搜档网
当前位置:搜档网 › 电机中的噪声是如何来的

电机中的噪声是如何来的

电机中的噪声是如何来的

电机噪声主要来自三个方面,即空气噪声、机械噪声和电磁噪声,但有时也会将电路内部噪声列入噪声源之一。电路内部噪声主要来自电路自励、电源哼声以及电路元件中的电子流起伏变化和自由电子的热运动。

1. 空气噪声

空气噪声主要由于风扇转动,使空气流动、撞击、摩擦而产生。噪声大小决定于风扇大小、形状、电机转速高低和风阻风路等情况。

空气噪声的基本频率

其中,N——风扇叶片数;n——电机转速(RPM)。

风扇直径越大,噪声越大,减小风扇直径10%,可以减小噪声2—3dB。但随之冷量也会减少。当风叶边缘与通风室的间隙过小,就会产生笛声(似吹笛声)。如果风叶形状与风扇的结构不合理,造成涡流,同样也会产生噪声。由于风扇刚度不够,受气流撞击时发生振动,也会增加噪声。此外,转于有凸出部分,也会引起噪声。

针对以上产生空气噪声的原因,则下列措施有助于减小空气噪声:

(1)合理地设计风扇结构和风叶形状,避免产生涡流;保证风叶边缘与通风室有足够的间隙,在许可情况下,尽量缩小风扇直径;

(2)在许可情况下,将气流转向后再吹(吸)出,可明显降低噪声,此在吸尘器中已有采用; (3)保证风路通畅,减小空气的撞击和摩擦。

如果从声源方面还不能控制通风噪声时,就要采用隔声或用消声的方法,还可以在定子径向风道口附近防置吸声材料。最简单也是最有效的隔声方法是用钢板、木板或塑料板制成的隔声罩,把整个电机包围起来,可降低噪声20分贝左右,当然这对整体散热是不利的,而且所占用的空间也比较大。

风叶的兜风角度对噪音影响较大,角度加大5到10度噪音可减少1到2db。

电机常用计算公式和说明

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ/ (N × Ae)B=F/IL u磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

电机噪音分析

电机噪音分析 电机 1引言 噪声是由物体的振动产生的,再通过空气或其它弹性介质才能传播到人的耳朵。它由很多杂乱无章的单调声音混合而成。其中20Hz~20000Hz是人们耳朵可以听到的频率。低于20Hz的波叫次声波,高于20000Hz的波叫超声波。 噪声直接影响人们的身体健康,太强或长时间噪声,会使人十分痛苦、难受,甚至使人耳聋或死亡。噪声是现代社会污染环境的三大公害之一。为了保障人民的身体健康,国际标准化组织(ISO)规定了人们容许噪声的标准,如表1。 表1 每天最长工作时间(h)8 4 2 - 噪声dB(A) 85 93 96 115(最大) 电机是产生噪声的声源之一,电机又在家庭、商业、办公室以及工农医等行业广泛而大量地应用着,与人民的生活密切相关。随着社会的进步,人们对污染环境的噪声提出了越来越高的要求与限制,尤其对与人们密切接触的家用电器更是如此。这方面,先进国家尤其重视。我国政府历来重视人民的健康,对限制噪声不遗余力。表2是我国产品标准规定的部分家用电器的噪声限值。 表2我国部分家用电器的噪声限值dB(A) 电冰箱(250升以下)洗衣机吸油烟机电磁灶吸尘器洗衣机镇流器空调器(2500W、分体式) 52 75 75 50 84 72 35 45 因此,尽量降低电机的噪声,生产低噪声的电机,给人们创造一个舒适、安静的环境是每个设计者与生产者的职责。 2电机噪声的分类 根据电机噪声产生的不同方式,大致可把其噪声分为三大类: ①电磁噪声;②机械噪声;③空气动力噪声。 3电磁噪声 电磁噪声主要是由气隙磁场作用于定子铁芯的径向分量所产生的。它通过磁轭向外传播,使定子铁芯产生振动变形。其次是气隙磁场的切向分量,它与电磁转矩相反,使铁芯齿局部变形振动。当径向电磁力波与定子的固有频率接近时,就会引起共振,使振动与噪声大大增强,甚至危及电机的安全。 根据麦克斯韦定律,气隙磁场中单位面积的径向电磁力按下式计算: 式中:B——气隙磁密 θ——机械角位移 μ0——真空磁导率 由于定、转子绕组中存在着主波磁势与各次谐波磁势,它们相互作用可以产生一系列的力波。 3.1主波磁场产生的力波 主波磁场B1所产生的径向力波为:Pr1=P0+P1,式中,是径向力的不变部分,它均匀作用于圆周上,使定子铁芯受到压缩应力。不变部分不会产生振动与噪声。P1=P0cos(2pθ-2ω1t-2θ0),其中p主波的极对数,ω1—主波的角速度,θ0—初相角。P1是径向力波的交变部分,这个力波的角频率是2ω1,即2倍的电源频率,它使定、转子产生2倍电源频率的振动与噪声。它的强度与气隙磁密的平方成正比。这在两极的大容量电机中,容易产生较大的影响,而在一般情况下,由于它的频率较低,其影响不显著。 3.2谐波磁场产生的力波 谐波磁场产生的力波所引起的振动与噪声,一方面与该力波的幅值大小有关,也与力波的次数有

