搜档网
当前位置:搜档网 › 空气流量传感器的故障对汽车的影响

空气流量传感器的故障对汽车的影响

空气流量传感器的故障对汽车的影响

空气流量传感器的故障对汽车的影响

空气流量传感器的输出信号偏差不足以让电控单元纪录故障码,但是由于空气流量信号不能准确反映实际的进气量,导致此控制的喷油量偏少,所以发动机的转速不升反降。

空气流量传感器故障导致发动机加速不良,如果发现空气流量数据只能达到1.1~1.3g/s,而且不能随着节气门的开闭而变化。更换空气流量传感器后,故障被排除。是这因为空气流量传感器的输出信号偏差不足以让电控单元(ECU)纪录故障码,但是由于空气流量信号不能准确反映实际的进气量,导致ECU据此控制的喷油量偏少,所以发动机的转速不升反降。

初步判断空气流量传感器的性能,拔下传感器插接器可以判断它的性能:1.当出现的故障现象保持不变的时候,https://www.sodocs.net/doc/5513398111.html,这就证明传感器已经被损坏了。2.当出现的故障现象稍微减轻的时候,这就证明传感器的性能在一定的程度上漂移,信号就会出现偏值的现象。

3.当出现的故障现象已经开始恶化的时候,这就证明传感器没有被损坏,是属于正常的。

空气流量传感器的故障对汽车的影响,空气流量传感器的不正常工作不一定会造成发动机不能启动,但是对发动机的有关动力的性能是一定有影响的,例如进气管回火、加速不好、怠速的不稳定以及排气管会冒出黑烟等等的这些问题,而且还会导致尾气的排放量超标。

除了发动机以外的部件不正常工作,可能是记录空气流量传感器的故障码。当氧空气流量传感器坏了的时候,当节气门位置传感器的

性能有缺陷的时候,当节气门弄脏的时候,都有可能会记录空气流量传感器的故障码。

实训项目一空气流量传感器的检测

实训项目一空气流量传感器的检测 空气流量传感器的功用是检测发动机进气量大小,并将进气量信息转换成电信号输入电单元(ECU),以供ECU计算确定喷油时间(即喷油量)和点火时间。进气量信号是控制单元计算喷油时间和点火时间的主要依据。 一、实训目的和要求 1、掌握空气流量传感器的结构特性,了解其工作原理; 2、掌握空气流量传感器及其控制电路的检测方法(电阻检测、电压检测、波形检测等); 3、掌握空气流量计数据分析的方法。 二、实训课时 实训共安排2课时。 三、器材工具 1、工具:扳手、螺丝刀、电吹风、温度计。 2、设备:桑塔纳AJR发动机故障实验台。 3、仪器:数字万用表、金德K81故障诊断仪。 4、教具:AJR发动机教学挂图一套,空气流量计解剖教具一只,测量用桑塔纳2000Gsi型轿车空气流量计5只。 四、成绩评定 成绩评定的等级为优、良、中、及格和不及格。 五、实训原理 在多点燃油喷射系统中,根据检测进气量的方式不同,空气流量计又分为“D”型(即压力型)和“L”型(即空气流量型)两种类型。“D”型是利用压力传感器检测进气歧管内的绝对压力,测量方法属于间接测量法。控制系统利用检测到的绝对压力与发动机的转速来计算吸入气缸的空气量,又称为速度/密度型燃油喷射控制系统。由于空气在进气歧管内流动时会产生压力波动,发动机怠速(节气门关闭)时的进气量与汽车加速(节气门全开)时的进气量之差可达40倍以上,进气气流的最大流速可达80m/s,因此,“D”型燃油喷射系统的测量精度不高,但控制系统的制造成本较低。“L”型是利用流量传感器直接测量吸入进气管的空气流量。由于采用直接测量的方法,因此进气量的测量精度较高,控制效果优于“D”型燃油喷射系统。当前各个车型采用的“L”型传感器分为体积流量型(如翼片式、量芯式、涡流式)传感器和质量流量型(如热线式和热膜式)传感器。质量流量型传感器工作性能稳定、测量精度高、使用效果好,但制造成本相对“D”型要高。由于热膜式空气流量传感器内没有运动部件,因此没有流动阻力,而且使用寿命远远高于热线式流量传感器。 本次实训选用的是桑塔纳2000Gsi型轿车使用的空气流量计,属“L”型热膜式空气流量计。

空气流量计故障分析检测

空气流量计故障分析检测 空气流量计是用来计量发动机进气量的传感器,在汽车电控燃油喷射系统中,把空气流量信号和发动机转速信号一起作为喷油时间的基准信号。空气流量计的发展大体上经历了4代:L 型、D型、热线式、热模式。发动机工作不稳定的原因很多,空气流量计是重点检查的对象,但是要确认它是否有故障,故障分析、检查方法就显得尤为重要,下面通过两个例子加以说明。 一、故障一 凌志LS400轿车高速闯车。发动机在原地加速时运转正常。当汽车行驶速度在120~14 0公里左右时,汽车会出现闯动的现象,有时闯动频繁,有时只是偶尔闯动,感觉好像是发动机 间歇断火。故障分析:发动机空载运转时正常,而故障只在120km/h车速以上时发生,或者说是有较大负荷时故障才出现,因此故障原因可能是发动机高速断火、断油、喷油量突然减少,或者是废气再循环、汽油蒸气回收系统、进气控制系统、氧传感器闭环控制系统等在高速时工作不正常造成的。检修:读取故障代码,无码检查点火系统,将示波器接到一个点火线圈的中央高压线,试车、闯车时点火高压为8KV~10KV,正常,点火波形良好;将示波器接到另一个点火线圈的中央高压线,再试车出现故障时点火波形也良好。后来将示波器逐个接到各缸的高压线,再试车,结果发现闯车时各缸的高压都正常,波形都止常,可见闯车的原因不是点火系统造成的,应查找其他方面的原因。将示波器接到第一缸喷油器控制端,试车,观察喷油时间的变化情况,闯车该气缸的喷油时间正常,为3.5ms左右。然后将示波器逐个接到其余气缸的喷油器控制端,再试车,观察喷油时间的变化情况,闯车时每个气缸的喷油时间都无异常。也不能说明故障是喷油量造成的。接上电脑检测故障诊断仪,读取数据流,从获得的数据来看,当系统由闭环控制进入开环控制时,车速在120km/h左右,是容易出现闯车的时候。断开氧传感器接线, 强迫发动机常处于开环控制,接着试车,故障依旧。其他数据都正常。最后怀疑可能是某个传感器的信号不稳定,影响了发动机的动态工作,而且这个信号在诊断仪上又看不出问题。关键的传感器有曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器、空气流量计、车速传感器等。将示波器逐个接到曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器,试车出现故障时这些信号都正常。将示波器接到空气流量计(涡流式)信号端,试车,出现故障时发

