搜档网
当前位置:搜档网 › 华北年产12500吨碳纤维复合材料二期可行性研究报告-广州中撰咨询

华北年产12500吨碳纤维复合材料二期可行性研究报告-广州中撰咨询

华北年产12500吨碳纤维复合材料二期可行性研究报告-广州中撰咨询
华北年产12500吨碳纤维复合材料二期可行性研究报告-广州中撰咨询

华北年产12500吨碳纤维复合材料二期可行性研究报告

(典型案例〃仅供参考)

广州中撰企业投资咨询有限公司

地址:中国·广州

目录

第一章华北年产12500吨碳纤维复合材料二期概论 (1)

一、华北年产12500吨碳纤维复合材料二期名称及承办单位 (1)

二、华北年产12500吨碳纤维复合材料二期可行性研究报告委托编制单位 (1)

三、可行性研究的目的 (1)

四、可行性研究报告编制依据原则和范围 (2)

(一)项目可行性报告编制依据 (2)

(二)可行性研究报告编制原则 (2)

(三)可行性研究报告编制范围 (4)

五、研究的主要过程 (5)

六、华北年产12500吨碳纤维复合材料二期产品方案及建设规模 (6)

七、华北年产12500吨碳纤维复合材料二期总投资估算 (6)

八、工艺技术装备方案的选择 (6)

九、项目实施进度建议 (6)

十、研究结论 (7)

十一、华北年产12500吨碳纤维复合材料二期主要经济技术指标 (9)

项目主要经济技术指标一览表 (9)

第二章华北年产12500吨碳纤维复合材料二期产品说明 (15)

第三章华北年产12500吨碳纤维复合材料二期市场分析预测 (15)

第四章项目选址科学性分析 (15)

一、厂址的选择原则 (16)

二、厂址选择方案 (16)

四、选址用地权属性质类别及占地面积 (17)

五、项目用地利用指标 (17)

项目占地及建筑工程投资一览表 (18)

六、项目选址综合评价 (19)

第五章项目建设内容与建设规模 (20)

一、建设内容 (20)

(一)土建工程 (20)

(二)设备购臵 (20)

二、建设规模 (21)

第六章原辅材料供应及基本生产条件 (21)

一、原辅材料供应条件 (21)

(一)主要原辅材料供应 (21)

(二)原辅材料来源 (21)

原辅材料及能源供应情况一览表 (22)

二、基本生产条件 (23)

第七章工程技术方案 (24)

一、工艺技术方案的选用原则 (24)

二、工艺技术方案 (25)

(一)工艺技术来源及特点 (25)

(二)技术保障措施 (25)

(三)产品生产工艺流程 (25)

华北年产12500吨碳纤维复合材料二期生产工艺流程示意简图 (26)

三、设备的选择 (26)

(一)设备配臵原则 (26)

(二)设备配臵方案 (27)

主要设备投资明细表 (28)

第八章环境保护 (28)

一、环境保护设计依据 (29)

二、污染物的来源 (30)

(一)华北年产12500吨碳纤维复合材料二期建设期污染源 (31)

(二)华北年产12500吨碳纤维复合材料二期运营期污染源 (31)

三、污染物的治理 (31)

(一)项目施工期环境影响简要分析及治理措施 (31)

1、施工期大气环境影响分析和防治对策 (32)

2、施工期水环境影响分析和防治对策 (35)

3、施工期固体废弃物环境影响分析和防治对策 (37)

4、施工期噪声环境影响分析和防治对策 (38)

5、施工建议及要求 (39)

施工期间主要污染物产生及预计排放情况一览表 (41)

(二)项目营运期环境影响分析及治理措施 (42)

1、废水的治理 (42)

办公及生活废水处理流程图 (42)

生活及办公废水治理效果比较一览表 (43)

生活及办公废水治理效果一览表 (43)

2、固体废弃物的治理措施及排放分析 (43)

3、噪声治理措施及排放分析 (45)

主要噪声源治理情况一览表 (46)

四、环境保护投资分析 (46)

(一)环境保护设施投资 (46)

(二)环境效益分析 (47)

五、厂区绿化工程 (47)

六、清洁生产 (48)

七、环境保护结论 (48)

施工期主要污染物产生、排放及预期效果一览表 (50)

第九章项目节能分析 (51)

一、项目建设的节能原则 (51)

二、设计依据及用能标准 (51)

(一)节能政策依据 (51)

(二)国家及省、市节能目标 (52)

(三)行业标准、规范、技术规定和技术指导 (53)

三、项目节能背景分析 (53)

四、项目能源消耗种类和数量分析 (55)

(一)主要耗能装臵及能耗种类和数量 (55)

1、主要耗能装臵 (55)

2、主要能耗种类及数量 (55)

项目综合用能测算一览表 (56)

(二)单位产品能耗指标测算 (56)

单位能耗估算一览表 (57)

五、项目用能品种选择的可靠性分析 (58)

六、工艺设备节能措施 (58)

七、电力节能措施 (59)

八、节水措施 (60)

九、项目运营期节能原则 (60)

十、运营期主要节能措施 (61)

十一、能源管理 (62)

(一)管理组织和制度 (62)

(二)能源计量管理 (62)

十二、节能建议及效果分析 (63)

(一)节能建议 (63)

