搜档网
当前位置:搜档网 › 微纳系统仿真大作业

微纳系统仿真大作业

微纳系统仿真大作业
微纳系统仿真大作业

1. 用有限差分法和有线元方法把以下问题变成数值方程,并说明两种方法的异同:

2(,)0x y ??= 边界条件:

(,0)(,1)0;(0,)(1,)1;

x x y y ????==== 解:

(1) 有限差分法 2(,)0x y ??= 即为20xx yy u u u ?=+=,其中(),u x y ?=

将定义域等分,步长均为h ,则

()()()()()()222,,,,4,u x h y u x h y u x y h u x y h u x y u O h h

++-+++--?=+ 略去高阶无穷小,由20xx yy u u u ?=+=得

()()()()(),,,,4,0u x h y u x h y u x y h u x y h u x y ++-+++--=

定义域离散,离散点为(),i j x y ,则上式可化为

()()()()(),,,,4,0i j i j i j i j i j u x h y u x h y u x y h u x y h u x y ++-+++--=

定义域为01,01x y ≤≤≤≤,因为本题只是为了说明原理,故将其简单等分为33?单元,节点编号从()()0,02,2到。

1,1,,1,1,40i j i j i j i j i j u u u u u +-+-+++-=

其位移矢量为

()()()()()()()()()0,00,10,21,01,11,22,02,12,24110141101410141101411011410141011410140u u u u u u u u u ????-??????????-????????????-??????-????????????=-??????-????????????-????????-??????????-??????????

由边界条件 (,0)(,1)0;(0,)(1,)1;

x x y y ????==== 可知()()()()0,00,22,02,2,,,u u u u 有冲突,可以区位均值即()()()()0,00,22,02,20.5u u u u ====,而()()1,11,20u u ==,()()0,12,10u u ==,带入化简即可求得()1,1u

(2) 有限元法

使用有限元法的计算流程为:

求解区域离散化;

构造插值函数形成分段光滑的坐标函数系;

用 Ritz 方法求解微分方程

对2(,)0x y ??=构造函数

()221,2x y dxdy x x ???????????∏=+???? ? ?????????????

?? 首先将整个区域离散为三角形的子区域如下图, 三角形微小子区域中的值由三 角形节点值的插值结果表示,即

(),i i j j k k x y N N N ????=++

其中,,i j k N N N 为三角形的节点插值函数, ,,i j k ???为函数(),x y ?在节点 ,,i j k 处的函数值。

可知每一个三角形子区域中泛函可由节点插值函数和节点函数值表示, 那么对于整个求解区域的泛函表达式为

()[]123,,,...n x y ?????∏=∏????

由变分原理可知

12...0n

????∏?∏?∏====??? 计算这 n 个方程即可得到整个求解区域的值

(3) 有限元法与差分法的区别

? 区域离散化要与坐标轴一致,所以大多是正方形或矩形的离散结构,表述边界的误差较大

? 有限元单元的形状没有限制,可以做到单元形状与边界重合,处理无规边界的问题

? 有限元统一对待区域内的节点与边界上的节点,因此个节点的计算精度总体上协调;而有限差分必须分别处理微分方程与定解条件

2. 请看Microrobot的说明文件(这个文件可以在COMSOL

3.5中打开Model Library----→ Thermal Structure Interaction---→Microrobot 3D),详细看懂说明书该问题的分析,用自己熟悉的3D工具进行建模,用COMSOL更高版本进行仿真。

解:

微型机器人腿构造如下:

原理:热源加热使得局部温度升高,由于所使用有机物的热膨胀系数较高,故加热有有机物体积膨胀大,V型槽上部体积膨胀高于下部,故硅腿会向下弯曲。Comsol仿真:

建模时V型槽薄板不画出,仿真设定V型面为shell单元。

模型如下图:

图1.1 Robot leg 3D模型

计算结果:

图1.2 Robot leg 位移图

图1.3 Robot leg 温度图

分析:从位移变形图可以看出,腿向下弯曲,这与实际情况一致;从根部至末端,位移逐渐增大;末端最大为51.8110m -? 即18.1um 。

从温度变形图可以看出,V 型槽温度最高,为305K ,腿根部温度最低,为275K ,散热效果良好

3. 请学习COMSOL

4.4的COMSOL Reference Manual中Deformed Geometry and Moving Mesh的使用方法,用COMSOL4.4 仿真流体与结构的相互作用(问题描述请见文件:fluid_structure_interaction.pdf)。

解:

原理:流体以一定流速流过通道时,会与通道中物体产生相互作用了,在该作用力的作用下,物体会产生应力和形变。

Comsol仿真:流体从六面体前表面流进inlet,后表面流出outlet,其他便面设定为wall,中间固定物体下表面为fix constrain。

在comsol5.0中流速采用例子中所给的

16*u_max*y*(width-y)*z*(height-z)/(width^2*height^2)无法求解,具体原因不详,因此设定inlet为恒定速度1.5/

m s。

模型如下图:

