搜档网
当前位置:搜档网 › 流体静压润滑

流体静压润滑

流体静压润滑
流体静压润滑

流体润滑的基本原理

流体静压润滑

流体静压润滑

定义,什么是流体静压润滑

流体静压润滑是利用专用外界的流体装置,是流体产生压力,并将具有压力的流体输入到摩擦表面,将两摩擦表面用一层静压流体膜分开以支持外载荷的润滑。

流体静压润滑的特点

主要优点是:

(1)适用速度范围广由于流体静压润滑本身不需要相对运动的功能,因而在任何速度下包括很高速或很低速,启动或停车以及正反转都能建立—层完整的流体膜,并获得良好的工作性能。

(2)摩擦系数很小其一般摩擦系数μ只有0.0001~0.0008,例如采用32号机械油的静压导轨,其起动摩擦系数一般在0.0005,因而功耗小,效率高,并在低速条件下不会产生粘滑现象。

(3)使用寿命长因为两个相对运动的表面不直接接触、磨损很小、能长期保持精度,同时对摩擦副的材料没有特殊要求等,因而大大地延长了其使用寿命。

(4)运动精度高液体静压膜具有某种“平均误差”的作用,可以补偿制造误差的影响。因而对轴颈或轴承的加工精度和表面粗糙度要求一般比液体动压润滑轴承为低。这点同滚动元件支承相比尤为明显。

(5)适应性和抗振性能好静压润滑的适应性很广,能满足轻裁到重载,小型到大型,低速到高速的各种机床和机械设备的要求、同时,静压流体膜有良好的吸振性能,运动均匀平稳,振动、噪音都很小。

主要缺点:

其缺点主要是工作时要一套可靠的高压供油装置,投资费和维护费较高,也增加了机器所占空间,而总效率较低,从这个角度分析.不如动压润滑机构简单,费用低。因此.究竞选用何种润滑方式,应根据具体要求综合考虑,必要时也可设计成动静压联合润滑方式。

3.2:流体静压润滑支承原理

流体静压支承的共同特点是各摩擦面都开有几个流体腔,每个流体腔的四周均有封流体的面,一般将一个流体腔及其封流体的面称为一个文承单元(或流体垫),若干个支承适当配置,便构成流体静压支承,整个摩擦副的承栽能力,是各支承单元承载能力的合成结果。所以理解单个支承单元的工作原理,是全面了解整个支承的基础。

上图所示一个支承单元,上部为运动件,下部为支承件,其间隙为(即流体膜厚度),以及出一个深度比间隙大得多的流体腔和四周具有一定宽度封油体的面组成(简称封油面)。当末通入压力流体时,流体腔没有压力,被支承件(一般为运动件)受载荷作用压紧在支承上。当流体从高压流体泵送入流体腔内后,使合成液体压力同支承单元载荷FN平衡时,运动件浮起,封油体的面处形成间隙,流体从封流体的面流出,由于间隙较小、阻力很大,流体腔内仍保持支承载荷所需要的压力,运动件能继续浮起,保持工作稳定。

(情绪管理)液体动压润滑径向轴承油膜压力和特性曲线

液体动压润滑径向轴承油膜压力和特性曲线 (二) HZS —Ⅰ型试验台 一. 实验目的 1. 观察滑动轴承液体动压油膜形成过程。 2. 掌握油膜压力、摩擦系数的测量方法。 3. 按油压分布曲线求轴承油膜的承载能力。 二. 实验要求 1. 绘制轴承周向油膜压力分布曲线及承载量曲线,求出实际承载量。 2. 绘制摩擦系f 与轴承特性 λ 的关系曲线。 3. 绘制轴向油膜压力分布曲线 三. 液体动压润滑径向滑动轴承的工作原理 当轴颈旋转将润滑油带入轴承摩擦表面,由于油的粘性作用,当达到足够高的旋转速度时,油就被带入轴和轴瓦配合面间的楔形间隙内而形成流体动压效应,即在承载区内的油层中产生压力。当压力与外载荷平衡时,轴与轴瓦之间形成稳定的油膜。这时轴的中心相对轴瓦的中心处于偏心位置,轴与轴瓦之间处于液体摩擦润滑状态。因此这种轴承摩擦小,寿命长,具有一定吸震能力。 液体动压润滑油膜形成过程及油膜压力分布形状如图8-1所示。 滑动轴承的摩擦系数f 是重要的设计参数之一,它的大小与润滑油的粘度η (Pa ?s)、轴的转速n (r/min)和轴承压力p (MP a)有关,令 (7) 式中:λ—轴承特性数 观察滑动轴承形成液体动压润滑的过程,摩擦系数f 随轴承特性数 λ 的变化如图8-2所示。图中相应于f 值最低点的轴承特性数 λc 称为临界特性数,且 λc 以右为液体摩擦润滑区,λc 以左为非液体摩擦润滑区,轴与轴瓦之间为边界润滑并有局部金属接触。因此f 值随 λ 减小而急剧增加。不同的轴颈和轴瓦材料、加工情况、轴承相对间隙等,f —λ曲线不同,λc 也随之不同。 四. HZS —I 型试验台结构和工作原理 1. 传动装置 如图8-7所示,被试验的轴承2和轴1支承于滚动轴承3上,由调速电机6通过V 带5带动变速箱4,从而驱动轴1逆时针旋转并可获得不同的转速。 λη= n p

流体动压润滑理论

流体动压润滑理论

流体动压润滑理论 (简介)在摩擦副两表面间被具有一定粘度的流体 完全分开。将固体间的外摩擦转化为流体的内摩擦。以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是流体润滑。它的发展与人们对滑轮和摩擦的研究密切相关 发展简史 时间人物经典理论及现象 1883年塔瓦(Tower)流体动压现象 1886年雷诺(Reynold)流体动压润滑理论及雷诺方程 1.流体动压现象) 当动环回转时,由于静环表面有很多微孔,动环的转动使其表面与静环表面上的微孔形成收敛缝隙流体膜层,使每一个孔都像一个微动力滑动轴承。也就是说,当另一个表面在多孔端面上滑动时,会在孔的上方及其周边产生流体动压力,这就是流体动压效应。 (实例) 流体动压润滑 ——流体动压润滑是依靠运动副两个滑动表面的形状,在其相对运动时,形成产生动压效应的流体膜,从而将运动表面分隔开的润滑状态。 特点) a.流体的粘度,一般遵循粘性切应力与切应变率成比例规律 b.楔形润滑膜,依靠运动副的两个滑动表面的几何形状,在相对运动时