空气流量计的检测方法

空气流量计的检测方法 空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU 根据空气计量传 感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传 感器一一空气流量计。②间接测量方法传感器一一进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1) 机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO 调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2) 卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3) 热线式空气流量计。热线式空气流量计按其热线形又分为 3 种。 ①热丝式一一将加热丝均匀分布在计量通道内。热丝式空气流量计(图1) 精度高、分布均匀,可精确计量空气量,但由于热丝很细(0.01~0.05mm)且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。 ②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由 于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导 较差,影响计量精度。

空气流量计故障分析

空气流量计故障分析 近年来国产车中,电子控制燃油喷射系统应用越来越多,相应的维修技术问题不断出现,空气流量计就是典型的例子,故障诊断仪经常显示空气流量计故障。 空气流量计是用来度量发动机吸人空气量的传感器。在汽车电子控制燃油喷射系统中,把空气流量信号和发动机转速信号一起作为喷油时间的基准信号。 电子控制燃油喷射系统中,空气流量计按发展史分类如下: 第一代简称L型在节气门轴上设置一个连动的滑变电阻来测量节气门开度,进而通过转速信号及进气温度信号换算成进气量。目前已很少应用,多用于老车型,现有些车型用于辅助信号。 第二代简称D型在进气歧管中引出真空,该真空作用到电压感应片上,感应出电压值,在ECU 中计算出相应的进气压力,再参照进气截面积计算出进气量。主要应用于奥迪V6等车型。 第三代简称热线式其原理是ECU通过给热线通不同电流来保持热线恒温。当不同流量的空气流经热线时将带走不同的热量,这时的电流变化就成为进气量的度量。热线又通过内部的电桥,平衡掉进气温度对该电流的影响,故流经热线的电流就成为空气流量的精确度量,主要应用于都市高尔夫等 车型。 第四代简称热模式其工作原理与热线式基本相同,是热线式的改进型,目前应用最广,主要 应用于捷达2OV、奥迪1.8T等。 空气流量计故障诊断与维修 电子控制燃油喷射系统的ECU有故障存储功能,它将各传感器及执行元件的工作情况汇总起来,并与电脑内存储的固定程序进行比较,如其误差超出规定范围即作为故障存储,维修人员通过故障阅读器V.A.G1551能读到具体故障情况,这里存在一个相似故障的分辨问题,如空气流量信号与氧传感器信号发生矛盾,电脑将怎样输出?下面举例说明。 故障一: 故障现象捷达2OV怠速不稳,部分负荷冒黑烟,且有时换挡熄火。 检测过程电脑内故障存储为空气流量计故障,但具体检测空气流量计电路时情况正常,更换空气流量计,故障依旧,更换电脑后冷车正常,热车后故障依旧。这时再检测全车数据块,发现08数据组中第7组第2区氧传感器电压变化频率慢,正常变化每分钟2O-30次,此车平均只有5-6次, 说明氧传感器有故障。 维修结果更换氧传感器,故障排除。 故障分析此故障在于电脑内出现空气流量计信号与氧传感器信号矛盾,实际上是由于氧传感器失准,造成误调节,但从结果上看和空气流量计信号严重超差,造成氧传感无法调整是一样的。这

空气流量计的检测方法

空气流量计的检测方法 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

空气流量计的检测方法空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU根据空气计量传感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传感器——空气流量计。②间接测量方法传感器——进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1)机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2)卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3)热线式空气流量计。热线式空气流量计按其热线形又分为3种。 ①热丝式——将加热丝均匀分布在计量通道内。热丝式空气流量计(图1)精度高、分布均匀,可精确计量空气量,但由于热丝很细~且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。

②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导较差,影响计量精度。 ③热阻式——将加热丝绕成线圈形式固定在石英玻璃管内或暴露在空气通道内。由于热阻式空气流量计热丝被固定,故热线寿命延长,但由于热阻面积很小,只能部分采空气流量,要求空气通道内空气流速均匀,所以常在进气侧安装梳流格栅。 由于热膜式和热阻式空气流量计均是部分采集空气计量空气量,故精度较热丝式较差。另外,热丝式、热膜式和热阻式空气流量计还都易受空气中水分及灰尘的污染,所以在控制电路上都做了专门的设计,每次打开点火开关或关闭点火开关后,流量计中的热丝会由电路提供瞬时大电流加热,使热丝瞬间产生高温(700-1 000℃),烧掉污染在热丝、热膜或热阻表面的杂质,保持空气流量计量精度。 轿车使用的空气流量计,属“L”型热膜式空气流量计,安装在空气滤清器壳体与进气软管之间。其核心部件是流量传感元件和热电阻(均为铂膜式电阻)组合在一起构成热膜电阻。在传感器内部的进气通道上设有一个矩形护套,相当于取样管,热膜电阻设在护套中。为了防止污物沉积到热膜电阻上而影响测量精度,在护套的空气入口一侧设有空气过滤层,用以过滤空气中的污物。为了防止进气温度变化使测量精度受到影响,在护套内还设有一个铂膜式温度补偿电阻,温补电阻设置在热膜电阻前面靠近空气入口一侧。温度补偿电阻和热膜电阻与传感器内部控制电路连接,