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性电机振动的产生原因与对策 1、转子的不平衡电机振动 A、原因: ·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。 ·转子配件的热位移引起不平衡载重。 ·转子配件的离心力引起变形或偏心。 ·外力(皮带、齿轮、直结不良等)引起轴弯曲。 ·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。 B、对策: ·抑制转子不平衡量。 ·维护到容许不平衡量以内。 ·轴与铁心过度紧配的改善。 ·对热膨胀的异方性,设计改善。 ·强度设计或装配的改善。 ·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。 ·轴承端面与轴附段部或锁紧螺帽的防止偏靠。 2、轴承之异常电机振动与电机振动噪音 A、原因: ·轴承内部的伤。 ·轴承的轴方向异常电机振动,轴方向弹簧常数与转子质量组成电机振动系统的激振。

电机设计计算常用公式

电机设计计算常用公式 1.输出功率2P 2P 2.外施相电压1U 1U 3.功电流KW I 1 13 210U m P I KW ??= 4.效率η' η' 5.功率因数?'cos ?'cos 6.极数p p 7.定子槽数1Q 1Q 转子槽数2Q 2Q 8.定子每极槽数 p Q Q P 1 1= 转子每极槽数 p Q Q P 2 2= 9.定转子冲片尺寸见图 10.极距P τ p D i P 1 ?= πτ 11.定子齿距1t 1 1 1Q D t i ?= π 12.转子齿距2t 2 2 2Q D t ?= π 13.节距y y 14.转子斜槽宽SK B SK B 15.每槽导体数1Z 1Z 16.每相串联导体数1φZ 1 11 11a m Z Q Z ??= φ 式中: 1a =

17.绕组线规(估算) ?η' ?'= ' ' ??'= ' ?'cos 11 11 11KW I I a I S N 式中:导线并绕根数·截面积 '?'11S N 查表 取' ?'11S N 定子电流初步估算值 ?η' ?'= 'cos I I KW 1 定子电流密度' ?1 '?1 18.槽满率 (1)槽面积 2 2221R h h b R S S S S π+ ??? ??-'+= (2)槽绝缘占面积 ?? ? ??+++' =122S S i i b R R h C S π (3)槽有效面积 i S e S S S -= (4)槽满率 e f S d Z N S 2 11??= 绝缘厚度i C i C 导体绝缘后外径d d 槽契厚度h h 19.铁心长l 铁心有效长 无径向通风道 g l l eff 2+= 净铁心长 无径向通风道 l K l Fe Fe ?= 铁心压装系数Fe K Fe K 20.绕组系数 111p d dp K K K ?= (1)分布系数 2sin 2sin 111 αα???? ???= q q K d 式中: p m Q q ?= 11 1

电机常用计算公式及说明

电机常用计算公式及说 明 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速: 60×50/2=1500转/分 在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式

T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ/ (N × Ae)B=F/IL u磁导率 pi= B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m /s)} 三相的计算公式: P=×U×I×cosφ

