搜档网
当前位置:搜档网 › X射线光电子能谱(XPS)

X射线光电子能谱(XPS)

X射线光电子能谱(XPS)
X射线光电子能谱(XPS)

X射线光电子能谱(XPS)

X射线光电子能谱是利用波长在X射线范围的高能光子照射被测样品,测量由此引起的光电子能量分布的一种谱学方法。样品在X射线作用下,各种轨道电子都有可能从原子中激发成为光电子,由于各种原子、分子的轨道电子的结合能是一定的,因此可用来测定固体表面的电子结构和表面组分的化学成分。在后一种用途时,一般又称为化学分析光电子能谱法(Electron Spectroscopy for Chemical Analysis,简称)。与紫外光源相比,X射线的线宽在以上,因此不能分辨出分子、离子的振动能级。此外,在实验时样品表面受辐照损伤小,能检测周期表中除和以外所有的元素,并具有很高的绝对灵敏度。因此是目前表面分析中使用最广的谱仪之一。

7.3.1 谱图特征

图7.3.1为表面被氧化且有部分碳污染的金属铝的典型的图谱。其中图(a)是宽能量范围扫描的全谱,主要由一系列尖锐的谱线组成;图(b)则是图(a)低结合能端的放大谱,显示了谱线的精细结构。从图我们可得到如下信息:

1.图中除了和谱线外,和两条谱线的存在表明金属铝的表面已被部分氧化并受有机物的污染。谱图的横坐标是轨道电子结合能。由于X射线能量大,而价带电子对X射线的光电效应截面远小于内层电子,所以主要研究原子的内层电子结合能。由于内层电子不参与化学反应,保留了原子轨道特征,因此其电子结合能具有特定值。如图所示,每条谱线的位置和相应元素原子内层电子的结合能有一一对应关系,不同元素原子产生了彼此完全分离的电子谱线,所以相邻元素的识别不会发生混淆。这样对样品进行一次宽能量范围的扫描,就可确定样品表面的元素组成。

2.从图7.3.1(b)可见,在和谱线高结合能一侧都有一个肩峰。如图所标示,主峰分别对应纯金属铝的和轨道电子,相邻的肩峰则分别对应于中铝的和轨道电子。这是由于纯铝和中的铝所处的化学环境不同引起内层轨道电子结合能向高能方向偏移造成的。这种由于化学环境不同而引起内壳层电子结合能位移的现象叫化学位移。研究表明,大多数非金属原子的化学状态和金属的氧化状态在很多情况下是可以区分的,这样,我们就可根据内壳

层电子结合能位移大小判断有关元素的化学状态。

3.谱图的纵坐标是光电子的强度,通常以单位时间内接收到的光电子数表示。光电子峰的强度与产生该信号的元素含量及电子的平均自由程和样品原子各个能级的光致电离截面等有关。在相同激发源及谱仪接收条件下,充分考虑这些因素后,可以用每个谱峰所属面积的大小作表面元素的定量分析。

4.此外,图谱还显示出的俄歇谱线、铝的价带谱和等离子激元等伴峰结构。这些伴峰常与样品的电子结构密切相关。在分析谱图时,特别要注意把伴峰与主峰的化学位移峰区别开来以避免相互混淆,导致错误的结论。

7.3.2 化学位移

化学结构的变化和原子价态的变化都可以引起谱峰有规律的位移。化学位移在中是一种很有用的信息,通过对化学位移的研究,可以了解原子的状态、可能处于的化学环境以及分子结构等。如纯铝,其轨道电子结合能为,当它被氧化成为正三价的铝离子时,其轨道电子结合能为,增加了(见图7.3.1)。又例如聚对苯二甲酸乙二酯,此化合物中有三种完全不同的碳:苯环上的碳、羰基中的碳和连接对苯二甲酸单元上的- -基中的碳。每种碳都处于不同的化学环境中,因此呈现不同的化学位移,导致碳的峰出现在谱线不同的位置上,如图7.3.2所示。从图还可以看出,在这种分子中两种氧原子所处的化学环境不同也反映在氧的谱中。

化学位移现象可以用原子的静电模型来解释。内层电子一方面受到原子核强烈的库仑作用而具有一定的结合能,另一方面又受到外层电子的屏蔽作用。当外层电子密度减少时,屏蔽作用将减弱,内层电子的结合能增加;反之则结合能将减少。因此当被测原子的氧化价态增加,或与电负性大的原子结合时,都导致其结合能的增加。由此可从被测原子内层电子结合能变化来了解其价态变化和所处化学环境。

一般说来,对有机物,同样的原子在具有强电负性的置换基团中比在弱电负性基团中可能会呈现出较大的结合能。同样地,在无机化合物中不同电负性基团的置换作用也能引起化学位

移的细微变化,而且可用来研究表面物质电子环境的详细情况。对大多数的金属,其氧化时会出现向高结合能方向的化学位移。在氧化状态,化学位移的量级通常是每单位电荷移动。因此,除了少数金属(如、等)由于氧化产生的化学位移太小,不能用来进行化学分析外,在大多数情况下,很容易通过化学位移来确定和识别表面存在的金属氧化物。需指出的是,除了由于原子周围的化学环境的改变引起光电子峰位移外,样品的荷电效应同样会影响谱峰位移,从而影响电子结合能的正确测量。实验时必须注意并设法进行校正。

X射线光电子能谱的原理和应用

【转帖】X射线光电子能谱的原理及应用(XPS) 来源:转载网络作者: tof-sims (一)X光电子能谱分析的基本原理 X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用下式表示: hn=Ek+Eb+Er 其中: hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek, 式(103)又可表示为:hn=Ek+Eb+Φ (10.4)Eb= hn- Ek-Φ (10.5) 仪器材料的功函数Φ是一个定值,约为4eV,入射X光子能量已知,这样,如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析元素的化合价和存在形式。 (二)电子能谱法的特点 ( 1 )可以分析除H 和He 以外的所有元素;可以直接测定来自样品单个能级光电发射电子的能量分布,且直接得到电子能级结构的信息。 ( 2 )从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称作“原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层电子轨道能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定性的标识性强。 ( 3 )是一种无损分析。 ( 4 )是一种高灵敏超微量表面分析技术。分析所需试样约10 -8 g 即可,绝对灵敏度高达10 -18 g ,样品分析深度约2nm 。 (三) X 射线光电子能谱法的应用 ( 1 )元素定性分析 各种元素都有它的特征的电子结合能,因此在能谱图中就出现特征谱线,可以根据这些谱线在能谱图中的位置来鉴定周期表中除H 和He 以外的所有元素。通过对样品进行全扫描,在一次测定中就可以检出全部或大部分元素。

相关主题