空气流量传感器1

四、汽车维修电子故障诊断与分析
[发动机电子]
空气流量传感器的故障分析
主讲:天津市优耐特汽车电控技术有限公司 王征

空气流量传感器故障诊断与分析 教学目的与要求
了解空气流量传感器的结构与工作原理。 了解空气流量传感器故障对整个电控系统的影响。 掌握空气流量传感器的检测方法(电阻测试、电压测试、 波形测试、数据流测试),工艺流程,技术规范。 掌握空气流量传感器数据分析的方法。

空气流量传感器故障诊断与分析 概述
空气流量传感器负责测 量发动机进气空气质量流 量。 通过测量该流量可以对 发动机的排放和输出功率 的工作点进行优化。 进气量信号是电控单元 精确计算喷油量的主要依 据,如果空气流量传感器 发生故障,电控单元将启 动备用模式,把空气流量 值 设 定 在 5g/s ( 暖 机 时),同时记录故障代 码。此时,将造成怠速不 稳、发动机喘抖、怠速游 车、怠速转速偏高、燃油 脉宽增加、行驶费油、点 火推迟、尾气排放恶劣 等。
点击查看动画

空气流量传感器故障诊断与分析 工作原理
在空气质量流量计工作时,若无气流通过,加 热区域两侧温度梯度呈对称分布,两个测量点温 度一致。
当气流单向流过时,由于气流通过中心的加热区时被 加热,从而与两侧热膜的热交换情况不同,使流量计中 的两个传感元件测量点温度发生不同变化,产生温差。 温度差随着流量增大而增大。温度差的大小和正负反映 了空气质量流的流量和方向。
点击查看动画
内置的评估电路相应地将温差转化为电压信号 输出,电控单元便是根据该电压信号确定空气流 量和质量。
1-无流量时温度分布,2-有流量时温度分布,3- 传感元件,4-加热区,5-无流量时温度分布热膜,6- 带测量外套管的HFM5,7-空气流。M1、M2-测量点, T1、T2-对应点的温度,ΔT-用以产生信号的两点间温 度差。

别克轿车空气流量传感器的工作原理

别克轿车空气流量传感器的工作原理 空气流量传感器是电喷系统的关键部件之一,它直接影响到车辆的正常行驶。 上海别克轿车使用的空气流量传感器是热线式流量计,它的作用是测量一定时间内通过传感器的空气流量,并将有关空气流量的信号传给ECU。ECU根据该信号来监测发动机的工作状况,计算燃油供给量。空气流量大,表明发动机在加速运转;空气流量小,则表明发动机在减速或怠速运转。 工作原理:当进入节气门体内的空气流经MAF传感器,带走了部分热量,空气流量越大,带走的热量越多。为使传感器感应件的温度保持在一恒定的温度,便需要额外的电流来加热感应件。MAF传感器通过测量该电流的电压来确定空气流量的大小。 空气流量传感器中的热线由金属铂丝制成,伸入到节气门阀体的旁通气道中。这种空气流量传感器采用惠斯顿电桥原理,置于空气流中的通电热线因气流的冷却作用而使电阻值发生变化,电桥因而失去平衡,控制电路便自动提高电压,加大流过热线的电流,使热线电阻值随温度升高而升高,电桥便重新获得平衡。在调节过程中,空气流量传感器传送给发动机电控模块(ECU)的电压信号随空气流量的变化而变化,在近热线的空气流中还设有补偿电阻丝(冷线),以免因空气温度的变化使电桥失去平衡。 空气流量传感器的热线积垢之后,传给ECU的电压信号便会不准,此时污物会影响辐射,使冷却效果降低。当空气流量增大时,热线温度降低缓慢,其电阻值的变化量也相应减少,因而电压和流过热线的电流不能相应的增加,以致传给ECU的信号电压偏低,造成混合气过稀。虽然热线式空气流量传感器都加装了烧净电路,即在每次停机时,ECU会自动给热线高温(1000℃)加热1s,以烧掉热线上的污物和灰尘,但部分地区,尤其是我国边远地区由于使用燃油品质过低,进气管产生回火,造成过多的杂质和积炭胶结在金属铂丝上,故单加温热线的净化装置也难以清除。因此,必须拆下空气流量传感器直接喷洗,才能恢复其正常功能。

空气流量传感器原理

空气流量传感器原理 车用空气流量传感器(或称空气流量计)是用来直接或间接检测进入发动机气缸空气量大小,并将检测结果转变成电信号输入电子控制单元ECU。电子控制汽油喷射发动机为了在各种运转工况下都能获得最佳浓度的混合气,必须正确地测定每一瞬间吸入发动机的空气量,以此作为ECU计算(控制)喷油量的主要依据。如果空气流量传感器或线路出现故障,ECU得不到正确的进气量信号,就不能正常地进行喷油量的控制,将造成混合气过浓或过稀,使发动机运转不正常。电子控制汽油喷射系统的空气流量传感器有多种型式,目前常见的空气流量传感器按其结构型式可分为翼片(叶片)式、卡尔曼涡流式、热膜式等几种。 1、翼片式空气流量传感器 图9-9是翼片式空气流量计工作原理图,该空气流量传感器在主进气道内安装有一个可绕轴旋转的翼片。在发动机工作时,空气经空气滤清器过滤清器过滤后进入空气流量传感器并推动翼片旋转,使其开启。翼片开启角度由进气量产生的推力大小和安装在翼片轴上复位弹簧弹力的平衡情况决定。当驾驶员操纵加速踏板来改变节气门开度时,进气量增大,进气气流对翼片的推力也增大,这时翼片开启的角度也增大。在翼片轴上安装有一个与翼片同轴旋转的电位计,这样在电位计上滑片的电阻的变化转变成电压信号。 当空气量增大时,其端子VC和VS之间的电阻值减小,两端子之间输出的信号电压降低;当进气量减小时,进气气流对翼片的推力减小,推力克服弹簧弹力使翼片偏转的角度也减小,端子VC与VS之间的电阻值增大,使两端子间输 图9-9 翼片式空气流量计工作原理 出的信号电压升高。ECU通过变化的信号电压控制发动机的喷油和点火时间。2、卡曼涡旋式空气流量传感器 为了克服动片式空气流量传感器的缺点,即在保证测量精度的前提下,扩展测量范围、并且取消滑动触点,人们又开发出小型轻巧的空气流量传感器,即卡曼涡旋式空气流量传感器。野外的架空电线被风吹时会嗡嗡发出声响,风速越高声音频率越高,这是因气流流过电线后形成涡旋所致,液体、气体等流体中均会发生这种现象,利用这一现象可以制成涡旋式流量传感器。在管道里设置柱状物,使流体流过柱状物之后形成两列涡旋,根据涡旋出现的