无刷电机振动和噪声

改善无刷电机电磁力矩产生的振动和噪声 1、斜槽:使铁心槽斜置、使磁钢或充磁呈倾斜状; 2、减小磁极间隙变化:对铁心磁极的端部进行直线或者圆弧状切割,使间隙尽量变宽; 3、使磁感应正弦波化:采用中间厚两边薄鱼糕状磁钢,使充磁波形正弦波化。磁钢极向异性化。 4、磁极的宽度和间隔变化:改变铁心极或者磁钢极幅度和间隔,使端部的影响平均化; 5、高频化:增加沟数,提高变化频率,使影响程度减小; 插入辅助沟、抵消槽的影响:绕线槽会造成磁场能量的变化,用插入辅助沟的方法来抵消这种影响; 6、槽和磁极相互配合:选择磁场能量变化少的槽数和磁极数; 7、铁心平滑化:如果采用无槽的空心绕线,从原理上讲可以彻底清除磁反应力矩。 控制器造成(控制器为正弦波驱动) 1、位置检测器的局限性:这主要归于数字轴编码器所提供的位置 信息有限分辨率。因为编码器是一个比较昂贵的部件,这就需要使用可能的最低方案来减少成本。一些运行要求可能需要使用特定种类的编码器,比如霍尔效应类型,它仅能提供比较低的分辨率。这样,这种局限性可能很容易变成永磁驱动系统的量化错误的主要来源,相对于诸如和有限CPU字长及A/D转换器的分辨率等量化错误,它会产生一个更大的转矩波动; 2、计算的错误:这主要归于有限的CPU字长。CPU字长在变量 和参数控制中会引起离散化的错误。另外,逻辑控制中的计算使得上面的错误得以传输和积累。最后结果会使控制电压或电流偏离理想的正弦值,从而导致转矩波动。 3、非完美的电流检测:理想的电流检测器一般是不存在的,所有 电流检测器都有固有的偏差并会产生偏离错误。因为磁场定位控建立在电流反馈,所以任何的电流检测错误都会直接影响转矩的性能。定量分析这种影响五一会对启动器的设计带来很大的益处。 4、PWM开关:这主要是因为使用一个PWM逆变器来产生正弦 波形的局限性。由PWM开关产生的电流会有一个和开关频率相应的高频纹波。高频纹波电流和电机的反电动势相互作用,从而产生一个高频转矩波动。另外,非同步的PWM频率和基波频率部分在转矩中会导致非周期的谐波,在开关和基波频率之间有一个相对比较低的比率时,这可能变得相当可观。

电动机的选择及设计公式

一、电动机的选择 1、空气压缩机电动机的选择 1.1电动机的选择 (1)空压机选配电动机的容量可按下式计算 P=Q(Wi+Wa) ÷1000ηηi2 (kw) 式中P——空气压缩机电动机的轴功率,kw Q——空气压缩机排气量,m3/s η——空气压缩机效率,活塞式空压机一般取0.7~0.8(大型空压机取大值,小型空压机取小值),螺杆式空压机一般取0.5~0.6 ηi——传动效率,直接连接取ηi=1;三角带连接取ηi=0.92 Wi——等温压缩1m3空气所做的功,N·m/m3 Wa——等热压缩1m3空气所做的功,N·m/m3 Wi及Wa的数值见表 Wi及Wa的数值表(N·m/m3) 1.2空气压缩机年耗电量W可由下式计算 W= Q(Wi+Wa)T ÷1000ηηiηmηs2 (kw·h) 式中ηm——电动机效率,一般取0.9~0.92 ηs ——电网效率,一般取0.95 T ——空压机有效负荷年工作小时

2、通风设备电动机的选择 (1)通风设备拖动电动机的功率可按下式计算 P=KQH/1000ηηi (kw) 式中K——电动机功率备用系数,一般取1.1~1.2 Q——通风机工况点风量,m3/s H——通风机工况点风压轴流式通风机用静压,离心式通风机用全压,Pa η——通风机工况点效率,可由通风机性能曲线查得 ηi——传动效率,联轴器传动取0.98,三角带传动取0.92 (2)通风机年耗电量W可用下式计算 W=QHT/1000ηηiηmηs 式中ηm——电动机效率, ηs ——电网效率,一般取0.95 T ——通风机全年工作小时数 3、矿井主排水泵电动机的选择 (1)电动机的选择 排水设备拖动电动机的功率可按下式计算 P=KγQH/1000η (kw) 式中K——电动机功率备用系数,一般取1.1~1.5 γ——矿水相对密度,N/m3 Q ——水泵在工况点的流量,m3/s H ——水泵在工况点的扬程,m

电机转速转矩计算公式[1]

针对你的问题有公式可参照分析: 电机功率:P=1.732×U×I×cosφ 电机转矩:T=9549×P/n ; 电机功率 转矩=9550*输出功率/输出转速 转矩=9550*输出功率/输出转速 P = T*n/9550 公式推导 电机功率,转矩,转速的关系 功率=力*速度 P=F*V---公式1 转矩(T)=扭力(F)*作用半径(R) 推出 F=T/R ---公式2 线速度(V)=2πR*每秒转速(n秒) =2πR*每分转速(n分)/60 =πR*n 分/30---公式3 将公式2、3代入公式1得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位Nm, n分=每分钟转速单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n 30000/3.1415926*P=T*n 9549.297*P= T * n 电机转速:n=60f/p,p为电机极对数,例如四级电机的p=2; 注:当频率达50Hz时,电机达到额定功率,再增加频率,其功率时不会再增的,会保持额定功率。 电机转矩在50Hz以下时,是与频率成正比变化的;当频率f达到50Hz时,电机达到最大输出功率,即额定功率;如果频率f在50Hz以后再继续增加,则输出转矩与频率成反比变化,因为它的输出功率就是那么大了,你还要继续增加频率f,那么套入上面的计算式分析,转矩则明显会减小。

