搜档网
当前位置:搜档网 › 以BiW_9为结构基元的夹心型多金属氧酸盐的合成与晶体结构

以BiW_9为结构基元的夹心型多金属氧酸盐的合成与晶体结构

以BiW_9为结构基元的夹心型多金属氧酸盐的合成与晶体结构
以BiW_9为结构基元的夹心型多金属氧酸盐的合成与晶体结构

第一章+金属的晶体结构作业+答案

第一章金属的晶体结构 1、试用金属键的结合方式,解释金属具有良好的导电性、正的电阻温度系数、导热性、塑性和金属光泽等基本特性. 答:(1)导电性:在外电场的作用下,自由电子沿电场方向作定向运动。 (2)正的电阻温度系数:随着温度升高,正离子振动的振幅要加大,对自由电子通过的阻碍作用也加大,即金属的电阻是随温度的升高而增加的。 (3)导热性:自由电子的运动和正离子的振动可以传递热能。 (4) 延展性:金属键没有饱和性和方向性,经变形不断裂。 (5)金属光泽:自由电子易吸收可见光能量,被激发到较高能量级,当跳回到原位时辐射所吸收能量,从而使金属不透明具有金属光泽。 2、填空: 1)金属常见的晶格类型是面心立方、体心立方、密排六方。 2)金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有金属键的结合方式。 3)物质的原子间结合键主要包括金属键、离子键和共价键三种。 4)大部分陶瓷材料的结合键为共价键。 5)高分子材料的结合键是范德瓦尔键。 6)在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数为(( 140 )). 7)在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为(ī10),OC晶向指数为(221),OD晶向指数为(121)。 8)铜是(面心)结构的金属,它的最密排面是(111 )。 9) α-Fe、γ-Fe、Al、Cu、Ni、Cr、V、Mg、Zn中属于体心立方晶格的有(α-Fe 、 Cr、V ),属于面心立方晶格的有(γ-Fe、Al、Cu、Ni ),属于密排六方晶格的有( Mg、Zn )。 3、判断 1)正的电阻温度系数就是指电阻随温度的升高而增大。(√) 2)金属具有美丽的金属光泽,而非金属则无此光泽,这是金属与非金属的根本区别。(×) 3) 晶体中原子偏离平衡位置,就会使晶体的能量升高,因此能增加晶体的强度。(× ) 4) 在室温下,金属的晶粒越细,则其强度愈高和塑性愈低。(×) 5) 实际金属中存在着点、线和面缺陷,从而使得金属的强度和硬度均下降。 (×) 6)体心立方晶格中最密原子面是{110},原子排列最密的方向也是<111> .(对) 7)面心立方晶格中最密的原子面是{111},原子排列最密的方向是<110>。 ( 对 ) 8)纯铁加热到912℃时将发生α-Fe向γ-Fe的转变,体积会发生膨胀。 ( 错 ) 9)晶胞是从晶格中任意截取的一个小单元。(错) 10)纯铁只可能是体心立方结构,而铜只可能是面心立方结构。 (错) 4、选择题 1)金属原子的结合方式是( C )

33 实际金属的晶体结构 一、多晶体结构和亚结构

3.3 实际金属的晶体结构 一、多晶体结构和亚结构 实际使用的工业金属材料,即使体积很小,其内部的晶格位向也不是完全一致的,而是包含着许许多多彼此间位向不同的、称之为晶粒的颗粒状小晶体。而晶粒之间的界面称为晶界。这种实际上由许多晶粒组成的晶体结构称为多晶体结构(polycrystalline structure)。一般金属材料都是多晶体(图3-12)。通常测得的金属性能是各个位向不同的晶粒的平均值,故显示出各向同性。 图3—12 多晶体结构示意图 实践证明,即使在一个晶粒内部,其晶格位向也并不是象理想晶体那样完全一致,而是存在着许多尺寸更小,位向差也很小的小晶块。它们相互嵌镶成一颗晶粒。这些小晶块称为亚结构。可见,只有在亚结构内部,晶格的位向才是一致的。 二、晶体缺陷 实际晶体还因种种原因存在着偏离理想完整点阵的部位或结构,称为晶体缺陷(crystal defect)。晶体缺陷的存在及其多寡,是研究晶体结构、金属塑性变形的关键问题。根据其几何特性,晶体的缺陷可分为三类: 1.点缺陷——空位和间隙原子 实际晶体未被原子占有的晶格结点称为空位;而不占有正常晶格位置而处于晶格空隙之间的原子则称为间隙原子。在空位或间隙原子的附近,由于原子间作用力的平衡被破坏,使其周围的原子离开了原来的平衡位置,即产生所谓的晶格畸变。空位和间隙原子都处于不断的运动和变化之中,这对于热处理和化学处理过程都是极为重要的。 2.线缺陷——位错 晶体中某处有一列或若干列原子发生有规律的错排现象称为位错(dislocation)。有刃型

