搜档网
当前位置:搜档网 › 细长轴的车削加工要领

细长轴的车削加工要领

细长轴的车削加工要领
细长轴的车削加工要领

细长轴类零件的车削加工

1. 中心架和跟刀架在细长轴零件

加工中的应用

车削细长轴工件,长度是直径10~12倍以上的长轴时,如车床光杠、丝杠等,由于这些轴本身的刚性差,加上切削力、切削热和震动等影响,车削时易产生弯曲、锥度、腰鼓度和竹节形等缺陷。此外,在车削过程中还会引起震动,影响工件表面粗糙度。为了防止这种现象产生,我们可以应用一种叫做中心架的特殊支承夹具。中心架和跟刀架是车床附件之一,用卡盘顶针与中心架,或前后顶针与跟刀架装夹,可提高切削加工系统的刚性。

使用这些附加的装卡工具,可以增加工件的装卡刚度,减少震动,保证加工质量,避免零件产生鼓面,提高工件表面形状精度和表面粗糙度,并允许采用大切削用量加工,提高劳动生产率。下面分别就中心架与跟刀架在细长轴零件中的应用加以说明。

一、中心架在细长轴零件加工中的应用

1.中心架的结构

中心架的结构组成如图5-1所示。

中心架一般固定在床面一定位置上,如图5-1(b)所示。它的主体座l通过压板4和螺母5紧固在床面上。盖子3与主体1用销作活落连接,盖子3可以打开或盖住,并用螺钉2固定。三个爪的向心或离心位置,可以用螺钉6调节,以适应不同直径大小的工件,并用螺钉9紧固爪7和8,使爪在需要位置上固定不动。

2.中心架的使用

(1)中心架的使用调整方法

工件装上中心架之前,先在毛坯中间处车一条安装中心架卡爪的沟槽,槽的直径等于工件的直径,其宽度略比爪宽大些。接着把中心架安装在床面适当位置上并加以固定,打开盖子3,把工件安装在两顶针中间(床尾要先调整好),用划针盘或百分表检查槽是否跳动,然后将盖子3盖好,并调整中心架3个爪,使他们与工件沟槽轻轻接触。这时慢慢转动工件,看是否能转得动。在爪与工件之间最好垫一层铜皮或平皮带,并加些润滑油,或者3个爪用夹布胶木制造,这样可防止擦伤工件表面。在车削大型工件或工件转速较高时,就必须采用带滚动轴承的中心架,如图5-2所示。

(2)车削步骤

车削时,先车一端,一直车到沟槽为止。然后把工件调个头,用同样方法安装和调整工件,

车削另一端。

对于外图已车好的工件.而且要求表面不准有擦伤,这时最好

用带滚动轴承的中心架。如果没有带滚动轴承的中心架,可用一只辅助套筒来代替,如图5-3所示。使用时,把套筒l套在工件2外圆上,拧紧四周螺钉3(螺钉与工件之间垫一层铜皮),并用百分表4校准套筒外圆,如图5-4所示。如果套筒外圆与工件不同心,就需要调节螺钉,直到同心为止。

如果要车削长轴的端面或内,以及在轴的一端切断或车螺纹时,就可以把中心架移到近轴的端部(图5-5)。但必须注意,在调整3个爪之前,先把工件校圆,然后再调整爪。否则由于其旋转中心与主轴旋转中心不一致,工件就很快会从三爪卡盘上掉下来

并把工件端部表面夹伤。

使用中心架车削细长轴时,可根据轴长整体加工的需要,分为两类:

1)可分段车削或调头车削零件,采用中心架直接支承。中心架的支承爪用铸铁或青铜制造,并在零件中间部位使用。零件支承表面必须有一定粗糙度和圆度要求,否则会影响零件的精度。其工作步骤为:

①在工件中部偏向车头方向约lOOmm处车一段圆柱面沟槽,其直径应大于工件要求尺寸。车沟槽时为减少震动,可采用慢车速、小走刀的方法切削。

②装上中心架。在开车时调整三爪,使它与工件轻轻接触。

③车削工件。方向由床尾向床头,直到车到沟槽处为止。

④工件调头装夹。

⑤中心架支承爪调整。在已加工表面与三爪间垫一张细号砂布,砂布背面贴住工件,有砂粒一面向着三爪,调整三个爪,将其轻轻支住已加工表面。

2)中段不需要加工的长轴工件,可采用套筒与中心架配合支承。由于一些工件毛坯表面不规则,中段又不适宜车平沟槽,可采用调整套筒与中心架配合并使用。调整套筒如图5-6所示。其使用步骤如下:

①调整套筒,调整套筒两端的螺钉,使套筒的轴心线与车床主轴旋转轴心线重合。

②安装中心架,使中心架的支承爪与套筒外圆相接触并能均匀转动。

③车削。直到车好一端。

④调头装夹零件。

⑤中心架支承爪位置调整,使其与零件已车削表面接触,并调整支承爪,使零件已车削表面的旋转轴心与车床主轴旋转铀心相重

合,即可车削。

(3)注意事项

1)使用中心架车可分段或调头车削的工件时应注意:

①整个加工过程中要经常加油,保持润滑,防止磨损或"咬坏"。

②要随时用手感来掌握工件与中心架三爪摩擦发热的情况,如发热过高,须及时调整中心架的三爪,决不能等出现"吱吱"声或冒烟时再去调整。

③如果所加工的轴很长,可以同时使用两只或更多的中心架。2)使用中心架车中段不需加工的长轴工件时应注意的事项:

①调整套筒外表面要光洁,圆柱度在±0.Olmm之内。

②套筒的内L要比被加工零件的外圆大20~30mm。

③低速车削时,用机油润滑套筒与中心架支承爪的接触表面。④高速车削时,要用调整套筒冷却润滑油浇注到套筒的外表面冷却。

二、跟刀架在细长轴零件中的应用

1.跟刀架的结构

跟刀架主要是用来车削不允许接刀的长轴,例如精度要求高的光滑轴、长丝杠等。跟刀架与中心架不同的地方是:它只有两个卡爪,而另一个卡爪被车刀所代替,其实物外形如图5-7所示。

刀架是固定在大拖板上,随同走刀架一起移动,如图5-8。

为了使车削能顺利进行,提高工件的加工质量,现已改进和创新了新型的跟刀架,该跟刀架可在普通车床上,车削小直径细长轴。这种跟刀架的爪作成套圈形状,套圈的孔径比工件外圆大0.02~0.03ram,并固定在大拖板上。使用时,由经过冷拉的毛料直径作引导,其中衬套的内根据需要选择不同的直径。这种简易跟刀架制造容易,使用方便。适用于冷拉棒料

为毛坯的细长轴零件的成批生产。

在使用跟刀架车削细长轴时,工件容易发生震动,外圆容易车成竹节形、多棱形或麻花形等缺陷。如发现上述情况时,必须立即判断产生的原因,并及时加以处理。

2.跟刀架的使用

应用跟刀架车外圆时,先在工件一端车出--d,段,以便研磨支承爪,使支承爪的圆弧与车削表面基本吻合,以增大支承爪的接触面。安装时,跟刀架两爪轻轻接触工件,并使床尾顶针也轻轻顶住工件。在调整两卡爪对工件的压力时,松紧要适当。如果压力太大,工件边压向车刀,使吃刀深度增大,结果车出来的工件直径就小了。反之,压力太小,使车刀吃刀深度减小,车出来的工件直径也就增大。如果跟刀架两卡爪的压力过小,甚至没有接触,那就起不到跟刀架的作用。使用跟刀架车削细长轴具体操作步骤如下:(1)校直装夹工件

为尽量减小工件的弯曲度,可用反击法校直工件,用该法校直的工件,弹性恢复较小。校直时,应先将工件弯曲的凹面向上;用弧面扁凿从工件的弯曲中心向两侧渐进敲击,使该面伸长而校直工件,然后在卡盘中安装好工件。

对于经过正火或调质等热处理的工件,可采用吊置法安放工件,以减少工件弯曲变形。在一般情况下,粗车前工件的弯曲度应小于l.5mm。精车前,工件弯曲度要小于0.2mm。

(2)校正尾座位置

使工件开始车削的一端外径比另一端外径大0.02~0.04ram,以减少由于跟刀架爪脚或车刀磨损所造成的锥形误差。

(3)调整跟刀架爪脚

将跟刀架的爪脚支紧工件上已车过的一段外圆,该段外圆应表面粗糙,且其尺寸应与所要求的加工尺寸接近,位置也应靠近卡盘,由大拖板作纵向来回移动,运动时不用冷却液。爪脚圆弧应与工件表面吻合,以增大爪脚和工件的接触面积,减少爪脚在车削中的磨损。

(4)准备充分的冷却润滑液,选择车刀切削角度和切削用量

准备好如硫化乳液或其他有针对性的油液以备润滑使用,并合理选择车削细长轴的车刀角度,使刀刃锋利,以降低切削径向力,防止零件弯曲,能顺利排屑,车刀角度选择方法参见本书第四章第三节内容。

(5)合理调整跟刀架爪脚与车刀之间的位置

一般使跟刀架爪脚位于车刀的后面,两者问的距离0.5~2mm。当采用宽刃大走刀车刀进行车削时,跟刀架爪脚也可位于车刀的前面,即支承在粗车表面上,以防止工件精车过的表面出现划痕,间距同上。