转速的情况和频率是一样的,因为电源电压不变,其频率的变化直接反应的结果就是转速的同比变化,频率增,转速也增,它减另一个也减。 关于电压分析起来有点麻烦,你先看这几个公式。 电机的定子电压:U = E + I×R (I为电流, R为电子电阻, E为感应电势); 而:E = k×f×X (k:常数, f: 频率, X:磁通); 对异步电机来说:T=K×I×X (K:常数, I:电流, X:磁通); 则很容易看出频率f的变化,也伴随着E的变化,则定子的电压也应该是变化的,事实上常用的变频器调速方法也就是这样的,频率变化时,变频器输出电压,也就是加在定子两端的电压也是随之变化的,是成正比的,这就是恒V/f比变频方式。这三个式子也可用于前面的分析,可得出相同结果。 当然,如果电源频率不变,电机转矩肯定是正比于电压的,但是一定是在电机达到额定输出转矩前。 电机的“扭矩”,单位是N?m(牛米) 计算公式是T=9549 * P / n 。 P是电机的额定(输出)功率单位是千瓦(KW) 分母是额定转速n 单位是转每分(r/min) P和n可从电机铭牌中直接查到。 电机转速和扭矩(转矩)公式 含义:1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义:9.8N·m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW

电机振动噪音的原因及解决措施通用范本

内部编号:AN-QP-HT811 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 电机振动噪音的原因及解决措施通用 范本

电机振动噪音的原因及解决措施通用范 本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹

电机噪音及振动分析

电动机的噪声和振动 电机类2007-06-18 22:02:51 阅读140 评论0 字号:大中小订阅 通常电动机的噪声和振动是同时发生的。电动机噪声包括通风噪声、电磁噪声和机械振动噪声。由于电动机修理操作不当。造成电机修理后的噪声和振动增大。原因如下: 电机修理后的噪声和振动增大引起原因 一、机械方面引起: 1、转子固定键未拧紧,有松动现象。 2、未做风扇静平衡,或做的精度不够。 3、转子不平蘅,未做静、动平衡检查。 4、定、转子铁心变形。 5、转轴弯曲,定、转子相擦。 6、地脚固定不稳,安装不正,不牢固。 7、铁心及铁心齿压板松动。 8、零部件加工不同心,装配公差不合理。 9、电动机组装和安装质量不好。 10、端盖、轴承盖螺丝未拧紧,或装偏。 二、电磁方面引起的: 1、三相绕组不平蘅。 2、绕组有短路或断路故障。 3、电刷接触不好,压力过大、过小。刷质不合要求。 4、断笼或端环开裂,松动。 5、改极时,定、转子槽数配合不适合。 6、集电环的短接片与短路环接触不稳定。 7、电源供电质量不好,三相不平蘅,有高次谐波等等。 三、风方面引起: 1、风扇有缺陷或损坏,如掉叶、变形、风扇不平衡产生噪声合振动。 2、风扇在轴上固定不牢固。 3、风罩与风叶之间的间隙不合适,过小或偏斜。 4、风路局部堵塞。 三种噪声简易鉴别方法