和螺型两种位错。 刃型位错如图3-13所示。垂直方向的原子面EFGH中断于水平晶面ABCD上的EF处,就像刀刃一样切入晶体,使得晶体中位于ABCD面的上、下两部分出现错排现象。EF线称为刃型位错线。在位错线附近区域,晶格发生畸变,导致ABCD晶面上、下方位错线附近的区域内,晶体分别受到压应力和拉应力。符号“┴”和“┬”分别表示多出的原子面在晶体的上半部和下半部,分别称为正、负刃型位错。 图3—13 刃型位错示意图 螺型位错如图3-14所示。晶体在BC右方的上、下两部分原子排列沿ABCD晶面发生了错动。aa’右边晶体上、下层原子相对移动了一原子间距,而在BC和aa’之间形成了一个上下层原子不相吻合的过渡区域,这里的原子平面被扭成了螺旋面。在原子面上,每绕位错线一周就推进了一个晶面间距。显然,螺型位错附近区域的晶格也发生了严重畸变,形成了一个应力集中区。 3.面缺陷——晶界和亚晶界 晶界实际上是不同位向晶粒之间原子排列无规则的过渡层(图3-15)。晶界处晶格处于畸变状态,导致其能量高于晶粒内部能量,常温下显示较高的强度和硬度,容易被腐蚀,熔点较低,原子扩散较快。

金属与合金的晶体结构

第二章金属与合金的晶体结构 第一节纯金属的晶体结构 一、晶体结构的基本知识 1、晶体与非晶体 晶体——原子规则排列的集合体 非晶体——原子无规则堆积的集合体 晶体特征:固定的熔点,各向异性 2、晶格与晶胞 晶格:把晶体中原子看成几何点,用假象的直线连接后得到的三维格架晶胞:晶格中能全面反映原子排列规律的最小几何单元 3、晶面与晶向晶格常数:晶胞的棱边长度 晶面:晶格中各方位的原子面 晶向:任意两个原子连线所指的方向 第二节纯金属的实际晶体结构 α-Fe [100] E=135000N/mm2 [111] E=290000 N/mm2 实际测定 E=210000 N/mm2 一、多晶体结构 单晶体:各部分位向完全一致的晶体(各向异性)多晶体:许多位向不同的单晶体的聚合体(各向同性)晶粒:多晶体中外形不规则的小晶体晶界:晶粒之间的界面 二、晶体缺陷 1、点缺陷——空位和间隙原子 点缺陷→导致晶格畸变→强度↑,硬度↑ 空位和间隙原子都处于运动和变化之中,是原子扩散主 要方式之一。温度↑,空位↑ 2、线缺陷——位错 位错——整排原子有规律错排位错密度ρ=L / V (cm-2)

增加或减小,可以提高强度 3、面缺陷——晶界、亚晶界晶界处:晶格畸变→强度高 原子能量高→熔点低,易腐蚀,原子扩散快 晶粒细→晶界面积大→强度高 亚晶界:晶粒内小位向差(1-2°)的晶块(亚晶粒亚结构)边界 第三节合金的晶体结构合金的基本概念 合金:由两种或两种以上金属,或金属与非金属组成,具有金属性质的物质。 组元:组成合金的基本物质。 相:结构相同,成分相近,与其它部分有界面分开的部分 单相合金:固态下由一个固相组成的合金 多相合金:固态下由两个以上固相组成的合金 组织:相的聚合体。 ( 单相组织,多相组织,) 二、合金的相结构 合金相结构——固溶体和金属化合物。 1、固溶体 固溶体:一种元素的原子溶入另一种元素中形成的合金相。溶剂——保持原晶体结构的元素溶质——失去原晶体结构的元素 有限固溶体:溶解度有一定限度——有限互溶 无限固溶体:溶解度无一定限度——无限互溶(晶体结构相同原子直径相近)固溶体分类: 置换固溶体:溶质原子占据溶剂晶格的某些结点 间隙固溶体:溶质原子处于溶剂晶格的间隙中 固溶强化——溶质溶入固溶体,导致晶格畸变,引起强度和硬度升高 (仍保持良好的塑性和韧性) 2、金属化合物 特征: ?有金属性质 ?晶体结构不同于任何组元 ?成分可用分子式表示Fe3C 性能:硬,脆,熔点高 弥散强化(第二相强化): 当金属化合物以细小颗粒均布于固溶体上, 可使合金的强度↑↑,硬度↑↑,耐磨性↑↑ 调整合金性能的途径: ?改善固溶体溶解度 ?改变化合物形状、数量、大小、分布