产生收敛型流体楔,形成足够的承载压力,以承受外载荷。 形成动压润滑的条件: a.润滑剂有足够的粘度 b.足够的切向运动速度(或者轴颈在轴承中有足够的转速) c.流体楔的几何形状为楔形(轴在轴承中有适当的间隙) 2.流体动压润滑理论) 在摩擦副两表面间被具有一定粘度的流体完全分开。将固体间的外摩擦转化为流体的内摩擦。以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低。滑动轴承运动副间要现成流体薄膜,必须使运动副锲形间隙中充满能够吸附于运动副表面的粘性流体,并且运动副表面相对运动可以带动润滑流体由大端向间隙小断运动,从而建立起布以承受载荷。它的发展与人们对滑轮和摩擦的研究密切相关。 流体润滑具有极低的摩擦阻力,摩擦系数在0.001~0.008或更低(气体润滑),并能有效地降低磨损。 流体润滑的分类:根据液体压力形成的方式可分为流体静压润滑和流体动压润滑。流体静压润滑是从外部供给具有一定压力的流体来平衡外载荷。流体动压润滑是由摩擦表面几何形状和相对运动,借助粘性流体的动力学产生动态压力,用此润滑膜的动压来平衡外载荷。 液体动压轴承 靠液体润滑剂动压力形成的液膜隔开两摩擦表面并承受载荷的滑动轴承。液体润滑剂是被两摩擦面的相对运动带入两摩擦面之间的。产生液体动压力的条件是:①两摩擦 面有足够的相对运动速度; ②润滑剂有适当的粘度;③

第四章 流体润滑原理

第四章流体润滑原理 概述 用具有润滑性的一层膜把相对运动的两个表面分开,以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是润滑。 根据分隔固体表面的材料不同,润滑可分为以下三类: ①流体润滑:摩擦副两表面间被具有一定粘度的流体完全分开。将固体间的外摩擦转化为流体的内摩擦。 ②边界润滑:摩擦界面上存在着一层具有良好润滑性的边界膜,但不是介质的膜。相对于干摩擦来说,边界润滑具有比较低的摩擦系数,能有效地减轻接触表面的磨损。 ③固体润滑:广义来说,固体润滑也是一种边界润滑。就是用摩擦系数比较低的材料(固体润滑剂或固体润滑材料),在摩擦界面上形成边界膜,以降低接触表面的磨损和摩擦系数。 对于流体润滑的系统研究约在19世纪末逐渐展开。 1883年塔瓦(Tower)发现了轴承中的流体动压现象。彼得洛夫(Петров)研究了同心圆柱体的摩擦及润滑。随即雷诺(Reynold)应用了数学和流体力学的原理对流体动压现象进行了分析,发表了著名的雷诺方程。为流体动力润滑奠定了基础。后来一些科学家,在求解雷诺方程,以及将雷诺方程应用于工程实际中作出了贡献,并解决了很多雷诺方程假设以外的问题,。 对于线接触及点接触的滚动件,在重载条件下的润滑问题,考虑了接触零件表面间的弹性变形及润滑剂的粘-压效应。于20世纪中叶,格鲁宾(Грубин)提出了著名的弹性流体动力润滑的计算公式。以后的道松(Dowson)郑绪云(Cheng)温诗铸等的进一步发展,使弹性流体动力润滑理论日趋成熟。 随着科学技术的发展,流体润滑中的紊流、惯性、热效应等以及非牛顿流体润滑等问题也展开了研究。 流体润滑定义:在适当条件下,摩擦副的摩擦表面由一层具有一定厚度的粘性流体完全分开,由流体的压力来平衡外载荷。流体层中的分子大部分不受金属表面离子、电子场的作用而可以自由地移动。这种状态称为流体润滑。流体润滑

不可压缩与可压缩流体的静压强分布

不可压缩与可压缩流体的静压强分布 马健 (物理0801班,扬州大学物理系,扬州,225002) 【摘要】 由于静止流体中没有切应力,取微小元得出流体的平衡方程f -▽P=0(f 是体力密度),根据压 强梯度垂直于等压面可知在静止流体中f 也垂直于等压面,一般情况下液体所受体力只是重力,因此,只要知道体力密度便可求得流体的静压强分布。 「关键词」 静止流体 体力密度 静压强分布 0 引言 对流体静力学的研究,在社会生产中具有重要的意义。通过研究流体的运动规律,可以在水利工程建筑中和船体建造中发挥很大的作用。 1.流体内一点的压强 在静止流体内任一截面两方之间没有切向作用力, 而只有由压强产生的正应力,我们任取点O,在其邻近划出 一个小四面体OABC ,如图1,设平面ABC 与OBC 、OAC 、OAB 的夹角分别为α、β、γ,平面ABC 、OBC 、OAC 、OAB 的面积为S 、S 1、S 2、S 3,作用在这些面上的压强分别为p 、p 1、p 2、p 3。 因为小四面体受力平衡,先考虑x 轴方向,作用在平 面ABC 上的压力为pS ,则在x 轴方向的分量为-pScos α, 于是得到沿X 轴方向的力平衡方程: -pScos α+ p 1S 1=0 因为 S= S 1cos α 所以 p= p 1 同理,在y 、z 轴方向上可得类似结果,因此 p= p 1 =p 2=p 3 (1) 这表示在流体内任意一点的压强与方向无关,也即是该点压强各向同性。前面的书上也已经讲到了,但这里方程式(1)的推导忽略了重力,原因是当长度趋于无穷小时小四面体的各面面积都是二阶无穷小量,而重力正比于体积,属于体积力,比起面积是高阶小量,所以可以忽略。(1)式对于流动的液体也成立。 2.流体的平衡方程 与上面的方法一样,在流体内划分出一个小体元,不过为了便于分析,这次取一个长方体,如图2,三棱边沿坐标轴方向,边长为dx 、dy 、dz 。同样先考虑x 轴方向,由于没有切应力,所以沿x 轴方向的合力为 图1 x 图2