一、通风噪声鉴别法: 1、去掉风扇或堵住风口,让电机在无通风气流情况下运转,这时如果电动机噪声消失或显著减弱,则说明是通风噪声引起的。 2、变测量噪声的位置进行鉴别,因为以通风噪声为主的电动机,在电动机进口处和风扇附近处噪声最强。 3、磁噪声和机械噪声有时不稳定,时高时低,而通风噪声通常是稳定的。 4、用外径和型式不同的风扇,在不同转速下试运转,如果电动机噪声有明显差别,则说明电动机噪声主要是通风噪声引起的。 5、械噪声或电磁噪声较大的电动机,往往振动也大,但通风噪声与电动机振动关系不大。 二、机械噪声鉴别法: 1、机械噪声与外施电压大小和负载电流无关。 2、如果噪声不稳定,时高时低,那就是机械噪声,因为通风噪声是稳定的。 四、电磁噪声鉴别法:电磁噪声大小随磁场强弱、负载电流大小以及转速高低而变,利用这个特征,可采取下面办法进行鉴别。 1、突然断电法:由于机械惯性比电磁过渡过程慢得多,突然断电,无电磁因素影响,这是电动机转速几乎不变。如果这是电动机噪声突然消失或显著降低,可断定是电磁原因产生得噪声。 2、改变电压法:由于异步电动机转速随电压变化不大,当改变电压时,机械噪声和通风噪声基本不变,但电磁噪声随电压变化很大。 3、对拖法:用一台低噪声电动机拖动有噪声得被试电动机,这是噪声降低消失,则说明被拖动得电动机噪声是电磁噪声。 4、如果电磁噪声是因绕组不对称,匝间短路等缺陷引起,则三相电流不平蘅,如因转子断笼或绕线转子三相绕组不对称引起,则定子电流有波动。 解决噪声和振动的修理措施 一、降低机械方面引起的噪声的措施: 1、紧固所有装配件上的紧固螺栓,保证端盖,轴承盖,定、转子铁心,固定键,齿端板,风扇座,集流装置等配合不松动。 2、选用的轴承和润滑油,选用超精研磨、波纹度小于.2μM的电动机专用轴承,可降低轴承噪声。 3、装配轴承时要采用合理工具,最好热套。装配轴承时严禁猛打猛敲,使轴承受力不均。 4、增强修配零部件的机械强度的精度。 5、校正转子平衡。 6、提高电动机组装质量,保证同心度,与机械设备联接要正确,做好确定中心工作。 7、电刷硬度适当降低,刷压要合适,电刷在刷盒内间隙要合适(一般0.1MM左右) 8、检查铁心的偏心情况,必要时可适当当车圆转子表面(控制切削量0.10-0.20MM)。 9、检查电动机轴伸盒集电环的偏摆,时之合格。

电机轴承常见7种异常声音的分析与解决

电机轴承常见7种异常声音的分析与解决 交流电机轴承声音异常的分析与解决 1、连续蜂鸣声“嗡嗡……” 原因分析: 电机无负荷运转是发出类似蜂鸣一样的声音,且电动机发生轴向异常振动,开或关机时有“嗡”声音 具体特点: 多发润滑状态不好,冬天且两端用球轴承的电机多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动 解决方法 A、用润滑性能好的油脂 B、提高马达轴承座钢性 C、选用径向游隙小的轴承 D、加预负荷,减少安装误差 E、加强轴承的调心性 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 2、保持器声“唏利唏利……” 原因分析: 由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生 解决方法: A、提高保持器精度 B、降低力矩负荷,减少安装误差 C、选用好的油脂 D、选用游隙小的轴承或对轴承施加预负荷 3、高频、振动声“哒哒…...” 具体特点: 声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: A、改善轴承滚道表面加工质量,降低波纹度幅值

B、减少碰伤 C、修正游隙预紧力和配合,检查自由端轴承的运转,改善轴与轴承座的精度安装方法 4、杂质音 原因分析: 由轴承或油脂的清洁度引起,发出一种不规则的异常音 具体特点: 声音偶有偶无,时大时小没有规则,在高速电机上多发 解决方法: A、选用好的油脂 B、加强轴承的密封性能 C、提高注脂前清洁度 D、提高安装环境的清洁度 5、漆锈 原因分析: 由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音 具体特点: 被腐蚀后轴承表面生锈比第一面更严重 解决方法: A、把转子、机壳、晾干或烘干后装配 B、降低电机温度 C、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起 D、改善电机轴承放置的环境温度 E、采用真空浸漆工艺 具体特点: 轴承运转后,温度超出要求的范围 原因分析: A、润滑脂过多,润滑剂的阻力增大 B、游隙过小引起内部负荷过大 C、安装误差

电机设计知识点公式总结材料整理 陈世坤

电机设计陈世坤版知识点、公式总结整理

目录 第一章感应电动机设计 (1) 第二章 Y132m2-6型三相感应电动机电磁计算 (4) 附录参考文献 (27)

第一章感应电动机设计 一、电机设计的任务 电机设计的任务是根据用户提出的产品规格(如功率、电压、转速等)、技术要求(如效率、参数、温升限度、机械可靠性要求等),结合技术经济方面国家的方针政策和生产实际情况,运用有关的理论和计算方法,正确处理设计是遇到的各种矛盾,从而设计出性能良好、体积小、结构简单、运行可靠、制造和使用维修方便的先进产品。 二、感应电机设计时给定的数据 (1)额定功率 (2)额定电压 (3)相数及相间连接方式 (4)额定频率 (5)额定转速或同步转速 (6)额定功率因数 三、电机设计的过程和内容