图2.1 Fluid structure 3D模型

计算结果:

图2.2 Fluid structure 位移图

图2.3 Fluid structure 应力图

分析:从位移和应力图可以看出,流体与柱状体表面作用使得柱状体弯曲,与实际情况相符;顶端点为位移最大,应力最小,位移为55.293510m -? 即52.935um ,

应力为382.465Pa

;根部位移最小,应力最大,位移为0um ,应力为621.1704710/N m ? 即1.17047Mpa 。

4. 微型层流混合器

(1)请看COMSOL4.4 中Model Libraries—MEMS Module –Micromixers---Lamella mixer PDF说明书,用SOLIDWOKS工具建模,用COMSOL仿真;

(2)自己设想一种可能的更有效的微型流体混合结构;

(3)试试用其他的软件进行仿真并比较说明

解:

原理:

经过微型流体混合机构,微流体从不同的小通道汇聚到大通道中

首先要进行3D建模,微型流体混合器的3D模型如下图:

图3.1 Lamella mixer 3D模型

Comsol计算结果

图3.2 Lamella mixer 速度图

图3.3 Lamella mixer 浓度图

分析

流体从微小通道汇聚到大通道后流速会降低,且浓度会保持分层趋势,仿真结果与实际情况符合。通过对速度图分析可知最高流体速度为31.2810/m s -? ,最小速度为零;分析浓度图可知,流体在校通道中浓度不变,汇聚到大通道后浓度混合,但上层浓度明显要高于下层。

ANSYS CFX 计算

在ANSYS 分析中,没有严格按照Comsol 中的速度及浓度定义,设定入口速度分别为5m/s 和10m/s ,其余均为默认值,分析结果如下:

图3.4 CFX 分析结果-速度

图3.5 CFX分析结果-压力

两种分析结果对比分析

ANSYS CFX中后处理的可选项相对Comsol比较少,但是操作流程基本相同

5. 谈谈使用COMSOL进行多场耦合仿真的体会。

以上2、3、4道需要大家安装COMSOL软件。

Comsol可以很方便的进行多场仿真,包含了相当多的常用模块,想要添加场时只需要简单的添加相应模块并设定初值和边界条件即可。

和Ansys比起来comsol的一大优点是,可以看到计算的微分方程模型。这一功能对于初学者来说虽然意义不大,因为初学者没有足够的知识储备去理解这些方程,但是如果真正的从事研究工作,Comsol是非常好用的计算仿真工具。

物流仿真大作业.doc

物流系统仿真 期末作业 题目:Manufacturing System Planning and Scheduling 班级:物流工程131 学号:1311393003 1311393008 姓名:黎宇帆张力夫 日期:2015-09-19 成绩:

制造系统规划与调度 翻译 2.1引言 现代生产调度工具是非常强大的,提供了广阔的范围内调整工具的行为的真实过程要求的选项和参数。 然而,更多的选项的存在,它就在实践中找到的工具的最佳配置更加困难。 即专家们经常无法预测的多种可能性的影响。 测试甚至一小部分在现实中可能的配置,对实际生产过程的影响可能需要几个月的时间,可能会严重降低整体性能。 因此,这样的试验在实践中是不可行的。 优化的生产调度仿真模型比使用真正的过程更安全,更便宜,更快,更容易测试。为了在一个中等规模的制造公司充分使用先进的调度工具的优势,找到它的一个最佳的规则和参数的优化配置。 模块化仿真模型的整个业务的制造系统和生产过程中阳极氧化阶段是建立以测试不同的调度配置的影响。调度工具的配置测试和优化进行了离线使用的仿真模型。实际生产过程不受干扰,可以非常快速、低成本的找到最优配置。 2.2问题描述 位于英国的一个中型制造商,生产一系列的不同的小压铝零件和一系列大批量的其他面向消费者的产品。典型的应用包括香水的喷雾组件和哮喘患者的分配器。这是一个高度竞争的行业,成功取决于是否能实现高效率和低成本制造。所以生产调度是非常重要的。 在过去,该公司安装的软件工具可以支持生产过程中的各个区域调度。全面提高公司绩效,增加产量和减少产品的交货时间,他们计划建立自动电抗器的供应链规划服务器–总调度系统协调当地所有的业务和生产区。为了提供最好的解决方案,调度工具供应商,预优国际(https://www.sodocs.net/doc/5a5598183.html,)决定使用模拟求解调度工具的优化配置。 问题是建立一个仿真工具,它将接受的到来客户订单和生产订单排序以满足这些需求。一个重要的地方是模型的生产过程本身,以确保它的主要阶段的最佳时刻加载。阳极氧化阶段是整个生产过程中特别重要的,因此,它必须是非常详细的模拟,以测试到整体订单的交货时间可以通过阳极氧化过程阶段优化减少到什么程度。 在这种情况下的研究主要目标是以下几个: (1)为了确定公司模型间的相关业务和生产过程和确定订单和交货时间, (2)在规划部门分析和优化业务流程,为了处理传入的需求和规划生产订单。 (3)测试的整体生产时间,提高灵敏度,特别是确定是否引入特定排序规则的生产订单将减少在阳极氧化处理阶段总的处理时间。

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

控制系统数字仿真大作业.