静压动压全压关系

全压=静压+动压,对于风机来说,全压=出口全压-入口全压(一般为负值)。入口处的静压主要用来克服风机入口前的阻力和转化为风机入口前的动压。他们提供的设备的静压应该是为了保证设备吸风口处的风速(风量)而确定一个所需的值,这个值用来克服设备吸风口处的局部阻力和转化为吸入的空气动能,当在接入设备处的静压值越大,用来克服入口处的阻力和转化为入口处动能的能量就越大,抽风量就越多,入口处的风速就越大。 万向臂内的静压如果是用来送风就是正的,用来抽风就是负的,根据前面所述,这个静压就是用来克服入口/出口的阻力和转化为入口/出口空气的动能。他的全压就是静压+动压这就没有什么好思想的。 所以,他们提供了设备静压,选风机时应该是把(全管道阻力+所需的静压)数值之和来确定风机的全压。 静压、动压、全压 在选择空调或风机时,常常会遇到静压、动压、全压这三个概念。根据流体力学知识,流体作用在单位面积上所垂直力称为压力。当空气沿风管内壁流动时,其压力可分为静压、动压和全压,单位是 mmHg或 kg/m2或 Pa,我国的法定单 位是 Pa。 a. 静压(Pi) 由于空气分子不规则运动而撞击于管壁上产生的压力称为静压。计算时,以绝对真空为计算零点的静压称为绝对静压。以大气压力为零点的静压称为相对静压。空调中的空气静压均指相对静压。静压高于大气压时为正值,低于大气压时为 负值。 b. 动压(Pb) 指空气流动时产生的压力,只要风管内空气流动就具有一定的动压,其值永远是正的。 c. 全压(Pq)

全压是静压和动压的代数和: Pq=Pi十Pb 全压代表 l m3气体所具有的总能量。若以大气压为计算的起点,它可以是 正值,亦可以是负值。 全压=静压+动压 动压=0.5*空气密度*风速^2 余压=全压-系统内各设备的阻力 比如:空调机组共有:回风段、初效段、表冷段、中间段、加热段、送风机段组成,各功能段阻力分别为:20Pa、80Pa、120Pa、20Pa、100、50Pa,机内阻力为290Pa,若要求机外余压为500Pa,刚送风机的全压应不小于790Pa,若要求机外余压为1100Pa,刚送风机的全压应不小于1390Pa,高余压一般为净化机组,风压的大小与电机功率的选择有关。一般应根据工程实际需要余压,高余压并不都是好事。 空调机组或新风机组常将风机装在最后,风机出口风速高,动压高,静压小,工程中常在出口处加装消声静压箱,降低动压,增加静压,同时起均流、消声作用。

液体动压润滑径向轴承油膜压力和特性曲线

精品资料推荐 液体动压润滑径向轴承油膜压力和特性曲线 (二) HZS —I型试验台 一.实验目的 1. 观察滑动轴承液体动压油膜形成过程。 2. 掌握油膜压力、摩擦系数的测量方法。 3. 按油压分布曲线求轴承油膜的承载能力。 二.实验要求 1. 绘制轴承周向油膜压力分布曲线及承载量曲线,求出实际承载量。 2. 绘制摩擦系f与轴承特性的关系曲线。 3. 绘制轴向油膜压力分布曲线 三?液体动压润滑径向滑动轴承的工作原理 当轴颈旋转将润滑油带入轴承摩擦表面,由于油的粘性作用,当达到足够高的旋转速度 时,油就被带入轴和轴瓦配合面间的楔形间隙内而形成流体动压效应,即在承载区内的油层 中产生压力。当压力与外载荷平衡时,轴与轴瓦之间形成稳定的油膜。这时轴的中心相对轴瓦的中心处于偏心位置,轴与轴瓦之间处于液体摩擦润滑状态。因此这种轴承摩擦小,寿命 长,具有一定吸震能力。 液体动压润滑油膜形成过程及油膜压力分布形状如图8-1所示。 滑动轴承的摩擦系数f是重要的设计参数之一,它的大小与润滑油的粘度(Pas)、轴的转速n (r/min)和轴承压力p (MPi)有关,令 n P (7) 式中:一轴承特性数 观察滑动轴承形成液体动压润滑的过程,摩擦系数f随轴承特性数的变化如图8-2所示。 图中相应于f值最低点的轴承特性数c称为临界特性数,且c以右为液体摩擦润滑区, c以左为非液体摩擦润滑区,轴与轴瓦之间为边界润滑并有局部金属接触。因此f值随减小而急剧增加。不同的轴颈和轴瓦材料、加工情况、轴承相对间隙等,f—曲线不同,c 也随之不同。 四.HZS-1型试验台结构和工作原理 1?传动装置 如图8-7所示,被试验的轴承2和轴1支承于滚动轴承3上,由调速电机6通过V带5 带动变速箱4,从而驱动轴1逆时针旋转并可获得不同的转速。

动压静压动静压轴承的工作原理及装配知识

动压静压动静压轴承的工作原理及装配知识 The Standardization Office was revised on the afternoon of December 13, 2020

动压、静压、动静压轴承的工作原理及装配知识 一、静动压轴承的工作原理 先启动供油泵,油经滤油器后经节流器进入油腔、此时在主轴颈表面产生一层油膜,支承、润滑和冷却主轴,由于节流器的作用油液托起主轴,油经回油孔通过回油泵回至油箱。然后启动磨头电机,主轴旋转。利用极易产生动压效应的楔形油腔结构,主轴进入高速稳态转动后,形成强刚度的动压油膜,用以平衡在高速运行下的工作负载。 结构形式及特点: 整体套筒式结构,安装方便; 高精度:由于承载油膜的均化作用,使主轴具有很高的旋转精度: 主轴径向跳动、轴向窜动≤2μm;或≤1μm 高刚度:由于该轴系的独特油腔结构,轴承系统在工作时,主轴被一层压力油膜浮起,主轴未经旋转时为纯静压轴承,主轴旋转时由于轴承内孔浅腔的阶梯效应使得轴承内自然形成动压承载油膜,因而形成具有压力场的动压滑动轴承,该结构提高了轴承的刚度;轴向刚度可达到20—50kg /1μm;径向刚度可达到100kg /1μm 高承载能力:由于动压效果靠自然形成,无需附加动力,使得主轴承载能力大大提高。长使用寿命:理论为无限期使用寿命,在正常使用条件下,极少维修. 利用润滑油的粘性和轴颈的高速旋转,把润滑油带进轴承的楔形空间建立起压力油膜隔开。这种轴承称为动压滑动轴承。靠液体润滑剂动压力形成液膜隔开两摩擦表面并承受载荷滑动轴承。液体润滑剂是被两摩擦面相对运动带入两摩擦面之间。产生液体动压力条件是﹕两摩擦面有足够相对运动速度﹔润滑剂有适当黏度﹔两表面间间隙是收敛。 二、动压滑动轴承的安装