1、准备阶段 通常包括两个方面的内容:首先是熟悉相关打国家标准,手机相近电机的产品样本和技术资料,并听取生产和使用单位的意见和要求;其次是在国家标准及分析有过资料的基础上编制技术任务书或技术建议书。 2、电磁设计 本阶段的任务是根据技术任务书的规定,参照生产实践经验,通过计算和方案比较来确定与所设计电机电磁性能有关的的尺寸和数据,选定有关材料,并和算其电磁性能。 3、结构设计 结构设计的任务是确定电机的机械结构、零部件尺寸、加工要求与材料的规格及性能要求,包括必要的机械计算及通风和温升计算。 结构设计通常在电磁设计之后进行,但有时也和电磁设计平行交叉的进行,以便相互调整。

第二章 Y132m2-6型三相感应电动机电磁计算 一、额定数据及主要尺寸 1、输出功率 N P =5.5kW 2、外施相电压 N U φ=N U =380V (?接) 3、功电流 KW I =1N N P mU φ =35.5103380??=4.82A 4、效率 N η=85.3% 5、功率因数 cos N ?=0.78 6、极对数 p=3 7、定转子槽数1Z =36。2Z =33 8、定转子每极槽数 1p Z = 12Z p =366=6。 2p Z =22Z p =336=51 2 9、定转子冲片尺寸 1D =210mm 。1i D =148mm 。 2i D =48mm 。 2D = 1i D -2δ=148-2?0.35=147.3mm 定子采用梨型槽,尺寸如下:11b =6.8mm 、21r =4.4mm 、01h =0.8mm 、 11h +21h =11.5mm 、 01b =3.5mm 定子齿宽计算如下:

电机的耗电量的公式计算

电机的耗电量的公式计 算 -CAL-FENGHAI.-(YICAI)-Company One1

电机的耗电量以以下的公式计算:耗电度数=(根号3)X 电机线电压 X 电机电流 X 功率因数) X 用电小时数/1000 电机的额定功率是750W,采用星形接法,接在三相380伏的电源上,用变频器监测电流是1.1A;我又用钳形电流表进行测量,测得每相电流为1.1A,这就说明变频器和钳形电流表测得的电流是一致的。因为电机是星形接法,线电压是相电压的倍,线电流等于相电流,电机实际消耗的功率:380×× = 724 W,这样电机实际消耗的功率就接近于电机的额定功率。如果电机是三角形接法,线电压等于相电压,线电流是相电流的倍,电机实际消耗功率的计算是一样的。 这就说明:三相交流电机实际消耗的功率就等于线电压 × 线电流。 电机额定功率为450kW,功率因数为,电机效率为%,现运行中发现电流为40A,电压为6000V,那么怎么正确计算电机的各项功率以及电机有功及无功的损耗 高压电机一般为三相电机. 视在功率=×6000×40= 有功功率 =×6000×40×= 无功功率=(视在功率平方减有功功率平方开根二次方) 有功损耗=有功功率×%)=×= 无功损耗=无功功率×%)=×= 注明:

电机不运行于额定状况,效率及功率因数是有偏差的,上述数值只能为理论值,可能与实际会有点小偏差。 因为铭牌上所标的额定功率是电机能输出的机械功率,所以不等于电压和电流的乘积就象一个10KW的电动机,他能输出的机械功率是10KW,但它所消耗的电功率要大于10KW,三相电动机的功率计算公式:P=*U*I*cosΦ . 三相异步电动机功率因数 异步电动机的功率因数不是一个定数,它与制造的质量有关,还与负载率的大小有关。为了节约电能,国家强制要求电机产品提高功率因数,由原来的到提高到了现在的到,但负载率就是使用者掌握的,就不是统一的了。过去在电机电流计算中功率因数常常取,现在也常常是取。 2.实际功率和额定功率 三相异步电动机的功率计算公式就是*线电压*线电流*功率因数。那你的实际电压是395V,实际电流是140A,那么它的实际功率就是: *395*140*=81kw 如果是空载,功率因数还要小,功率也就还要少,消耗电能也就少。