《控制系统数字仿真》课程 大作业 姓名: 学号: 班级: 日期: 同组人员:

目录 一、引言 (2) 二、设计方法 (2) 1、系统数学模型 (2) 2、系统性能指标 (4) 2.1 绘制系统阶跃响应曲线、根轨迹图、频率特性 (4) 2.2 稳定性分析 (6) 2.3 性能指标分析 (6) 3、控制器设计 (6) 三、深入探讨 (9) 1、比例-微分控制器(PD) (9) 2、比例-积分控制(PI) (12) 3、比例-微分-积分控制器(PID) (14) 四、设计总结 (17) 五、心得体会 (18) 六、参考文献 (18)

一、引言 MATLAB语言是当今国际控制界最为流行的控制系统计算机辅助设计语言,它的出现为控制系统的计算机辅助分析和设计带来了全新的手段。其中图形交互式的模型输入计算机仿真环境SIMULINK,为MATLAB应用的进一步推广起到了积极的推动作用。现在,MATLAB语言已经风靡全世界,成为控制系统CAD领域最普及、也是最受欢迎的软件环境。 随着计算机技术的发展和应用,自动控制理论和技术在宇航、机器人控制、导弹制导及核动力等高新技术领域中的应用也愈来愈深入广泛。不仅如此,自动控制技术的应用范围现在已发展到生物、医学、环境、经济管理和其它许多社会领域中,成为现代社会生活中不可或缺的一部分。随着时代进步和人们生活水平的提高,在人类探知未来,认识和改造自然,建设高度文明和发达社会的活动中,控制理论和技术必将进一步发挥更加重要的作用。作为一个自动化专业的学生,了解和掌握自动控制的有关知识是十分必要的。 利用MATLAB软件及其SIMULINK仿真工具来实现对自动控制系统建模、分析与设计、仿真,能够直观、快速地分析系统的动态性能和稳态性能,并且能够灵活的改变系统的结构和参数,通过快速、直观的仿真达到系统的优化设计,以满足特定的设计指标。 二、设计方法 1、系统数学模型 美国卡耐尔基-梅隆大学机器人研究所开发研制了一套用于星际探索的系统,其目标机器人是一个六足步行机器人,如图(a)所示。该机器人单足控制系统结构图如图(b)所示。 要求: (1)建立系统数学模型; (2)绘制系统阶跃响应曲线、根轨迹图、频率特性; (3)分析系统的稳定性,及性能指标; (4)设计控制器Gc(s),使系统指标满足:ts<10s,ess=0,,超调量小于5%。

matlab机电系统仿真大作业

一曲柄滑块机构运动学仿真 1、设计任务描述 通过分析求解曲柄滑块机构动力学方程,编写matlab程序并建立Simulink 模型,由已知的连杆长度和曲柄输入角速度或角加速度求解滑块位移与时间的关系,滑块速度和时间的关系,连杆转角和时间的关系以及滑块位移和滑块速度与加速度之间的关系,从而实现运动学仿真目的。 2、系统结构简图与矢量模型 下图所示是只有一个自由度的曲柄滑块机构,连杆与长度已知。 图2-1 曲柄滑块机构简图 设每一连杆(包括固定杆件)均由一位移矢量表示,下图给出了该机构各个杆件之间的矢量关系 图2-2 曲柄滑块机构的矢量环

3.匀角速度输入时系统仿真 3.1 系统动力学方程 系统为匀角速度输入的时候,其输入为输出为;。 (1) 曲柄滑块机构闭环位移矢量方程为: (2)曲柄滑块机构的位置方程 (3)曲柄滑块机构的运动学方程 通过对位置方程进行求导,可得 由于系统的输出是与,为了便于建立A*x=B形式的矩阵,使x=[], 将运动学方程两边进行整理,得到 将上述方程的v1与w3提取出来,即可建立运动学方程的矩阵形式 3.2 M函数编写与Simulink仿真模型建立 3.2.1 滑块速度与时间的变化情况以及滑块位移与时间的变化情况 仿真的基本思路:已知输入w2与,由运动学方程求出w3和v1,再通过积分,即可求出与r1。 (1)编写Matlab函数求解运动学方程 将该机构的运动学方程的矩阵形式用M函数compv(u)来表示。 设r2=15mm,r3=55mm,r1(0)=70mm,。 其中各个零时刻的初始值可以在Simulink模型的积分器初始值里设置

M函数如下: function[x]=compv(u) %u(1)=w2 %u(2)=sita2 %u(3)=sita3 r2=15; r3=55; a=[r3*sin(u(3)) 1;-r3*cos(u(3)) 0]; b=[-r2*u(1)*sin(u(2));r2*u(1)*cos(u(2))]; x=inv(a)*b; (2)建立Simulink模型 M函数创建完毕后,根据之前的运动学方程建立Simulink模型,如下图: 图3-1 Simulink模型 同时不要忘记设置r1初始值70,如下图: 图3-2 r1初始值设置

