搜档网
当前位置:搜档网 › 详解LED恒流驱动中的PWM调光技术

详解LED恒流驱动中的PWM调光技术

详解LED恒流驱动中的PWM调光技术
详解LED恒流驱动中的PWM调光技术

详解LED恒流驱动中的PWM调光技术

脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。

脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。调制.

简单点说,假如需要一个1V0.6A的输出,而实际上只有一个1V1A的输出,那么只需要把1V1A的输出接通0.6秒,再断开0.4秒,然后继续接通0.6秒断开0.4秒,得到的效果和1V0.6A输出的效果是一致的

选择高性能的LED恒流源不但可以提高LED路灯的可靠性

目前常见的LED调光技术有Buck,Boost,Buck-Boost调节和线性调节。不管你用Buck, Boost,Buck-Boost还是线性调节器来驱动LED,它们的共同思路都是用驱动电路来控制光的输出。一些应用只是简单地来实现“开”和“关”地功能,但是更多地应用需求是要从0到100%调节光的亮度,而且经常要有很高的精度。设计者主要有两个选择:线性调节LED电流(模拟调光),或者使用开关电路以相对于人眼识别力来说足够高的频率工作来改变光输出的平均值(数字调光)。使用脉冲宽度调制(PWM)来设置周期和占空度(图1)可能是最简单的实现数字调光的方法,并且Buck调节器拓扑往往能够提供一个最好的性能。

图1:使用PWM调光的LED驱动及其波形

推荐的PWM调光

模拟调光通常可以很简单的来实现。我们可以通过一个控制电压来成比例地改变LED 驱动的输出。模拟调光不会引入潜在的电磁兼容/电磁干扰(EMC/EMI)频率。然而,在大多数设计中要使用PWM调光,这是由于LED的一个基本性质:发射光的特性要随着平均驱动电流而偏移。对于单色LED来说,其主波长会改变。对白光LED来说,其相关颜色温度(CCT)会改变。对于人眼来说,很难察觉到红、绿或蓝LED中几纳米波长的变化,特别是在光强也在变化的时候。但是白光的颜色温度变化是很容易检测的。

大多数LED包含一个发射蓝光谱光子的区域,它透过一个磷面提供一个宽幅可见光。低电流的时候,磷光占主导,光趋近于黄色。高电流的时候,LED蓝光占主导,光呈现蓝色,从而达到了一个高CCT。当使用一个以上的白光LED的时候,相邻LED的CCT的不同会很明显也是不希望发生的。同样延伸到光源应用里,混合多个单色LED也会存在同样的问题。当我们使用一个以上的光源的时候,LED中任何的差异都会被察觉到。

LED生产商在他们的产品电气特性表中特别制定了一个驱动电流,这样就能保证只以这些特定驱动电流来产生的光波长或CCT。用PWM调光保证了LED发出设计者需要的颜色,而光的强度另当别论。这种精细控制在RGB应用中特别重要,以混合不同颜色的光来产生白光。

从驱动IC的前景来看,模拟调光面临着一个严峻的挑战,这就是输出电流精度。几乎每个LED驱动都要用到某种串联电阻来辨别电流。电流辨别电压(VSNS)通过折衷低能耗损失和高信噪比来选定。驱动中的容差、偏移和延迟导致了一个相对固定的误差。要在一个闭环系统中降低输出电流就必须降低VSNS。这样就会反过来降低输出电流的精度,最终,输出电流无法指定、控制或保证。通常来说,相对于模拟调光,PWM调光可以提高精度,线性控制光输出到更低级。

调光频率VS对比度

LED驱动对PWM调光信号的不可忽视的回应时间产生了一个设计问题。这里主要有三种主要延迟(图2)。这些延迟越长,可以达到的对比度就越低(光强的控制尺度)。

图2:调光延迟

如图所示,tn表示从时间逻辑信号VDIM提升到足以使LED驱动开始提高输出电流的时候的过渡延迟。另外,tsu输出电流从零提升到目标级所需要的时间,相反,tsn是输出电流从目标级下降到零所需要的时间。一般来说,调光频率(fDIM)越低,对比度越高,这是因为这些固定延迟消耗了一小部分的调光周期(TDIM)。fDIM的下限大概是120Hz,