3.使用跟刀架车削易产生的问题及防止方法(1)产生鼓肚形

由于细长轴刚性差,而跟刀架支承爪与零件表面接触不一致,或安装时偏高或偏低于工件旋转中心,支承爪表面磨损而产生间隙。在两端切削时,由于装夹牢固,切削深度变化不大,但切削到中间位置时,由于间隙和径向力的作用,切削深度逐渐减小,从而产生鼓肚形。防止产生鼓肚形方法如下:

1)在加工要随时调整两支承爪,使支承爪两圆弧面的中心与车床主轴旋转轴心重合。

2)车刀主偏角适当加大,使车刀锋利,减少车削时的径向力。(2)产生竹节形

竹节形零件其形状如竹节,其节距大约等于跟刀架支承爪与车刀刀尖的距离,并且循环出现。产生的原因是:车床大拖板和中拖板间的间隙过大而跟刀架爪脚支承过紧,在车削至中间部位时,工件刚性差,爪脚支承力超过了工件刚性而使其变形弯曲,从而加大了吃刀深度,当跟刀架行至该位置时,车削径向力迫使这段小直径外圆与跟刀架爪脚接触,工件发生相反方向弯曲变形,减小了吃刀深度。如此反复,就形成了工件外形的竹节形,而且会越来越显著。防止产生竹节形方法如下:

1)正确调整跟刀架爪脚,不可支得过紧。

2)在采用接刀车削时,必须使车刀刀尖和沟槽外圆略微接触,接刀时,吃刀深度应加深0.01~0.02mm,不致由于工件外圆变大而引起爪脚支紧力过大。

3)粗车时开始产生竹节形,可调节中拖板手柄,相应加些吃刀深度,以减小工件外径。或略微松跟刀架上面的两个爪脚,使支紧力稍减小以防止"竹节"继续产生。4)接刀必须均匀,防止跳刀现象。5)由于工件毛坯加工余量明显不均匀,在粗车时产生不均匀

的切削抗力,而出现竹节形缺陷。遇到这种情况中,在第二次走刀切削中,加以清除"竹节",以免影响半精车和精车。

6)在切削中,如果已出现"竹节",随时调整支承爪,使其与"竹节"表面轻轻地接触,这样可以逐步清除"竹节"。

(3)产生麻花形

产生多棱形、麻花形的原因如下:由于车削的细长轴中间部位刚性差,而车床的尾座顶针支顶过紧,发生装夹变形,同时跟刀架支承爪调整过松,夹持部分过长,切削时毛坯旋转不平衡导致吃刀不均匀,加工中又有大量的切削热产生,使车削时易产生低频率的振动,使零件产生多棱形、麻花形。防止多棱形、麻花形的方法如F:

1)随时注意控制顶针的顶紧力大小。

2)注意让跟刀架爪脚和工件接触良好,必要时可增大爪脚的支承面积。

3)要校直工件。每切削一刀后要松开顶针,开慢车检查工件中心是否对准尾座顶针。如偏心,可用木头敲击,对工件进行校正,减小工件弯曲。

4)使用充足的乳化液浇注在车刀与工件的切削区域内,降低切削温度,防止工件因受热而线性膨胀造成顶针支顶过紧,及产生弯曲变形、可防止工件车成多棱形或麻花形。

5)跟刀架、横滑板、刀架等部位刚度不够时,可适当减少切削时的吃刀深度或走刀量。

以上说明跟刀架是一种较难掌握的夹具,在使用中要随时注意工件表面的变化情况,进行相应的调整,并采取必要的措施,才能

4.使用跟刀架车削需要注意的问题

1)尾座顶尖必须轻轻地顶住工件中心孔,不允许过紧,特别是使用死顶尖时要注意随时调整顶紧力,防止工件因发热伸长而被顶弯,应使用弹性顶针为宜。

2)在车削区域及跟刀架爪脚支承工件部位,要保证有充分的冷却润滑液。

3)随时注意工件已加工表面的变化情况,当发现开始有竹节形、麻花形等缺陷出现时,要及时分析原因,采取措施,若发现缺陷越来越明显,应及时停车。

2. 细长轴的其他车削方法

一、细长轴对刀切削法

应用对刀切削法时,将车床中拖板改装成有前、后两个刀架,前、后刀架各装有一把刀。用一根两头螺旋方向相反的丝杠带动,能使两刀架同时进刀、退刀,如图5-9所示。

用这种方法加工大批量细长轴钢件时,在允许分两段调头车削

时,切削用量可取吃刀深度t=2.5mm,走刀量s=1.15~1.65mm/r,切削速度铆=120~150m/min进行切削,其切削过程稳定,精度可达3级。对刀切削法所用的刀具几何形状如图5-9所示,这种车削方法具有下面一些特点:

1)两把刀对刀切削时,径向分力可相互抵消。

2)两把车刀刀尖的间距为工件直径,车出的工件锥度误差小。

3)刃磨车刀修光刃后角,并将刀具安装得比中心略高些,可有效的防止切削时的震动。

4)采用大前角切削,可减少切削力、切削热,切削负荷较轻。5)刀片上焊有高速钢卷屑块,可提高硬质合金刀片的利用率。二、用93。精车刀车削细长轴

这种车刀适用于精车L/D<50的细长轴。在加工时,不需要中心架及跟刀架辅助支承,工

件车削后,表面粗糙度可达Ra l.6,精度在1000mm内的鼓形度不超过0.03~0.05mm,弯曲度不超过0.02~0.04mm。选用的切削用量:吃刀深度t=0.1~0.2mm,走刀量s=0.17~0.23mm/r,切削速度口=50--80m/min。93。精车刀特点如下:

1)采用主偏角k,=93。,并辅助以前面开横向卷屑槽,可使径向力下降,减少切削震动和工件产生的弯曲变形,这是93。车刀不用中心架能车好细长轴的关键。但应注意,切削的吃刀深度不应大于卷屑槽宽度的一半,且应比走刀量小,否则径向力方向与挤压力方向一致,这时93。车刀的特点将无法体现。

2)磨出的横向卷屑槽,可迫使切屑卷出后向待加工表面方向排出,保证已加工表面不被切屑碰伤。

3)研磨出的刀尖小圆弧,可加强刀尖强度。

4)刀片选用耐磨性好的硬质合金材料YT30,可防止修光刀刃过多磨损影响加工精度。

5)仅适合于单件小批量生产中使用。

6)装备简单。只需磨一把刀即可进行加工,但刀片利用率不高。

三、强力反向细长轴车削法

用一般方法车削细长轴,主轴和尾座两端是固定装夹,两端接触面大,无伸缩性,由于切削力、切削热产生的线膨胀和径向分力迫使零件弯曲和产生内应力。当零件从卡盘上卸下后,内应力又使零件变形,故不易保证零件的尺寸精度和形状精度要求。目前,许多工厂采用强力反向走刀车削细长轴,可解决上述问题,显著提高加工质量与生产率。其加工特点如下:

1.改进了工件装夹方法

工件装夹方法是影响细长轴加工精度的重要因素,现从以下两个方面对细长轴工件的装夹方法进行改进:

1)用四爪卡盘夹紧,卡爪与轴之间垫入钢丝。将工件轴端深入四爪卡盘内约15~20mm,每只卡爪与轴之间垫人乒4~≯5mm的钢丝圈,起方向调节作用,使工件与卡爪之间为线接触,以避免长爪卡死工件引起工件弯曲变形。

2)尾座上顶尖改用弹性顶尖。当工件受切削热产生膨胀伸长时,顶尖能轴向产生伸缩,使毛料两端都形成线接触,消除旋转时的"别劲"现象,避免由于长度方向不能伸缩而产生的弯曲变形。弹性顶尖的弹性大小由顶尖的顶紧程度决定。如果没有弹性顶尖,也可用一般的固定顶尖,但根据切削过程中工件受热变形情况,及时调整尾座顶尖的顶紧程度。

2.改造了跟刀架

普通车床上的跟刀架有两个支架,与工件的接触面小,刚性差,不能满足高速切削细长轴的

要求。为增加支承刚性,平衡切削时产生的径向切削力,将跟刀架改为3个支承爪,且底面支承爪采用弹簧支承爪,支承爪的宽度约为零件直径的l~1.5倍,使支承面与零件吻合。采用这种跟刀架,工件外圆被夹持在刀具和3个支承块之间,在切削过程中,使工件只能绕轴线旋转,跟刀架3个支承爪与车刀组成两对径向压力,平衡切削时产生的径向力,这样可有效的减少切削震动,减少工件变形误差。

3.刀具几何形状的改进粗车刀特点是:

1)采用75。主偏角,使轴向分力较大,径向分力较小。有利于防止工件弯曲变形和震动。

2)采用大前角,小后角车刀,可减少切削力又加强刃口强度,使刀具适应于强力切削。

3)通过磨卷屑槽及正的刃倾角控制切屑顺利的排出。4)刀片材料采用强度与耐磨性较好的YWl、Y A6。精车刀采用宽刃锋钢刀片,装在如图弹性可调节的刀排内进

行。由于宽刃车刀采用大走刀低速精车,刃口的平直度及光洁度直接影响着加工精度。因此,刀片前面要通过机械刃磨后再研磨,粗糙度要求Ra0.4肚m以上。

4.切削方法的改进

一般走刀方向是从尾架向车头方向走刀。车细长轴时可对其切削方法改进,以有效的减少工件径向跳动,消除大幅度震动,获得加工较高精度和粗糙度较低的工件,如图5-10所示。

其改进方法分为:

1)采用反向大走刀量粗车。反向大走刀量粗车时,应先车出一段外圆与跟刀架研磨配合,然后从研磨过的轴颈端开始车削,将细长轴余量一刀车掉。粗车时可取其切削用量为:吃刀深度t 22.5mm。走刀量s=0.3~0.35mm/r,切削速度钞=40m/min,切削时并用乳化液充分冷却润滑,以减少刀具跟刀架支承块的磨损。2)宽刀刃精车。精车时,用锋利的宽刃刀车削,并加硫化油或菜油润滑。其切削用量可取:吃刀深度t=0.02~0.05ram,走刀量s:l0~20mm/r,切削速度训=1~2rn/min。由于宽刀刃精车速度低,吃刀少,切屑薄,车两三刀后可达到l.6~0.8的粗糙度,因此其切削效率可大大提高。精车时宽刃刀可以正向进给走刀,也可反方向工作。

通过以上所述的4个方面进行改进,使加工细长轴的质量与生产效率大大提高。加工表面粗糙度在Ra 0.8肿以上,锥度误差和椭圆度误差均较小,工件弯曲度也得到很好的控制,生产率比一般方法提高l0倍左右。

5.注意事项

1)粗车时要装好跟刀架,它是决定加工精度的关键所在。如果切削过程工件外圆出现不规则的棱角形或竹节形或出现不规律形状.应立即停车,安装固定架,重新研磨将轴与跟刀架配合,再进行切削。

2)精车刀应磨得光,刃口锋利,安装调整适当。切削时,切削速度要低,不宜采用丝杠传递进给,以免产生周期性的螺旋形状,这是降低工件加工粗糙度的关键。

3)车刀安装时应略比中心高一些。这样可使修光刀刃后面压住工件,以抵消跟刀架支承块的反作用力。

4)宽刃精车刀安装时应使刀刃与中心平行,并比中心略低一些,为0.1~0.15nma,这样可使弹性刀杆在跳动时刀刃不会啃人工件,影响表面粗糙度。

3. 车削细长轴的刀具常用角度

加工细长轴常用车刀分为长轴粗车刀、长轴精车刀,它们的刀具角度选择如下:

1.粗车刀(如图5-11、图5-12)

1)主偏角k,=75。~90。,(对刀切削用车刀的车刀的主偏角k,=45。),主偏角磨有圆弧形断屑槽,使吃刀抗力P。减小,有利于防止工件弯曲变形和震动。

2)采用车刀前角y=15。~20。;后角0/=3。,既可减少切削力又增加刃强度,使刀具适应于强力切削。

3)通过磨卷屑槽及采用刃倾角A=5。,使切屑有利排出。

4)刀片材料最好用强度与耐磨性较好的YWl、Y A6、YG8车刀。车刀可磨成反车刀,由车头向车尾座方向走刀,效果更好。车刀安装时,刀尖要略高于中心0.1~O.2mm,以增大切削前角。

2.长轴精车刀

(1)93。精车刀

1)主偏角k,=93。,以减少径向切削抗力。

2)A=12。,70=15。~20。,采用横向卷屑槽形成修光刀刃大前角,修光刀刃后角%=一0.5。,可提高切削性能,控制排屑方向。2、耍田71尘丽囱pn气rnrn和1rnrn亩的格*刃可燥寓T 仕韶

洁程度。

(2)宽刃大走刀精车刀

1)刀片磨出前角0。,后角

35。

2)装载刀排里形成前角70=25。,后角0t=10。刃倾角A=1030'~2。

3)刀刃的宽度大于走刀

量。

宽刃大走刀精车刀的车刀

角度如图5-13所示。

第四节细长轴零件的加工实例

细长轴零件加工是车削操作较难的一种,对于车工而言,需要不断学习别人成功的方法和经验,在实践中需要不断改进完善,以提高细长轴的车削质量和效果。现以一细长轴的加工为例,介绍其车削过程。

零件材料为45号钢,直径为声100mm,长度为l 000ram,粗糙度为Ral.6mm,全长不直度为0.2mm。零件的加工步骤如下:

1.装卡零件

1)校直毛料不直度,使其不直度小于1.5ram;

2)在毛坯的一端面,钻出q,4mm的圆柱中心孔。另一端用≯5一开口钢丝圈套在毛坯的外圆上,或垫上j55mm短圆柱销。

3)将细长轴一端l5~25mm长的毛坯伸入三爪卡盘内装夹,尾端用伸缩活顶尖装卡。

4)开空车观察毛料的不直度,如弯曲过大,则卸下工件调直重新装卡。

2.在靠卡盘一端的毛坯外圆上,车削跟刀架支承基准

车削直径为q22mm,长度大于支承爪的宽度1520mm,并在工件的走刀方向车成小于45。的倒角,以便减少接刀时的"让刀"现象,防止产生竹节形。

3.安装跟刀架,研磨支承爪

将已车好的圆柱端为基准,研磨支承爪支承面。研磨时,可取主轴转速72=300~6001"/min,先干磨,后精研,以提高支承爪圆弧面的密合度和表面硬度。工件在跟刀架上的安装形式见

图5-14所示。

4.选择、安装车刀

根据粗精加工不同选择车刀类型及其角度。

1)粗车时选主偏角k,=75。,前角托=20。,后角口=3。的YWl

车刀。粗车工件示意图如图5-15所示。

2)精车时可主选偏角k,=75。~90。,前角70=25。;后角0t。=10。、刃倾角A=1。307~2。YWl宽刃精车刀。

3)选择好后,安装车刀,安装时要保证车刀与工件中心平行,且高度略高于中心0.1~0.2mm,使副后面有托住零件的作用,以提高加工表面的粗糙度,减少震动。

5.粗车和精车工件。

1)粗车工件时,主轴转速咒=600~1200r/rnin,切削深度t=

2.5mm,走刀量S=0.4mm]r,从床头向尾座方向走刀。

2)精车工件时,主轴转速咒=600~1200r/rain,切削深度t=

0.02~0.05ram,走刀量S=0.15~0.2mm]r。

3)车削过程要有充足的冷却润滑液浇注跟刀架的支承处,防止摩擦发热和支承爪磨损。用这种方法加工l 000mm长的细长轴,其锥度不会大于0.02mm,椭圆度不大于0.02ram,不直度不大于0.2rnm。精度要求高的细长轴可采用高速钢宽刃精车刀、低速精车法工件获得。

精车时采用低速精车法车削时,可用高速钢宽刃精车刀。刀具切削刃宽度为30~40mm,y=25。,0t=10。,A=1030'~2。,采用弹簧刀柄装夹,车刀安装低于中心0.1~0.15ram,以避免震动。转速72=12~14r]min,走刀量S=8~12mm(采用丝杠走刀),吃刀深度t=0.02~0.05ram。用硫化油或菜子油与煤油混合液冷却润滑,粗糙度达Ra0.8tan。

细长轴车削时应注意的问题及方法

细长轴车削时应注意的问题及方法 摘要:由于细长轴的特点和技术要求,在车削加工时,易产生振动、多棱、竹节、圆柱度差和弯曲等。要想顺利地把它车好,必须注意加工过程中有可能出现的问题。 关键词:细长轴、车削、变形、消除方法 细长轴是指被加工工件长度与直径的比值大于20以上的轴类零件。因为工件较长,所以刚性较差,在切削过程中容易产生振动,也会因切削热而在长度方向产生变形,由于走完一刀的时间较长,导致刀具的磨损量较大,也致使工件的形位公差精度和表面粗糙度较难达到图纸要求。 1.细长轴的加工特点 (1) 车削时产生的径向切削力会使工件弯曲,引起振动,影响加工精度和表面粗糙度。 (2) 工件的自重、变形和振动,会影响工件圆柱度和表面粗糙度。 (3) 工件高速旋转时,在离心力的作用下变形,加剧了工件的弯曲和振动。 (4) 产生的切削热会导致工件轴向伸长变形,使工件发生弯曲,影响加工质量。 2.车削细长轴应注意的问题 细长轴车削在机械加工中较为常见,由于其刚性差,加工难度较大。如果能够采用正确的切削方法,选择合适的刀具及切削用量,有效地装夹定位工件,就能够有效地降低切削温度、减少热变形,最终获得满意的加工效果。 2.1机床调整 车床主轴中心线与尾座中心线同轴,并与车床大导轨平行,允差应小于0.02mm。 2.2工件安装 采用两顶尖装夹或用卡盘与顶尖配合装夹,合理地使用中心架或跟刀架作为辅助支承,以增加工件的装夹刚度。用卡盘与顶尖配合装夹时,被夹持部分最好不超过10mm。 2.3刀具 采用主偏角Κr = 75°~90°的偏刀,选择正刃倾角(λS>0),能够减小径向力和振动,还可以使切屑流向待加工表面。保持切削刃口锋利,前角γ0控制在15°~30°之间,副后角α′0控制在4°~6°之间,刀尖圆角半径r<0.3mm。刀具安装应略高于车床主轴中心。 2.4辅助支承安装 车削细长轴时,一般都要安装中心架或跟刀架作为辅助支承,来增加工件的刚性,防止工件因振动或因离心力的作用被甩弯。 2.5工件热变形伸长 防止工件热变形伸长的方法:①使用弹性顶尖(俗称活动顶针)。当工件受热伸长时,使顶尖有向后退让的余量,防止工件产生弯曲变形。在切削过程中,应注意对顶尖的调整,以刚顶上工件为宜,不宜紧,并随时观察顶尖的松紧,进行调整。②切削时加注充分的切削液,以吸收产生的切削热,同时也使跟刀架爪与工件接触处有良好的润滑。 3.车削细长轴容易产生的缺陷及消除方法 在加工过程中,由于刚性差,在切削力和切削热的作用下,很容易产生诸如径向跳动、弯曲变形等问题及振动波纹、锥度、竹节形、腰鼓形等加工缺陷,严重影响零件的加工精度及表面粗糙度,因此,在加工前,对机床的调整、跟刀架、中心架的合理应用、刀具及切削用量的选择等都提出了较严