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

PID控制系统的Simulink仿真分析

实验报告 课程名称:MATLAB语言与控制系统仿真 实验项目:PID控制系统的Simulink仿真分析专业班级: 学号: 姓名: 指导教师: 日期: 机械工程实验教学中心

注:1、请实验学生及指导教师实验前做实验仪器设备使用登记; 2、请各位学生大致按照以下提纲撰写实验报告,可续页; 3、请指导教师按五分制(优、良、中、及格、不及格)给出报告成绩; 4、课程结束后,请将该实验报告上交机械工程实验教学中心存档。 一、实验目的和任务 1.掌握PID 控制规律及控制器实现。 2.掌握用Simulink 建立PID 控制器及构建系统模型与仿真方法。 二、实验原理和方法 在模拟控制系统中,控制器中最常用的控制规律是PID 控制。PID 控制器是一 种线性控制器,它根据给定值与实际输出值构成控制偏差。PID 控制规律写成传递 函数的形式为 s K s Ki K s T s T K s U s E s G d p d i p ++=++==)1 1()() ()( 式中,P K 为比例系数;i K 为积分系数;d K 为微分系数;i p i K K T =为积分时间常数; p d d K K T =为微分时间常数;简单来说,PID 控制各校正环节的作用如下: (1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,控制器立即产 生控制作用,以减少偏差。 (2)积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积 分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 (3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大 之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调 节时间。 三、实验使用仪器设备(名称、型号、技术参数等) 计算机、MATLAB 软件 四、实验内容(步骤) 1、在MATLAB 命令窗口中输入“simulink ”进入仿真界面。 2、构建PID 控制器:(1)新建Simulink 模型窗口(选择“File/New/Model ”),在 Simulink Library Browser 中将需要的模块拖动到新建的窗口中,根据PID 控制器的 传递函数构建出如下模型:

《生产系统建模与仿真》教学大纲

《生产系统建模与仿真》教学大纲 (理论课程) 开课系(部):工程学院课程编号:010396 课程类型:专业课总学时:48 学分:3 适用专业:工业工程开课学期:2014-2015学年第一学期 先修课程:概率论与数理统计、C语言程序设计、系统工程导论 一、课程简述 《生产系统建模与仿真》是面向工程实际的应用型课程,是工业工程系的主导课程之一。学生通过本课程的学习能够初步运用仿真技术来发现生产系统中的关键问题,并通过改进措施的实现,提高生产能力和生产效率。 本课程具有较强的理论性,同时具有较强的实践性和应用性,能够有效增强学生的系统仿真理论基础,提高学生对系统仿真、分析工作的适应性,培养其开发创新能力。 本课程的教学目标是培养学生的设计能力、创新能力和工程意识。课程以制造型生产企业为核心,通过理论教学和实践环节相结合,阐述了离散事件系统建模与仿真技术在生产企业分析中的基本原理和方法。其容涉及计算机仿真技术在生产系统分析中的作用和原理、仿真软件的介绍,重点介绍排队系统、库存系统、加工系统以及输入、输出数据分析。本课程的目的是要求学生通过学习、课堂教育和上机训练,能了解如何运用计算机仿真技术模拟生产系统的布置和调度管理;并熟悉和掌握计算机仿真软件的基本操作和能够实现的功能;使学生了解计算机仿真的基本步骤。 二、课程要求 (一)教学方法 1、启发式课堂讨论 针对关键知识点、典型题和难题,通过教师提问,鼓励学生回答问题或请到讲台前做题,并请其他学生评判或提出不同的答案或不同的解决方法。目的是加强学生自主学习的能力和判断能力,培养主动思考的习惯,启发学生的探索精神。 2、重视在教学中加强知识演进的逻辑规律的讲解 提高学生的逻辑思维能力,培养学生分析问题、解决问题的能力。 3、加强计算机辅助设计、分析 将Flexsim仿真软件引入教学中。应用计算机辅助设计、分析,能方便的改变系统

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

曾华艳组离散事件系统仿真大作业

新疆财经大学实验报告 课程名称:物流管理综合实验 实验项目名称:系统建模与仿真 学号: 2013104059 姓名:曾华艳 班级:物流管理11-1 指导教师:林秋平 2014年 6月 2日