低于这个下限,肉眼就不会再把脉冲混合成一个感觉起来持续的光。另外,上限是由达到最小对比度来确定的。

对比度通常由最小脉宽值的倒数来表示:

CR=1/tON-MIN:1

这里tON-MIN=tD+tSU。在机器视觉和工业检验应用中常常需要更高的PWM调光频率,因为高速相机和传感器需要远远快于人眼的反应时间。在这种应用中,LED光源的快速

开通和关闭的目的不是为了降低输出光的平均强度,而是为了使输出光与传感器和相机时间同步。

用开关调节器调光

基于开关调节器的LED驱动需要一些特别考虑,以便于每秒钟关掉和开启成百上千次。用于通常供电的调节器常常有一个开启或关掉针脚来供逻辑电平PWM信号连接,但是与此相关的延迟(tD)常常很久。这是因为硅设计强调回应时间中的低关断电流。而驱动LED 的专用开关调节则相反,当开启针脚为逻辑低以最小化tD时,内部控制电路始终保持开启,然而当LED关断的时候,控制电流却很高。

用PWM来优化光源控制需要最小化上升和下降延迟,这不仅是为了达到最好的对比度,而且也为了最小化LED从零到目标电平的时间(这里主导光波长和CCT不能保证)。标准开关调节器常常会有一个缓开和缓关的过程,但是LED专用驱动可以做所有的事情,其中包括降低信号转换速率的控制。降低tSU和tSN要从硅设计和开关调节器拓扑两方面入手。

Buck调节器能够保持快速信号转换而又优于所有其它开关拓扑主要有两个原因。其一,Buck调节器是唯一能够在控制开关打开的时候为输出供电的开关变换器。这使电压模式或电流模式PWM(不要与PWM调光混淆)的Buck调节器的控制环比Boost调节器或者各种Buck-Boost拓扑更快。控制开关开启的过程中,电力传输同样可以轻易地适应滞环控制,甚至比最好的电压模式或电流模式的控制环还要快。其二,Buck调节器的电导在整个转换周期中连在了输出上。这样保证了一个持续输出电流,也就是说,输出电容被删减掉。没有了输出电容,Buck调节器成了一个真正的高阻抗电流源,它可以很快达到输出电压。Cuk 和zeta转换器可以提供持续的输出电感,但是当更慢的控制环(和慢频)被纳入其中的时候,它们会落后。

比开启针脚更快

即使是一个单纯的无输出电容的滞后Buck调节器,也不能满足某些PWM调光系统的

需要。这些应用需要高PWM调光频率和高对比度,这就分别需要快速信号转换率和短延迟时间。对于机器视觉和工业检验来说,系统实例需要很高的性能,包括LCD板的背光和投影仪。在某些应用中,PWM调光频率必须超过音频宽,达到25kHz或者更高。当总调光周期降低到微秒级时,LED电流总上升和下降时间(包括传输延迟),必须降低到纳秒级。

让我们来看看一个没有输出电容的快速Buck调节器。打开和关断输出电流的延迟来源于IC的传输延迟和输出电感的物理性质。对于真正的高速PWM调光,这两个问题都需要解决。最好的方法就是要用一个电源开关与LED链并联(图3)。要关掉LED,驱动电流要经过开关分流,这个开关就是一个典型的n-MOSFET。IC持续工作,电感电流持续流动。这个方法的主要缺点是当LED关闭的时候,电量被浪费掉了,甚至在这个过程中,输出电压下降到电流侦测电压。

图3:分流电路及其波形

用一个分流FET调光会引起输出电压快速偏移,IC的控制环必须回应保持常电流的请求。就像逻辑针脚调光一样,控制环越快,回应越好,带有滞环控制的Buck调节器就会提供最好的回应。

