搜档网
当前位置:搜档网 › 高速PCB布线实践指南

高速PCB布线实践指南

高速PCB布线实践指南
高速PCB布线实践指南

高速PCB布线实践指南

印制电路板(PCB)布线在高速电路中具有关键的作用,但它往往是电路设计过程的最后几个步骤之一。高速PCB布线有很多方面的问题,关于这个题目已有人撰写了大量的文献。本文主要从实践的角度来探讨高速电路的布线问题。主要目的在于帮助新用户当设计高速电路PCB布线时对需要考虑的多种不同问题引起注意。另一个目的是为已经有一段时间没接触PCB布线的客户提供一种复习资料。由于版面有限,本文不可能详细地论述所有的问题,但是我们将讨论对提高电路性能、缩短设计时间、节省修改时间具有最大成效的关键部分。

虽然这里主要针对与高速运算放大器有关的电路,但是这里所讨论的问题和方法对用于大多数其它高速模拟电路的布线是普遍适用的。当运算放大器工作在很高的射频(RF)频段时,电路的性能很大程度上取决于PCB布线。“图纸”上看起来很好的高性能电路设计,如果由于布线时粗心马虎受到影响,最后只能得到普通的性能。在整个布线过程中预先考虑并注意重要的细节会有助于确保预期的电路性能。

原理图

尽管优良的原理图不能保证好的布线,但是好的布线开始于优良的原理图。在绘制原理图时要深思熟虑,并且必须考虑整个电路的信号流向。如果在原理图中从左到右具有正常稳定的信号流,那么在PCB上也应具有同样好的信号流。在原理图上尽可能多给出有用的信息。因为有时候电路设计工程师不在,客户会要求我们帮助解决电路的问题,从事此工作的设计师、技术员和工程师都会非常感激,也包括我们。

除了普通的参考标识符、功耗和误差容限外,原理图中还应该给出哪些信息呢?下面给出一些建议,可以将普通的原理图变成一流的原理图。加入波形、有关外壳的机械信息、印制线长度、空白区;标明哪些元件需要置于PCB上面;给出调整信息、元件取值范围、散热信息、控制阻抗印制线、注释、扼要的电路动作描述……(以及其它)。

谁都别信

如果不是你自己设计布线,一定要留出充裕的时间仔细检查布线人的设计。在这点上很小的预防抵得上一百倍的补救。不要指望布线的人能理解你的想法。在布线设计过程的初期你的意见和指导是最重要的。你能提供的信息越多,并且整个布线过程中你介入的越多,结果得到的PCB就会越好。给布线设计工程师设置一个暂定的完成点——按照你想要的布线进展报告快速检查。这种“闭合环路”方法可以防止布线误入歧途,从而将返工的可能性降至最低。

需要给布线工程师的指示包括:电路功能的简短描述,标明输入和输出位置的PCB略图,PCB层叠信息(例如,板子有多厚,有多少层,各信号层和接地平面的详细信息——功耗、地线、模拟信号、数字信号和RF信号);各层需要那些信号;要求重要元件的放置位置;旁路元件的确切位置;哪些印制线很重要;哪些线路需要控制阻抗印制线;哪些线路需要匹配长度;元件的尺寸;哪些印制线需要彼此远离(或靠近);哪些线路需要彼此远离(或靠近);哪些元器件需要彼此远离(或靠近);哪些元器件要放在PCB的上面,哪些放在下面。永远不要抱怨需要给别人的信息太多——太少吗?是;太多吗?不。

一条学习经验:大约10年前,我设计一块多层的表面贴电路板——板子的两面都有元件。用很多螺钉将板子固定在一个镀金的铝制外壳中(因为有很严格的防震指标)。提供偏置馈通的引脚穿过板子。该引脚是通过焊接线连接到PCB上的。这是一个很复杂的装置。板子上的一些元件是用于测试设定(SAT)的。但是我已经明确规定了这些元件的位置。你能猜出这些元件都安装在什么地方吗?对了,在板子的下面。