(二)节能效果分析 (64)

第十章组织机构工作制度和劳动定员 (64)

一、组织机构 (64)

二、工作制度 (64)

三、劳动定员 (65)

四、人员培训 (66)

(一)人员技术水平与要求 (66)

(二)培训规划建议 (66)

第十一章华北年产12500吨碳纤维复合材料二期投资估算与资金筹措 (67)

一、投资估算依据和说明 (67)

(一)编制依据 (67)

(二)投资费用分析 (69)

(三)工程建设投资(固定资产)投资 (69)

1、设备投资估算 (69)

2、土建投资估算 (69)

3、其它费用 (70)

4、工程建设投资(固定资产)投资 (70)

固定资产投资估算表 (70)

5、铺底流动资金估算 (71)

铺底流动资金估算一览表 (71)

6、华北年产12500吨碳纤维复合材料二期总投资估算 (72)

总投资构成分析一览表 (72)

二、资金筹措 (72)

投资计划与资金筹措表 (73)

三、华北年产12500吨碳纤维复合材料二期资金使用计划 (74)

资金使用计划与运用表 (74)

第十二章经济评价 (75)

一、经济评价的依据和范围 (75)

二、基础数据与参数选取 (75)

三、财务效益与费用估算 (76)

(一)销售收入估算 (76)

产品销售收入及税金估算一览表 (76)

(二)综合总成本估算 (77)

综合总成本费用估算表 (77)

(三)利润总额估算 (78)

(四)所得税及税后利润 (78)

(五)项目投资收益率测算 (78)

项目综合损益表 (79)

四、财务分析 (80)

财务现金流量表(全部投资) (82)

财务现金流量表(固定投资) (84)

五、不确定性分析 (84)

盈亏平衡分析表 (85)

六、敏感性分析 (86)

单因素敏感性分析表 (87)

第十三章华北年产12500吨碳纤维复合材料二期综合评价 (87)

第一章项目概论

一、项目名称及承办单位

1、项目名称:华北年产12500吨碳纤维复合材料二期投资建设项目

2、项目建设性质:新建

3、项目编制单位:广州中撰企业投资咨询有限公司

4、企业类型:有限责任公司

5、注册资金:500万元人民币

二、项目可行性研究报告委托编制单位

1、编制单位:广州中撰企业投资咨询有限公司

三、可行性研究的目的

本可行性研究报告对该华北年产12500吨碳纤维复合材料二期所涉及的主要问题,例如:资源条件、原辅材料、燃料和动力的供应、交通运输条件、建厂规模、投资规模、生产工艺和设备选型、产品类别、项目节能技术和措施、环境影响评价和劳动卫生保障等,从技术、经济和环境保护等多个方面进行较为详细的调查研究。通过分析比较方案,并对项目建成后可能取得的技术经济效果进行预测,从而为投资决策提供可靠的依据,作为该华北年产12500吨碳纤维复合材料二期进行下一步环境评价及工程设计的基础文件。

本可行性研究报告具体论述该华北年产12500吨碳纤维复合

材料二期的设立在经济上的必要性、合理性、现实性;技术和设备的先进性、适用性、可靠性;财务上的盈利性、合法性;环境影响和劳动卫生保障上的可行性;建设上的可行性以及合理利用能源、提高能源利用效率。为项目法人和备案机关决策、审批提供可靠的依据。

本可行性研究报告提供的数据准确可靠,符合国家有关规定,各项计算科学合理。对项目的建设、生产和经营进行风险分析留有一定的余地。对于不能落实的问题如实反映,并能够提出确实可行的有效解决措施。

四、可行性研究报告编制依据原则和范围

(一)项目可行性报告编制依据

1、中华人民共和国国民经济和社会发展第十三个五年规划。

2、XX省XX市国民经济和社会发展第十三个五年规划纲要。

3、《产业结构调整指导目录(2011年本)(2013修正)》。

4、国家发改委、建设部发布的《建设项目经济评价方法与参数》(第三版)。

5、项目承办单位提供的有关技术基础资料。

6、国家现行有关政策、法规和标准等。

(二)可行性研究报告编制原则

在该华北年产12500吨碳纤维复合材料二期可行性研究中,从节约资源和保护环境的角度出发,遵循“创新、先进、可靠、

陶瓷基复合材料论文 (1)

陶瓷基复合材料在航天领域的应用 概念:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。 一、陶瓷基复合材料增强体 用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种 纤维类增强体 纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。 颗粒类增强体 颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末 晶须类增强体

晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。 金属丝 用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。 片状物增强体 用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。 二、陶瓷基的界面及强韧化理论 陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能 的影响具有重要的意义。 界面的粘结形式 (1)机械结合(2)化学结合 陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和增强体都能较好的