普通车床加工细长轴工艺制作和加工方法

普通车床加工细长轴工艺制作和加工方法 一般工件长度与直径25:1时称为细长轴。干过车工的人都知道,细长轴是机床加工中最难加工的一种零部件。过去在机械加工行业当中有句俗话:“车工怕车杆,钳工怕挫眼”。“杆”就是指细长轴。“眼”,指的是孔。实际上这句话现在来讲也不过时。细长轴始终是困扰着机床加工中的一项技术难题。 下面根据我多年干车工的实际经验给大家讲一讲在普通车床上车削细长轴的工艺制作和加工方法: 一,下料:细长轴的下料尺寸和一般零部件的下料尺寸有一些区别,通常的零部件下料长度加长5-6mm,直径加大2-3mm即可。而细长轴就不同了,由于细长轴的刚性差,主轴旋转起来所产生的离心力比较大,工件在加工过程中,很容易脱落,造成机械事故和人伤亡事故。为了安全起见,卡盘爪加持的长度一般不少于20mm。下料尺寸一般为30长,直径最少加大5-6mm。 二,粗车:也就是除锈,主要是给调质打基础,除锈的方法一般的分三种:1),锉刀挫。2),砂布打。3),车刀车。一般的前两种不用。用车刀车一下见光

为止。注意,在编排工艺的时候一定要注明不准打中心孔。 三,调质,硬度可根据技术要求而定。 四,校直,1),在平板上用锤子敲打的方法。2),用压力机校直的方法。 五,时效,一般在空气中放置一段时即可。 六,车:一般的可分为粗车、半精车、精车三种。细长轴的装卡方法,可分为一夹一顶、两顶和一加一拉的方法。 今天我给大家讲的是一夹一顶的方法加工细长轴。首先平端面,打中心孔,最好是两头打中心孔,但不能同时把两头的中心孔打出来。 由于细长轴本身的刚性差,故在车削过程中过程中会常常出现以下问题: 1在切削过程中,工件受热会产生弯曲变形,甚至会使工件卡死在顶尖间而无法加工。 2工件受切削力作用产生弯曲,从而引起震动影 响工件的精度和表面粗糙度。 3由于工件的自重、变形、振动影响工件圆柱度和表面粗糙度。 4工件在高速旋转时,在离心力的作用下,加剧工件弯曲与振动。因此,切削速度不宜过高。

细长轴的加工技术方法

车工技师论文 车工职业文章 文章类型:技师论文 文章题目:细长轴的加工技术方法 姓名:杨强 职业:不落轮镟床工 准考证号: 工作单位:长沙市轨道交通运营有限公司 2015年9月8日

细长轴的加工技术方法 长沙市轨道交通运营有限公司杨强 摘要:由于细长轴在加工中刚性差,在切削时受切削力、重力、切削热等因素影响产生弯曲变形,产生震动、锥度、腰鼓形和竹节形等缺陷,难以保证加工精度。通过分析细长轴加工各关键技术问题对细长轴加工的影响,找到改进方法,从而提高细长轴加工的精度,保证合格率。 关键字:细长轴技术问题加工方法精度 引言 通常轴的长度与之直径比大于20~25(即L/d≥20~25)的轴称之为细长轴。这类零件一般在车床上进行加工。在车削加工过程中,由于其刚性差,在切削力和切削热的作用下,细长轴很容易产生弯曲变形,使加工出来的细长轴产生中间粗、两头细的形状,严重影响零件的加工精度。同时细长轴产生弯曲变形后,还会引起工艺系统振动,影响零件的粗糙度。 在切削力、重力和顶尖顶紧力的作用下, 横置的细长轴很容易弯曲甚至失稳, 因此, 车削细长轴时必须改善细长轴的受力问题。加工方法:采用反向进给车削, 选用合理的刀具几何参数、切削用量、一夹一顶和轴套式跟刀架、中心架等一系列有效措施。 一、提出问题 细长轴是机器上的重要零件之一。用来支配机器中的传动零件,使传动零件有确定的工作位置,并且传递运动和转矩。当轴的长度与直径之比L/D>25时,轴称为细长轴。“车工怕杆。钳工怕眼’’是人们熟悉的口头语。也就是说,由于细长轴的加工精度要求高,但细长轴本身的结构特点使之刚性差、振动大,所以加工起来存在一定的难度。其加工特点如下: 1、细长轴刚性很差。在车削加工时,如果装夹不当,很容易因

细长轴的加工方法

细长轴的加工方法 细长轴的长径比大于20,刚性差,在加工中产生的切削力、切削热、振动等因素都将直接影响工件的尺寸精度和平行精度。加工难度较大,当用较高的切削速度加工长径比大于100的细长轴时,则加工难度更高。细长轴常规加工法为一夹一顶或两顶。 以前我们在一线加工长径大于40,直径公差、形位公差为6级的细长轴,采用常规的加工方法装卡加工,很难达到加工要求,且经常造成产品在精加工时报废,而影响产品交付日期,大大提加工成本。我经过多次分析、试验,在零件热处理、装卡、加工方法,刀具等方面采取了一定技术措施,可以加工出长径比大于80,直径公差、形位公差较高的细长轴。 由于细长轴的长径比很大,刚性很差。在切削时,受切削力、装卡力、自身重力、切削热、振动等因素的影响,容易出现以下问题: 1、切削是生产的径向切削力与装卡径向分力的合力,会使工件弯曲,工件旋转时引起振动,从而影响加工精度和表面质量。 2、由于工件自重变形而加剧工件的振动,影响加工精度和表面质量。 3、工件转速高时,离心力的作用,加剧了工件的弯曲和振动。 4、在加工中,在切削热作用下,会引起工件弯曲变形。 因此,在车削细长轴时,无论对刀具、机床、辅助工具、切削用量的选择,工艺安排和技术操作有较高的要求,要求合理选择切削参数,合理选择切削用量。车削时,一般当V=30~70m/min,在此速度范围内,容易产生振动,此时相应的振幅有较大值,高于或低于这个速度范围,振动呈现减弱趋势。当加工直径小于10mm时,取V≤30m/min;当加工直径大于10mm时,取V≤70m/min,是极限切削宽度与切削速度的变化关系曲线。在高速或低速范围进行切削,自振就不易产生。特别是在高速范围内进行切削,既可提高生产率,又可避免颤振,是值得采用的方法。进给量f的选择,振动强度随进给量f的增大而减小。宽度随进给量的增大而增大。为了避免颤振的产生,在许可的情况下,如:机床有足够的刚度,足够的电机功率,工件的表面粗糙度参数较低等,应该取大的进给量。粗车时取f=0.15mm,半精车时取f=0.1mm,精车时f=0.06mm。切削深度aP的选择,车削时,切削量不宜过大。当切削深度和进给量不变时,随主偏角的增大,振幅逐渐减小,这是因为径向切削力减小了,同时实际切削宽度将减小。在精加工细长轴时取Kr=75~80°,精车时dr=85~90°刀具进行切削,可避免或减小振动。后角对切削稳定性无多大影响,但当后角减小到2~3°时,使振动有明显的减弱,再生产中也发现,后刀面有一定程度的磨损后,会有明显的减振作用。刀具刀尖圆弧半径rS增大时,径向力量随之增大,为避免自振rS越小越好。但随的减小,将会使刀具寿命降低,同时也不利于表面粗糙度的改善。故加工时,断

浅谈细长轴车削加工方法

细长轴车削变形因素及解决方法探讨 周秀香 华亭煤业集团公司砚北煤矿 摘要:通过对细长轴类零件车削加工时产生弯曲变形的原因分析,阐述了保证细长轴加工质量的工艺方法、切削用量以及刀具几何角度的选择。 在机械加工过程中,有很多轴类零件的长径比L/d>25。在切削力、重力和顶尖顶紧力的作用下, 横置的细长轴很容易弯曲甚至失稳, 因此, 车削细长轴时必须改善细长轴的受力问题。加工方法:采用反向进给车削, 选用合理的刀具几何参数、切削用量、拉紧装置和轴套式跟刀架等一系列有效措施。 一、车削细长轴产生弯曲变形的因素分析 在车床上车削细长轴采用的传统装夹方式主要有两种:一种方式是:一夹一顶安装;另一种方式是:两顶尖安装。这里主要分析一夹一顶的装夹方式。如图1所示。 图1 一夹一顶装夹方式及受力分析 通过用普通车床实际加工分析,车削细长轴弯曲变形的原因有: 1、切削力导致变形 在车削过程中,产生的切削力可以分解为轴向切削力PX、径向切削力PY及切向切削力PZ。不同的切削力对车削细长轴时产生弯曲变形的影响是不同的。