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

纯金属与合金的晶体结构

淮安信息职业技术学院教案首页 一、章节:第二章纯金属与合金的晶体结构 第一节纯金属的晶体结构第二节纯金属的实际晶体结构第三节合金的晶体结构 二、教学目的:使学生了解纯金属与合金的晶体结构,晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 三、教学方法: 讲授法。 四、教学重点: 晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 五、教学难点: 晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 六、使用教具: 挂图。 七、课后作业: P17:1、2、6。 八、课后小结:

第二章纯金属与合金的晶体结构 第一节纯金属的晶体结构 一、晶体结构的基本知识 1.晶体与非晶体 晶体内部的原子按一定几何形状作有规则地重复排列,如金钢石、石墨及固态金属与合金。而非晶体内部的原子无规律地规律地堆积在一起,如沥青、玻璃、松香等。 晶体具有固定的熔点和各向异性的特征,而非晶体没有固定的熔点,且各向同性。 2.晶体管格与晶胞 为便于分析晶体中原子排列规律,可将原子近似地看成一个点,并用假想的线条将各原子中心连接起来,便形成一个空间格子。 晶格——抽象的、用于描述原子在晶体中的规则排列方式的空间几何图形。结点——晶格中直线的交点。 晶胞——晶格是由一些最基本的几何单元周期重复排列而成的,这种最基本的几何单元称为晶胞。

晶胞大小和形状可用晶胞的三条棱长a、b、c(单位,1A=108cm)和棱边夹角来描述,其中a、b、c称为晶格常数。 各种晶体由于其晶格类型和晶格常数不同,故呈现出不同的物理、化学及力学性能。 二、常见的晶格类型 1.体心立方晶格 体心立方晶格的晶胞为一立方体,立方体的八个顶角各排列着一个原子,立方体的中心有一个原子。其晶格常数a=b=c。属于这种晶格类型的金属有α铁、铬、钨、钼、钒等。 2.面心立方晶格 面心立方晶格的晶胞也是一个立方体,立方体的八个顶角和六个面的中心各排列一个原子。属于这种晶格类型的金属有γ铁、铝、铜墙铁壁、镍、金、银等。 3.密排六方晶格 密排六方晶格的晶胞是一个六方柱体,柱体的十二个顶角和上、下中心各排列着一个原子,在上、下面之间还有三个原子。属于这种晶格类型的金属有镁、锌、铍等、α-Ti。 晶格类型不同,原子排列的致密度也不同。体心立方晶格的致

第一章__金属的晶体结构习题答案

第一章 金属得晶体结构 (一)填空题 3.金属晶体中常见得点缺陷就是 空位、间隙原子与置换原子 ,最主要得面缺陷就是 。 4.位错密度就是指 单位体积中所包含得位错线得总长度 ,其数学表达式为V L =ρ。 5.表示晶体中原子排列形式得空间格子叫做 晶格 ,而晶胞就是指 从晶格中选取一个能够完全反应晶格特征得最小几何单元 。 6.在常见金属晶格中,原子排列最密得晶向,体心立方晶格就是 [111] ,而面心立方晶格就是 [110] 。 7 晶体在不同晶向上得性能就是 不同得 ,这就就是单晶体得 各向 异性现象。一般结构用金属为 多 晶体,在各个方向上性能 相同 ,这就就是实际金属得 伪等向性 现象。 8 实际金属存在有 点缺陷 、 线缺陷 与 面缺陷 三种缺陷。 位错就是 线 缺陷。 9.常温下使用得金属材料以 细 晶粒为好。而高温下使用得金属 材料在一定范围内以粗 晶粒为好。 10.金属常见得晶格类型就是 面心立方、 体心立方 、 密排六方 。 11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1, 1,1/2),D(1/2,1,1/2),那么AB 晶向指数为10]1[- ,OC 晶向指数为[221] ,OD 晶向指数为 [121] 。 12.铜就是 面心 结构得金属,它得最密排面就是 {111} , 若铜得晶格常数a=0、36nm,那么最密排面上原子间距为 0、509nm 。 13 α-Fe 、γ-Fe 、Al 、Cu 、Ni 、Cr 、V 、Mg 、Zn 中属于体心立方 晶格得有 α-Fe 、Cr 、V ,属于面心立方晶格得有 γ-Fe 、Al 、Cu 、Ni 、 ,属于密排六方晶格得有 Mg 、Zn 。 14.已知Cu 得原子直径为0.256nm ,那么铜得晶格常数为 。 1mm 3Cu 中得原子数为 。 15.晶面通过(0,0,0)、(1/2、1/4、0)与(1/2,0,1/2)三点,这个晶 面得晶面指数为 、 16.在立方晶系中,某晶面在x 轴上得截距为2,在y 轴上得截距为 1/2;与z 轴平行,则该晶面指数为 (140) 、 17.金属具有良好得导电性、导热性、塑性与金属光泽主要就是因为 金属原子具有 金属键 得结合方式。 18.同素异构转变就是指 当外部条件(如温度与压强)改变时,金