用Boost和Buck-Boost的快速PWM

Boost调节器和任何Buck-Boost拓扑都不适合PWM调光。这是因为在持续传导模式中(CCM),每个调节器都展示了一个右半平面零,这就使它很难达到时钟调节器需要的高控制环带宽。右半平面零的时域效应也使它更难在Boost或者Buck-Boost电路中使用滞后控制。另外,Boost调节器不允许输出电压下降到输入电压以下。这个条件需要一个输入端短电路并且使利用一个并联FET实现调光变得不可能。。在Buck-Boost拓扑中,并联FET 调光仍然不可能或者不切实际,这是因为它需要一个输出电容(SEPIC,Buck-Boost和flyback),或者输出短电路(Cuk和zeta)中的未受控制得输入电感电流。当需要真正快速PWM调光的时候,最好的解决方案是一个二级系统,它利用一个Buck调节器作为第二LED 驱动级。如果空间和成本不允许的时候,下一个最好的原则就是一个串联开关(图4)。

图4:带有串联DIM开关的Boost调节器

LED电流可以被立即切断。另外,必须要特别考虑系统回应。这样一个开路事实上是一个快速外部退荷暂态,它断开了反馈环,引起了调节器输出电压上升。为了避免因为过压失败,我们需要输出钳制电路和/或误差放大器。这种钳制电路很难用外部电路实现,因此,串联FET调光只能用专用Boost/Buck-Boost LED驱动IC来实现。

总而言之,LED光源的单纯控制需要设计的初始阶段就要非常小心。光源越复杂,就越要用PWM调光。这就需要系统设计者谨慎思考LED驱动拓扑。Buck调节器为PWM调光提

供了很多优势。如果调光频率必须很高或者信号转换率必须很快,或者二者都需要,那么Buck调节器就是最好的选择。目前LED灯具市场面临着一个很大的发展机遇,但是也滋生了众多的LED灯具生产企业。在LED灯具上,目前较少有人注意到恒流源和控制器的性能和开发这方面。选择高性能的LED恒流源是可以大大提高LED灯具的可靠性,这对于一个企业树立品牌,生存下来意义重大。而且具有PWM调光性能的恒流源和具有PWM调光输出的控制器相配合,还可以大大降低整个灯具的成本,这对于提高LED灯具的民用化增大企业竞争力意义重大。目前国内外做恒流驱动的性能较高的品牌有RD9910,HV9910,SMD802,CXL9910等。

最简单的18W LED 恒流驱动

小于一元硬币非隔离高恒流精度18W LED日光灯驱动方案中国LED标准委员会李明峰李照详张义张占松杨威 摘要:文章详细介绍了基于TRUEC2技术非隔离BUCK拓扑,来实现18W极高精度日光灯LED恒流控制。试验证明,全闭环TRUEC2技术实时检测真实输出电流,免受输入电压、外部电感影响,突破性地提高了LED输出电流的精度。集成MOSFET,简化外围线路;控制方式免受电感影响。体积小可内置于日光灯灯头,是理想的非隔离恒流驱动方案。最后,对于LED驱动电源未来发展趋势及其担忧,笔者提出了自己的观点。 关键词:TRUEC2LED恒流控制全闭环电流控制DU8618 LED Constant Current Control Solution based on TRUEC2 Technology Abstract: This paper presents the principle of a non-isolated BUCK topology based on TRUEC2 constant current control, using integrated MOSFET PWM control IC: Duty Cycle Company’s DU8618. The experiment demonstrates that this control method can effectively increase the accuracy of the output current, which is not subject to the line voltage and external inductor. The Robustness is also increased compare with open loop control solution. The integration of MOFET results in the decreasing of external components, which in turn decreases total cost. A very cost-effective 18W Tube LED solution is detailed illuminated here. Keyword:TRUEC2/LED Constant Current Control / Close loop current control/ DU8618 1 引言 进入2013年,我们切身感受到了LED行业发展的阵阵暖意。目前有好几个趋势正在推动LED照明市场的发展。首先是高亮度LED效率的不断提升和高效率高可靠性恒流LED驱动电源的不断涌现,其次是全球立法禁止白炽灯照明和CFL节能灯的逐步淡出(它含有对环境有害的水银)。这些因素综合起来正使得LED照明成为一个长期的发展趋势。更重要的是,低成本(包括LED灯珠、散热系统和LED驱动器)是消费者广泛采用LED通用照明的原始推动力。除了节能减排的重大使命以外,LED相比于其他光源更可控的特点使其可能革命性的丰富人们的用光环境,提供许多新颖的光影世界。而实现这些应用最为关键的环节就是驱动:LED光源的大脑。更小体积、更少元件、更低成本、更强大,这些是市场对LED驱动电源的“苛刻”要求。 本文介绍的这种极简线路18W LED日光灯驱动方案,尺寸小于一枚一元硬币,成本是目前市场主流方案的一半左右,是顺应这种“苛刻”要求而生的。简单即完美的哲学在这种方案里发挥得淋漓尽致。 2. 1第三代非隔离LED恒流控制技术闭环算法TRUEC2简介