热固性复合材料与热塑性复合材料

热固性复合材料与热塑性复合材料 1热固性树脂基复合材料 热固性树脂基复合材料是应用十分广泛的复合型材料,这种材料是经过复合而成,在多高科技产品中都得到了广泛的应用与研究,例如在大型客运机的应用中,其不仅减轻了重量,并且还优化了飞机的性能,减轻了飞机在飞行过程中的阻碍,热固性树脂具有非常优异的开发潜能,其应用领域也会在其改性后得到更大的发展。 典型的热固性树脂复合材料分为以下几种: (1)酚醛树脂复合材料:随着对阻燃材料的强烈需求,美国西化学公司,道化学公司等一系列大型化学公司都先后研制成功了新一代的酚醛树脂复合材料。其具有优异的阻燃、低发烟、低毒雾性能和更加优异的热机械物理性能。在制备这种具有阻燃效果的材料上,研究人员重新设计思路,在加入不饱和键等其他基团条件下,提高了反应速度,减少了挥发组分。使酚醛树脂复合材料在其应用领域得到大力发展。 (2)环氧树脂复合材料:由于环氧树脂本身的弱点,研究人员对其进行了两面的改性研究,一面是改善湿热性能提高其使用温度;另一面则是提高韧性,进而提高复合材料的损伤容限。含有环氧树脂所制备的复

合材料己经大力应用到机翼、机身等大型主承力构件上。 (3)双马来酞亚胺树脂复合材料:在双马来酞亚胺树脂复合材料中,由于双马来酞亚胺树脂具有流动性和可模塑性,良好的耐高温、耐辐射、耐湿热、吸湿率低和热膨胀系数小等优异性能,所以这种树脂则会广泛运用在绝缘材料、航空航天结构材料、耐磨材料等各个领域中。(4)聚酰亚胺复合材料:聚酰亚胺复合材料具有高比强度,比模量以及优异的热氧化稳定性。其在航空发动机上得到了广泛应用,主要可明显减轻发动机重量,提高发动机推重比。所以在航天航空领域得到了大力的发展和运用。 2热塑性树脂基复合材料 热塑性树脂基复合材料:其自身中的基体是热塑性树脂,该类复合材料是由热塑性树脂基体、增强相以及一些助剂组成。在热塑性复合材料中最典型和最常见的热塑性树脂有聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚酯树脂、聚碳酸树脂、聚甲醛树脂、聚醚酮类、热塑性聚酰亚胺、聚苯硫醚、聚飒等。 而热塑性树脂复合材料具有很多的特点,以下概述了一些热塑性树脂复合材料的特点。

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

热塑性树脂复合材料应用

摘要:热塑性复合材料因具有韧性、耐蚀性和抗疲劳性高,成形工艺简单、周期短,材料利用率高,预浸料存放环境与时间无限制等优异性能而得到快速发展,并逐渐进入航空制造领域。尤其是近年来,在欧盟以及空客、福克航宇等航空制造企业的强力推动下,热塑性复合材料在民机上频频崭露头角,在一些部件上成为热固性复合材料的有力竞争对手。热塑性复合材料如果想继续扩大在民机上的应用,必须进入机体主承力构件,然而,热塑性应用于主承力构件还三个挑战,即原材料成本高,铺放工艺缓慢,以及预浸料粘性问题。 关键词:热塑性复合材料碳纤维机体内饰主承力结构 热塑性复合材料是以玻璃纤维、碳纤维、芳烃纤维及其它材料增强各种热塑性树脂所形成的复合材料,因具有韧性、耐蚀性和抗疲劳性高,成形工艺简单、周期短,材料利用率高,预浸料存放环境与时间无限制等优异性能而得到快速发展,并逐渐进入航空制造领域。尤其是近年来,在欧盟以及空客、福克航宇等航空制造企业的强力推动下,热塑性复合材料在民机上频频崭露头角,在一些部件上成为热固性复合材料的有力竞争对手。 1 热塑性复合材料的民机应用潜质 以聚苯硫醚(PPS),聚醚酰亚胺(PEI),聚醚醚酮(PEEK)和聚醚酮酮(PEKK)为基体的先进增强热塑性复合材料(TPC),具备高刚度、低加工成本和重新加工能力,拥有良好的阻燃、低烟和无毒(FST)性能,固化周期可以以分钟记,且其成形过程是天生的非热压罐工艺。这些固有属性使其成为轻质、低成本航空结构的理想材料。为西科斯基公司直升机提供大型热塑性复合材料地板的纤维锻造公司提供了如下一组数据:热塑性复合材料比钢轻60%,硬度是其6倍;比铝轻30%;比热固性复合材料强韧2倍;比注射模塑塑料硬5倍;在生产中比板材少60%碎屑。 上述性能特点和数据对比表明,热塑性复合材料是一种天生的航空结构材料,并且在民机应用上拥有巨大的潜质,甚至可能在未来为航空复合材料制造带来一场热塑性革命。 2 热塑性复合材料在民机上的典型应用 目前,热塑性复合材料(TPC)在民机上的应用主要体现在机体结构件和内饰件上,这其中,碳纤维增强PPS的TPC占大多数。 2.1 机体结构件 机体结构件中,TPC主要应用在地板、前缘、控制面和尾翼零件上,这些零件都是外形比较简单的次承力构件。空客A380客机、空客A350客机、湾流G650公务机和阿古斯塔·韦斯特兰AW169直升机都是热塑性机体结构件的应用大户。 空客A380客机上最重要的热塑性复合材料结构件是玻璃纤维/PPS材料的机翼固定前缘。每个机翼有8个固定前缘构件,其中热塑性材料占到了整个用料的三分之二。在固定前缘蒙皮的纤维铺放中,制造商福克航空结构公司选择了先进的超声点焊作为铺放设备的加热系统。