两例空气流量计故障的深入探讨

两例空气流量计故障的深入探讨 发表时间:2013-01-21T09:46:24.297Z 来源:《新校园》学习版2012年第9期供稿作者:张秀华 [导读] 发动机工作不稳定的原因很多,空气流量计是重点检查的对象,但是要确认它是否有故障,故障分析、检查方法就显得尤为重要。周丽萍(新疆兵团技师培训学院,新疆乌鲁木齐830054) 摘要:本文通过两例空气流量计的故障,讲述了电控发动机工作不稳定时的检修过程,需要用到的检测仪器,检查的关键对象,说明了周密地分析故障原因、灵活运用检测仪器和认真分析检测数据的重要性,避免检查过程中走弯路和误诊。 关键词:空气流量计;故障诊断;示波器;喷油时间 发动机工作不稳定的原因很多,空气流量计是重点检查的对象,但是要确认它是否有故障,故障分析、检查方法就显得尤为重要。下面通过两个例子说明。 故障一:凌志LS400 轿车高速闯车。发动机在原地加速时运转正常,当汽车行驶速度在120~140km/h 左右时,汽车会出现闯动的现象,有时闯动频繁,有时只是偶尔闯动,感觉好像是发动机间歇断火。 故障分析:发动机空载运转时正常,而故障只在120km/h车速以上时发生,或者说是有较大负荷时故障才出现,因此故障原因可能是发动机高速断火、断油、喷油量突然减少,或者是废气再循环、汽油蒸汽回收系统、进气控制系统、氧传感器闭环控制系统等在高速工作时不正常造成的。 检修:读取故障代码,无码。 检查点火系统,将示波器接到一个点火线圈的中央高压线,试车,闯车时点火高压为8~10KV,正常,点火波形良好;将示波器接到另一个点火线圈的中央高压线,再试车,出现故障时点火波形也良好。后来将示波器逐个接到各缸的高压线,再试车,结果发现闯车时各缸的高压都正常,波形都正常,可见闯车的原因不是点火系统造成的,应查找其他方面的原因。 将示波器接到第一缸喷油器控制端,试车,观察喷油时间的变化情况,闯车时该气缸的喷油时间正常,为3.5ms 左右。然后将示波器逐个接到其余气缸的喷油器控制端,再试车,观察喷油时间的变化情况,闯车时每个气缸的喷油时间都无异常。也不能说明故障是喷油量造成的。 接上scanner MT2500 故障诊断仪,读取数据流,从获得的数据来看,当系统由闭环控制进入开环控制时,车速在120km/h 左右,是容易出现闯车的时候。断开氧传感器接线,强迫发动机常处于开环控制,接着试车,故障依旧。其他数据都正常。 最后怀疑可能是某个传感器的信号不稳定,影响了发动机的动态工作,而且这个信号在诊断仪上又看不出问题。关键的传感器有曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器、空气流量计、车速传感器等。 将示波器逐个接到曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器,试车,出现故障时这些信号都正常。将示波器接到空气流量计(涡流式)信号端,试车,出现故障时发现矩形波信号有偶尔中断的现象,接着测量其电源端与接地端的工作电压,出现故障时,电压为稳定的5V,电压正常。说明该故障是空气流量计高速时有时信号输出不正常所致。将检查情况告知车主,车主说该空气流量计不是他的,前段时间曾在另一修理厂检修过其他方面的故障,回来后就发现了现在这个问题,怀疑被人调换了空气流量计,后来找到原修理厂,要回了原件,装回后汽车工作恢复正常。 故障二:现代Elantra 1.6 轿车出现冒黑烟、怠速游车的故障,而且黑烟随加速而增多,油耗大。 分析:黑烟随加速而增多,油耗大,应该是喷油量偏多,混合气过浓造成的。 检修:先读故障代码,诊断盒在离合器右侧的保险盒下方,接上发光二极管(该车无CHECK 灯),读到21 号代码(水温传感器信号不良),检查水温传感器的插头有油污,清洁后故障代码可以清除,但故障依旧。 接上金德K8 诊断仪,读取数据流,热车怠速的喷油时间为8ms 左右(正常为2~3ms),空气流量计的输出信号频率在80~1200Hz (正常为30~40Hz)之间快速变动,发动机转速在700~1100RPM 之间变动,其他信号参数基本正常。 从测量数据来看,很有可能是空气流量计信号不正常而引起喷油量异常,引起故障;也有可能是其他方面的原因造成发动机游车后,进气波动太大而引起空气流量计信号不正常的,不过前者的可能性更大一些。 为了进一步确定空气流量计是否良好,拆下空气滤清器,接通点火开关,用电吹风对着空气流量计吹气,在“进气量”稳定的情况下,空气流量计的信号仍然波动很大,说明空气流量计有故障。 后来又用信号模拟仪输出矩形波信号来代替空气流量计信号,当频率为35Hz 时,喷油量为2.6ms,发动机怠速运转平稳,不冒黑烟;将频率调到110Hz(该仪器只有四级调节),喷油时间略微上升,发动机也运转平稳,不冒黑烟,因此可以断定该故障是由空气流量计引起的。 订购新的空气流量计换上,起动发动机,发动机运转正常,不冒黑烟。再次读取数据,正常怠速时喷油时间为2.6ms 左右,空气流量计的输出信号为30Hz 左右。发动机故障排除。 深入探讨:在第一案例中,用示波器测量点火和喷油的参数,以及使用故障诊断仪读取数据流,都不能发现问题。后来考虑到检测仪器显示刷新率的问题,然后通过分析传感器信号的影响,捕捉到了空气流量计瞬间工作失常的信号。在第二案例中,从检测结果和故障现象来看,给人感觉就是空气流量计原因造成的。但是,其他原因也有可能造成类似的故障,如ECU有故障,笔者就曾有过此类故障的误诊。 通过上述两个例子来看,故障诊断过程中除了要灵活运用检测仪器,还要认真分析检测结果,不能盲目地信赖和依赖检测数据,否则会陷入困境或者走弯路,甚至误诊。