LED恒流驱动及恒流IC大盘点

LED恒流驱动简介 由于LED是特性敏感的半导体器件,又具有负温度特性,因而在应用过程中需要对其进行稳定工作状态和保护,从而产生了驱动的概念。LED器件对驱动电源的要求近乎于苛刻,LED不像普通的白炽灯泡,可以直接连接220V的交流市电。LED是2~3伏的低电压驱动,必须要设计复杂的变换电路,不同用途的LED灯,要配备不同的电源适配器。国际市场上国外客户对LED驱动电源的效率转换、有效功率、恒流精度、电源寿命、电磁兼容的要求都非常高,设计一款好的电源必须要综合考虑这些因数,因为电源在整个灯具中的作用就好比像人的心脏一样重要。 LED驱动电源把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。而LED驱动电源的输出则大多数为可随LED正向压降值变化而改变电压的恒定电流源。LED电源核心元件包括开关控制器、电感器、开关元器件(MOSfet)、反馈电阻、输入滤波器件、输出滤波器件等等。根据不同场合要求、还要有输入过压保护电路、输入欠压保护电路,LED开路保护、过流保护等电路。 LED的恒流驱动 用LED作为显示器或其他照明设备或背光源时,需要对其进行恒流驱动,主要原因是: 1. 避免驱动电流超出最大额定值,影响其可靠性。 2. 获得预期的亮度要求,并保证各个LED亮度、色度的一致性 3.能有效的避免雷击,电网的浪涌,过电流,过电压的保护,使LED寿命提高。 存在问题: 要处理好散热问题,散热问题没有处理好就会影响LED寿命。 目前LED均采用直流驱动,因此在市电与LED之间需要加一个电源适配器即LED 驱动电源。它的功能是把交流市电转换成合适LED的直流电。根据电网的用电规则和LED 的驱动特性要求,在选择和设计LED驱动电源时要考虑到以下几点: 1.高可靠性 特别像LED路灯的驱动电源,装在高空,维修不方便,维修的花费也大。 2.高效率 LED是节能产品,驱动电源的效率要高。对于电源安装在灯具内的结构,尤为重要。因为LED的发光效率随着LED温度的升高而下降,所以LED的散热非常重要。电源的效率高,它的耗损功率小,在灯具内发热量就小,也就降低了灯具的温升。对延缓LED的光衰有利。 3.高功率因素 功率因素是电网对负载的要求。一般70瓦以下的用电器,没有强制性指标。虽然功率不大的单个用电器功率因素低一点对电网的影响不大,但晚上大家点灯,同类负载太集中,会对电网产生较严重的污染。对于30瓦~40瓦的LED驱动电源,据说不久的将来,也许会对功率因素方面有一定的指标要求。 4.驱动方式 现在通行的有两种:其一是一个恒压源供多个恒流源,每个恒流源单独给每路LED 供电。这种方式,组合灵活,一路LED故障,不影响其他LED的工作,但成本会略高一点。另一种是直接恒流供电,LED串联或并联运行。它的优点是成本低一点,但灵活性差,还要解决某个LED故障,不影响其他LED运行的问题。这两种形式,在一段时间内并存。多路恒流输出供电方式,在成本和性能方面会较好。也许是以后的主流方向。 5.浪涌保护