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维及其复合材料产业现状及发展趋势

国内外碳纤维及其复合材料产业现状及发展趋势 自上世纪60年代碳纤维首次商业化以来,产业规模不断扩大,产品品质不断提高,2014年全球碳纤维产能(365天连续生产12K/24K 碳纤维丝束计算)已达到12.6万吨。尽管碳纤维与传统的玻璃纤维在价格上仍不能相比,但高性能碳纤维以其高比强度、高模量、可设计、防腐蚀和抗疲劳等突出特点,具有玻璃纤维所不能比拟的优势,已成为发展先进武器装备的关键材料,并在航空航天、国防军工、风能产业、土木工程、体育休闲等领域得到了广泛应用。 当前,国际复合材料产业呈现蓬勃发展态势,据估计,未来5年,先进复合材料将以每年5%的增速发展,而随着民用航空、汽车工业等领域的快速发展,全球高性能碳纤维需求量的年增幅可达10%,亚太地区将会有更高的增长率,即碳纤维及其复合材料产业将面临前所未有的发展空间和机遇。 因此,在目前碳纤维产业快速发展的关键时期,我们更应该认清国际碳纤维产业的发展形势、对照国外先进企业找差距找问题,通过理性思考寻求解决途径,适时把握发展机遇,落实行动、注重实效,努力推进国内碳纤维及其复合材料产业的健康快速发展。 1、国外碳纤维产业现状及发展趋势 1)产业方面 根据前躯体原料的不同,碳纤维可分为聚丙烯腈(PAN)基、沥青基和粘胶基碳纤维等。由于粘胶基碳纤维在制备过程中会释放出毒

性物质二硫化碳,且工艺流程长、生产成本高、整体性能不高,因此目前,国际碳纤维产业领域,前两种碳纤维获得了更大规模的生产和应用。其中,PAN基碳纤维又占据绝对优势,国际市场占有率超过90%。PAN基碳纤维的九大生产商包括:日本东丽、东邦、三菱丽阳、美国赫氏(Hexcel)、氰特(Cytec)、卓尔泰克(Zoltek,已被东丽收购)、台塑、土耳其阿克萨(AKSA)和德国西格里(SGL)。沥青基碳纤维的生产和应用居其次,主要生产企业三家,分别是Cytec、三菱塑料和日本碳素纤维。 PAN基碳纤维分为小丝束(1-24K)和大丝束(36K及以上)两类。全球小丝束碳纤维市场主要被日本东丽、东邦、三菱丽阳三家公司所垄断,而来自中国、土耳其和韩国的企业,正不断扩充小丝束的全球产能,同时也降低了三家日本公司的市场份额。 大丝束碳纤维生产商主要有Zoltek、SGL和三菱丽阳三家。另外,中国国企蓝星集团英国分公司拥有大丝束碳纤维原丝的供应能力,Cytec于2014年与德国腈纶企业合作开展低成本大丝束碳纤维的研制开发。预计在未来10年中,其它制造商也会陆续加入大丝束碳纤维生产领域。 为满足高速发展的航空航天与汽车市场对碳纤维的需要,几乎所有的碳纤维巨头都宣布了扩产计划。例如,日本东丽拥有以日本本土为核心的日美法韩4个生产基地,目前已形成11000~12000吨/年的T700S和4500吨/年的T800碳纤维生产能力,并宣布PAN基碳纤维的总产能于2015年达到27100吨,2020年扩大至50000吨。另外,Hexcel

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

陶瓷基复合材料(CMC).

第四节 陶瓷基复合材料(CMC) 1.1概述 工程中陶瓷以特种陶瓷应用为主,特种陶瓷由于具有优良的综合机械性能、耐磨性好、硬度高以及耐腐蚀件好等特点,已广泛用于制做剪刀、网球拍及工业上的切削刀具、耐磨件、 发动机部件、热交换器、轴承等。陶瓷最大的缺点是脆性大、抗热震性能差。与金属基和聚合物基复合材料有有所不同的,是制备陶瓷基复合材料的主要目的之一就是提高陶瓷的韧性。特别是纤维增强陶瓷复合材料在断裂前吸收了大量的断裂能量,使韧性得以大幅度提高。表6—1列出了由颗粒、纤维及晶须增强陶瓷复合材料的断裂韧性和临界裂纹尺寸大小的比较。很明显连续纤维的增韧效果最佳,其次为品须、相变增韧和颗粒增韧。无论是纤维、晶须还是颗粒增韧均使断裂韧性较整体陶瓷的有较大提高,而且也使临界裂纹尺寸增大。

陶瓷基复合材料的基体为陶瓷,这是一种包括范围很广的材料,属于无机化合物纳构远比金属与合金复杂得多。使用最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。陶瓷材料中的化学键往注是介于离子键与共价键之间的混合键。 陶瓷基复合材料中的增强体通常也称为增韧体。从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。碳纤维是用来制造陶瓷基复合材料最常用的纤