径向切削力PY的影响:径向切削力是垂直作用在通过细长轴轴线水平平面内的,由于细长轴的刚性较差,径向切削力将会把细长轴顶弯,使其在水平面内发生弯曲变形.径向切削力对细长轴弯曲变形的影响,见图1。 轴向切削力PX的影响:轴向切削力是平行作用在细长轴轴线方向上的,它对工件形成一个弯矩。对于一般的车削加工,轴向切削力对工件弯曲变形的影响并不大,可以忽略。但是由于细长轴的刚性较差,其稳定性也较差,当轴向切削力超过一定数值时,将会把细长轴压弯而发生纵向弯曲变形。如图2所示。 图2 轴向切削力的影响及受力分析 2、切削热产生的影响 车床加工工件时产生的切削热,会引起工件热变形伸长。由于在车削过程中,卡盘和尾架顶尖都是固定不动的,因此两者之间的距离也固定不变。这样细长轴受热后的轴向伸长量受到限制,导致细长轴受到轴向挤压而产生弯曲变形。 由此可以看出,提高细长轴的加工精度问题,实质上就是控制工艺系统的受力及受热变形问题。 二、解决细长轴加工变形问题的措施 在细长轴加工过程中,为提高加工精度,应根据不同的生产条件,采取不同的措施,才能保证细长轴的加工精度。 1、选择合适的装夹方法 在普通车床上车削细长轴的两种传统装夹方式中,采用双顶尖装夹,工件定位准确,容易保证同轴度。但用这种方法装夹细长轴,其刚性较差,细长轴弯曲变形较大,而且容易产生振动.因此只适宜于安

普通车床细长轴车削加工工艺

普通车床细长轴车削加工工艺 (总7页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

( 长度与之直径比大于20~25(即L/d≥20~25)的轴称之为细长轴。这类零件一般在车床上进行加工。在车削过程中,由于其刚性差,在切削力和切削热的作用下,细长轴很容易产生弯曲变形,这样就破坏了刀具和零件相对运动的准确性,使加工出来的细长轴产生中间粗、两头细的形状,严重影响零件的加工精度.同时细长轴产生弯曲变形后,还会引起工艺系统振动,影响零件的粗糙度。在切削力、重力和顶尖顶紧力的作用下,横置的细长轴是很容易弯曲甚至失稳,提高细长轴的加工精度问题,就是控制工艺系统的受力及受热变形的问题。因此,采用反向进给车削,配合以最佳的刀具几何参数、切削用量、拉紧装置和轴套式跟刀架等一系列有效措施。以提高细长轴的刚性,得到良好的几何精度和理想的表面粗糙度,保证加工要求。 2细长轴车削的工艺特点 细长轴车削的工艺特点细长轴车削的工艺特点细长轴车削的工艺特点: ①细长轴刚性很差,车削时装夹不当,很容易因切削力及重力的作用而发生弯曲变形,产生振动,从而影响加工精度和表面粗糙度。 ②细长轴的热扩散性能差,在切削热作用下,会产生相当大的线膨胀。如果轴的两端为固定支承,则工件会因伸长而顶弯。 ③由于轴较长,一次走刀时间长,刀具磨损大,从而影响零件的几何形状精度。④车细长轴时由于使用跟刀架,若支承工件的两个支承块对零件压力不适当,会影响加工精度。若压力过小或不接触,就不起作用,不能提高零件的刚

度:若压力过大,零件被压向车刀,切削深度增加,车出的直径就小,当跟刀架继续移动后,支承块支承在小直径外圆处,支承块与工件脱离,切削力使工件向外让开,切削深度减小,车出的直径变大,以后跟刀架又跟到大直径圆上,又把工件压向车刀,使车出的直径变小,这样连续有规律的变化,就会把细长的工件车成“竹节”形。造成机床、工件、刀具工艺系统的刚性不良给切削加工带来困难,不易获得良好的表面粗糙度和几何精度 3引起细长轴产生弯曲变形的原因 在车床上车削细长轴采用的传统装夹方式主要有两种:一种方式是细长轴的一端用卡盘夹紧,另一端用车床尾架顶尖支承(一夹一顶);另一种方式是细长轴的两端均由顶尖支撑(双顶尖)。主要分析一夹一顶的装夹方式.其力学模型如图1所示。 图1 一夹一顶装夹方式及力学模型 切削力导致变形

细长轴车削方法

细长轴车削方法 机械系袁凤艳 摘要本文对加工细长轴时的受力和变形进行了分析,讨论了影响细长轴加工精度的因素,并从装夹方式、刀具角度、切削用量,以及新加工方法等方面阐述了提高细长轴加工精度的措施,得出切削细长轴减少其弯曲变形,保证轴的加工精度的基本方法 关键词细长轴锥形车削方法刀具选择 (一)前言 细长轴的直径和长度之比(L/D)一般都大于20,车削时机床—工件—刀具工艺系统的刚性较差,工件极易弯曲且产生振动,特别是加工锥形部分刚度更差。另外,由于细长轴热扩散性差,切削过程中切削热使工件产生的线膨胀,也会使工件容易产生腰鼓形、麻花形、竹节形等缺陷,不易获得满意的表面粗糙度及几何精度。因此车削细长轴,尤其上锥形细长轴时,关键是要提高工艺系统的刚度,这对刀具、机床、辅助工具和工艺方法均有较高要求。 (二)车削细长轴常见的工件缺陷 细长轴的定义:当工件长度跟直径直比大于20~25倍(L/d>20~25)时,称为细长轴。 常见的工件缺陷产生原因及削除方法: 1.弯曲 1)坯料自重和本身弯曲。应经校直和热外省处理。 2)工件装夹不良,尾座顶尖与工件中心孔顶得过紧。 3)刀具几何参数和切削用量选择不当,造成切削力过大。可减小切削深度,增加进给次数。 4)切削时产生热变形。应采用冷却润滑液。 5)刀尖与支承块间距离过大。应不超过2mm为宜。 2.竹节形 1)在调整和修磨跟刀架支承块后,接刀不良,使第二次和第一次进给的径向尺寸不一致,引起工作全长上出现与支承块宽度一致的击期性直径变化。当削中出现轻度竹节形时,可调节上侧支承块的压紧力,也可调节中拖板手柄,改变切削浓度或减少车床大拖板和中拖板间的间隙。 2)跟刀架外侧支承块调整过紧,易在工件中段出现周期性直径变化,应调整压紧,使支承块与工件保持良好接触。 3.多边形 1)跟刀架支承块与工件表面接触不良,留有间隙,使工件中心偏离旋转中心。应合理选用跟刀架结构,正确修磨支承块弧面,使其与工件良好接触。 2)因装夹、发热等各种因素造成的工件偏摆,导致切削深度变化。可利用托架、并改善托架与工件的接触状态。 4.锥度 1)尾座顶尖与主轴中心线对床身导轨的不平行。

细长轴的车削加工要领

细长轴类零件的车削加工 1. 中心架和跟刀架在细长轴零件 加工中的应用 车削细长轴工件,长度是直径10~12倍以上的长轴时,如车床光杠、丝杠等,由于这些轴本身的刚性差,加上切削力、切削热和震动等影响,车削时易产生弯曲、锥度、腰鼓度和竹节形等缺陷。此外,在车削过程中还会引起震动,影响工件表面粗糙度。为了防止这种现象产生,我们可以应用一种叫做中心架的特殊支承夹具。中心架和跟刀架是车床附件之一,用卡盘顶针与中心架,或前后顶针与跟刀架装夹,可提高切削加工系统的刚性。 使用这些附加的装卡工具,可以增加工件的装卡刚度,减少震动,保证加工质量,避免零件产生鼓面,提高工件表面形状精度和表面粗糙度,并允许采用大切削用量加工,提高劳动生产率。下面分别就中心架与跟刀架在细长轴零件中的应用加以说明。 一、中心架在细长轴零件加工中的应用 1.中心架的结构 中心架的结构组成如图5-1所示。 中心架一般固定在床面一定位置上,如图5-1(b)所示。它的主体座l通过压板4和螺母5紧固在床面上。盖子3与主体1用销作活落连接,盖子3可以打开或盖住,并用螺钉2固定。三个爪的向心或离心位置,可以用螺钉6调节,以适应不同直径大小的工件,并用螺钉9紧固爪7和8,使爪在需要位置上固定不动。 2.中心架的使用 (1)中心架的使用调整方法 工件装上中心架之前,先在毛坯中间处车一条安装中心架卡爪的沟槽,槽的直径等于工件的直径,其宽度略比爪宽大些。接着把中心架安装在床面适当位置上并加以固定,打开盖子3,把工件安装在两顶针中间(床尾要先调整好),用划针盘或百分表检查槽是否跳动,然后将盖子3盖好,并调整中心架3个爪,使他们与工件沟槽轻轻接触。这时慢慢转动工件,看是否能转得动。在爪与工件之间最好垫一层铜皮或平皮带,并加些润滑油,或者3个爪用夹布胶木制造,这样可防止擦伤工件表面。在车削大型工件或工件转速较高时,就必须采用带滚动轴承的中心架,如图5-2所示。 (2)车削步骤 车削时,先车一端,一直车到沟槽为止。然后把工件调个头,用同样方法安装和调整工件,