新疆财经大学实验报告

《铁路局联通营业厅排队仿真分析实验报告》 一、实验目的 (一)通过对铁路局联通营业厅运作的观察,建立计算机仿真全过程,对营业厅运作进行数据采集、建模和仿真分析,为联通营业厅提出改进和优化方案的建议。 (二)通过这次实验活动,全面了解计算机仿真技术在物流领域、生产制造领域等离散事件系统中的应用,理解仿真技术如何辅助管理人员进行决策。 (三)通过分组合作的形式,提供一种系统仿真工作中常见的团队协作方式的实践体验,培养协调工作、共同完成任务的能力。 二、系统描述 人们进入联通营业厅,首先要通过取票系统拿到自己的号,先在等待区等待叫号系统报自己的号。一共有2个服务台,2个服务台同时工作,哪个服务台叫到几号,拿这个号码的人就去哪个服务台,叫号系统按顺序叫号,2个服务台叫号不会发生重复现象。我们组决定针对铁路局联通营业厅叫号排队办理业务的过程进行研究,因此我们采集了仿真模型相关数据。记录了每位顾客到达时间、等待时间和离开时间。将收集的数据整理,录入excel中,并计算出了顾客的到达时间间隔和被服务时间,再利用flexsim建立仿真模型进行仿真分析与优化。 三、小组分工 (一)本组成员 1.组长:曾华艳 2.组员:晁芙蓉、陈磊、阿尔孜姑丽、宗泽宁、张振恒 (二)小组分工 1.调查收集数据和模型优化:全体成员 2.数据录入:晁芙蓉、张振恒、阿尔孜姑丽 3.数据处理:宗泽宁、阿尔孜姑丽 4.仿真模型建立与分析:陈磊、曾华艳 5.实验报告:曾华艳、晁芙蓉、宗泽宁 6.PPT 制作:张振恒、陈磊

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些 2、 如何判断系统稳定性 3、 系统的动态性能指标有哪些 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为: ) ()()()(1 )(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,(); ,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

大作业题目

控制系统仿真大作业 1、曲线拟合的Matlab实现和优化度检验 通过一个实际的例子,介绍最小二乘曲线拟合法的基本原理,对最小二乘曲线拟合法的Matlab实现方法进行研究,并给出曲线拟合Matlab实现的源程序。论述了Matlab软件在做曲线拟合时的用法,并进行曲线的拟合和相应的图像。 2、基于Matlab的液位串级控制系统 运用组态王和Matlab混合编程的方法设计了一个双容(两个水箱串联)液位串级在线控制系统,由组态王编制人机交互界面,用Matlab完成控制算法,二者通过DDE进行实时数据交换;采用串级控制策略,减小二次干扰的影响,验证其方法的有效性。 3、基于Matlab的变压器差动保护闭环仿真研究 应用Matlab建立了微机保护仿真系统,并对不同原理的变压器差动保护进行了仿真和比较.仿真系统采用积木式结构,根据微机保护的实现原理构建模块,实现保护的闭环仿真,对保护的动作过程进行分析. 4、基于MATLAB/SIMULINK的交流电机调速系统建模与仿真 根据直接转矩控制原理,利用MATLAB/SIMULINK软件构造了一个交流电机调速系统,该系统能够很好地模拟真实系统,实现高效的调速系统设计。仿真结果验证该方法的有效性。 5、基于MCGS和MATLAB的薄膜厚度控制系统仿真 以MCGS组态软件和MATLAB为平台,设计和仿真了一个薄膜厚度控制系统.MCGS完成硬件接口的设置、数据的实时采集、人机对话、以动画的方式显示控制系统的运行情况,MATLAB完成PID参数的自动整定,并利用动态数据交换(DDE)技术建立两者间的通讯.并分析其仿真结果。 6、Matlab在动态电路分析中的应用 用Matlab计算动态电路,可得到解析解和波形图.一阶电路先计算3要素,后合成解

飞行控制系统大作业

飞行控制系统大作业 一、飞机纵向俯仰角与速度控制系统设计 某飞机的纵向线性小扰动方程为: l o n l o n x A x B u =+ 其中 状态[]T x u q h αθ =?????,控制量[]T e T u δδ=?? 问题: 1、 分析飞机纵向动力学模态,求飞机的长周期与短周期阻尼与自然频率。 2、 对升降舵及油门单位阶跃输入下的飞机自然特性进行仿真,画出相应的状态曲线。 3、 采用短周期简化方法,求出传递函数()e q G s δ??。采用根轨迹方法设计飞机的 俯仰角控制系统,并进行仿真。 4、 基于长周期简化方法,求出传递函数()T u G s δ??,设计飞机的速度控制系统, 并进行仿真。 5、 基于纵向线性模型(状态方程),分别对速度控制与俯仰角控制进行仿真。 假设作动器特性为 10 10 s +。 要求:给出相应的传递函数,画出相应的结构图根轨迹图及仿真曲线。 二、飞机侧向滚转角控制系统设计 某飞机的侧向线性小扰动方程为: l a t l a t x A x B u =+ 其中 状态[]T x p r βφψ=?????,控制量[]T a r u δδ=?? 问题: 1、 求出侧向运动方程的特征根,及对应的模态,求出荷兰滚模态的阻尼及自然频率。 2、 对副翼与方向舵单位阶跃输入下的自然特性进行仿真。 3、 采用简化方法,求出传递函数()a p G s δ??。采用根轨迹方法设计飞机的滚转角