热线式空气流量传感器的检测与诊断

热线式空气流量传感器的检测与诊断 热线式空气流量传感器的信号是ECU确定发动机基本喷油量的重要信号之一,它的好坏直接影响了电喷发动机的运行是否正常。因此,掌握热线式空气流量传感器的检测方法是成为一个合格汽车维修人员的必备条件。 标签:热线式检测诊断 热线式空气流量传感器是空气流量传感器众多类型中的一种,其作用是将吸入气缸内的空气量转变成电信号发送给ECU。该信号是ECU确定发动机基本喷油量的重要信号之一。 热线式空气流量传感器主要由感知空气流量的白金热线、根据进气温度进行修正的温度补偿电阻、控制热线电流并产生输出信号电压的控制线路板和壳体等组成。 1 热线式空气流量传感器的工作原理 热线式空气流量传感器的工作原理采用的是惠斯顿电桥。白金热线电阻RH 和温度补偿电阻RK分别是惠斯顿电桥的一个臂,热线支撑环后端的塑料护套上安装有一个精密电阻RA,作为惠斯顿电桥的一个臂,该电阻上的电压即是热线式空气流量传感器的输出信号电压。惠斯顿电桥的另一个臂RB安装在控制线路板上。 将点火开关置于ON位置,白金热线电阻周围的空气没有流动,此时的惠斯顿电桥处于平衡状态。启动发动机,在进气真空度的作用下,当空气流过白金热线时,热线的热量被空气吸收,使其变冷。热线周围通过的空气流量越大,被带走的热量就越多。在工作中将热线温度与吸入空气温度差保持在100℃,热线温度由混合集成电路控制,当空气流量增大时,由于空气带走的热量增多,为保持热线温度,混合集成电路使热线电阻通过的电流增大,反之,则减小。这样,使得通过热线电阻的电流是空气流量的单一函数,即热线电流随着空气流量的增大而增大,随空气流量的减小而减小。此时就可以使ECU根据热线电流的变化计算出空气流量的大小。 2 热线式空气流量传感器的检测 热线式空气流量传感器出现故障一般有两种情况:一种是电路短路或者断路,导致传感器完全失效。此时ECU内部的自诊断电路会将故障信息以故障码的形式存储起来并使仪表板上的故障指示灯常亮。另一种情况是白金热线赃污,传感器信号失准,不能提供正确的进气流量信号,但ECU自诊断系统检测不出故障信息。 热线式空气流量传感器的故障将导致传感器计量的进气量与实际进气量不

空气流量计故障

空气流量计故障正确检测排查方法 气体流量计基础构造及性能特征随着对发起机汽车尾气排放 请求的进步,越来越多的发起机采取精细的空气计量传感器计量进入发起机的空气量,发起机ECU根据空气计量传感器信号初步设定基础供油量,以满意发起机各种工况空燃比,进而保障发起机各种工况对混杂气的请求。 气体流量计分类:按丈量空气流量的方式可分为两种:①间接丈量方式传感器—空气流量计。②间接丈量方式传感器—进气歧管压力传感器(负压传感器)间接丈量方式传感器按其丈量信号转化情势又可分为3种。1机械式空气流量计,即可动叶片式空气流量计。其特征是将燃油泵掌握开关、空气温度传感器、CO调理器及空气流量计等功用融为一体,构造较庞杂,但精度较高。不过因为叶片具备弹簧阻力增添了进气阻力,使它对发起机在急减速时的响应不够幻想,故如今很少运用。2卡尔曼涡流式空气流量计。通过采集涡流频率实现空气流速丈量,重要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具备进气阻力小、计量正确的特征,但因其构造庞杂、不耐振动且造价高,现已逐渐被热线式空气流量计代替。3热线式空气流量计。热线式空气流量计按其热线形又分为3种。①热丝式—将加热丝平均散布在计量通道内。

热丝式空气流量计(图1精度高、散布平均,可正确计量空气量,但因为热丝很细(0.01~0.05mm且裸露在空气中,空气高速活动时,空气中的沙粒很轻易击断热丝。②热膜式—将加热丝印刷在一块线路板上,并将线路板固定在空气通道两头。因为热丝被固定且遭到保护膜的保护,寿命进步,但因为保护膜热传导较差,影响计量精度。③热阻式—将加热丝绕成线圈情势固定在石英玻璃管内或裸露在空气通道内。因为热阻式空气流量计热丝被固定,故热线寿命延伸,但因为热阻面积很小,只能部分采空气流量,请求空气通道内空气流速平均,所以常在进气侧安装梳流格栅。因为热膜式和热阻式空气流量计均是部分采集空气计量空气量,故精度较热丝式较差。另外,热丝式、热膜式和热阻式空气流量计还都易受空气中水分及灰尘的净化,所以在掌握电路上都做了专门的设计,每次关上点火开关或封闭点火开关后,流量计中的热丝会由电路供给刹时大电流加热,使热丝霎时发作低温(700-1000℃)烧掉净化在热丝、热膜或热阻外表的杂质,保持空气流量计量精度。轿车运用的空气流量计,属“L型热膜式空气流量计安装在空气滤清器壳体与进气软管之间。其中心部件是流量传感元件和热电阻(均为铂膜式电阻)组合在一起形成热膜电阻。传感器外部的进气通道上设有一个矩形护套,相称于取样管,热膜电阻设在护套中。为了避免污物堆积到热膜电阻上而影响丈量精度,护套的