维之一。碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件,在1500霓的温度下,碳纤维仍能保持其性能不变,但对碳纤维必须进行有效的保护以防止它在空气中或氧化性气氛中被腐蚀,只有这样才能充分发挥它的优良性能。其它常用纤维是玻璃纤维和硼纤维。陶瓷材料中另一种增强体为晶须。晶须为具有一定长径比(直径o 3。1ym,长30—lMy”)的小单晶体。从结构上看,晶须的特点是没有微裂纹、位偌、孔洞和表面损伤等一类缺陷,而这些缺陷正是大块晶体中大量存在且促使强度下降的主要原因。在某些情况下,晶须的拉伸强度可达o.1Z(Z为杨氏模量),这已非常接近十理论上的理想拉伸强度o.2Z。而相比之下.多晶的金属纤维和块状金属的拉伸强度只有o.025和o.o01f。在陶瓷基复合材料使用得较为普遍的是SiC、Al2O3、以及Si3N4N晶须。颗粒也是陶瓷材料中常用的一种增强体,从几何尺寸上看、它在各个方向上的长度是大致相同的,—般为几个微米。通常用得较多的颗粒也是SiC、Al2O3、以及Si3N4N。颗粒的增韧效果虽不如纤维和晶须,但如恰当选择颗粒种类、粒径、含量及基体材料,仍可获得一定的韧化效果,同时还会带来高温强度,高温蠕变性能的改善。所以,颗粒增韧复合材料同样受到重视并对其进行了一定的研究。 在陶瓷材料中加入第二相纤维制成的复合材料是纤维增强陶瓷基复合材料,这是改善陶瓷材料韧性酌重要手段,按纤维排布方式的不同,又可将其分为单向排布长纤维复合材料和多向排布纤维复合材料。单向排布纤维增韧陶瓷基复合材料的显著特点是它具有各向异性,即沿纤维长度方向上的纵向性能要大大高于其横向性能。在这种材料中,当裂纹扩展遇到纤维时会受阻.这样要使裂纹进一步扩展就必须提高外加应力。图7—15为这一过程的示意图。当外加应力进一步提高时.由于基体与纤维间的界面的离解,同时又由于纤维的强度高于基体的强

热塑性碳纤维复合材料成型工艺研究

热塑性碳纤维复合材料成型工艺研究 碳纤维质量比金属轻,但是强度却高于钢铁,并且耐腐蚀,在非氧化环境下耐超高温,膨胀系数小且 具有各向异性,但是传统使用碳纤维除了用作隔热保温材料之外,一般是不会单独使用的,多是会作为增 强材料加入到金属、瓷器、树脂等材料中作为复合材料使用。碳纤维复合材料具有碳材料的固有本性特征,同时又兼具纺织纤维的柔软可加工性,是一种力学性能优异的新一代增强纤维,可用作人工韧带、飞机结 构材料、火箭外壳、工业等等领域,市场需求巨大。 热塑性碳纤维复合材料是铝镁合金、钢铁等金属的理想替代材料,但是在基于国外技术封锁等原因,热塑性碳纤维复合材料在国内的发展时间并不是很长,国内的热塑性碳纤维复合材料发展缓慢。苏州挪恩 复合材料有限公司专注碳纤维相关技术的研究,在热塑性碳纤维增强PEEK复合材料、热塑性碳纤维增强PPS复合材料、热塑性碳纤维增强PEI复合材料、热塑性碳纤维增强PC复合材料方面苦心孤诣,与日本美国等知名企业的合作,也让挪恩拥有了成熟的产品生产经验。 现在国内的热塑性碳纤维复合材料成型工艺主要是由热固性树脂基复合材料和金属成型技术移植而来。按照设备的不同可以分为纤维缠绕成型、真空袋成型、模压成型、热压罐成型、双膜成型等等方法,其中 纤维成型缠绕型、真空袋成型、模压成型、双膜成型是目前用的较多的热塑性碳纤维复合材料成型方法。 1、纤维缠绕成型 纤维缠绕成型工艺是指浸过树脂的连续纤维按照一定的规律缠绕在芯模上,继而经过固化、脱模而得 的碳纤维复合材料制品。根据纤维缠绕成型时树脂基体的物理化学状态不同,也可分为干法缠绕、半干法 缠绕和湿法缠绕三种。干法缠绕工艺最大的特点是生产效率比较高,制作环境卫生环境好,但是相应的干 法缠绕设备较贵,投资较大;半干法缠绕是利用纤维浸胶后至缠绕芯模的途中,多加了一套烘干设备,省 却了预浸胶的工序;湿法缠绕则是将纤维浸胶后直接缠绕在芯模上,在成本方面比干法缠绕可以降低约35%,纤维排列平行度也会更好,但是操作环境差、树脂浪费也是湿法缠绕的明显缺点。 2、真空袋成型 真空袋成型是将预浸料铺放在模具中,利用真空袋和密封胶将真空袋抽至真空状态,将模具加热,预 浸料即可在高温和大气压的作用下成型。 3、模压成型 将预浸料裁剪至合适的大小铺设在模具中升温加热,等温度升至可成型温度后,再在压机台面上加压,待温度降温后就可脱模取出。此时需要注意压机表面必须拥有较高的平行度和平整度,否则很容易导致产 品发生翘曲。 4、双膜成型 双膜成型是将裁剪后的预浸料放置于两层可变形的金属膜或树脂膜之间,在膜的四周做好密封,成型 的过程中需要将温度调至成型温度并施加一定的成型压力,最后冷却定型,需要注意的是,在双膜成型的 过程中需要处于密封环境中进行。