机械设计(9.3.2)--流体动压润滑的基本理论思考题

10-3 第十章 液体动压润滑基本理理论 1、简述形成稳定动压油膜的条件? 答:1)两摩擦表面之间必须能够形成收敛的楔形间隙; 2)两摩擦表面之间必须有充足的、具有一定粘度的润滑油; 3)两摩擦表面之间必须有足够的相对运动速度。 2、径向液体动压润滑轴承和液体静压润滑轴承的承载机理有何不同? 径向液体动力润滑轴承的承载机理是轴承与轴颈以一定的相对运动速度将润滑油带入两摩擦表面间的收敛间隙,形成动压油膜把两摩擦表面分开,油膜压力与外载平衡。 液体静压轴承是利用油泵将具有一定压力的润滑油通过一套供油系统将润滑油输入两滑动表面间,使两表面分离,形成油膜并承载。 3、如何选择普通径向滑动轴承的宽径比?宽径比选取过大时会发生什么现象?宽径比常用的范围是0.5~1.5。宽径比选得小时可提高轴承运转平稳性,端泄流量大,功耗小,油的温升较低,但轴承承载能力要降低。宽径比选得过大时,轴承宽度较大,易造成轴颈与轴承局部磨损严重。

4、相对间隙ψ对轴承性能有何影响?在设计时如果出现温升过高,应如何调整ψ的取值? 相对间隙ψ对轴承的承载能力、摩擦功耗和温升都有重要影响。ψ取大值时,则润滑油的流量增加,温升降低;ψ取小值时,则温升增加。 5、液体动力润滑油轴承在热平衡计算时为何要限制油的入口温度? 在热平衡计算时限制油的入口温度是因为润滑油都是循环使用。如果温度过低,必须加大存油容积,以保证能有较长时间使回油油温降低到所要求的入口温度。入口温度过高,油在循环时带走热量少,散热效果降低。 6、设计液体动压向心滑动轴承时,在其最小油膜厚度不够可靠的情况下,应调整哪些参数方可能实现液体润滑? 增加润滑油粘度,增加转动速度,适当增加相对间隙。

流体静压润滑

流体润滑的基本原理 之 流体静压润滑 流体静压润滑 定义,什么是流体静压润滑 流体静压润滑是利用专用外界的流体装置,是流体产生压力,并将具有压力的流体输入到摩擦表面,将两摩擦表面用一层静压流体膜分开以支持外载荷的润滑。 流体静压润滑的特点 主要优点是: (1)适用速度范围广由于流体静压润滑本身不需要相对运动的功能,因而在任何速度下包括很高速或很低速,启动或停车以及正反转都能建立—层完整的流体膜,并获得良好的工作性能。 (2)摩擦系数很小其一般摩擦系数μ只有0.0001~0.0008,例如采用32号机械油的静压导轨,其起动摩擦系数一般在0.0005,因而功耗小,效率高,并在低速条件下不会产生粘滑现象。 (3)使用寿命长因为两个相对运动的表面不直接接触、磨损很小、能长期保持精度,同时对摩擦副的材料没有特殊要求等,因而大大地延长了其使用寿命。 (4)运动精度高液体静压膜具有某种“平均误差”的作用,可以补偿制造误差的影响。因而对轴颈或轴承的加工精度和表面粗糙度要求一般比液体动压润滑轴承为低。这点同滚动元件支承相比尤为明显。

(5)适应性和抗振性能好静压润滑的适应性很广,能满足轻裁到重载,小型到大型,低速到高速的各种机床和机械设备的要求、同时,静压流体膜有良好的吸振性能,运动均匀平稳,振动、噪音都很小。 主要缺点: 其缺点主要是工作时要一套可靠的高压供油装置,投资费和维护费较高,也增加了机器所占空间,而总效率较低,从这个角度分析.不如动压润滑机构简单,费用低。因此.究竞选用何种润滑方式,应根据具体要求综合考虑,必要时也可设计成动静压联合润滑方式。 3.2:流体静压润滑支承原理 流体静压支承的共同特点是各摩擦面都开有几个流体腔,每个流体腔的四周均有封流体的面,一般将一个流体腔及其封流体的面称为一个文承单元(或流体垫),若干个支承适当配置,便构成流体静压支承,整个摩擦副的承栽能力,是各支承单元承载能力的合成结果。所以理解单个支承单元的工作原理,是全面了解整个支承的基础。

实用文档之风机的静压与动压有何区别

实用文档之"风机的静压与动压有何区别" 1. 气体的静压 气体给予与气体方向平行的物体表面的压力Pst. 2. 气体的动压 将气体因具有流动速度C(m/s)而具有的能量无损失地转换为压力时 的压力升. Pd=ρ*C*C/2 ρ---气流的密度, kg/m^3 3. 气体的全压P 在同一位置上气体的静压与动压之和. P=Pst+Pd 4. 通风机全压P 通风机全压是指通风机出口与进口截面上的气体全压之差. 静压:由于空气分子不规则运动而撞击于管壁上产生的压力。其测定方法为:在流体管道的管壁上开个小孔,用一根测压管接在上面,测压管与水平面垂直,测压管中液柱的高度即为管道内该处相对于大气的压力,也即相对静压。 动压:动压是由于流体的运动而产生的压力,其值不小于零。计算方法为ρν2/2,ρ为流体密度,ν为流体速度。 说到一个通风设备,静压是不科学的说法,不过习惯了也就合理了. 静压和余压是同一个物理量. 静压是指将风机开启,出风口关闭(此时无动压)测得的静压(等于全压). 余压指设备除了风机还有盘管、滤网等辅件构成,扣除辅件的阻力剩余的全压就是余压,便于选择配管等。 就风机盘管的接管来说,管道阻力不大(不超过1Pa/m)主要考虑出风口、回风口的局部阻力即可。 静压是指将风机开启,出风口关闭(此时无动压)测得的静压。 动压是指出风口开启后因为气流流动引起的压力,动压= 0.5*q*v2=0.5*空气密度*风速的平方;