控制系统,并进行仿真。 4、设计飞机航向控制系统,并进行仿真。 5、设计飞机方向舵协调控制律,基于侧向线性模型(状态方程),进行航向控制系统的仿真。 假设作动器特性为 10 10 s 。 要求:给出相应的传递函数,画出相应的结构图根轨迹图及仿真曲线,提交word 打印稿。 1.数据文件在dataX.mat文件中,按照学号的最后一位选择相应的数据文件。 如学号最后一位为5,则选择data5.mat文件作为你设计的数据。 2.在matlab中输入load data5 则可将数据导入, 其中alon为纵向系统阵,blon为纵向控制输入阵 alat为侧向系统阵,blat为侧向控制输入阵 控制量的单位为deg,状态变量的单位为(deg,deg/s,m) 3、由状态方程求传递函数用ss2tf()函数。 4、仿真可以用simulink搭建仿真图。 5、仿真的输入采用单位阶跃。 6、曲线要标注单位,用plot画,不能直接copy scope中的图。 例:

《MATLAB与控制系统。。仿真》实验报告

《MATLAB与控制系统仿真》 实验报告 班级: 学号: 姓名: 时间:2013 年 6 月

目录实验一MATLAB环境的熟悉与基本运算(一)实验二MATLAB环境的熟悉与基本运算(二)实验三MATLAB语言的程序设计 实验四MATLAB的图形绘制 实验五基于SIMULINK的系统仿真 实验六控制系统的频域与时域分析 实验七控制系统PID校正器设计法 实验八线性方程组求解及函数求极值

实验一MATLAB环境的熟悉与基本运算(一) 一、实验目的 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本原理 1.熟悉MATLAB环境: MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。 2.掌握MATLAB常用命令 表1 MATLAB常用命令 变量与运算符 3.1变量命名规则 3.2 MATLAB的各种常用运算符 表3 MATLAB关系运算符 表4 MATLAB逻辑运算符

| Or 逻辑或 ~ Not 逻辑非 Xor逻辑异或 符号功能说明示例符号功能说明示例 :1:1:4;1:2:11 . ;分隔行.. ,分隔列… ()% 注释 [] 构成向量、矩阵!调用操作系统命令 {} 构成单元数组= 用于赋值 的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 三、主要仪器设备及耗材 计算机 四.实验程序及结果 1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。 3、学习使用help命令。

控制系统仿真大作业

控制系统仿真 实验报告 专业班级:自动F0903 姓名:罗新勇 学号: 200948280311 指导教师:张杰

实验一、熟悉MATLAB 环境及矩阵、数组的数学计 算 一、 实验目的 1、熟悉启动和退出Matlab 的方法; 2、熟悉Matlab 命令窗口的组成; 3、掌握建立矩阵的方法; 二、 实验内容: 1、帮助命令 使用help 命令,查找 sqrt (开方)函数的使用方法; 2、先求下列表达式的值,然后显示Matlab 工作空间的使用情况并保存全部变量。 .3,9.2,8.2,...,8.2,9.2,0.3,2 3.0ln )3.0sin(2 )3(545.0212),1log(21)2(185sin 2)1(3.03.032 220 1---=+++-= ?? ? ? ??-+=++=+=-a a a e e z i x x x z e z a a 其中 提示:利用冒号表达式生成a 向量,求各点的函数值时用点乘运算。

?? ???=<≤+-<≤-<≤=5.2:5.0:0,3 2,1221, 110,)4(22 2 4t t t t t t t t z 其中 提示:用逻辑表达式求分段函数值。 (1)z1=2*sin(85/180*pi)/(1+(exp(1))^2) z1 = 0.2375 (2)x=[2 1+2i;-0.45 5] x = 2.0000 1.0000 + 2.0000i -0.4500 5.0000 z2=0.5*log(x+sqrt(1+x^2)) z2 = 0.7114 - 0.0253i 0.8968 + 0.3658i 0.2139 + 0.9343i 1.1541 - 0.0044i (3)a=-3.0:0.1:3.0 a = Columns 1 through 5 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 Columns 6 through 10 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000 Columns 11 through 15 -2.0000 -1.9000 -1.8000 -1.7000 -1.6000 Columns 16 through 20 -1.5000 -1.4000 -1.3000 -1.2000 -1.1000 Columns 21 through 25 -1.0000 -0.9000 -0.8000 -0.7000 -0.6000 Columns 26 through 30 -0.5000 -0.4000 -0.3000 -0.2000 -0.1000 Columns 31 through 35 0 0.1000 0.2000 0.3000 0.4000 Columns 36 through 40 0.5000 0.6000 0.7000 0.8000 0.9000 Columns 41 through 45 1.0000 1.1000 1.2000 1.3000 1.4000 Columns 46 through 50 1.5000 1.6000 1.7000 1.8000 1.9000 Columns 51 through 55 2.0000 2.1000 2.2000 2.3000 2.4000 Columns 56 through 60 2.5000 2.6000 2.7000 2.8000 2.9000 Column 61