步进电机驱动之全桥驱动与斩波恒流

步进电机驱动之全桥驱动与斩波恒流 先看两相绕组的全桥驱动电路,四路基本相同的驱动电路,抓取一组电路来分析: 全桥驱动电路,其中Q7和Q8基极和发射极短接,相当于一个反向的二极管。 为了便于分析,将原理图简化后如下所示:

查看IM2000S芯片手册,对全桥驱动芯片输入脚的定义如下: 以上四个输入端:B相高低端全桥控制信号,用来控制离散的PN,NN的全桥或者半桥IC. 从上述可以知道,输出的是一个离散量,那么,是怎样控制电机,使电机获得一个sin和cos 的电流信号而驱动电机的呢? 这里要深入理解一个概念:斩波恒流! 斩波恒流的原理是:当环形分配器导通的时候,IC2使得TL和TH导通,电源通过TH和TL 和电机向下有电流输出,此时R左端的电压上升,当电流上升到给定电平时,比较器反转,输出为低,使得IC1截止,此时电感使电流缓慢下降,此时通过TL采样的电压变低,当电压低于给定电平时候,比较器反转,使得IC1再次导通,这样可以快速的波动,而使电感上的电流保持一个恒定的值。当环形分配器给出低电平时,IC1和IC2截止,电流通过D2流入电源,从而实现节能。 此时,再看上图,会发现: 1、BHO和ALO为一个通路,AHO和BLO为一个通路,实现电流的正向和反向。 2、BHO和AHO的开关频率会比BL0,ALO大很多,BL0和ALO只有在正向和负方向反转的时 候出现跳变,而BHO和AHO的频率会很快以实现恒流。

这里值得注意的一点是,上述过程仅仅是在一个细分时候,一个数模转换量上保持的恒流。如果整步为256细分,则在256细分的每一个细分阶段实际上过程就是上文红色字体运行一遍的一个过程,而要使整个电机转动一圈,则需要完成一个SIN和COS的整个过程,如果上面的过程仍然无法理解,请参看步进电机细分方面的内容。 从整个驱动电路的系统上看, 整个闭环是按照如下进行工作的:

详解大功率LED恒流驱动原理

详解大功率LED 恒流驱动地设计原理 时间:2018-01-03 15:16:32 来源:作者: 0 引言 光伏发电行业作为一种新兴行业,其发展具有突飞猛进地趋势.光伏照明是光伏产业中地支柱产业.由于光伏电池所发出来地电如果不经过一次变换地话是直流电,因此,LED 光源作为一种直流电光源,尤其适合光伏照明产业.但是,LED 地高效节能地优点要想保证地话,其驱动具有尤为重要地作用.本文对大功率LED 和小功率LED 适合地驱动进行了比较研究.并且提出一种基于PT4115地高效率地大功率LED 恒流驱动解决方案.该种驱动电路简单、高效、成本低,适合当今太阳能产品地市场化发展.b5E2RGbCAP 1 LED 工作特性 LED 具有对电压敏感地特性,当LED 两端电压超过其导通电压后.可近似地认为其正向电压VF和正向电流IF 成比例关系.因此,电压地变化会引起电流地变化.p1EanqFDPw 图1 LED 地VF 和IF 特性曲线线 从图1 可以看出电压地微小变化会引起电流地极大变化.由此,可以得出对于LED 应该采用恒流驱动,防止流过LED 电流地极大波动,影响LED 地使用寿命.因此,不管是交流恒流驱动还是直流恒流驱动,其输出端LED 两端电压地峰峰值最好控制电流在几十毫 安.DXDiTa9E3d 2 LED 常用驱动技术比较研究 2. 1 电阻镇流驱动 图2 采用镇流电阻驱动地原理图 从图2 中可见,采用电阻镇流地驱动方式就是在LED 灯串上串联上镇流电阻.通过镇流电阻降低在LED 灯串上地电压,防止LED 过压被击穿.镇流电阻地驱动方式实际上就是通常所说地恒压驱动方式.该种驱动方式虽然简单,但是在镇流电阻上会有损耗,并且,损耗会随输入电压地增大而增大.因此,该种技术作为最早地驱动技术,已经随着技术地发展,逐渐被取代.RTCrpUDGiT