第一章 金属的晶体结构

第一章金属的晶体结构 1-1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向。 附图1-1 有关晶面及晶向 1-2、立方晶系的{111}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。 {111}=(111)+(111)+(111)+(111) (111)与(111)两个晶面指数的数字与顺序完全相同而符号相反,这两个晶面相互平行,相当于用-1乘某一晶面指数中的各个数字。 1-3 (题目见教材) 解:x方向截距为5a,y方向截距为2a,z方向截距为3c=3 2a/3=2a。 取截距的倒数,分别为 1/5a,1/2a,1/2a

化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5) 1-4 (题目见课件) 解:(100)面间距为a/2;(110)面间距为2a/2;(111)面间距为3a/3。 三个晶面中面间距最大的晶面为(110)。 1-5 (题目见课件) 解:方法同1-4题 1-7 证明理想密排六方晶胞中的轴比c/a=1.633。 证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内 的原子相切,构成正四面体,如图所示。 则OD= 2 c ,AB=BC=CA=AD=BD=CD=a 因?ABC 是等边三角形,所以有OC=3 2CE 因(BC)2 =(CE)2 +(BE) 2 则CE=23a ,OC=32×23a =3 3 a 又(CD)2 =(OC)2 +( 21c )2,即(CD)2=(3 3a )2+(21c )2=(a )2 因此, a c =3 8≈1.633 1-8 解:面心立方八面体间隙半径 r=a/2-2a/4=0.146a , 面心立方原子半径R=2a/4,则a=4R/2,代入上试有

第一章 金属的晶体结构习题答案

第一章 金属的晶体结构 (一)填空题 3.金属晶体中常见的点缺陷是 空位、间隙原子和置换原子 ,最主要的面缺陷是 。 4.位错密度是指 单位体积中所包含的位错线的总长度 ,其数学表达式为V L =ρ。 5.表示晶体中原子排列形式的空间格子叫做 晶格 ,而晶胞是指 从晶格中选取一个能够完全反应晶格特征的最小几何单元 。 6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是 [111] ,而面心立方 晶格是 [110] 。 7 晶体在不同晶向上的性能是 不同的 ,这就是单晶体的 各向异性现象。一般结构用金属 为 多 晶体,在各个方向上性能 相同 ,这就是实际金属的 伪等向性 现象。 8 实际金属存在有 点缺陷 、 线缺陷 和 面缺陷 三种缺陷。位错是 线 缺陷。 9.常温下使用的金属材料以 细 晶粒为好。而高温下使用的金属材料在一定范围内以粗 晶粒为好。 10.金属常见的晶格类型是 面心立方、 体心立方 、 密排六方 。 11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2), 那么AB 晶向指数为10]1[- ,OC 晶向指数为[221] ,OD 晶向指数为 [121] 。 12.铜是 面心 结构的金属,它的最密排面是 {111} ,若铜的晶格常数a=0.36nm, 那么最密排面上原子间距为 0.509nm 。 13 α-Fe 、γ-Fe 、Al 、Cu 、Ni 、Cr 、V 、Mg 、Zn 中属于体心立方晶格的有 α-Fe 、Cr 、 V ,属于面心立方晶格的有 γ-Fe 、Al 、Cu 、Ni 、 ,属于密排六方晶格的有 Mg 、 Zn 。 14.已知Cu 的原子直径为0.256nm ,那么铜的晶格常数为 。1mm 3Cu 中的原子数 为 。 15.晶面通过(0,0,0)、(1/2、1/4、0)和(1/2,0,1/2)三点,这个晶面的晶面指数为 . 16.在立方晶系中,某晶面在x 轴上的截距为2,在y 轴上的截距为1/2;与z 轴平行,则 该晶面指数为 (140) . 17.金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有 金属键 的 结合方式。 18.同素异构转变是指 当外部条件(如温度和压强)改变时,金属内部由一种金属内部由 一种晶体结构向另一种晶体结构的转变 。纯铁在 温度发生 和 多晶型转变。 19.在常温下铁的原子直径为0.256nm ,那么铁的晶格常数为 。 20.金属原子结构的特点是 。 21.物质的原子间结合键主要包括 离子键 、 共价键 和 金属键 三种。 (二)判断题 1.因为单晶体具有各向异性的特征,所以实际应用的金属晶体在各个方向上的性能也是不 相同的。 (N) 2.金属多晶体是由许多结晶位向相同的单晶体所构成。 ( N) 3.因为面心立方晶体与密排六方晶体的配位数相同,所以它们的原子排列密集程度也相同 4.体心立方晶格中最密原子面是{111}。 Y 5.金属理想晶体的强度比实际晶体的强度高得多。N 6.金属面心立方晶格的致密度比体心立方晶格的致密度高。 7.实际金属在不同方向上的性能是不一样的。N 8.纯铁加热到912℃时将发生α-Fe 向γ-Fe 的转变。 ( Y ) 9.面心立方晶格中最密的原子面是111},原子排列最密的方向也是<111>。 ( N ) 10.在室温下,金属的晶粒越细,则其强度愈高和塑性愈低。 ( Y ) 11.纯铁只可能是体心立方结构,而铜只可能是面心立方结构。 ( N ) 12.实际金属中存在着点、线和面缺陷,从而使得金属的强度和硬度均下降。 ( Y ) 13.金属具有美丽的金属光泽,而非金属则无此光泽,这是金属与非金属的根本区别。N