工程当中一般将风速都按定值设计,所以动压就是恒定的,所以克服管路阻力实际上是静压,所以一般正规的厂家介绍时都是说静压,而不说出口余压。 风管和水管是不一样的.在流体力学中,空气是可压流体,水是不可压流体,在流体力学理论建立的模型基础都是不同的 “静压是由于分子运动力产生的对壁面的压能,在流场内各点大小都一致;动压是因为流体动量形成的压能,仅在迎着来流方向存在。这是一对理论范畴。全压是静压和动压的总和,反应了流体的做功能力水平。在流体流动过程中,扣除阻力损失后,静压和动压会相互转化。并不是不变的。” 大多数的人都理解全压=动压+静压,但对“静压和动压会相互转化”理解不是很深。全压=动压+静压,也就是说,一旦风机选定,可以理解为风机的全压是一个定值(当然还与电源电压等有影响),但由于系统各点的阻力(局部和沿程)的影响,系统各点的全压是不同的。 对于动能,很多人都查了资料教材,也说的很对!但对静压怎么得出来的,看法不一致。 呵呵,其实,很简单啊,既然有全压=动压+静压,那不是静压=全压-动压吗??? 可能有些人认为不对,爱与水的静压来对比,公式也的确也没有错,但是,空气与还是有很大的区别的,尽管在实际大多数工程中,可以认为空气不能被压缩。 比较一下空气和水的动力黏度值就会发现它们之间有多大!!!空气分子运动能和水的运动相比吗?水往低处流,而空气呢?它的运动方式就更加的复杂,其复杂恰就在于“静压和动压会相互转化”,且几乎时刻都在转化。也就是说静压难测,也很少测。但动压好测啊,呵呵,所以有:静压=全压-动压。 再说说余压,从概念来说,余压就是剩余下来的压力。而机外余压呢,就是通过风机自身损失后剩下的压力。 余压是个相对值,也就是说,它在系统中是变化的,每个点后面的余压都是不通的。其计算公式为:余压=全压-压力损失(局部和沿程)。举个例子:如果把一段管分为两段,且标号为A(起点)-B-C(终点)的话,那么,B点的余压就成了B-C段的全压了。 那么机外余压的道理也一样:机外余压=风机全压-风机内的压力损

静压强两个特性

C 静压强两个特性: 1.静压强沿受压面内法线方向(垂直指向性); 2.静压强在任意点各方向大小相等(各向等值性)。 证明第二个特性: 取微四面体M-ABC 做受力分析。记?ABC 、?MBC 、?MAC 、?MAB 的面积依次为dA 、 x dA 、y dA 、z dA ,压强依次p ,x p ,y p ,z p ,三条边长dz MC dy MB dx MA ===,,。取ABC ?的高CD ,连接MD 则?CMD 为?Rt 。?ABC 上的压强为p ,法线方向为n 。 作用在流体上的力有表面力和质量力。 (1)表面力。(表面力有压力和切力,在这里,是静压强,因此只存在压力,因为如果存在切应力,流体的静止状态就会破坏。)微四面体四个面受到的压力分别为: 12x x x x dP p dA p dydz == 12y y y y dP p dA p dxdz == 12 z z z z dP p dA p dxdy == dP pdA = (2)质量力。质量力=单位质量力×质量,单位质量力在直角坐标上的分力分别

记为X ,Y ,Z 。因此: X 方向质量力:16 X dxdydz ρ Y 方向质量力:16 Y dxdydz ρ Z 方向质量力:16Z dxdydz ρ 因为流体处于静止状态,所以0F ∑= 0x F ∑= 0y F ∑= 0z F ∑= 对Z 方向进行受力分析0z F ∑=: 1cos(,)06 z z p dA pdA n z Z dxdydz ρ?-+= (1) (cos(,)pdA n z 是微元面ABC 上的压力在Z 方向的投影,与Z 方向相反,所以加“-”号) 由上图可知:1cos(,)cos()2 z dA n z dA dA dxdy γ===代入(1)式,得 1110226 z p dxdy p dxdy Z dxdydz ρ?-+= 103 z p p Z dz ρ?-+=(因为dz 趋近于0,相对于前两项忽略不计。这也是书本上没有写质量力的原因,因为取得是微四面体(趋向于点),忽略微四面体的质量。我在这里主要是为了说明清楚才写上的) z p p ?= 同理:x p p =,y p p = 所以:x y z p p p p === 对于你提到的为什么给的是比较特殊的四面体,是为了分析的简便(建立坐标系比较方便),要不然都要投影到坐标系的每个面进行受理平衡分析。而上图{

润滑技术

润滑技术 1.润滑的作用 润滑对机械设备的正常运转起着重要的作用。 (1)降低磨擦系数 在两个相对磨擦的表面之间加入润滑剂,形成一个润滑油膜的减磨层,就可以降低磨擦系数,养活磨擦阻力,减少功率消耗。例如在良好的液体磨擦条件下,其磨擦系数可以低到0.001甚至更低。此时的磨擦阻力主要是液体润滑膜内部分子间相互滑移的低剪切阻力。 (2)减少磨损 润滑剂在磨擦表面之间,可以养活由于硬粒磨损、表面锈蚀、金属表面间的咬焊与撕裂等造成的磨损。因此,在磨擦表面间供应足够的润滑剂,就能形成良好的润滑条件,避免油膜有破坏,保持零件配合精度,从而大大养活磨损。 (3)降低温度 润滑剂能够降低磨擦系数,养活磨擦热的产生。我们知道运转的机械,克服磨擦所做的功,全部转变成热量,一部分由机体向外扩散,一部分则不断使机械温度升高。采用液体润滑剂的集中循环润滑系统就可以带走磨擦产生的热量,起到降温准却,使机械控制在所要求的温度范围内运转。 (4)防止腐蚀、保护金属表面 机械表面,不可避免地要和周围介质接触(如空气、水湿、水汽、腐蚀性气体及液体等)使机械的金属表面生锈、腐蚀而损坏。尤其是冶金工厂的高温车间和化工厂腐蚀磨损显得更为严重。 (5)清洁冲洗作用 磨擦副在运动时产生的磨损微粒或外来介质等,都会加速磨擦表面和磨损。利用液体润滑剂的流动性,可以把磨擦表面间的磨粒带走,从而减少磨粒磨损。在压力循环系统中,冲洗作用更为显著。在冷轧、热轧以及切削、磨削、拉拔等加工工艺中采用工艺润滑剂,除有降温冷却作用外,还有良好的冲洗作用,防止表面补固体杂质划伤,使加工成品(钢材)表面具有较好的质量和表面粗糙度。例如在内燃机汽缸中所用的润滑油里加入悬浮分散添加剂,使油中生成的凝胶和积炭从汽缸壁上洗涤下来,并使其分散成小颗粒状悬浮在油中,随同循环油过滤器滤除,以保持油的清洁,减少汽缸的磨损,延长换油周期。 (6)密封作用 蒸汽机、压缩机、内燃机等的汽缸与活塞,润滑油不仅能起到润滑减磨作用,而且还有增强密封的效果,使其在运转中不漏气,提高工作效率的作用。 润滑脂对于形成密封有特殊作用,可以防止水湿或其他灰尘、杂质浸入磨擦副。例如采用涂上润滑脂的油浸盘根,对水泵轴头的密封既有良好的润滑作用,又可以防止泄漏和灰尘杂质浸入泵体而起到良好的密封作用。 此外,润滑油还有减少振动和噪声的效能。 2.润滑的分类 1.根据润滑剂的物质形态分类 (1)气体润滑采用空气、蒸汽或氦气等某些惰性气体作为润滑剂,可使磨擦表面被高压气体分隔开。如航海用的惯性陀螺仪;重型机械中垂直透平机的推力轴承;大型天文望远镜的转动支承;高速磨头的轴承等都可用气体润滑。气体润滑的最大优点是磨擦系数极小,几乎接近于零。气体的黏度不受温度的影响,所以气体润滑的轴承,阻力小、精度高。 (2)液体润滑轧钢机的减速机、齿轮座、精密油膜轴承等,均采用不同黏度和性能的液体润滑油润滑。液体润滑剂包括矿物润滑油、合成润滑油、乳化油。水也可以作为初轧机胶木轴瓦的润滑剂和冷却剂。 (3)半固体润滑润滑脂是一种介乎流体和固体之间的一种塑性状态或膏脂状态的半固体物质。它包括各种矿物润滑脂、合成润滑脂、动植物脂等。广泛用于各种类型的滚动轴承和垂直安装的平面导轨上。