空气流量计基本结构及性能特点

一、各种空气流量计基本结构及性能特点 随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU根据空气计量传感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。空气计量传感器按测量空气流量的方法可分为两种:①直接测量方法传感器——空气流量计。②间接测量方法传感器——进气歧管压力传感器(负压传感器)。 直接测量方法传感器按其测量信号转化形式又可分为3种。 (1)机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2)卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3)热线式空气流量计。热线式空气流量计按其热线形又分为3种。 ①热丝式——将加热丝均匀分布在计量通道内。热丝式空气流量计(图1)精度高、分布均匀,可精确计量空气量,但由于热丝很细(0.01~0.05mm)且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。 ②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导较差,影响计量精度。 ③热阻式——将加热丝绕成线圈形式固定在石英玻璃管内或暴露在空气通道内。由于热阻式空气流量计热丝被固定,故热线寿命延长,但由于热阻面积很小,只能部分采空气流量,

几种重要的汽车传感器原理

几种重要的汽车传感器原理 一、传感器概述 传感器的概念:指能感受规定的物理量,并按照一定规律转换成可用输信号的器件或装置。简单的说,传感器即使把非电量转换成电量的装置。 汽车传感器的工作条件极为恶劣,因此,传感器能否精确可靠地工作至关重要。在该领域中,理论研究及材料应用发展迅速,半导体和金属膜技术研究及材料应用技术发展迅速,半导体和金属膜技术、陶瓷烧结技术等得到迅猛发展。智能化、集成化和数字化将是传感器的未来发展趋势。 传感器通常由敏感元件、转换元件及测量电路组成。敏感元件是指能直接感受被测量的部分。转换元件是指能将非电量转换成电量的部分。有些敏感元件可以直接输入电量。测量电路是指将转换元件输入的电量经过处理,以便进行显示、记录和控制的部分。测量电路中较多的使用电桥电路。比如后面要讲到的热线式空气流量计。 传感器的种类比较多,像我们一般碰到的传感器一般有: 温度传感器(冷却水温度传感器THW,进气温度传感器THA); 流量传感器(空气流量传感器,燃油流量传感器); 进气压力传感器MAP 节气门位置传感器TPS 发动机转速传感器 车速传感器SPD 曲轴位置传感器(点火正时传感器) 氧传感器 爆震传感器(KNK) 二、空气流量传感器 为了形成符合要求的混合气,使空燃比达到最佳值,我们就必须对发动机进气空气流量进行精确控制。下面我们来介绍一下几种常用的空气流量传感器。 1、卡门旋涡式空气流量计

涡流式空气流量传感器是利用超声波或光电信号,通过检测旋涡频率来测量空气流量的一种传感器。 众所周知,当野外架空的电线被风吹时,就会发出“嗡、嗡”的声音,且风速越高声音频率越高,这是气体流过电线后形成旋涡(即涡流)所致。液体、气体等流体均会产生这种现象。 同样,如果我们在进气道中放置一个涡流发生器,比如说一个柱状物,在空气流过时,在涡流发生器后部将会不断产生如图所示的两列旋转方向相反,并交替出现的旋涡。这个旋涡就称为卡门旋涡。 卡门旋涡式空气流量计就是利用这种这种旋涡形成的原理,测量气体流速,并通过流速的测量直接反映空气流量。 对于一台具体的卡门旋涡式空气流量计,有如下关系式:qv=kf , qv为体积流量,f为单列旋涡产生的频率,k为比例常数,它与管道直径,柱状物直径等有关。由这个关系式可知,体积流量与卡门涡流传感器的输出频率成正比。利用这个原理,我们只要检测卡门旋涡的频率f,就可以求出空气流量。 根据旋涡频率的检测方式的不同,汽车用涡流式空气流量传感器分为超声波检测式和光学式检测式两种。例如,中国大陆进口的丰田凌志LS400型轿车和台湾进口的皇冠3.0型轿车采用了光电检测涡流式空气流量器;日本三菱吉普车、中国长风猎豹吉普车和韩国现代轿车采用了超声波检测涡流式空气流量传感器。 (1)光学式卡门旋涡空气流量计 现代物理学光的粒子说认为,光是一种具有能量的粒子流,当物体受到光照射时,由于吸收了光子能量而产生的效应,称为光电效应。光敏晶体管是一种半 导体器件,它的特点就是受到光的照射时,它们都会产生内光电效应的光生伏特现象,从而产生电流。 工作原理:在产生卡门旋涡的过程中,旋涡发生器两侧的空气压力会发生变化,通过导孔作用在金属箔上,从而使其振动,发光二极管的光照在振动的金属箔上时,光敏晶体管接收到的金属箔上的反射光是被旋涡调制的光,再由光敏晶体管输出调制过的频率信号,这种频率信号就代表了空气的流量信号。 (2)超声波式卡门旋涡式空气流量计 超声波是指频率高于20HZ,人耳听不到的机械波。它的特性就是方向性好,穿透力强,遇到杂质或物体分界面会产生显著的反射,譬如自然界里的蝙蝠,鲸鱼等动物都是通过超声波来进行方位定向的。利用这种物理特性,我们可以把一些非电量转换成声学参数,通过压电元件转换成电量。