电力电子电路建模与分析大作业要点

西安理工大学 研究生课程论文/研究报告 课程名称:电力电子系统建模与分析 任课教师: 完成日期:2016 年7 月 5 日 专业:电力电子与电力传动 学号: 姓名: 同组成员: 成绩:

题目要求 某用户需要一直流电源,要求:直流输出24V/200W,输出电压波动及纹波均<1%。用户有220V交流电网(±10%波动变化)可供使用: (1) 设计电源主电路及其参数; (2) 建立电路数学模型,获得开关变换器传函模型; (3) 设计控制器参数,给出控制补偿器前和补偿后开环传递函数波特图,分 析系统的动态和稳态性能; (4) 根据设计的控制补偿器参数进行电路仿真,实现电源要求; (5) 讨论建模中忽略或近似因素对数学模型的影响,得出适应性结论(量化 性结论:如具体开关频率、具体允许扰动幅值及频率等)。 主要工作 本次设计主要负责电源主电路及其参数的的设计,以及建立电路数学模型并获得开关变换器传函模型这两部分内容,具体如下: (1) 本次设计电源主电路及其参数,采用从后向前的逆向设计思想。首先根据系统输出要求,设计了后级DC/DC型Buck电路的参数。接着设计了前级不控整流电路以及工频变压器的参数。考虑到主电路启动运行时的安全性,在主电路中加入了软启动电路; (2) 本次DC/DC变换器的建模并没有采用传统的状态空间平均方法,而是采用更为简单、直观的平均开关建模方法,建立了Buck变换器小信号交流模型。最后,推到出了开关变换器的传递函数模型,并给出了Buck电路闭环控制框图。

1 设计主电路及其参数 1.1主电路设计 根据题目要求,系统为单相交流220V/50Hz 输入,直流24V/200W 输出。对于小功率单相交流输入的场合,由于二极管不控整流电路简单,可靠性高,产生的高次谐波较少,广泛应用于不间断电源(UPS)、开关电源等场合。所以初步确定本系统主电路拓扑为:前级AC-DC 电路为电源经变压器降压后的二极管不控整流,后级DC-DC 电路为Buck 斩波电路,其中Buck 电路工作在电感电流连续模式(CCM ),前后级之间通过直流母线和直流电容连接在一起。系统主电路结构如图1-1所示。 AC 220V/50Hz L C 1 C 2R D S 图1-1 系统主电路结构图 1.2主电路参数设计 本次设计电源主电路参数,采用从后向前的逆向设计思想。先对后级DC/DC 型Buck 电路的参数进行设计,接着对前级不控整流电路以及工频变压器的参数进行设计。下面分别对后级的Buck 电路和前级经变压器降压后的不控整流电路各参数进行分析设计。 1.2.1 输出电阻计算 根据系统电路参数:220,50;24;200i o U V Hz U V P W ===,可计算: 输出电流: /200/248.33O O I P U W V A ==≈ (1-1) 负载等值电阻: /24/8.33 2.88O O R U I V A ==≈Ω (1-2)

弹簧阻尼系统动力学模型adams仿真设计

震源车系统动力学模型分析报告 一、项目要求 1)独立完成1个应用Adams 软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams 的命令文件,命令文件要求清楚、简洁。 1K 1 C 2K 2C 3 C 3 K 3 M 1 M 2M 二、建立模型 1)启动admas ,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X 和Y 分别设置成750mm 和500mm ,间距(Spacing )中的X 和Y 都设置成50mm 。然后点击“OK ”确定。如图2-1所表示。 图 2-1 设置工作网格对话框

2)在ADAMS/View零件库中选择矩形图标,参数选择为“on Ground”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“New Part”建立part-2、part-3、part-4,得到图形如2-3所示, 图 2-2 图 2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图 2-4 创建弹簧阻尼器 4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。

哈工大 计算机仿真技术实验报告 仿真实验四基于Simulink控制系统仿真与综合设计

基于Simulink 控制系统仿真与综合设计 一、实验目的 (1) 熟悉Simulink 的工作环境及其功能模块库; (2) 掌握Simulink 的系统建模和仿真方法; (3) 掌握Simulink 仿真数据的输出方法与数据处理; (4) 掌握利用Simulink 进行控制系统的时域仿真分析与综合设计方法; (5) 掌握利用 Simulink 对控制系统的时域与频域性能指标分析方法。 二、实验内容 图2.1为单位负反馈系统。分别求出当输入信号为阶跃函数信号)(1)(t t r =、斜坡函数信号t t r =)(和抛物线函数信号2/)(2t t r =时,系统输出响应)(t y 及误差信号)(t e 曲线。若要求系统动态性能指标满足如下条件:a) 动态过程响应时间s t s 5.2≤;b) 动态过程响应上升时间s t p 1≤;c) 系统最大超调量%10≤p σ。按图1.2所示系统设计PID 调节器参数。 图2.1 单位反馈控制系统框图