普通车床细长轴车削加工工艺

普通车床细长轴车削加 工工艺 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

普通车床细长轴车削加工工艺( 长度与之直径比大于20~25(即L/d≥20~25)的轴称之为细长轴。这类零件一般在车床上进行加工。在车削过程中,由于其刚性差,在切削力和切削热的作用下,细长轴很容易产生弯曲变形,这样就破坏了刀具和零件相对运动的准确性,使加工出来的细长轴产生中间粗、两头细的形状,严重影响零件的加工精度.同时细长轴产生弯曲变形后,还会引起工艺系统振动,影响零件的粗糙度。在切削力、重力和顶尖顶紧力的作用下,横置的细长轴是很容易弯曲甚至失稳,提高细长轴的加工精度问题,就是控制工艺系统的受力及受热变形的问题。因此,采用反向进给车削,配合以最佳的刀具几何参数、切削用量、拉紧装置和轴套式跟刀架等一系列有效措施。以提高细长轴的刚性,得到良好的几何精度和理想的表面粗糙度,保证加工要求。 2细长轴车削的工艺特点 细长轴车削的工艺特点细长轴车削的工艺特点细长轴车削的工艺特点:①细长轴刚性很差,车削时装夹不当,很容易因切削力及重力的作用而发生弯曲变形,产生振动,从而影响加工精度和表面粗糙度。 ②细长轴的热扩散性能差,在切削热作用下,会产生相当大的线膨胀。如果轴的两端为固定支承,则工件会因伸长而顶弯。 ③由于轴较长,一次走刀时间长,刀具磨损大,从而影响零件的几何形状精度。④车细长轴时由于使用跟刀架,若支承工件的两个支承块对零件压力不适当,会影响加工精度。若压力过小或不接触,就不起作用,不能提高零件的刚度:若压力过大,零件被压向车刀,切削深度增加,车出的直径就小,当跟

如何车削细长轴

如何车削细长轴 【内容提要】工件的长度L与直径d之比(即长径比)大于25(L/d?25)的轴类零件称为细 长轴。由于细长轴本身刚性差(L/d值越大,刚性越差),因此在车削过程中会出现工件受 切削力、自重和旋转时离心力的作用,会产生弯曲、振动,严重影响其圆柱度和表面粗糙度 以及在切削过程中,工件受热伸长产生弯曲变形,使车削难以进行本文从加工工艺方面入手,讲述了细长轴车削的三个关键基本技术方法。 【关键词】细长轴车削关键技术 一、工件的装夹 1.使用中心架支撑车削细长轴 使用中心架支撑车削细长轴,关键是使中心架与工件接触的三个支撑爪所决定圆的圆心与车 床的回转中心重合。车削时,一般是用两顶尖装夹或一夹一顶方式安装工件,中心架安装在 工件的中间部位并固定在床身上。 2. 跟刀架的选用 跟刀架一般固定在床鞍上跟随车刀移动,承受作用在工件上的切削力。细长轴刚性差,车削 比较困难,如采用跟刀架来支撑,可以增加刚性,防止工件弯曲变形,从而保证细长轴的车 削质量。从跟刀架用以承受工件上的切削力F的角度来看,只需两支支撑爪就可以了。切削 力F可以分解F1与F2两个分力,它们分别使工件贴紧在支撑爪上。但是工件除了受F力之外,还受重力Q的作用,会使工件产生弯曲变形。因此车削时,若用两爪跟刀架支撑工件, 则工件往往会受重力作用而瞬时离开支撑爪,瞬时接触支撑爪,而产生振动;若选用三爪跟 刀架支撑工件,工件支撑在支撑爪和刀尖之间,便上下、左右均不能移动,这样车削就稳定,不易产生振动。所以选用三爪跟刀架支撑车削细长轴是一项很重要的工艺措施。 二、减少工件的热变形伸长 车削时,由于切削热的影响,使工件随温度升高而逐渐伸长变形,这就叫“热变形”。车削细 长轴时,为了减少热变形的影响,主要采取以下措施: 1. 细长轴应采用一夹一顶的装夹方式 卡爪夹持部分不宜过长,一般在15mm左右,最好用钢丝圈垫在卡盘爪的凹槽中,这样以点接触,使工件在卡盘内能自由调节其位置,避免夹紧时形成弯曲力矩。这样,在切削过程中 发生热变性伸长,也不会因卡盘夹死而产生内应力。 2.使用弹性回转顶尖来补偿工件热变形伸长 弹性回转顶尖由前端圆柱滚子轴承和后端的滚针轴承承受径向力,有推力球轴承承受轴向推力。在圆柱滚子轴承和推力球轴承之间,放置两片碟形弹簧。当工件变形伸长时,工件推动 顶尖,使碟形弹簧压缩变形(即顶尖能自动后退)。经长期生产实践证明,车削细长轴时使 用弹性回转顶尖,可以有效地补偿工件的热变形伸长,工件不易产生弯曲,使车削可以顺利 进行。 3. 采取反向进给方法 车削时,通常纵向进给运动的方向是床鞍带动车刀由床尾向床头方向运动,即所谓正向进给。反向进给则是床鞍带动车刀由床头箱向床尾方向运动。正向进给时,工件所受轴向切削分力,使工件受压(与工件变形方向相反),容易产生弯曲变形。而反向进给时,作用在工件上的 轴向切削分力,使工件受拉力(与工件变形方向相同),同时,由于细长轴左端通过钢丝圈

普通车床细长轴车削加工工艺

普通车床细长轴车削加工工艺( 长度与之直径比大于20~25(即L/d≥20~25)的轴称之为细长轴。这类零件一般在车床上进行加工。在车削过程中,由于其刚性差,在切削力和切削热的作用下,细长轴很容易产生弯曲变形,这样就破坏了刀具和零件相对运动的准确性,使加工出来的细长轴产生中间粗、两头细的形状,严重影响零件的加工精度.同时细长轴产生弯曲变形后,还会引起工艺系统振动,影响零件的粗糙度。在切削力、重力和顶尖顶紧力的作用下,横置的细长轴是很容易弯曲甚至失稳,提高细长轴的加工精度问题,就是控制工艺系统的受力及受热变形的问题。因此,采用反向进给车削,配合以最佳的刀具几何参数、切削用量、拉紧装置和轴套式跟刀架等一系列有效措施。以提高细长轴的刚性,得到良好的几何精度和理想的表面粗糙度,保证加工要求。 2细长轴车削的工艺特点 细长轴车削的工艺特点细长轴车削的工艺特点细长轴车削的工艺特点: ①细长轴刚性很差,车削时装夹不当,很容易因切削力及重力的作用而发生弯曲变形,产生振动,从而影响加工精度和表面粗糙度。 ②细长轴的热扩散性能差,在切削热作用下,会产生相当大的线膨胀。如果轴的两端为固定支承,则工件会因伸长而顶弯。 ③由于轴较长,一次走刀时间长,刀具磨损大,从而影响零件的几何形状精度。 ④车细长轴时由于使用跟刀架,若支承工件的两个支承块对零件压力不适当,会影响加工精度。若压力过小或不接触,就不起作用,不能提高零件的刚度:若压力过大,零件被压向车刀,切削深度增加,车出的直径就小,当跟刀架继续移动

后,支承块支承在小直径外圆处,支承块与工件脱离,切削力使工件向外让开,切削深度减小,车出的直径变大,以后跟刀架又跟到大直径圆上,又把工件压向车刀,使车出的直径变小,这样连续有规律的变化,就会把细长的工件车成“竹节”形。造成机床、工件、刀具工艺系统的刚性不良给切削加工带来困难,不易获得良好的表面粗糙度和几何精度 3引起细长轴产生弯曲变形的原因 在车床上车削细长轴采用的传统装夹方式主要有两种:一种方式是细长轴的一端用卡盘夹紧,另一端用车床尾架顶尖支承(一夹一顶);另一种方式是细长轴的两端均由顶尖支撑(双顶尖)。主要分析一夹一顶的装夹方式.其力学模型如图1所示。 图1 一夹一顶装夹方式及力学模型 3.1切削力导致变形 切削力导致变形切削力导致变形切削力导致变形在车削过程中,产生的切削力可以分解为轴向切削力PX、径向切削力PZ。不同的切削力对车削细长轴时产生弯曲变形的影响是不同的。 3.1.1径向切削力 径向切削力是垂直作用在通过细长轴轴线水平平面内的,由于细长轴的刚性较差,径向力将会把细长轴顶弯,使其在水平面内发生弯曲变形.径向切削力对细长轴弯曲变形的影响,见图1。 3.1轴向切削力PX的影响 轴向切削力是平行作用在细长轴轴线方向上的,它对工件形成一个弯矩。对于一般的车削加工,轴向切削力对工件弯曲变形的影响并不大,可以忽略。但是

细长轴车削加工工艺

细长轴车削加工工艺

细长轴车削加工工艺 作者:焦文凯 专业:车工 年级: 08数控 1

摘要 针对影响加工细长轴零件精度不高等因素,分析了如何提细长轴零件的加工精度,给出解决问题的具体方法 关键词: 细长轴变形装夹精度 一.细长轴车削的工艺特点: ①细长轴刚性很差,车削时装夹不当,很容易因切削力及重力的作用而发生弯曲变形,产生振动,从而影响加工精度和表面粗糙度。 ②细长轴的热扩散性能差,在切削热作用下,会产生相当大的线膨胀。如果轴的两端为固定支承,则工件会因伸长而顶弯。 ③由于轴较长,一次走刀时间长,刀具磨损大,从而影响零件的几何形状精度。 ④车细长轴时由于使用跟刀架,若支承工件的两个支承块对零件压力不适当,会影响加工精度。若压力过小或不接触,就不起作用,不能提高零件的刚度:若压力过大,零件被压向车刀,切削深度增加,车出的直径就小,当跟刀架继续移动后,支承块支承在小直径外圆处,支承块与工件脱离,切削力使工件向外让开,切削深度减小,车出的直径变大,以后跟刀架又跟到大直径圆上,又把工件压向车刀,使车出的直径变小,这样连续有规律的变化,就会把细长的工件车成“竹节”形。造成机床、工件、刀具工艺系统的刚 1