流体动压润滑理论

流体动压润滑理论 (简介)在摩擦副两表面间被具有一定粘度的流体 完全分开。将固体间的外摩擦转化为流体的内摩擦。以防 止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是流体润滑。它的发展与人们对滑轮和摩擦的研究密切相关 发展简史 1.流体动压现象) 当动环回转时,由于静环表面有很多微孔,动环的转动使其表面与静环表面上的微孔形成收敛缝隙流体膜层,使每一个孔都像一个微动力滑动轴承。也就是说,当另一个表面在多孔端面上滑动时,会在孔的上方及其周边产生流体动压力,这就是流体动压效应。 (实例) 流体动压润滑 ——流体动压润滑是依靠运动副两个滑动表面的形状,在其相对运动时,形成产生动压效应的流体膜,从而将运动表面分隔开的润滑状态。 特点) a.流体的粘度,一般遵循粘性切应力与切应变率成比例规律 b.楔形润滑膜,依靠运动副的两个滑动表面的几何形状,在相对运动时 产生收敛型流体楔,形成足够的承载压力,以承受外载荷。

形成动压润滑的条件: a.润滑剂有足够的粘度 b.足够的切向运动速度(或者轴颈在轴承中有足够的转速) c.流体楔的几何形状为楔形(轴在轴承中有适当的间隙) 2.流体动压润滑理论) 在摩擦副两表面间被具有一定粘度的流体完全分开。将固体间的外摩擦转化为流体的内摩擦。以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低。滑动轴承运动副间要现成流体薄膜,必须使运动副锲形间隙中充满能够吸附于运动副表面的粘性流体,并且运动副表面相对运动可以带动润滑流体由大端向间隙小断运动,从而建立起布以承受载荷。它的发展与人们对滑轮和摩擦的研究密切相关。 流体润滑具有极低的摩擦阻力,摩擦系数在0.001~0.008或更低(气体润滑),并能有效地降低磨损。 流体润滑的分类:根据液体压力形成的方式可分为流体静压润滑和流体动压润滑。流体静压润滑是从外部供给具有一定压力的流体来平衡外载荷。流体动压润滑是由摩擦表面几何形状和相对运动,借助粘性流体的动力学产生动态压力,用此润滑膜的动压来平衡外载荷。 液体动压轴承 靠液体润滑剂动压力形成的液膜隔开两摩擦表面并承受载荷的滑动轴承。液体润滑剂是被两摩擦面的相对运动带入两摩擦面之间的。产生液体动压力的条件是:①两摩擦 面有足够的相对运动速度; ②润滑剂有适当的粘度;③ 两表面间的间隙是收敛的 (这一隙实际很小,在图 1[油楔承载]中是夸大画的), 在相对运动中润滑剂从间隙的大口流向小口,构成油楔。这种支承载荷的现象通常称为油楔承载(见润滑)。 机械加工后的两摩擦表面微观是凹凸不平的,如图1[油楔承载]中局部放大图。在正常

流体动压润滑理论

实用标准文案流体动压润滑理论 在摩擦副两表面间被具有一定粘度的流体完(简介)以防止全分开。将固体间的外摩擦转化为流体的内摩擦。表面这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,它的发展与人们对滑轮和摩擦的研究密切相的损伤尽量减低,这就是流体润滑。关 发展简史时间人物经典理论及现象 流体动压现象)Tower塔瓦(年1883 1886年雷诺方程流体动压润滑理论及)Reynold雷诺()流体动压现象1.动环的转动使其表面与静环表面当动环回转时,由于静环表面有很多微孔,也就是上的微孔形成收敛缝隙流体膜层,使每一个孔都像一个微动力滑动轴承。会在孔的上方及其周边产生流体动压力,说,当另一个表面在多孔端面上滑动时,这就是流体动压效应。 (实例) 流体动压润滑精彩文档. 实用标准文案 流体动压润滑是依靠运动副两个滑动表面的形状,在其相对运动——时,形成产生动压效应的流体膜,从而将运动表面分隔开的润滑状态。特点)流体的粘度,一般遵循粘性切应力与切应变率成比例规律 a.楔形润滑膜,依靠运动副