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

热塑性复合材料成型工艺解析

热塑性复合材料成型工艺解析 热塑性复合材料是以玻璃纤维、碳纤维、芳纶纤维等增强各种热塑性树脂的总称,国外称FRTP(Fiber Rinforced Thermo Plastics)。由于热塑性树脂和增强材料种类不同,其生产工艺和制成的复合材料性能差别很大。 从生产工艺角度分析,塑性复合材料分为短纤维增强复合材料和连续纤维增强复合材料两大类:(1)短纤维增强复合材料①注射成型工艺;②挤出成型工艺;③离心成型工艺。(2)连续纤维增强及长纤维增强复合材料①预浸料模压成型;②片状模塑料冲压成型;③片状模塑料真空成型;④预浸纱缠绕成型;⑤拉挤成型。 热塑性复合材料的特殊性能如下: (1)密度小、强度高热塑性复合材料的密度为1.1~1.6g/cm3,仅为钢材的1/5~1/7,比热固性玻璃钢轻1/3~1/4。它能够以较小的单位质量获得更高的机械强度。一般来讲,不论是通用塑料还是工程塑料,用玻璃纤维增强后,都会获得较高的增强效果,提高强度应用档次。 (2)性能可设计性的自由度大热塑性复合材料的物理性能、化学性能、力学性能,都是通过合理选择原材料种类、配比、加工方法、纤维含量和铺层方式进行设计。由于热塑性复合材料的基体材料种类比热固性复合材料多很多,因此,其选材设计的自由度也就大得多。 (3)热性能一般塑料的使用温度为50~100℃,用玻璃纤维增强后,可提高到100℃以上。尼龙6的热变形温度为65℃,用30%玻纤增强后,热形温度可提高到190℃。聚醚醚酮树脂的耐热性达220℃,用30%玻纤增强后,使用温度可提高到310℃,这样高的耐热性,热固性复合材料是达不到的。热塑性复合材料的线膨胀系数比未增强的塑料低1/4~1/2,能够降低制品成型过程中的收缩率,提高制品尺寸精度。其导热系数为0.3~0.36W(㎡·K),与热固性复合材料相似。 4)耐化学腐蚀性复合材料的耐化学腐蚀性,主要由基体材料的性能决定,热塑性树脂的种类很多,每种树脂都有自己的防腐特点,因此,可以根据复合材料的使用环境和介质条件,对基体树脂进行优选,一般都能满足使用要求。热塑性复合材料的耐水性优于热固性复合材料。 (5)电性能一般热塑性复合材料都具有良好的介电性能,不反射无线电电波,透过微波性能良好等。由于热塑性复合材料的吸水率比热固性玻璃钢小,故其电性能优于后者。在热塑性复合材料中加入导电材料后,可改善其导电性能,防止产生静电。 (6)废料能回收利用热塑性复合材料可重复加工成型,废品和边角余料能回收利用,不会造成环境污染。 由于热塑性复合材料有很多优于热固性玻璃钢的特殊性能,应用领域十分广泛,从国外的应用情况分析,热塑性复合材料主要用于车辆制造工业、机电工业、化工防腐及建筑工程等方面。 1、注射成型工艺 注射成型是热塑性复合材料的主要生产方法,历史悠久,应用最广。其优点是:成型周期短,能耗最小,产品精度高,一次可成型开关复杂及带有嵌件的制品,一模能生产几个制品,生产效率高。缺点是不能生产纤维增强复合材料制品和对模具质量要求较高。根据目前的技术发展水平,注射成型的最大产品为5kg,最小到1g,这种方法主要用来生产各种机械零件,建筑制品,家电壳体,电器材料,车辆配件等。 2、挤出成型工艺 挤出成型是热塑性复合材料制品生产中应用较广的工艺之一。其主要特点是生产过程连续,生产效率高,设备简单,技术容易掌握等。挤出成型工艺主要用于生产管、棒、板及异型断面型等产品。增强塑料管玻纤增强门窗异型断面型材,在我国有很大市场。挤出成型复合材料制品的工艺流程如下:3、缠绕成型工艺 热塑性复合材料的缠绕成型工艺原理和缠绕机设备与热固性玻璃的一样,不同的是热塑性复合材料缠绕制品的增强材料不是玻纤粗纱,而是经过浸胶(热塑性树脂)的预浸纱。因此,需要在缠绕机上增加预浸纱预热装置和加热加压辊。缠绕成型时,先将预浸纱加热到软化点,再与芯模的接触点加

碳纤维热塑性复合材料预浸料及制品可研报告

江苏泛达复合材料有限公司 年产2000吨碳纤维热塑性复合材料预浸料及制品项目 可行性研究报告 二○一一年八月

目录 第一章总论 (1) 1.1项目名称及承办单位 (1) 1.2可行性研究报告编制依据 (1) 1.3可行性研究报告的研究范围 (2) 1.4推荐方案与结论 (2) 第二章项目提出的背景与必要性 (12) 2.1企业概况 (12) 2.2项目提出的背景 (12) 第三章市场分析及预测 (19) 3.1原材料生产情况 (19) 3.2产品原材料价格走势 (20) 3.3市场需求影响因素分析 (21) 3.4供需平衡分析 (22) 3.5供给分析 (22) 3.6产品价格分析 (23) 3.7进出口状况 (24) 3.8销售渠道分析 (25) 3.9用户分析 (30) 第四章生产规模和产品方案 (32) 4.1生产规模 (32) 4.2产品方案 (32) 第五章项目选址与建设条件 (35) 5.1建设地址 (35) 5.2建设条件 (35) 5.3厂址评述 (42) 第六章工程技术方案 (43) 6.1设计原则 (43)