电机电磁噪声的分析

电机电磁噪声的分析 定转子的槽配合的选择对电磁噪音的影响很大,选择合适的槽配合是降低电磁噪音最有效、最经济的方法,因此,在选择定转子槽配合时要慎重。要避免出现幅值较大,次数较低的力波,幅值较大的定转子齿谐波磁场由定转子槽数决定,由电机学,可知定转子一阶齿谐波作用产生的力波次数m 为, ()()12m Z p Z p =±+±±+ 式中1Z 、2Z - 定、转子槽数、p -极对数 定子相带谐波与转子一阶齿谐波作用产生的力波次数(对定子60 相带整数槽绕组)为: ()()26m Kp p Z p =+±±+ 式中012K =±±?、、 定转子二阶齿谐波作用产生的力波次数为: ()()1222m Z p Z p =±+±±+ 在设计时,应尽量避免定转子槽配合产生较低的m ,另外齿谐波幅值随转子槽数增大而减小。因此,为了降低电机的电磁噪音,在选择定转子槽数时应采用远槽多槽配合,即 2Z 与 1Z 相差较大及21Z Z ?, 电动机二维(力波频率与力波阶次)电磁噪声理论 由异步电动机气隙磁密波的作用,在定子铁心齿上产生的磁力有径向和切向两个分量。 径向分量使定子铁心产生的振动变形是电磁噪声的主要来源;

切向分量是与电磁转矩相对应的作用力矩,它使齿对其根部弯曲,并产生局部振动变形,这是电磁噪声的一个次要来源; 电磁噪声一般在极数较多、功率较大的电机中比较明显,并且是引起负载时噪声增大的重要原因。 三相异步电动机运行时,气隙中存在基波与一系列谐波磁场,它们相互作用除产生引起转矩的切向力外,还会产生许多高次、频率且各不相同的旋转径向电磁力波,这些径向力波作用在定转子上,使它发生径向周期性变形,即产生频率等于径向力波频率的振动,该振动传到机座,引起机座的振动,从而又使机座周围的空气脉动而引起电磁噪声,电机本身都有固有的振动频率,当径向力波频率与电机的固有频率相同或相近时,就会引起共振,产生很大的电磁噪音。 笼型异步电动机电磁噪声的频带通常为700 ~4000Hz 。在这个频率范围内,人的耳朵有很高的灵敏度,因而引起强烈的噪声感觉,严重时表现为十分刺耳的啸叫声。 降低电动机电磁噪声的基本条件,除了使力波频率远离电动机固有频率这一传统条件以外,电动机二维电磁噪声理论又增加一个使力波阶数不等于模态振型阶数这个新条件。因此,二维电磁噪声理论给电动机槽配合的选择提供了两个可以达到降低噪声的选择条件。 Y系列电动机的主要模态振型阶数大多数是2阶的,所以异步电机避免产生高电磁噪声的经验是消除2阶力波,二维电磁噪声理论给予异步电动机设计中槽配合的选择增加了必须考虑降低电磁噪声的新内容: 1.计算电磁力波阶数和力波频率; 2.计算电动机结构的模态参数,特别是模态频率和模态振型阶数;

三相电机电流计算公式I

三相电机电流计算公式 I TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

三相电机电流计算公式I=P/1.732/U/cosΦ,cosΦ是什么,为什么有个cosΦ。 I=P/1.732/U这个公式是对的还是错的?什么情况下会用到cosΦ。 I=P/1.732/U这个公式是错的,正确应是I=P/(1.732*U*cosΦ)。 cosΦ是在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感或电容性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。所以,供电部门对用电单位的功率因数有一定的标准要求。追问 cosΦ=P/S中的S表示什么。 还有你前面提到的计算三相电流,意思要考虑到用电单位的功率因素所以才要用到cosΦ那如果cosΦ为1是不是不要也没关系呢 本人确实不怎么懂还请大哥耐心解答。 回答 S表示有功功率,有功功率又叫平均功率。交流电的瞬时功率不是一个恒定值,功率在一个周期内的平均值叫做有功功率,它是指在电路中电阻部分所消耗的功率,对电动机来说是指它的出力。 计算三相电流,要考虑到用电单位的功率因数,所以功率因数用cosΦ表示。 如果cosΦ为1,公式中可以不考虑。 追问 假如是一个1P的电动机,功率在一个周期内的平均值时多少,怎么算 S具体的数值时多少,怎么去算呢 回答 假如是一个1P的电动机,S=1P/cosΦ 追问 假如是一个1P的电动机,S=1P/cosΦ,那cosΦ得数值等于多少啊,你不要告诉我是这个cosΦ=P/S 大哥麻烦了,我真的很笨。 回答 cosΦ(即是功率因数)析译: 电动机的功率因数不是一个定数,它与制造的质量有关,还与负载率的大小有关。为了节约电能,国家强制要求电机产品提高功率因数,由原来的0.7到0.8提高到了现在的0.85到0.95,但负载率就是使用者掌握的,就不是统一的了。过去在电机电流计算中功率因数常常取0.75,现在也常常是取0.85。 电流为144.34A,需要选择多大的铜芯电缆?计算公式是什么 浏览次数:173次悬赏分:0 | 提问时间:2011-6-4 13:38 | 提问者:马臣水