SM7307——8-18W恒流驱动方案

SM7307非隔离BUCK恒流控制功率开关 v1.6 SM7307

内部功能框图 管脚序号管脚名称管脚说明 1 FB 反馈引脚 2 VDD 内部电源 3 NC 悬空脚 4 DRAIN 内置功率MOS漏极输入 5、6 CS LED灯串电流采样输入端 7、8 GND 芯片地

极限参数 极限参数(TA= 25) ℃ 符号说明范围单位DRAIN 供电电压-0.3~730 V V CS CS输入电压-0.3~8 V VDD 芯片内部电源-0.3~8 V V FB FB输入电压-0.3~8 V T J 允许的工作温度-40 ~ 125 ℃T stg存储温度-55 ~ 150 ℃V ESD ESD耐压2000 V 电气工作参数 (除非特殊说明,下列条件均为TA=25℃,VDD=5.8V) 符号说明条件范围 单位最小典型最大 I DD_OPER静态工作电流DRAIN=20V 0.25 1.0 mA DRAIN-DC输入直流电压范围直流输入电压20 730 V I IN_MAX DRAIN对VDD提供电流DRAIN=20V 1 mA V DD芯片电源 6 V V TH_CS电流侦测峰值门槛电压600 mV T LEB消隐时间400 nS T OFFmin最小关闭时间 5 uS V FBH过压保护阈值 4 V V FBL短路保护阈值0.2 V BV DS击穿电压730 V Ron 导通电阻17 ohms

功能表述 SM7307是一款高效率的PWM-LED 恒流芯片,无需补偿元件,即可实现恒定的输出电流。外围元件少,方案成本低。 SM7307内置前沿消隐(LEB )电路,防止由于开关噪音等原因产生的误关断。LEB 时间后,当流过开关管的电流使得CS 端的电压达到其比较阈值电压时,CS 反馈信号关闭开关管。 CS 电阻的计算公式可以表述为: R = 0.6V 2?I ◆ 内部稳压器 DRAIN 端口通过JFET 对VDD 电容充电,利用稳压管的稳压特性,从而稳定VDD 的电压。 ◆ 恒流部分 芯片通过CS 端口限制电流峰值,并通过FB 端口检测电感电流过零时开始开关,从而确定了流过电感的高低压电流值,从而输出恒流。 SM7307非隔离BUCK 恒流控制功率开关v1.6