6.2项目组成 (43) 6.3工艺技术及设备方案 (43) 6.4总图运输 (49) 6.5建筑工程 (53) 6.6给排水 (56) 6.7供电 (57) 6.8供热、通风与制冷 (60) 6.9通信 (61) 第七章原辅材料及燃料动力供应 (62) 7.1原辅材料供应 (62) 7.2燃料及动力供应 (62) 第八章环境保护 (64) 8.1编制依据与范围 (64) 8.2环境污染及环保措施 (65) 8.3环保机构设置 (66) 8.4绿化 (67) 8.5环境影响评价 (68) 第九章节能方案 (69) 9.1编制依据及设计规范 (69) 9.2项目能源消耗指标分析 (72) 9.3项目能源供应状况 (73) 9.4项目节能措施 (73) 9.5能耗指标及节能效果分析 (77) 9.6能源计量及仪表配备 (79) 9.8节能管理 (83) 9.9节能结论 (85) 第十章消防 (86) 10.1编制依据 (86) 10.2工程概述 (86) 10.3生产工艺特点及安全措施 (87) 10.4消防措施 (88)

碳纤维_树脂基复合材料导电性能研究

第27卷 第5期 2005年5月武 汉 理 工 大 学 学 报JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY Vol.27 No.5 M ay 2005 碳纤维/树脂基复合材料导电性能研究 于 杰,王继辉,王 钧 (武汉理工大学材料科学与工程学院,武汉430070) 摘 要: 研究了短切碳纤维/乙烯基酯树脂导电性与短切碳纤维含量、长径比、纤维取向的关系及其PT C 效应。短切碳纤维长径比越大、取向角越小,材料的渗虑阈值越低,导电性越好。渗虑阈值之后,纤维含量越低,PT C 效应越明显,转变温度越低;实验还发现体积膨胀是导致PT C 效应的主要因素之一,通过分析PT C 效应与体积膨胀之间的关系,得出渗滤区域材料的导电性受导电通路与隧道效应的综合影响,当纤维含量较高时,导电性能基本只受导电通路的控制。关键词: 短切碳纤维/乙烯基酯树脂; 导电性; 长径比; PT C 中图分类号: T B 332文献标志码: A 文章编号:1671-4431(2005)05-0024-03 Study on Electric Properties of Carbon Fiber/Polymer Composites Y U J ie,WAN G J i -hui,WAN G Jun (Schoo l of M aterials Science and Engineering,Wuhan U niversity of T echnolo gy,Wuhan 430070,China) Abstract: T he electr ical co nduct ivity and P T C effect of chopped -carbon fiber filled viny-l ester resin composites were studied.Filler aspect r at io and filler orientation were found to evidently affect t he composites conductiv ity.It w as also proved that the volume ex pansion was a main factor.It has r esulted in the composites .PT C behavior ,w hich is mor e sensitive and evident when the filler fraction is w ithin t he percolation r eg ion.It also advanced the conductive mechanism based on the analysis of the rela -tion between volume expansion and PT C behav ior. Key words: chopped -carbon fiber/viny-l ester r esin; electrical conductivity ; aspect ratio; P T C 收稿日期:2005-01-30. 基金项目:军工863项目(2003AA 305920).作者简介:于 杰(1980-),男,硕士生.E -mail:yujiejack@https://www.sodocs.net/doc/5911422453.html, 复合型导电高分子材料可以在较大范围内根据需要调节材料的电学、力学性能及其它性能,而且成本较低、易于成型并进行大规模生产,是当前研究开发的重点。其中,碳纤维作为一种纤维状导电填料,填充树脂、橡胶、橡塑共混物等复合型导电高分子材料的研究也经常见诸报道[1,2]。虽然针对碳系填料填充的热塑性树脂复合材料的研究十分广泛,但关于以热固性树脂为基体的导电复合材料的研究却少有报道。以短切碳纤维/乙烯基酯树脂为研究对象,研究了碳纤维含量、长径比及纤维的取向对复合材料导电性能的影响,并对其PT C 效应进行了研究,力图探索短切碳纤维填充热固性树脂基复合材料的导电机理。 1 实 验 1.1 试样制备 碳纤维:PAN 基纤维,型号HTA -12K,由OH O TAYON 公司生产;树脂:3201# 乙烯基酯树脂,上海新华树脂厂生产;固化剂:过氧化苯甲酰,促进剂:环烷酸钴,均由武汉理工大学树脂厂生产。将各长径比(1mm 、3mm 、5mm)的碳纤维按不同的含量(0.5%~10%)与树脂、固化剂及促进剂混合搅拌均匀,浇注到钢模中,140e 下固化20m in,自然冷却,脱模后加工成50m m @20mm @4mm 的片材。

碳纤维增强碳化硅陶瓷基复合材料的研究(精)