性不良给切削加工带来困难,不易获得良好的表面粗糙度和几何精度。 二. 引起细长轴产生弯曲变形的原因 在车床上车削细长轴采用的传统装夹方式主要有两种:一种方式是细长轴的一端用卡盘夹紧,另一端用车床尾架顶尖支承;另一种方式是细长轴的两端均由顶尖支撑。主要分析一夹一顶的装夹方式。 1. 切削力导致变形 在车削过程中,产生的切削力可以分解为轴向切削力PX、径向切削力PZ。不同的切削力对车削细长轴时产生弯曲变形的影响是不同的。 径向切削力PZ的影响 径向切削力是垂直作用在通过细长轴轴线水平平面内的,由于细长轴的刚性较差,径向力将会把细长轴顶弯,使其在水平面内发生弯曲变形.径向切削力对细长轴弯曲变形的影响。 轴向切削力PX的影响 1

长径比大于80的细长轴类零件的切削加工工艺

长径比大于80的细长轴类零件的切削加工工艺 默认分类 2007-10-02 18:30 阅读22 评论0 字号:大中小 对于长度与直径之比(长径比)大于80的细长轴,在切削过程中由于其刚性差而极易产生弯曲和振动,难以获得良好的加工精度和表面粗糙度。且热扩散差,线膨胀大,当工件两端顶紧时受热变形影响易产生弯曲,因此,长径比大于80的细长轴是轴类零件中较难加工的零件。在实际生产中,可通过采用三支承跟刀架、弹簧顶尖、改进刀具的几何角度或采用宽刃精车刀、选择热硬性好及高耐磨的刀具材料、增设合理的辅助工具等方法达到满意的加工效果。 1、细长轴加工前的准备工作 加工前应先调整机床,校直工件。 机床调整 主轴中心和尾座顶尖中心连线与导轨全长平行;主轴中心与尾座顶尖中心的同轴度公差小于0.02;大、中、小拖板的间隙合适(过松会扎刀)。 棒料校直 采用热校直法校直棒料,不宜冷校直,忌锤击。装夹时,防止预加应力产生变形,夹持方法有两种:一是在一端车出8~10mm的卡脚档;二是在卡盘爪与工件间垫入直径为f3~f5mm的钢丝(绕工件放置)或钢柱(顺工件放置),使工件与卡盘为线接触。 2、切削方法 采用三支承爪的跟刀架及弹簧顶尖,切削方法有以下两种。 高速切削法 常采用75°粗车刀、93°半精车和精车刀。75°粗车刀材料为YT15,YW2,刀片代号A127;93°精车刀材料为YT30、YW1,刀片代号A127。粗车切削用量:n=290~450r/min,f=0.4~0.6mm/r,ap=3~4m m;半精车切削用量:n=380~600r/min,f=0.2~0.4mm/r,ap=1.5~2.5mm;精车切削用量:n=450~6 00r/min,f=0.15~0.3mm/r,ap=0.5~1.5mm。 因增加了一个支承爪,在车刀切入工件后,应按上、下、外顺序调整支承爪。 反向低速大进刀精车法 采用弹簧伸缩顶尖,反向切削。精车、半精车仍用高速切削法,精车用低速大走刀。采用的刀具与高速切削法相同。粗车切削用量n=230~450r/min,f=0.5~0.8mm/r,ap=3~8mm;半精车切削用量n=29 0~6OOr/min,f=0.3~0.6mm/r,ap=1.5~3.5mm;精车切削用量n=12~24r/min,f=10~20mm/r,ap=0. 02~0.05mm。f、ap、V选取最大值的顺序依次为ap、f、V。 操作方法:靠卡盘处车出跟刀架支承档,修磨好支承爪后,在轴尾端倒角45°,以防止车削结束时刀具崩刃。支承爪的调整顺序依次是下侧、上侧、外侧。接刀应准确,在轴径接刀处要有1:10左右的锥度。逐步增加刀刃的切削力,以避免突然增加造成让刀或扎刀,产生径向误差而引起振动,或出现多边形及竹节形。 为防止工件振动,跟刀架支承爪的轴向长度选40~50mm,径向宽度为10~15mm。为便于散热和排屑,在支承爪的轴向和径向上各钻一个T形通孔,支承爪材料宜用QT60-2球墨铸铁。

细长轴加工方法

一、细长轴的定义 当工件长度跟直径直比大于20~25倍(L/d>20~25)时,称为细长轴。 二、由于细长轴本身刚性差(L/d值愈大,刚性愈差),在车削过程中会出现以下问题: 1、工件受切削力、自重和旋转时离心力的作用,会产生弯曲、振动,严重影响其圆柱度和表面粗糙度。 2、在切削过程中,工件受热伸长产生弯曲变形,;车削就很难进行,严重时会使工件在顶尖间卡住。 因此,车细长轴是一种难度较大的加工工艺。虽然车细长轴的难度较大,但它也有一定的规律性,主要抓住中心架和跟刀架的使用、解决工件热变形伸长以及合理选择车刀几何形状等三个关键技术,问题就迎刃而解了。 三、使用中心架支承车细长轴 在车削细长轴时,可使用中心架来增加工件刚性。一般车削细长轴使用中心架的方 法有: 1、中心架直接支承在工件中间当工件可以分段车削时,中心架支承在工件中间, 这样支承,L/d值减少了一半,细长轴车削时的刚性可增加好几倍。在工件装上中 心架之前,必须在毛坯中部车出一段支承中心架支承爪的沟槽,表面粗糙度及圆柱 度误差要小,否则会影响工件的精度。车削时,中心架的支承爪与工件接触处应经 常加润滑油。为了使支承爪与工件保持良好的接触,也可以在中心架支承爪与工件 之间加一层砂布或研磨剂,进行研磨抱合。 2、用过渡套筒支承车细长轴用上述方法车削支承承中心架的沟槽是比较困难 的。为了解决这个问题,可加用过渡套筒的处表面接触,见图(9—2)。过渡套筒 的两端各装有四个螺钉,用这些螺钉夹住毛坯工件,并调整套筒外圆的轴线与主

轴旋转轴线相重合,即可车削。 四、使用跟刀架支承车细长轴 跟刀架固定在床鞍上,一般有两个支承爪,跟刀架可以跟随车刀移动,抵消径向切 削时可以增加工件的刚度,减少变形。从而提高细长轴的形状精度和减小表面粗糙度。 从跟刀架的设计原理来看,只需两只支承爪就可以了(图9--4),因车刀给工件的 切削抗力F`r,使工件贴住在跟刀架的两个支承爪上。但是实际使用时,工件本身有一个向下重力,以及工件不可避免的弯曲,因此,当车削时,工件往往因离心力瞬时离开支承爪、接触支承爪而产生振动。如果采用三只支承爪的跟刀架支承工件一面由车刀抵住,使工件上下、左右都不能移动,车削时稳定,不易产生振动。因此车细找轴时一个非常关键的问题是要应用三个爪跟刀架。 五、减少工件的热变形伸长 车削时,由于切削热的影响,使工件随温度升高而逐渐伸长变形,这就叫“热变形”。 在车削一般轴类时可不考虑热变形伸长问题,但是车削细长轴时,因为工件长,总 伸长量长,所以一定要考虑到热变形的影响。工件热变形伸长量可按下式计算。 △L=aL△t 式中a—材料线膨胀系数,1/℃; L—工件的总长,mm; △t—工件升高的温度,℃。 常用材料的线膨胀系数,可查阅有关附录表。 例车削直径为25mm,长度为1200mm的细长轴,材料为45钢,车削时因受切削热的影响,使工件由原来的21℃上升到61℃,求这根细长轴的热变形伸长量。 解已知L=1200mm;△t=61℃-21℃=40℃;查表知,45钢的线膨胀系数a=11.59×10-6 1/℃

细长轴车削加工方法

细长轴车削变形因素及解决方法探讨 董生林 四川红光汽车机电有限公司 通过对细长轴类零件车削加工时产生弯曲变形的原因分析,阐述 了保证细长轴加工质量的工艺方法、切削用量以及刀具几何角度的选择。 在机械加工过程中,有很多轴类零件的长径比L/d>25。在切削力、重力和顶尖顶紧力的作用下, 横置的细长轴很容易弯曲甚至失稳, 因此, 车削细长轴时必须改善细长轴的受力问题。加工方法:采用反向进给车削, 选用合理的刀具几何参数、切削用量、拉紧装置和轴套式跟刀架等一系列有效措施。 一、车削细长轴产生弯曲变形的因素分析 在车床上车削细长轴采用的传统装夹方式主要有两种:一种方式是:一夹一顶安装;另一种方式是:两顶尖安装。这里主要分析一夹一顶的装夹方式。如图1所示。 图1 一夹一顶装夹方式及受力分析 通过用普通车床实际加工分析,车削细长轴弯曲变形的原因有: 1、切削力导致变形 在车削过程中,产生的切削力可以分解为轴向切削力PX、径向切削力PY及切向切削力PZ。不同的切削力对车削细长轴时产生弯曲变形的影响是不同的。