空气流量传感器常见故障分析

空气流量传感器常见故 障分析 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

空气流量传感器常见故障分析 空气流量传感器是测定吸入发动机的空气流量的传感器。当发生失常时,虽然不会造成发动机无法启动,但是会影响发动机的动力性能,如加速不良、进气管“回火”以及排气管冒黑烟等。热线和热膜是最常见的故障: 1.热线和热膜脏污后的清洗:如果发动机存在“回火”故障,往往对空气流量传感器造成严重危害。由于发动机的气流在进气歧管内逆向流动(即“回火”),其中含有炭颗粒,这些炭颗粒容易黏附在的感应元件上,并产生如下后果:在怠速时,空气流量传感器的信号偏大,而在加速及大负荷时信号偏小。 热线是否具有自洁能力的检查方法是:拆下空气滤清器,从空气流量传感器的进气口处察看热线,若发动机熄火5s,后看不到热线发出微红的辉光约1s,说明热线的自洁能力已经丧失。 热线(热膜)污染后,可以在热机、怠速状态下。拆下空气滤清器的滤网,采用汽化器清洗剂直接喷射热线或热膜,以清除黏附在其上的积炭。 2.热膜式空气流量损坏后的处理:不少车型采用BOSCH公司生产的热膜式空气流量传感器,其核心部分由一块集成电路(数/模转换电路)和惠斯登电桥所组成,没有设置稳压电路。因此,当电源电压过高或者出现瞬间高电压时,这种热膜式空气流量传感器容易烧坏。而电路峰值电压过高(超过16V)的原因,往往是蓄电池硫

化严重,使其容量下降,无法吸收发电机的峰值电压,所以蓄电池硫化是导致热膜式空气流量传感器损坏的原因之一。解决办法是:在热膜式空气流量传感器的前端加装一个7812三端子稳压集成电路。

气体流量测定与流量计标定

实验二气体流量测定与流量计标定 一、实验目的 气体属于可压缩流体。气体流量的测量,虽然有一些与用于不可压缩流体相同的测量仪表但也有不少专用于气体的测量仪表,在测量方法和检定方法上也有一些特殊之处。显然,气体流量的测量与液体一样,在工业生产上和科学研究中,都是十分重要的。尤其是在近代,工业生产规摸的大型化和科学实验的微型化,往往这些流量、温度、压力等的检测仪表就成为关键问题。 目前,工业用有LZB系列转子流量计,实验室用有LZW系列微型转子流量计,可供选用。对于市售定型仪表,若流体种类和使用条件都按照规格规定,则读出刻度就能知道流量。但从精度上考虑,仍有必要重新进行校正。转子流量计自制是有困难的,因锥形玻璃管的锥度手工难于制作。但是,在科学研究中或其它某种场合,有时,不免还要根据某种特殊需要,创制一些新型测量仪表和自制一些简易的流量计。不论是市售的标准系列产品还是自制的简易仪表,使用前,尤其是使用一段时间后,都需要进行校正,这样才能保证计量的准确、可靠。 气体流量计的标定,一般采用容积法,用标准容量瓶量体积,或者用校准过的流量计作比较标定。在实验室里,一般采用湿式气体流量计作为标准计量器。它属于容积式仪表,事先应经标准容量瓶校准。实验用的湿式流量计的额定流量,一般有 0.2m3·h—1和0.5m3·h—1两种。若要标定更大流量的仪表,一般采用气柜计量体积。实验室往往又需用微型流量计,现时一般采用皂膜流量计来标定。 本实验采用标准系列中的转子流量计和自制的毛细管流量计来测量空气流量。并用经标准容量瓶直接校准好的湿式流量作为标准,用比较法对上述两种流量计进行检定,标定出流量曲线.,对毛细管流量计标定。通过本实验学习气体流量的测量方法,以及气体流量计的原理、使用方法和检定方法。同时,这些知识和实验方法对学习者在进行以下各项实验时,肯定会有帮助,尤其时对今后所从事的各种实验研究工作,也是有益处的。 二、实验原理 1.湿式气体流量计 该仪器属于容积式流量计。它是实验室常用的一种仪器,其构造主要由圆鼓形壳

空气流量传感器的主要功能特性

空气流量传感器的主要功能特性 在很多领域里,空气流量传感器的流量准确测量非常重要,在环境监测、医疗卫生、安全防护以及贸易结算等经济领域内被广泛应用。 空气流量传感器可测量吸入发动机的空气,空气流量传感器是测定吸入发动机的空气流量的传感器。电子控制汽油喷射发动流量传感器机为了在各种运转工况下都能获得最佳浓度的混合气,必须正确地测定每一瞬间吸入发动机的空气量,以此作为ECU计算(控制)喷油量的主要依据。如果空气流量传感器或线路出现故障,ECU得不到正确的进气量信号,就不能正常地进行喷油量的控制,将造成混合气过浓或过稀,使发动机运转不正常。因此检定规程和流量仪表标准是流量传感器可以准确进行测量的保障。 空气流量传感器的主要功能特性 1、可以根据水流量的大小设计挡板,减少水流通过流量传感器产生的水阻力,减少水系统压头损失,但由于挡板式长期受水流的冲击仍然有疲劳的问题,即使在工厂标定好流量值的也会发生设定点飘移。 2、通常在保护流量值不要求精确的地方使用,即用于水管内的水流突然中断的断流保护。https://www.sodocs.net/doc/5513398111.html,在国内针对水源热泵机组设计的非常少。 3、挡板式是专门针对水环/地源热泵空调机组的水流量监控而开发的,它针对不同的管径配有不同的挡片,每种挡片的水阻不超过0.5米水柱,相比靶式水阻已大大降低。