金属的晶体结构

引言 金属学是研究金属及合金的成分、组织、结构与力学性能之间关系的科学。所谓力学性能主要指材料的强度、硬度和塑性。通常用来承受载荷的零件要求材料具有一定的力学性能,我们称这类材料为结构材料。与结构材料对应的另一类材料是功能材料,它一般不要求承受载荷,主要使用它的物理性能,如光、电、磁性能等。功能材料利用它对光、电、磁的敏感特性制作各类传感器。 金属学只讨论金属材料的力学性能,不涉及物理性能。 固态金属通常是晶体,金属学研究的最小结构单元是原子。原子通过不同的排列可构成各种不同的晶体结构,产生不同的性能。原子结构不是金属学研究的范畴。 第1章金属的晶体结构 1-1金属及金属键 金属的定义根据学科的不同有多种划分方法。本人倾向按结合键的性质来划分,即金属是具有金属键的一类物质。这种分类的好处是有利于解释与金属力学性能相关的现象。例如,为什么金属具有较好的塑性? 什么是金属键、离子键、共价键我们早就熟知,金属键的最大特点是无饱和性、无方向性。以后我们将会看到,正是这些特点使金属具有较好的塑性。 研究表明,固态金属通常是晶体,且其结构趋于密堆积结构。这是为什么?下面我们用双原子模型来说明。 当两个原子相距很远时,它们之间不发生作用。当它们逐渐靠近时,一个原子的原子核与另一个原子的核外电子之间将产生引力;而两原子的原子核及电子之间产生斥力。研究表明,引力是长程力,斥力是短程力,即距离较远时,引力大于斥力,表现为相互吸引。随着原子距离的减小,斥力增加的速度逐渐大于引力增加的速度。显然这样作用的结果必然存在一个平衡距离d0,此时,引力等于斥力,偏离这一距离时,都将受到一个恢复力,如P3图2。d c对应最大恢复引力,即最大结合力,它对应着金属的理论抗拉强度。 下面,我们从能量的角度来考虑系统的稳定性。在引力作用下原子移近所做的功使原子的势能降低,所以吸引能是负值。相反,排斥能是正值。吸引能

第3讲纯金属的晶体结构

第三讲纯金属的晶体结构 1.典型金属的晶体结构 考点再现:这一部分08年09年10年都有所涉及,10年考了晶胞致密度的概念,这部分以名词解释,填空为主,需要在理解的基础上记忆,但是总体上说难度不大,但是却很重点。考试要求:记忆,特别是理解基础上的记忆,对于一些内容需要会一定的推导。 知识点: 晶胞中的原子数:完全属于该晶胞的原子数。★★★ 配位数:晶体结构中任一原子周围最近邻且等距离的原子数(CN)。★★★★ 致密度:晶体结构中的原子体积占总体积的百分比(k)。★★★★ 八面体间隙:位于6个原子所组成的8面体中间的间隙。★★★ 四面体间隙:位于4个原子所组成的4面体中间的间隙。★★★ 典型金属晶体结构有(面心立方fcc),(体心立方bcc),(密排六方hcp)★★★★★

fcc bcc hcp 面心立方结构n = 8×1/8 + 6×1/2 = 4 体心立方结构n = 8×1/8 + 1 =2 密排六方结构n = 12×1/6 +2×1/2 +3 = 6 三种典型金属晶体结构特征 晶体类型原子密排面原子密排方 向晶胞中的原 子数 配位数CN 致密度K A1(fcc){111} <110> 4 12 0.74 A2(bcc){110} <111> 2 8,(8+6)0.68 A3(hcp){0001} <11-20> 6 12 0.74 对于金属晶体结构的这一部分的主要内容都集中在这个表上,在这些方面里,我们更加侧重密排面和密排方向以及致密度的掌握,这是本讲内容的一个重点。 而对于本讲的另一个重点就是关于间隙问题的讨论。 我们知道位于6个原子所组成的8面体中间的间隙。位于4个原子所组成的4面体中间的间隙。单8面体间隙和四面体间隙时如何排布的呢,我们由图可以清楚的了解。