LED恒流驱动及恒流IC大盘点

LED恒流驱动及恒流IC大盘点 LED恒流驱动简介 由于LED是特性敏感的半导体器件,又具有负温度特性,因而在应用过程中需要对其进行稳定工作状态和保护,从而产生了驱动的概念。LED器件对驱动电源的要求近乎于苛刻,LED不像普通的白炽灯泡,可以直接连接220V的交流市电。LED是2~3伏的低电压驱动,必须要设计复杂的变换电路,不同用途的LED灯,要配备不同的电源适配器。国际市场上国外客户对LED驱动电源的效率转换、有效功率、恒流精度、电源寿命、电磁兼容的要求都非常高,设计一款好的电源必须要综合考虑这些因数,因为电源在整个灯具中的作用就好比像人的心脏一样重要。 LED驱动电源把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。而LED驱动电源的输出则大多数为可随LED正向压降值变化而改变电压的恒定电流源。LED电源核心元件包括开关控制器、电感器、开关元器件(MOSfet)、反馈电阻、输入滤波器件、输出滤波器件等等。根据不同场合要求、还要有输入过压保护电路、输入欠压保护电路,LED开路保护、过流保护等电路。 LED的恒流驱动 用LED作为显示器或其他照明设备或背光源时,需要对其进行恒流驱动,主要原因是: 1. 避免驱动电流超出最大额定值,影响其可靠性。 2. 获得预期的亮度要求,并保证各个LED亮度、色度的一致性 3.能有效的避免雷击,电网的浪涌,过电流,过电压的保护,使LED寿命提高。 存在问题: 要处理好散热问题,散热问题没有处理好就会影响LED寿命。 目前LED均采用直流驱动,因此在市电与LED之间需要加一个电源适配器即LED 驱动电源。它的功能是把交流市电转换成合适LED的直流电。根据电网的用电规则和LED的驱动特性要求,在选择和设计LED驱动电源时要考虑到以下几点: 1.高可靠性 特别像LED路灯的驱动电源,装在高空,维修不方便,维修的花费也大。 2.高效率 LED是节能产品,驱动电源的效率要高。对于电源安装在灯具内的结构,尤为重要。因为LED的发光效率随着LED温度的升高而下降,所以LED的散热非常重要。电源的效率高,它的耗损功率小,在灯具内发热量就小,也就降低了灯具的温升。对延缓LED的光衰有利。 3.高功率因素 功率因素是电网对负载的要求。一般70瓦以下的用电器,没有强制性指标。虽然功率不大的单个用电器功率因素低一点对电网的影响不大,但晚上大家点灯,同类负载太集中,会对电网产生较严重的污染。对于30瓦~40瓦的LED驱动电源,据说不久的将来,也许会对功率因素方面有一定的指标要求。 4.驱动方式 现在通行的有两种:其一是一个恒压源供多个恒流源,每个恒流源单独给每路LED 供电。这种方式,组合灵活,一路LED故障,不影响其他LED的工作,但成本会略高一点。另一种是直接恒流供电,LED串联或并联运行。它的优点是成本低一点,但灵活性差,还要

步进电机细分控制原理与斩波恒流驱动原理

步进电机细分控制原理与斩波恒流驱动原理步进电机控制已经蕴含了细分的原理。电机内部磁场每旋转一个圆周, 步进电机前进一整个步距角。若四相步进电机按A→B→C→D→A 的顺序轮流通电, 即整步工作, 磁场分四拍旋转, 每次电流换向, 步进电机将前进整步距角的1/4。而按A→AB→B→BC→C→CD→D→DA→A 的顺序轮流通电, 即半步工作, 每次电流换向, 步进电机将前进整步距角的1/8。 但是, 如果半步工作状态下每拍前进的角度超过控制精度要求, 则需要对步距角进行更进一步的细分。我们知道, 电磁力的大小跟绕组通电电流的大小是相关的。当通电相的电流不马上到达峰值, 而断电相的电流也不立即降为零时, 电机内部磁场为上两相电流共同合成, 而产生的磁场合力, 会使转子有一个新的平衡位置, 这个新的平衡位置在原步距角的范围内。也就是说, 如果绕组电流的波形不再是一个近似方波, 而是分成N 个阶梯的近似阶梯波, 则电流每升或者降一个阶梯时, 转子转动一小步。当转子按照这个规律转过N 小步时, 实际相当于它转过一个步距角。这种将一个步距角分成若干小步的驱动方法, 称为细分驱动。 如图3: T1 是一个高频开关管。T2 管的发射极接一个电流取样小电阻R。比较器一端接给定电压uc, 另一端接R 上的压降。控制脉冲ui 为低电平时, T1 和T2 均截止。当ui 为高电平时, T1 和T2 均导通, 电源向电机供电。由于绕组电感的作用, R 上电压逐渐升高, 当超过给定电压uc, 比较器输出低电平, 与 门因此输出低电平, T1 截止, 电源被切断, 绕组电感放电。当取样电阻上的电压小于给定电压时, 比较器又输出高电平, 与门输出高电平, T1 又导通, 电源又开始向绕组供电, 这样反复循环, 直到ui 又为低电平。因此: T2 每导通一次, T1 导通多次, 绕组的电流波形为锯齿形, 如图4 所示, 在T2 导通的时间里电源是脉冲式供电( 图4 中ua 波形) , 所以提高了电源效率, 而且还能有效抑制共振。

相关主题