径向切削力PY的影响:径向切削力是垂直作用在通过细长轴轴线水平平面内的,由于细长轴的刚性较差,径向切削力将会把细长轴顶弯,使其在水平面内发生弯曲变形.径向切削力对细长轴弯曲变形的影响,见图1。 轴向切削力PX的影响:轴向切削力是平行作用在细长轴轴线方向上的,它对工件形成一个弯矩。对于一般的车削加工,轴向切削力对工件弯曲变形的影响并不大,可以忽略。但是由于细长轴的刚性较差,其稳定性也较差,当轴向切削力超过一定数值时,将会把细长轴压弯而发生纵向弯曲变形。如图2所示。 图2 轴向切削力的影响及受力分析 2、切削热产生的影响 车床加工工件时产生的切削热,会引起工件热变形伸长。由于在车削过程中,卡盘和尾架顶尖都是固定不动的,因此两者之间的距离也固定不变。这样细长轴受热后的轴向伸长量受到限制,导致细长轴受到轴向挤压而产生弯曲变形。 由此可以看出,提高细长轴的加工精度问题,实质上就是控制工艺系统的受力及受热变形问题。 二、解决细长轴加工变形问题的措施 在细长轴加工过程中,为提高加工精度,应根据不同的生产条件,采取不同的措施,才能保证细长轴的加工精度。 1、选择合适的装夹方法 在普通车床上车削细长轴的两种传统装夹方式中,采用双顶尖装夹,工件定位准确,容易保证同轴度。但用这种方法装夹细长轴,其刚性较差,细长轴弯曲变形较大,而且容易产生振动.因此只适宜于安

细长轴的加工工艺

图片: 描述:图2 轴向切削力的影响及力学模型图片: 描述:图3 一夹一顶装夹方式的改进 图片: 描述:图4 轴向夹拉车削及力学模型 图片:

图片: 描述:图6 双刀加工及力学模型 图片: 细长轴车削加工研究 作者:河南工业大学李永祥武文斌李世明 引言 在粮油机械的加工过程中,有很多零件的长径比l/d>20。例如:高方平筛的主转动轴、蝶片滚筒精选机的蝶片转动轴等。通常把这类零件称之为细长轴。这类零件一般在车床上进行加工。在车削过程中,由于其刚性差,在切削力和切削热的作用下,细长轴很容易产生弯曲变形,这样就破坏了刀具和零件相对运动的准确性,使加工出来的细长轴产生中间粗、两头细的形状,严重影响零件的加工精度.同时细长轴产生弯曲变形后,还会引起工艺系统振动,影响零件的粗糙度。 1 引起细长轴产生弯曲变形的因素 在车床上车削细长轴采用的传统装夹方式主要有两种:一种方式是细长轴的一端用卡盘夹紧,另一端用车床尾架顶尖支承(一夹一顶);另一种方式是细长轴的两端均由顶尖支撑(双顶尖)。作者主要分析一夹一顶的装夹方式.其力学模型如图1所示。 图1 一夹一顶装夹方式及力学模型

通过分析研究,车削引起细长轴弯曲变形的原因主要有: 1) 切削力导致变形 在车削过程中,产生的切削力可以分解为轴向切削力PX、径向切削力PY及切向切削力P Z。不同的切削力对车削细长轴时产生弯曲变形的影响是不同的。 径向切削力PY的影响 径向切削力是垂直作用在通过细长轴轴线水平平面内的,由于细长轴的刚性较差,径向力将会把细长轴顶弯,使其在水平面内发生弯曲变形.径向切削力对细长轴弯曲变形的影响,见图1。 轴向切削力PX的影响 轴向切削力是平行作用在细长轴轴线方向上的,它对工件形成一个弯矩。对于一般的车削加工,轴向切削力对工件弯曲变形的影响并不大,可以忽略。但是由于细长轴的刚性较差,其稳定性也较差,当轴向切削力超过一定数值时,将会把细长轴压弯而发生纵向弯曲变形。如图2所示。 图2 轴向切削力的影响及力学模型 2) 切削热产生的影响 车削加工产生的切削热,会引起工件热伸长。由于在车削过程中,卡盘和尾架顶尖都是固定不动的,因此两者之间的距离也是固定不变的。这样细长轴受热后的轴向伸长量受到限制,导致细长轴受到轴向挤压而产生弯曲变形。 因此可以看出,提高细长轴的加工精度问题,实质上就是控制工艺系统的受力及受热变形的问题。 2 提高细长轴加工精度的措施 在细长轴加工过程中,为提高其加工精度,要根据不同的生产条件,采取不同的措施,以提高细长轴的加工精度。 1) 选择合适的装夹方法 在车床上车削细长轴采用的两种传统装夹方式中,采用双顶尖装夹,工件定位准确,容易保证同轴度。但用该方法装夹细长轴,其刚性较差,细长轴弯曲变形较大,而且容易产生振动.因此只适宜于安装长径比不大、加工余量较小、同轴度要求较高的工件。 加工细长轴通常采用一夹一顶的装夹方式。但是在该装夹方式中,如果顶尖顶得太紧,除了

细长轴加工方法

车削细长轴 1、细长轴的加工特点 通常认为在机械中做旋转运动的、长度大于直径的圆柱零件,叫做轴; 而长度为直径20倍以上的轴,叫做细长轴。 车削细长轴和一般轴类相比,又有其特点,例如加工35x4095或10x1300毫米细长轴时,它们毛坯的直径与长度之比达1:100、1:150左右,工件的刚性很差,给切削加工带来困难,不易获得良好的表面光洁度及几何精度。以下简单介绍几种加工细长轴的方法,如果使用得当,可以获得比较满意的加工结果。 2、工件装夹方法的改进 2.1、在卡盘的每只卡爪下面横向垫入4x20毫米的钢丝,夹入长度为15~2毫米,使工件与卡爪之间的夹持转变为线接触,避免工件被卡爪夹死,如图1. 图1 细长轴工件的装夹 2.2、在尾座上改用弹性顶针,以使在工件受到切削热而膨胀伸长时,顶针能轴向压缩,避免工件弯曲变形。 3、跟刀架结构的改进 3.1普通车床跟刀架的两个支撑块,与工件的接触面小,刚性差,不能满足高速切削细长轴的要求,如改用图2所示结构的跟刀架,就可获得比较好的效果。 图2 车削细长轴的跟刀架 这种跟刀架配备三只支撑块,用角耐磨的QT60-2球墨铸铁制成。支撑

块的圆弧R,应经粗车后与工件外圆研磨,宽度B大于工件直径,一般取B=(1.2~1.5)D。车削时,工件外圆被夹持在刀具和三个滑配合的支撑块之间,组成两对径向压力,限制工件上下,左右移动,只能绕轴线旋转,故而能有效底减少切削振动和工件的变形。 3.2、除了装置跟刀架外,还可根据工件长度,在工件下面垫放不等距的木块(在切削中随放随取,保证托板正常进给),如图3所示,木块直接放在床身上,其厚度以能轻微拖牢工件为宜,木块制成半圆弧凹坑,运转时加机油润滑。这种垫块还具有消振作用。另外对直径较小的细长轴,还可采用托架支承如图4所示。 图3 车削细长轴的垫块 图4 车削细长轴的托架 4、细长轴的车削方法及车刀 4.1细长轴的车削方法 车削细长轴,在上述夹紧方式下,应采用反向进给车削,以使工件受轴向力后,能向弹性顶尖处伸缩图5,减小车削变形。 4.2细长轴车刀 4.2.1粗车刀及其特点

细长轴的加工工艺

文字〖大中小〗自动滚屏(右键暂停) 引言 在粮油机械的加工过程中,有很多零件的长径比l/d>20。 例如:高方平筛的主转动轴、蝶片滚筒精选机的蝶片转动轴等。通常把这类零件称之为细长轴。这类零件一般在车床上进行加工。在车削过程中,由于其刚性差,在切削力和切削热的作用下,细长轴很容易产生弯曲变形,这样就破坏了刀具和零件相对运动的准确性,使加工出来的细长轴产生中间粗、两头细的形状,严重影响零件的加工精度.同时细长轴产生弯曲变形后,还会引起工艺系统振动,影响零件的粗糙度。 1 引起细长轴产生弯曲变形的因素 在车床上车削细长轴采用的传统装夹方式主要有两种:一种方式是细长轴的一端用卡盘夹紧,另一端用车床尾架顶尖支承(一夹一顶);另一种方式是细长轴的两端均由顶尖支撑(双顶尖)。 通过分析研究,车削引起细长轴弯曲变形的原因主要有: 1) 切削力导致变形 在车削过程中,产生的切削力可以分解为轴向切削力PX、径向切削力PY及切向切削力PZ。不同的切削力对车削细长轴时产生弯曲变形的影响是不同的。 径向切削力PY的影响 径向切削力是垂直作用在通过细长轴轴线水平平面内的,由于细长轴的刚性较差,径向力将会把细长轴顶弯,使其在水平面内发生弯曲变形.径向切削力对细长轴弯曲变形的影响. 轴向切削力PX的影响 轴向切削力是平行作用在细长轴轴线方向上的,它对工件形成一个弯矩。对于一般的车削加工,轴向切削力对工件弯曲变形的影响并不大,可以忽略。但是由于细长轴的刚性较差,其稳定性也较差,当轴向切削力超过一定数值时,将会把细长轴压弯而发生纵向弯曲变形。 2) 切削热产生的影响 车削加工产生的切削热,会引起工件热伸长。由于在车削过程中,卡盘和尾架顶尖都是固定不动的,因此两者之间的距离也是固定不变的。这样细长轴受热后的轴向伸长量受到限制,导致细长轴受到轴向挤压而产生弯曲变形。

相关主题