电机振动噪音的原因及解决措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.电机振动噪音的原因及解决措施正式版

电机振动噪音的原因及解决措施正式 版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,

轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性

电机轴承常见种异常声音的分析与解决精编WORD版

电机轴承常见种异常声 音的分析与解决精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

电机轴承常见7种异常声音的分析与解决 交流电机轴承声音异常的分析与解决 1、连续蜂鸣声“嗡嗡……” 原因分析: 电机无负荷运转是发出类似蜂鸣一样的声音,且电动机发生轴向异常振动,开或关机时有“嗡”声音 具体特点: 多发润滑状态不好,冬天且两端用球轴承的电机多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动 解决方法 A、用润滑性能好的油脂 B、提高马达轴承座钢性 C、选用径向游隙小的轴承 D、加预负荷,减少安装误差 E、加强轴承的调心性 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 2、保持器声“唏利唏利……” 原因分析: 由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生

解决方法: A、提高保持器精度 B、降低力矩负荷,减少安装误差 C、选用好的油脂 D、选用游隙小的轴承或对轴承施加预负荷 3、高频、振动声“哒哒…...” 具体特点: 声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: A、改善轴承滚道表面加工质量,降低波纹度幅值 B、减少碰伤 C、修正游隙预紧力和配合,检查自由端轴承的运转,改善轴与轴承座的精度安装方法 4、杂质音 原因分析: 由轴承或油脂的清洁度引起,发出一种不规则的异常音 具体特点: 声音偶有偶无,时大时小没有规则,在高速电机上多发

解决方法: A、选用好的油脂 B、加强轴承的密封性能 C、提高注脂前清洁度 D、提高安装环境的清洁度 5、漆锈 原因分析: 由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音 具体特点: 被腐蚀后轴承表面生锈比第一面更严重 解决方法: A、把转子、机壳、晾干或烘干后装配 B、降低电机温度 C、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起 D、改善电机轴承放置的环境温度 E、采用真空浸漆工艺 具体特点: 轴承运转后,温度超出要求的范围

电机设计课后习题答案

电机设计 第一章 1.电机设计的任务是什么? 答:电机设计的任务是根据用户提出的产品规格(功率、电压、转速)与技术要求(效率、参数、温升、机械可靠性),结合技术经济方面国家的方针政策和生产实际情况,运用有关的理论和计算方法,正确处理设计时遇到的各种矛盾,从而设计出性能好、体积小、结构简单、运行可靠、制造和使用维修方便的先进产品。 2.电机设计过程分为哪几个阶段? 答:电机设计的过程可分为: ①准备阶段:通常包括两方面内容:首先是熟悉国家标准,收 集相近电机的产品样本和技术资料,并听取生产和使用单位的意见与要求;然后在国家标准有关规定及分析相应资料的基础上,编制技术任务书或技术建议书。 ②电磁设计:本阶段的任务是根据技术任务书的规定,参照生 产实践经验,通过计算和方案比较,来确定与所设计电机电磁性能有关的尺寸和数据,选定有关材料,并核算电磁性能。 ③结构设计:结构设计的任务是确定电机的机械结构,零部件尺寸,加工要求与材料的规格及性能要求,包括必要的机械计算、通风计算和温升计算。

3.电机设计通常给定的数据有哪些? 答:电机设计时通常会给定下列数据: (1)额定功率 (2)额定电压 (3)相数及相同连接方式 (4)额定频率 (5)额定转速或同步转速 (6)额定功率因数 感应电动机通常给定(1)~(5);同步电机通常给定(1)~(6); 直流电机通常给定(1)(2)(5) 第二章 1.电机常数C A 和利用系数K A 的物理意义是什么? 答:C A :大体反映了产生单位计算转矩所消耗的有效材料(铜铝或电工钢)的体积,并在一定程度上反映了结构材料的耗用量。 K A :表示单位体积的有效材料所能产生的计算转矩,它的大小反映了电机有效材料的利用程度。 2.什么是主要尺寸关系式?根据它可以得出什么结论? 答:主要尺寸关系式为:δ αAB K K n dp Nm ef 'p '2 6.1 p l D =,根据这个关系式 得到的重要结论有:①电机的主要尺寸由其计算功率P ˊ和转速n

相关主题