(完整版)材料科学基础习题库第一章-晶体结构

(一).填空题 1.同非金属相比,金属的主要特性是__________ 2.晶体与非晶体的最根本区别是__________ 3.金属晶体中常见的点缺陷是__________ ,最主要的面缺陷是__________ 。4.位错密度是指__________ ,其数学表达式为__________ 。 5.表示晶体中原子排列形式的空间格子叫做__________ ,而晶胞是指__________ 。 6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是__________ ,而面心立方晶格是__________ 。 7.晶体在不同晶向上的性能是__________,这就是单晶体的__________现象。 一般结构用金属为__________ 晶体,在各个方向上性能__________ ,这就是实际金属的__________现象。 8.实际金属存在有__________ 、__________ 和__________ 三种缺陷。位错是__________ 缺陷。实际晶体的强度比理想晶体的强度__________ 得多。。9.常温下使用的金属材料以__________ 晶粒为好。而高温下使用的金属材料在一定范围内以__________ 晶粒为好。‘ 10.金属常见的晶格类型是__________、__________ 、__________ 。 11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为__________ ,OC晶向指数为__________ ,OD晶向指数为__________ 。 12.铜是__________ 结构的金属,它的最密排面是__________ ,若铜的晶格常数a=0.36nm,那么最密排面上原子间距为__________ 。 13 α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn中属于体心立方晶格的有 __________ ,属于面心立方晶格的有__________ ,属于密排六方晶格的有__________ 。 14.已知Cu的原子直径为0.256nm,那么铜的晶格常数为__________ 。1mm3Cu 中的原子数为__________ 。 15.晶面通过(0,0,0)、(1/2、1/4、0)和(1/2,0,1/2)三点,这个晶面的晶面指数为() 16.在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数为__________ . 17.金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有__________ 的结合方式。 18.同素异构转变是指__________ 。纯铁在__________ 温度发生__________ 和__________ 多晶型转变。 19.在常温下铁的原子直径为0.256nm,那么铁的晶格常数为__________ 。20.金属原子结构的特点是______________________________________。21.物质的原子间结合键主要包括__________ 、__________ 和__________ 三种。 22.大部分陶瓷材料的结合键为__________ 。 23.高分子材料的结合键是__________ 。 25.位错线与柏氏矢量垂直,该位错为_________,位错线与柏氏矢量平行时为_______位错。

纯金属的晶体结构

纯金属的晶体结构

1.三种常见的金属晶体结构 固态物质按其原子的聚集状态可分为两大类:晶体和非晶体,晶体指的是材料的原子(离子、分子)在三维空间呈规则的周期性排列的物体,如金刚石、水晶、金属等。非晶体指的是材料的原子(离子、分子)在三维空间无规则排列的物体,如松香、石蜡、玻璃等。在一定的条件下晶体和非晶体可以互相转化(I2-1)。 晶体结构是晶体中原子(离子或分子)规则排列的方式。晶格是假设通过原子结点的中心划出许多空间直线所形成的空间格架。能反映晶格特征的最小组成单元称为晶胞(I2-2)。晶格常数指的是晶胞的三个棱边的长度a,b,c。 常见的金属晶体结构有 ⑴体心立方晶格(BCC—Body-Centered Cube),典型代表为钼(Mo)、钨、钒、铬、铌、α-Fe等,八个原子处于立方体的角上,一个原子处于立方体的中心,如图2所示。 ⑵面心立方晶格(FCC—Face-Centered Cube),典型代表为铝、铜、镍、金、银、γ-Fe等,原子分布在立方体的八个角上和六个面的中心,如图1所示。 ⑶密排六方晶格(HCP—Hexagonal Close-Packed)典型代表为镁、镉(Cd)、锌、铍(Be)等。12个原子分布在六方体的12个角上,上下底面中心各分布一个原子,上下底面之间均匀分布3个原子,如图3所示。 图1面心立方晶格图2体心立方晶格图3密排六方晶格 原子半径指的是晶胞中相距最近的两个原子之间距离的一半,致密度指的是晶胞中所包含的原子所占有的体积与该晶胞体积之比。 体心立方模型与晶胞示意图(I2-3),在体心立方晶格中如图4: 图 4 晶格常数:a=b=c;a=b=g=90° 晶胞原子数:2 原子半径: 致密度:0.68 面心立方模型与晶胞示意图(I2-4),在面心立方晶格中如图5: 图 5 晶格常数:a=b=c;a=b=g=90° 晶胞原子数:4 原子半径:

金属学及热处理习题参考答案(1-9章)

第一章金属及合金的晶体结构 一、名词解释: 1.晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。2.非晶体:指原子呈不规则排列的固态物质。 3.晶格:一个能反映原子排列规律的空间格架。 4.晶胞:构成晶格的最基本单元。 5.单晶体:只有一个晶粒组成的晶体。 6.多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。 7.晶界:晶粒和晶粒之间的界面。 8.合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。 9.组元:组成合金最基本的、独立的物质称为组元。 10.相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。 11.组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。 12.固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。 二、填空题: 1.晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。 2.常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。 3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。 4.根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。 5.置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。 6.合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。7.同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光泽,正的电阻温度系数。

8.金属晶体中最主要的面缺陷是晶界和亚晶界。 9.位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的。 10.在立方晶系中,{120}晶面族包括(120)、(120)、(102)、(102)、(210)、 (210)、(201)、 (201)、(012)、(012)、(021)、(021)、等晶面。 11.点缺陷有空位、间隙原子和置换原子等三种;属于面缺陷的小角度晶界可以用亚晶界来描述。 三、判断题: 1.固溶体具有与溶剂金属相同的晶体结构。(√) 2.因为单晶体是各向异性的,所以实际应用的金属材料在各个方向上的性能也是不相同的。(×) 3.金属多晶体是由许多位向相同的单晶体组成的。(×) 4.因为面心立方晶格的配位数大于体心立方晶格的配位数,所以面心立方晶格比体心立方晶格更致密。(√) 5.在立方晶系中,原子密度最大的晶面间的距离也最大。(√) 6.金属理想晶体的强度比实际晶体的强度稍强一些。(×) 7.晶体缺陷的共同之处是它们都能引起晶格畸变。(√) 四、选择题: 1.组成合金中最基本的,能够独立存在的物质称为:(b) a.相;b.组元;c.合金。 2.正的电阻温度系数的含义是:(b) a.随温度升高导电性增大;b.随温度降低电阻降低;c.随温度增高电阻减小。 3.晶体中的位错属于:(c) a.体缺陷;b.面缺陷;c.线缺陷;d.点缺陷。 4.亚晶界是由:(b) a.点缺陷堆积而成;b.位错垂直排列成位错墙而构成;c.晶界间的相互作用构成。5.在面心立方晶格中,原子密度最大的晶向是:(b) a.<100>;b.<110>;c.<111>。 6.在体心立方晶格中,原子密度最大的晶面是:(b) a.{100};b.{110};c.{111}。

实际金属的晶体结构

第三讲实际金属的晶体结构 第三节实际金属的晶体结构 一、主要内容: 晶体缺陷的概念,研究晶体缺陷的意义,晶体缺陷的种类 点缺陷的概念、种类,点缺陷产生的原因,晶格畸变的概念,间隙原子,置换原子,晶格空位, 线缺陷的概念,线缺陷的种类,刃型位错、螺型位错的特征,正刃型位错、负刃型位错,左螺型位错、右螺型位错,混合型位错,位错周围的应力场,位错周围的晶格畸变,柏氏矢量的概念,柏氏矢量的确定、表示方法,用柏氏矢量判断位错的类型,位错密度,位错在晶体中的特性。 面缺陷的种类,晶体表面,晶界,小角度晶界,大角度晶界,亚晶界,堆垛层错,相界,晶界的特性。 二、要点: 缺陷的概念及缺陷的种类。 三、方法说明; 晶体内部的缺陷确实存在,晶体内部的缺陷对金属的性能有很大的影响甚至起着决定性的作用。应该了解晶界与相界的区别,晶界的特性。 重点概念:是晶格畸变,间隙原子,置换原子,位错,亚结构。 难点:是螺型位错,用模型讲述会更清楚。 授课内容: 一、点缺陷 点缺陷的类型及特点: 金属晶体中常见的点缺陷有:空位、间隙原子、置换原子等。 晶体中位于晶格结点上的原子并非静止不动的,而是以其平衡位置为中心作热运动。当某一瞬间,某个原子具有足够大的能量,克服周围原子对它的制约,跳出其所在的位置,使晶格中形成空结点,称空位。挤入间隙的原子叫间隙原子; 占据在原来晶格结点的异类原子叫置换原子。 1、空位 空位是一种热平衡缺陷,即在一定温度下,空位有一定的平衡浓度。空位在晶体中的位置不是固定不变的,而是不断运动变化的。空位是由原子脱离其平衡位置而形成的,脱离平衡位置的原子大致有三个去处: (1)迁移到晶体表面上,这样所产生的空位叫肖脱基空位; (2)迁移到晶格的间隙中,这样所形成的空位叫弗兰克尔空位; (3)迁移到其他空位处,这样虽然不产生新的空位,但可以使空位变换位置。 晶格畸变:由于空位的存在。其周围原子失去了一个近邻原子而使相互间的作用失去平衡,因而它们朝空位方向稍有移动,偏离其平衡位置,就会在空位周围出现一个涉及几个原子间距范围的弹性畸变区,叫晶格畸变。 2、间隙原子 处于晶格间隙中的原子即为间隙原子。在形成弗兰克尔空位的同时,也形成一个间隙原子,另外溶质原子挤入溶剂的晶格间隙中后,也称为间隙原子,他们都会造成严重的晶体畸变。间隙原子也是一种热平衡缺陷,在一定温度下有一平衡浓度,对于异类间隙原子来说,常将这一平衡浓度称为固溶度或溶解度。 3、置换原子