的两个滑动表面的几何形状,在相对运动时b. 产生收敛型流体楔,形成足够的承载压力,以承受外载荷。形成动压润滑的条件: a.润滑剂有足够的粘度 b.足够的切向运动速度(或者轴颈在轴承中有足够的转速) c.流体楔的几何形状为楔形(轴在轴承中有适当的间隙) 2.流体动压润滑理论) 在摩擦副两表面间被具有一定粘度的流体完全分开。将固体间的外摩擦转化为流体的内摩擦。以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低。滑动轴承运动副间要现成流体薄膜,必须使运动副锲形间隙中充满能够吸附于运动副表面的粘性流体,并且运动副表面相对运动可以带动润滑流体由大端向间隙小断运动,从而建立起布以承受载荷。它的发展与人们对滑轮和摩擦的研究密切相关。 流体润滑具有极低的摩擦阻力,摩擦系数在0.001~0.008或更低(气体润滑),并能有效地降低磨损。 精彩文档. 实用标准文案 流体润滑的分类:根据液体压力形成的方式可分为流体静压润滑和流体动压润滑。流体静压润滑是从外部供给具有一定压力的流体来平衡外载荷。流体动压润滑是由摩擦表面几何形状和相对运动,借助粘性流体的动力学产生动态压力,用此润滑膜的动压来平衡外载荷。 液体动压轴承 靠液体润滑剂动压力形成的液膜隔开两摩擦表面并承受载荷的滑动轴承。液体润滑剂是被两摩擦

静压润滑与动压润滑

轴承的润滑形式 动压润滑与静压润滑 1、动压润滑 利用轴的高速旋转和润滑油的粘性,将有带进楔形空间建立起压力油膜。油膜将轴进颈和轴表面分开。要想形成液体动压润滑,必须满足下列条件: ①、合理选择润滑油粘度; ②、多支承的轴承,应严格控制同轴度误差; ③、轴颈、轴承应有精确的几何形状和较高的表面光洁度; ④、轴颈应保持一定的线速度,以建立足够的楔压力; ⑤、轴颈和轴承配合后应有一定的间隙,该间隙通常等于轴颈的1/1000 ~ 3/1000。 动压润滑的形成大致经过三个过程: ①轴承在静止时由于自重而处于最低位置,润滑油被轴颈挤出,轴颈与轴承侧面之间形成楔形油隙; ②当轴颈沿箭头方向旋转时,由于油的粘性和金属表面的附着力,油层随着轴一起旋转。有层经过楔形缝隙时,由于油的分子受到挤压和本身的动能,对轴产生压力,将轴向上抬起; ③当轴达到一定速度时,油对轴的压力增大,轴与轴承表面完全 a b c 2、液体静压润滑及其工作原理 液体静压润滑是利用外界油压系统供给一定压力的润滑油,使轴颈与轴承处于完全液体摩擦状态。油膜的形成与轴的转速及油压大小无关,从而使轴承在不同工作状态下获得稳定的液体润滑。 这种轴承承载能力大,回转精度高,工作平稳,抗振性好,大多

用于高精度机械设备中。 液体静压轴承是借助液压系统把具有压力的液体送到轴和轴承的配合间隙中,利用液体静压力支承回转轴的一种滑动轴承,它由供油系统、节流器和轴承三部分组成。节流器是液体静压滑动轴承的重要元件,常用的有两种型式: (1)固定节流器,其通流面积固定不变。 (2)可变节流器,其通流面积可按工作需要进行调整。 液体静压轴承(静压轴承)的工作原理如图所示。 一定压力p的压力 油,经过4个节流器,其 阻力分别为R G1、R G2、 R G3、R G4,分别输入4个 油腔即油腔1、油腔2、 油腔3、油腔4,油腔压 力分别为Pr1、Pr2、Pr3、 Pr4。有腔中的油又经过间 隙h0流回油池。 当轴没有受到载荷时,如果4个节流器阻力相同,则4个油腔的压力也相同,即Pr1=Pr2=Pr3=Pr4,主轴被浮在轴承中心,其间被一层薄薄的油膜隔开,达到了良好的液体摩擦。 当主轴受到外载荷W作用时,中心向下产生一定的位移,此时油腔1(10)的回油间隙h0(t4)增大,回油阻力减小,使油腔压力Pr1(6)降低;相反,油腔3(12)的压力Pr2(8)升高。又要使油腔1、3的油压变化而产生压力差为: Pr3—Pr1= P max—Pmin=W/A 式中W——外载荷 A——每个油腔的有效载面积。 这时,主轴便能处于新的平衡位置。由此可见,为平衡外载荷W,主轴轴颈必须向下偏移一定的距离(经过合理设计,这个距离可以极小)。通常把外载荷变化与轴颈偏心距变化的比值,称为静压轴承的刚度。

重力作用下流体静压强分布规律(教案讲稿)

授课 内容 重力作用下流体静压强分布规律课时安排1课时 教学目的要求1.掌握流体静力学基本方程; 2.掌握绝对压强、相对压强、真空度的概念及其相互关系。 教学重点难点1.流体静力学基本方程的应用; 2.不同压强表达方式之间的关系。 教学过程设计 (包括导入语、讲课主要内容、时间安排、提问或举例等) 教学方法与 手段导入语:(5min) 上节课我们讲到了流体平衡微分方程: 1 1 1 x y z p f x p f y p f z ρ ρ ρ ? -= ? ? -= ? ? -= ? 那么我们说欧拉平衡微分方程的全微分表达式是什么? ) (dz f dy f dx f dp z y x ? + ? + ? =ρ 根据这个式子,我们推导得到不可压缩均质流体平衡微分方程 积分后的普遍关系式: 00 () p p W W ρ =+- 它表明不可压缩均质流体要维持平衡,只有在有势的质量力作 用下才有可能;任一点上的压强等于外压强p0与有势的质量力 所产生的压强之和。 实际工程中,我们经常遇到静止流体所受的质量力只有重 力的情况,所以有必要研究重力作用下流体静压强的分布规 律。这就是我们这节课要讲的主要内容。 提问

主要内容: 1.流体静力学基本方程(20min ) 重力作用下的静止流体至于直角坐标系Oxyz ,如图1。自由液面的高度为z 0,压强为p 0,求流体中任一点的压强p 。 图1 静止流体 该流体质量力只有重力,即: g f f f z y x -===,0,0 代入公式:)(dz f dy f dx f dp z y x ?+?+?=ρ,得 gdz dp ρ-= (1) 对均值流体,ρ为常数,积分得: c gz p '+-=ρ (2) c g p z =+ ρ (3) 对于静止流体中的任意两点,由式(3)可得: g p z g p z ρρ2211+=+ (4) 式(3)(4)为流体静力学基本方程的两种形式。它表明: 当质量力仅为重力时,静止流体内部任一点的g p z ρ和之和为常 数。 将边界条件00,p p z z ==代入(2)式得: 00gz p c ρ+=' 代入得: 讲授 z y p 0 h z z 0 p