图2.2 综合设计控制系统框图 三、实验要求 (1) 采用Simulink系统建模与系统仿真方法,完成仿真实验; (2) 利用Simulink中的Scope模块观察仿真结果,并从中分析系统时域性能指标(系统阶跃响应过渡过程时间,系统响应上升时间,系统响应振荡次数,系统最大超调量和系统稳态误差); (3) 利用Simulink中Signal Constraint模块对图2.2系统的PID参数进行综合设计,以确定其参数; (4) 对系统综合设计前后的主要性能指标进行对比分析,并给出PID参数的改变对闭环系统性能指标的影响。 四、实验步骤与方法 4.1时域仿真分析实验步骤与方法 在Simulink仿真环境中,打开simulink库,找出相应的单元部件模型,并拖至打开的模型窗口中,构造自己需要的仿真模型。根据图2.1 所示的单位反馈控制系统框图建立其仿真模型,并对各个单元部件模型的参数进行设定。所做出的仿真电路图如图4.1.1所示。

微纳系统仿真大作业

1. 用有限差分法和有线元方法把以下问题变成数值方程,并说明两种方法的异同: 2(,)0x y ??= 边界条件: (,0)(,1)0;(0,)(1,)1; x x y y ????==== 解: (1) 有限差分法 2(,)0x y ??= 即为20xx yy u u u ?=+=,其中(),u x y ?= 将定义域等分,步长均为h ,则 ()()()()()()222,,,,4,u x h y u x h y u x y h u x y h u x y u O h h ++-+++--?=+ 略去高阶无穷小,由20xx yy u u u ?=+=得 ()()()()(),,,,4,0u x h y u x h y u x y h u x y h u x y ++-+++--= 定义域离散,离散点为(),i j x y ,则上式可化为 ()()()()(),,,,4,0i j i j i j i j i j u x h y u x h y u x y h u x y h u x y ++-+++--= 定义域为01,01x y ≤≤≤≤,因为本题只是为了说明原理,故将其简单等分为33?单元,节点编号从()()0,02,2到。 则 1,1,,1,1,40i j i j i j i j i j u u u u u +-+-+++-= 其位移矢量为

()()()()()()()()()0,00,10,21,01,11,22,02,12,24110141101410141101411011410141011410140u u u u u u u u u ????-??????????-????????????-??????-????????????=-??????-????????????-????????-??????????-?????????? 由边界条件 (,0)(,1)0;(0,)(1,)1; x x y y ????==== 可知()()()()0,00,22,02,2,,,u u u u 有冲突,可以区位均值即()()()()0,00,22,02,20.5u u u u ====,而()()1,11,20u u ==,()()0,12,10u u ==,带入化简即可求得()1,1u (2) 有限元法 使用有限元法的计算流程为: 求解区域离散化; 构造插值函数形成分段光滑的坐标函数系; 用 Ritz 方法求解微分方程 对2(,)0x y ??=构造函数 ()221,2x y dxdy x x ???????????∏=+???? ? ????????????? ?? 首先将整个区域离散为三角形的子区域如下图, 三角形微小子区域中的值由三 角形节点值的插值结果表示,即 (),i i j j k k x y N N N ????=++

matlab大作业(控制系统仿真)

河南工业大学 控制系统仿真 姓名:宋伯伦 班级:自动化1501 学号:201523020128 成绩: 2017年6月16 日

设 计 题 目 基于MATLAB的皮带配料控制系统的仿真 设计内容和要求 阐述皮带配料控制系统的工作原理、物料流量特点,建立系统模型,通过Matlab进行控制系统仿真,达到适应系统工作过程各参数变化的目的。

报告主要章节 第一章概述与引言 随着科学技术的不断发展,电子皮带秤配料系统已在煤炭、化工、烟草、冶金、建材等行业中广泛应用。目前大多数皮带秤配料系统仍然是采用传统的PID控制算法,灵敏度较高,可以说在理论上调节是能做到无误差的,或者说在误差较小的范围内的确很有优势,但是出现较大误差时,其动态特性并不是很理想,超调量一般较大。所以,本课题设计了一套更为合理高效的电子皮带秤配料系统,本设计主要针对皮带秤配料系统中配料这一环节,采用模糊PID和传统PID控制相结合的方法。 本课题主要内容包括皮带秤的原理与组成,系统的总体设计,模糊控制算法结合本系统的分析以及采用MATILAB进行模糊PID控制仿真。 第二章各部分设计方案及工作原理 皮带秤配料系统中配料皮带秤作为在线测量的动态称量衡器,有着重要的作用,目前已广泛用于冶金、煤炭、烟草、化工、建材等行业中,是集输送、称量、配料于一体的设备。皮带秤仪表除了显示瞬时流量和累积流量外,还能根据由接线盒传过来的数据与给定值的偏差来控制给料机的给料,从而保证瞬时流量的恒定。这样就构成了一个闭环控制系统。 2.1皮带秤配料系统组成及工作原理 2.1.1皮带秤配料系统组成 配料皮带秤系统结构如图2.1所示,由三大部分组成,分别是料斗、给料设备和皮带秤。

相关主题