碳纤维增强碳化硅陶瓷基复合材料的研究 A Study of the Ceram ic M atrix Com po sites R einfo rced by Carbon F ibers 杨雪戴永耀赵广文金东明 (北京航空材料研究院 Yang Xue D ai Yongyao Zhao Guangw J in Dongm ing (In stitu te of A eronau , B eijing [摘要 ]使用 CVD , 全渗入到基体里面。这是由于“瓶颈” 效应所致 , , 进而封闭了通向大气孔的入口。为此 , ( 通过控制反应气体通道位置和试样的加热位置 , , 使用 PCCVD 技术制造的 C Si C 复合材料 , 。 []O ne of the p rob lem s w ith the u se of CVD techn iques to den sify the ceram ic m a 2 trix reinfo rced by fibers is the difficu lty in ach ieving com p lete infiltrati on 1T h is is due to “ bo ttle 2 neck ” effects in w h ich the CVD m atrix clo ses off s m all po res , w h ich in tu rn b lock s access to larg 2 er po res 1To th is end a new m ethod , po siti on con tro l CVD (PCCVD , to overcom e the difficu lty above m en ti oned is p resen ted 1B y m ean s of con tro lling the reach ing po siti on of react gases and the heating po siti on in m atrix , the clo se po res in the m atrix den sified by PCCVD techn ique have no t com e in to being from start to fin ish 1T here are on ly a few , if any , po res in m atrix and the den sity of C Si C com po sites m anufactu red by PCCVD techn ique can ach ieve 96%of theo retical den sity 1 Keywords carbon fibers reinfo rced ceram ic m atrix com po sites 1引言 发展更高效率热机的关键在于提高工作温度 , 而提高工作温度之关键又取决于更高工作温度材料的研制。镍、钴基高温合金已发展到接近其使用温度的极限 , 因此要进一步提高发动机的效率 , 就必须研制和发展陶瓷基复合材料。连续纤维增强陶瓷基复合材料 (CFCC 是最有希望满足发动机高温部件要求的

碳纤维复合材料

碳纤维复合材料 编辑本段概况 在复合材料大家族中,纤维增强材料一直是人们关注的焦点。自玻璃纤维与有机树脂复合的玻璃钢问世以来,碳纤维、陶瓷纤维以及硼纤维增强的复合材料相继研制成功,性能不断得到改进,使其复合材料领域呈现出一派勃勃生机。下面让我们来了解一下别具特色的碳纤维复合材料。 编辑本段结构 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。 碳纤维是由含碳量较高,在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的。 碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。 编辑本段用途 碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,制成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在密度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。 碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。

碳纤维增强陶瓷基复合材料

题目:碳纤维增强陶瓷基复合材料 抗氧化研究 学生: 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2013 年 05月22日

碳纤维增强陶瓷基复合材料抗氧化研究 (陝西科技大学 710021) 摘要:碳纤维增强陶瓷基复合材料( CFRCMCs) 具有良好的高温力学性能和热性能,是航空航天领域非常理想的热结构材料.但CFRCMCs 中的碳纤维极易发生氧化,因此CFRCMCs 的氧化防护问题一直是CFRCMCs 研究的热点。文章对碳纤维改性、基体抗氧化技术、界面层抗氧化技术和表面涂层技术这四种CFRCMCs 的抗氧化技术及其原理进行了评述,分析了各类抗氧化技术的特点并对其发展趋势进行了展望. 关键词:碳纤维; 陶瓷基复合材料;抗氧化涂层,氧化保护 1 前言 碳纤维增强陶瓷基复合材料(CFRCMCs)由于具有高比强度、高比模量、耐腐蚀、耐高温、低密度等优良特性,特别是拥有良好的高温力学性能和热性能,在惰性环境中超过2 000e仍能保持强度、模量等力学性能不降低,拥有良好的断裂韧性和耐磨性能、低线膨胀系数、高热导率、高气化温度和良好的抗热震性能【1】,成为航空航天领域非常理想的热结构材料。但是,在氧化气氛下,碳纤维增强陶瓷基复合材料中碳质材料在400℃左右发生氧化,使其优异性能难以在高温下长时间保持。而碳纤维增强陶瓷基复合材料的许多应用环境都是具有氧化气氛的。因此,它们在氧化气氛中的表现(包括氧化失重、机械性能的持久性等)及氧化气氛中的氧化保护一直是科研工作者非常关注的问题【2】。 碳纤维增强陶瓷基复合材料的抗氧化性研究主要集中在两个方面:(1)通过对基体材料的处理来增强材料的抗氧化性能,如殷小玮等通过在基体孔隙中渗入融熔Si和Cr反应生成Cr3Si来增强抗氧化性能;https://www.sodocs.net/doc/5911422453.html,bruqu re等通过在碳纤维表层形成B化合物膜层来增强材料抗氧化性能;(2)通过整体抗氧化涂层增强材料的抗氧化性能。在两种处理方式中,整体抗氧化涂层更为有效。本文仅对整体抗氧化涂层的发展进行综述和展望。【3】 2 抗氧化涂层的要求 抗氧化涂层的基本功能是将基体材料与外部的氧化性气氛隔离。要有效地实现其隔离功能,抗氧化涂层体系必须满足一些基本要求:(1)涂层材料在所保护温度围稳定,涂层体系和基体材料有良好的粘接作用,涂层与基体及涂层与涂层之间

相关主题