4、每个挡板式空气流量传感器都配有与水环热泵机组水管相同的管件,现场只需连接上水管即可,不需对挡片做任何改变,另外挡板式水流开关的承压大于25bar,在对水流量要求不高的水环热泵机组是一个低成本的水流开关。 5、经过在水环/地源热泵机组上使用的反馈来看,压差开关能有效判断水环热泵机组现场安装的水管路的问题,能彻底避免水流量少造成换热器冻坏的情况,空气流量传感器也可以保护由于水过滤器堵塞造成的水流量下降时换热器冻坏的情况,另外水管路压差开关没有靶流开关疲劳破坏的风险。 空气流量传感器可测量多种介质,即使在水管路有少量空气时,工作仍然非常稳定,不会出现类似靶流开关的漂浮情况。

空气流量传感器的万用表检测

空气流量传感器的万用表检测 空气流量传感器的检测 空气流量传感器是测定吸入发动机的空气流量的传感器。电子控制汽油喷射发动机为了在各种运转工况下都能获得最佳浓度的混合气,必须正确地测定每一瞬间吸入发动机的空气量,以此作为ECU计算(控制)喷油量的主要依据。如果空气流量传感器或线路出现故障,ECU得不到正确的进气量信号,就不能正常地进行喷油量的控制,将造成混合气过浓或过稀,使发动机运转不正常。 电子控制汽油喷射系统的空气流量传感器有多种型式,目前常见的空气流量传感器按其结构型式可分为叶片(翼板)式、量芯式、热线式、热膜式、卡门涡旋式等几种。 一、叶片式空气流量传感器的结构、工作原理及检测 1、叶片式空气流量传感器结构及工作原理 传统的波许L型汽油喷射系统及一些中档车型采用这种叶片式空气流量传感器,如丰田CAMRY(佳美)小轿车、丰田PREVIA(大霸王)小客车、马自达MPV多用途汽车等。其结构如图1所示,由空气流量计和电位计两部分组成。空气流量计在进气通道内有一个可绕轴摆动的旋转翼片(测量片),如图2所示,作用在轴上的卷簧可使测量片关闭进气通路。发动机工作时,进气气流经过空气流量计推动测量片偏转,使其开启。测量片开启角度的大小取决于进气气流对测量片的推力与测量片轴上卷簧弹力的平衡状况。进气量的大小由驾驶员操纵节气门来改变。进气量愈大,气流对测量片的推力愈大,测量片的开启角度也就愈大。在测量片轴上连着一个电位计,如图3所示。电位计的滑动臂与测量片同轴同步转动,把测量片开启角度的变化(即进气量的变化)转换为电阻值的变化。电位计通过导线、连接器与ECU连接。ECU根据电位计电阻的变化量或作用在其上的电压的变化量,测得发动机的进气量,如图4所示。 在叶片式空气流量传感器内,通常还有一电动汽油泵开关,如图5所示。当发动机起动运转时,测量片偏转,该开关触点闭合,电动汽油泵通电运转;发动机熄火后,测量片在回转至关闭位置的同时,使电动汽油泵开关断开。此时,即使点火开关处于开启位置,电动汽油泵也不工作。 流量传感器内还有一个进气温度传感器,用于测量进气温度,为进气量作温度补偿。 叶片式空气流量传感器导线连接器一般有7个端子,如图5中的39、36、6、9、8、7、27。但也有将电位计内部的电动汽油泵控制触点开关取消后,变为5个端子的。图6示出了日产和丰田车用叶片式空气流量传感器导线连接器端子的“标记”。其端子“标记”一般标注在连接器的护套上。

空气流量计的波形和故障

目录 引言 (2) 第一章空气流量计概述 (3) 一、空气流量计的发展 (3) 二、空气流量计的分类及电器特性 (4) 1、叶片式空气流量计: (4) 2、热线式空气流量计: (6) 3、数字式空气流量计 (8) (1)高频数字式空气流量计 (8) (2)卡门旋涡式空气流量计: (9) (3)低频数字式空气流量计: (11) 4、B O S C H C I S K E型空气流量计 (11) 第二章空气流量计常见故障分析 (12) 1.叶片式空气流量计故障分析 (12) (1)空气流量计与节气门体连接胶管不密封故障 (12) (2)叶片式空气流量计断线故障 (12) (3)叶片式空气流量计调整故障 (13) 2.卡尔曼涡流式空气流量计故障分析 (13) 3.热线式空气流量计故障分析 (14) (1)节气门过脏, (14) (2)空气流量计进气梳流格栅故障 (15) 【总结】 (22) 【参考文献】 (22)

空气流量计常见故障及排除 【内容摘要】空气流量计是发动机燃油喷射系统的重要组成部分,如果没有它的正常工作,汽车就不可能正常工作。本文简单介绍空气流量计的结构和工作原理波形分析以及常见的故障 【关键词】工作原理常见故障故障分析 引言 空气流量计的简介 空燃比是汽油机的重要参数,它直接影响着发动机的动力性、经济性及排放。当空燃比A/F=12~13时,发动机的输出功率最大;当A/F约为16时,油耗率最低,而H C排放的最低值和N O排放的最高值分别位于A/F约为17和16处。因此,为使得发动机的动力性、经济性、排放净化等各方面均获得最佳效果,其电控系统必须根据不同工况随时自动调节空燃比。当前,汽油机电喷燃油系统空燃比的控制方法是以吸入空气量作为喷油量的主要因素。发动机的电控单元根据输入的空气流量信息,输出相应信号控制喷油量,实现空气量和汽油量的最佳混合比例。由此可见,准确、及时地计量汽油机各个工况的空气流量,成为精确控制空燃比的基础。研制高性能的空气流量计,提高对发动机进气量的准确和缩短响应时间,对电控汽油机整体运转状态的控制起着关键作用。尤其在人们对环境保护越来越重视的今天,空气流量的准确计量,能够保证较精确地控制汽油机各缸混合气与工况的匹配,使燃料充分燃烧,配合三元催化反应器的共同作用,可有效地减少废气中的C O、H C 及N O X的含量,使汽油机的废气排放满足各国越来越严格的排放法规要求。

相关主题