各种其它能力上也都有了提高。更重要的是,在实验课上,我们学会了很多学习的方法。而这是日后最实用的,真的是受益匪浅。要面对社会的挑战,只有不断的学习、实践,再学习、再实践。 之所以使用avr单片机作为我们的执行核心,不仅是因为老师说avr现在是社会上应用比较多的单片机,也因为想通过使用avr锻炼自己的c 语言编程能力,养成良好的c语言编程风格。不管怎样,这些都是一种锻炼,一种知识的积累,能力的提高。完全可以把这个当作基础东西,只有掌握了这些最基础的,才可以更进一步,取得更好的成绩。很少有人会一步登天吧。永不言弃才是最重要的。 而且,这对于我们的将来也有很大的帮助。以后,不管

有多苦,我想我们都能变苦为乐,找寻有趣的事情,发现其中珍贵的事情。就像中国提倡的艰苦奋斗一样,我们都可以在实验结束之后变的更加成熟,会面对需要面对的事情。 与队友的合作更是一件快乐的事情,只有彼此都付出,彼此都努力维护才能将作品做的更加完美。而团队合作也是当今社会最提倡的。曾经听过,mba之所以最近不受欢迎就是因为欠缺团队合作的精神和技巧。 电压电流测量装置虽然结束了,也留下了很多遗憾,因为由于时间的紧缺和许多课业的繁忙,并没有做到最好,但是,最起码我们没有放弃,它是我们的骄傲! 相信以后我们会以更加积极地态度对待我们的学习、对待我们的生活。我们的激情永远不会结束,相反,我们会更加努力,努力的去弥补自己的缺点,发展自己的优点,去充实自己,只有在了解了自己的长短之后,我们会更加珍惜拥有的,更加努力的去完善它,增进它。只有不断的测试自己,挑战自己,才能拥有更多的成功和快乐! to us, happiness equals success! 快乐至上,享受过程,而不是结果! 认真对待每一个实验,珍惜每一分一秒,学到最多的知识和方法,锻炼自己的能力,这个是我们在实时测量技术试验上学到的最重要的东西,也是以后都将受益匪浅的!

电力电子专业技术课程设计任务大全

电力电子技术课程设计任务大全

————————————————————————————————作者:————————————————————————————————日期:

《电力电子技术》课程设计任务书(一) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求; 4、电网供电电压:三相380V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 7.5 220 40.8 1500 4.42 二、设计内容及要求 1、方案论证及选择; 2、主电路设计(包括整流变压器电压及容量计算,晶闸管元件选择,电 抗器容量等计算); 3、控制电路设计(触发电路的选择与设计); 4、保护电路设计(包括过流和过压保护等); 5、总结及心得体会; 6、参考文献设计; 7、完成电路原理图1份。 《电力电子技术》课程设计任务书(二) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求。 4、电网供电电压:单相220V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 3 220 17.4 750 17.69

电力电子技术课程设计-240w半桥型开关稳压电源设计讲解

辽宁工业大学 电力电子技术课程设计(论文)题目:240W半桥型开关稳压电源设计 院(系):电气工程学院 专业班级:电气102 学号:100303044 学生姓名:邹伟龙 指导教师:(签字) 起止时间:2012-12-31至2012-1-11

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气教研室Array 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 开关电源在效率、体积和重量等方面都远远优于线性电源,因此已经基本取代了线性电源,成为电子热备供电的主要形式, 受到人们的青睐.随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用,人们对其需求量日益增长。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用反激式开关电源,以UC3842作为控制核心器件,运用脉宽调制的基本原理。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障。 关键词:整流电路;逆变电路;驱动电路

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (2) 第2章开关稳压电源电路设计 (3) 2.1半桥型开关稳压电源总体设计方案 (3) 2.2具体电路设计 (5) 2.2.1主电路设计 (5) 2.2.2整流电路设计 (6) 2.2.3逆变电路设计 (7) 2.2.4驱动电路设计 (8) 2.2.5 整体电路设计 (10) 2.3元器件型号选择 (12) 第3章课程设计总结 (15) 参考文献 (16)

电力电子课程设计报告

电力电子课程设计报告 目前电子课程设计教学方式方法面临的问题进行了分析,提出了分层次、环环相扣、逐步深入的新的教学层次结构,设计了以增强学生的工程实践能力为目的,以培养创新意识和创新能力为核心的新的教学模式。下面是小编整理的电力电子课程设计报告,欢迎来参考! 电子课程设计是在先修理论课:电路理论、模拟电子、数字电子,以及与其相对应的实验课:电路理论实验、模拟电子实验、数字电子实验的基础上开设的一门以培养学生的设计能力、综合应用能力和工程实践能力为目标的必修课。 我国经济、科技的发展和国际范围内电子技术的发展、电子新产品的涌现,对电子类人才的培养提出了一个更高的标准和要求。而我国传统的教育思想和教学方法中重知识、轻能力,重理论、轻实践的教育思想已经不能适应现阶段人才培养的需要。实践教学对于提高学生的综合素质,培养学生的创新精神和实践能力具有特殊的作用。 以“走出去,用得上”为目标,顺应现代科技的发展态势出发,采取工程集成的教学观点,加强课程设计的数字化、综合化、系统化实验。

重视设计方法学的变革,逐步培养学生熟练应用现代互设计工具,增强学生应用大规模复杂系统的能力。 在理论课教学和基础实验教学中,注重加强基础拓展知识面,增强学生的工程实践能力。 以人为本,把情感因素考虑进去,充分发展个性,因材施教。把培养创新意识和创新能力放在核心地位。 打破院系甚至学校的壁垒,充分利用现有资源,本着“宁可用坏,不许放坏”的原则,为学生提供尽量多的 实践环境和实践仪器设备。 分层次。把理论教学、基础实验教学和课程设计融为一体,做到一条龙、不断线、重基础、分层次。在新的教学模式中,电子技术分为三个层次:基础理论教学,基础实验教学,综合应用实验教学和科技创新实验教学。其中电子设计课程属于第三层即综合应用层。 教学内容有着必然的连续性,“我要的是葫芦”使不得,既不能像传统的教学体制中重理论、轻实践,但也不能“改革过度”,片面强调实验的重要性。学理论是为了应用,实验也是为了应用,仅仅是在实践中所起的作用不尽相同而已。 基础实验教学又分为两个小的层次:基础实验和设计型实验。基础实验是为了验证理论,使学生对理论有更深的理

相关主题