静压动压全压关系

静压动压全压关系 This model paper was revised by the Standardization Office on December 10, 2020

全压=静压+动压,对于风机来说,全压=出口全压-入口全压(一般为负值)。入口处的静压主要用来克服风机入口前的阻力和转化为风机入口前的动压。他们提供的设备的静压应该是为了保证设备吸风口处的风速(风量)而确定一个所需的值,这个值用来克服设备吸风口处的局部阻力和转化为吸入的空气动能,当在接入设备处的静压值越大,用来克服入口处的阻力和转化为入口处动能的能量就越大,抽风量就越多,入口处的风速就越大。 万向臂内的静压如果是用来送风就是正的,用来抽风就是负的,根据前面所述,这个静压就是用来克服入口/出口的阻力和转化为入口/出口空气的动能。他的全压就是静压+动压这就没有什么好思想的。 所以,他们提供了设备静压,选风机时应该是把(全管道阻力+所需的静压)数值之和来确定风机的全压。 静压、动压、全压 在选择空调或风机时,常常会遇到静压、动压、全压这三个概念。根据流体力学知识,流体作用在单位面积上所垂直力称为压力。当空气沿风管内壁流动时,其压力可分为静压、动压和全压,单位是 mmHg或 kg/m2或 Pa,我国的法定单 位是 Pa。 a. 静压(Pi) 由于空气分子不规则运动而撞击于管壁上产生的压力称为静压。计算时,以绝对真空为计算零点的静压称为绝对静压。以大气压力为零点的静压称为相对静压。空调中的空气静压均指相对静压。静压高于大气压时为正值,低于大气压时为 负值。 b. 动压(Pb) 指空气流动时产生的压力,只要风管内空气流动就具有一定的动压,其值永远是正的。 c. 全压(Pq)

动压静压动静压轴承的工作原理及装配知识

动压、静压、动静压轴承的工作原理及装配知识 一、静动压轴承的工作原理 先启动供油泵,油经滤油器后经节流器进入油腔、此时在主轴颈表面产生一层油膜,支承、润滑与冷却主轴,由于节流器的作用油液托起主轴,油经回油孔通过回油泵回至油箱。然后启动磨头电机,主轴旋转。利用极易产生动压效应的楔形油腔结构,主轴进入高速稳态转动后,形成强刚度的动压油膜,用以平衡在高速运行下的工作负载。 结构形式及特点: 整体套筒式结构,安装方便; 高精度:由于承载油膜的均化作用,使主轴具有很高的旋转精度: 主轴径向跳动、轴向窜动≤2μm;或≤1μm 高刚度:由于该轴系的独特油腔结构,轴承系统在工作时,主轴被一层压力油膜浮起,主轴未经旋转时为纯静压轴承,主轴旋转时由于轴承内孔浅腔的阶梯效应使得轴承内自然形成动压承载油膜,因而形成具有压力场的动压滑动轴承,该结构提高了轴承的刚度;轴向刚度可达到20—50kg /1μm;径向刚度可达到100kg /1μm 高承载能力:由于动压效果靠自然形成,无需附加动力,使得主轴承载能力大大提高。长使用寿命:理论为无限期使用寿命,在正常使用条件下,极少维修、 利用润滑油的粘性与轴颈的高速旋转,把润滑油带进轴承的楔形空间建立起压力油膜隔开。这种轴承称为动压滑动轴承。靠液体润滑剂动压力形成液膜隔开两摩擦表面并承受载荷滑动轴承。液体润滑剂就是被两摩擦面相对运动带入两摩擦面之间。产生液体动压力条件就是﹕两摩擦面有足够相对运动速度﹔润滑剂有适当黏度﹔两表面间间隙就是收敛。 二、动压滑动轴承的安装 动压轴承结构图 1 装配前的准备 (1) 准备所需的量具与工具。 (2) 按照图纸要求检查轴套与轴承座的表面情况及配合过盈就是否符合要求,然后按轴颈将轴套进行加工,并留出一定的径向配合间隙,其值约为(0、001~0、002)d(d为轴颈的直径mm)。 (3) 按照图纸要求检查轴套油孔、油槽及油路。在确认油路畅通后方可进行装配。

流体静压强测定实验

3.1 流体静压强测定实验 一、实验目的 1. 掌握测量流体静压强的方法。 2. 熟悉微压计的原理及使用。 3. 熟悉利用静压强公式和等压面概念测定流体密度的方法。 二、实验装置: 图 1-1 如图1-1 所示,有一水箱,中间有层隔板,隔板右部与水箱盖密闭,下部不通到底,使水箱左右二部份相通,水箱右侧盖板上装一旋阀V ,水箱左侧放置一升降块,升降块调节后用一螺钉固定其位置,当旋阀开启时水箱左右二侧液面上均为大气压强,应为同一水平线。为旋阀关闭时,调节升降块位置使水箱右侧液面上气压增加或减少。 实验目的是要测箱壁A 点、箱底B 点出口处压强及两组U 型管不同液体的密度,为此在相应位置上引出测压管和U 型管。测管1-2装有未知密度的液体1ρ,测管3-4装有二种未知重度2ρ和3ρ的液体,利用等压面概念可求出三种液体的密度。测管5和6分别联到被测点A 与B ,测管7和水箱上下相通。 此外旋阀V 上端还可用一软管与微压计(或压力传感器等)相接,打开旋阀V 使水箱液面上气体与微压计相通,用微压计测量水箱液面上的压强可提高其精度。 三、实验原理 流体静压强计算公式 0p p gh ρ=+

其中:p 为待测点的压强2 (N m ) 0p 为水箱中液体上的压强2(N m ) ρ为待测液体的密度2(N m ) h 为液面与测压点垂直距离(c m)实验结果表明: 1. 当液面压强不变时,压强随测点位置不同而变化。 0p 2. 当测点位置不变时,压强随液面压强的不同而变化。 3. 当液面压强确定后,运用等压面概念可求出待测液体的密度。 4. 密度是液体的属性,不因液面压强改变而变化。 四、实验数据记录 测压点坐标位置 =A h cm =B h cm 当微压计中液体的比重为0.8时,校正系数=k 测压管读数记录 (单位cm) 测管编号 1 2 3 3-4 4 5 6 7 微压计读数 液面=大气压 液面>大气压 液面<大气压 五、思考题 1. 测管5与6液位高度相同,是否意味着A 、B 二测点压强相同,为什么?

相关主题