常见的金属晶体结构

第二章作业2-1 常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?V、Mg、Zn 各属何种结构?答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15 天,然后再精加工。试解释这样做的目的及其原因?答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn 的最低再结晶温度分别为: TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃所以W 在1000℃时为冷加工,Sn 在室温下为热加工4-9 用下列三种方法制造齿轮,哪一种比较理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法1、2 都可以,用方法3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因?答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因?答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同?答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共

第一章金属的晶体结构与结晶 教案

第一章金属的晶体结构与结晶 第一节金属的晶体结构 一、晶体结构的基本概念 1、晶体 组成固态物质的最基本的质点(如原子、分子或离子)在三维空间中,作有规则的周期性重复排列,即以长程有序方式排列。这样的物质称为晶体。如:金属,天然金刚石,结晶盐,水晶,冰等 2、非晶体 组成固态物质的最基本的质点,在三维空间中无规则堆砌。这样的物质称为非晶体。如:玻璃,松香等。 晶体通常又可分为金属晶体和非金属晶体,纯金属及合金都属于金属晶体,其原子间主要以金属键结合,而非金属晶体主要以离子键和共价键结合。如:食盐NaCl(离子键),金刚石(共价键)都是非金属晶体。 图1-1 晶体、晶格与晶胞示意图 按晶体结构模型提出的先后,可将晶体结构模型分为几何(球体)模型、晶格模型和晶胞模型。 3、晶体的球体模型 就是把组成晶体的物质质点,看作为静止的刚性小球,他们在三维空间周期性规则堆垛而成。该模型虽然很直观,立体感强,但不利于观察晶体内部质点的排列方式。针对这一缺陷科技工作者进一步提出了晶体的晶格模型。 4、晶格 为了研究晶体中原子的排列规律,假定理想晶体中的原子都是固定不动的刚性球体,并用假想的线条将晶体中各原子中心连接起来,便形成了一个空间格子,这种抽象

的、用于描述原子在晶体中规则排列方式的空间格子称为晶格。晶体中的每个点叫做结点。 5、晶胞 晶体中原子的排列具有周期性的特点,因此,通常只从晶格中选取一个能够完全反映晶格特征的、最小的几何单元来分析晶体中原子的排列规律,这个最小的几何单元称为晶胞。实际上整个晶格就是由许多大小、形状和位向相同的晶胞在三维空间重复堆积排列而成的。 6、晶格常数 晶胞的大小和形状常以晶胞的棱边长度a、b、c及棱边夹角α、β、γ来表示,如图2.1(c)所示。晶胞的棱边长度称为晶格常数,以埃(?)为单位来表示(1?=10-8cm)。 当棱边长度a=b=c,棱边夹角α=β=γ=90°时,这种晶胞称为简单立方晶胞。由简单立方晶胞组成的晶格称为简单立方晶格。 二、金属材料的特性 1、金属材料 金属材料是指金属元素与金属元素,或金属元素与少量非金属元素所构成的,具有一般金属特性的材料,统称为金属材料。 金属材料按其所含元素数目的不同,可分为纯金属(由一个元素构成)和合金(由两个或两个以上元素构成)。合金按其所含元素数目的不同,又可分为二元合金、三元合金和多元合金。大家知道物质按其形态不同,可分为固体、液体和气体。而固体又可分晶体和非晶体。 2、金属键 金属键是金属原子之间的结合键,它是大量金属原子结合成固体时,彼此失去最外层子电子(过渡族元素也失去少数次外层电子),成为正离子,而失去的外层电子穿梭于正离子之间,成为公有化的自由电子云或电子气,而金属正离子与自由电子云之间的强烈静电吸引力(库仑引力),这种结合方式称为金属键。 3、金属特征 金属材料主要以金属键方式结合,从而使金属材料具有以下特征: ①良好的导电、导热性: 自由电子定向运动(在电场作用下)导电、(在热场作用下)导热。 ②正的电阻温度系数:

相关主题