当产品工程师和技术员不得不将整个装置拆开,完成设定后再将它们重新组装的时候,显得很不高兴。从那以后我再也没有犯过这种错误了。

位置

正像在PCB中,位置决定一切。将一个电路放在PCB上的什么位置,将其具体的电路元件安装在什么位置,以及其相邻的其它电路是什么,这一切都非常重要。

通常,输入、输出和电源的位置是预先确定好的,但是它们之间的电路就需要“发挥各自的创造性”了。这就是为什么注意布线细节将产生巨大回报的原因。从关键元件的位置入手,根据具体电路和整个PCB来考虑。从一开始就规定关键元件的位置以及信号的路径有助于确保设计达到预期的工作目标。一次就得到正确的设计可以降低成本和压力——也就缩短了开发周期。

旁路电源

在放大器的电源端旁路电源以便降低噪声是PCB设计过程中一个很重要的方面——包括对高速运算放大器还是其它的高速电路。旁路高速运算放大器有两种常用的配置方法。

电源端接地:这种方法在大多数情况下都是最有效的,采用多个并联电容器将运算放大器的电源引脚直接接地。一般说来两个并联电容就足够了——但是增加并联电容器可能给某些电路带来益处。

并联不同的电容值的电容器有助于确保电源引脚在很宽的频带上只能看到很低的交流(AC)阻抗。这对于在运算放大器电源抑制比(PSR)衰减频率处尤其重要。该电容器有助于补偿放大器降低的PSR。在许多十倍频程范围内保持低阻抗的接地通路将有助于确保有害的噪声不能进入运算放大器。图1示出了采用多个并联电容器的优点。在低频段,大的电容器提供低阻抗的接地通路。但是一旦频率达到了它们自身的谐振频率,电容器的容性就会减弱,并且逐渐呈现出感性。这就是为什么采用多个电容器是很重要的原因:当一个电容器的频率响应开始下降时,另一个电容器的频率响应开始其作用,所以能在许多十倍频程范围内保持很低的AC阻抗。

图1. 电容器的阻抗与频率的关系。

直接从运算放大器的电源引脚入手;具有最小电容值和最小物理尺寸的电容器应当与运算放大器置于PCB 的同一面——而且尽可能靠近放大器。电容器的接地端应该用最短的引脚或印制线直接连至接地平面。上述的接地连接应该尽可能靠近放大器的负载端以便减小电源端和接地端之间的干扰。图2示出了这种连接方法。

图2. 旁路电源端和地的并联电容器。

对于次大电容值的电容器应该重复这个过程。最好从0.01 μF最小电容值开始放置,并且靠近放置一个2.2 μF(或大一点儿)的具有低等效串联电阻(ESR)的电解电容器。采用0508外壳尺寸的0.01 μF

电容器具有很低的串联电感和优良的高频性能。

电源端到电源端:另外一种配置方法采用一个或多个旁路电容跨接在运算放大器的正电源端和负电源端之间。当在电路中配置四个电容器很困难的情况下通常采用这种方法。它的缺点是电容器的外壳尺寸可能增大,因为电容器两端的电压是单电源旁路方法中电压值的两倍。增大电压就需要提高器件的额定击穿电压,也就是要增大外壳尺寸。但是,这种方法可以改进PSR和失真性能。

因为每种电路和布线都是不同的,所以电容器的配置、数量和电容值都要根据实际电路的要求而定。

寄生效应

所谓寄生效应就是那些溜进你的PCB并在电路中大施破坏、头痛令人、原因不明的小故障(按照字面意思)。它们就是渗入高速电路中隐藏的寄生电容和寄生电感。其中包括由封装引脚和印制线过长形成的寄生电感;焊盘到地、焊盘到电源平面和焊盘到印制线之间形成的寄生电容;通孔之间的相互影响,以及许多其它可能的寄生效应。图3(a)示出了一个典型的同相运算放大器原理图。但是,如果考虑寄生效应的话,同样的电路可能会变成图3(b)那样。

图3. 典型的运算放大器电路,(a)原设计图,(b)考虑寄生效应后的图。

在高速电路中,很小的值就会影响电路的性能。有时候几十个皮法(pF)的电容就足够了。相关实例:如果在反相输入端仅有1 pF的附加寄生电容,它在频率域可以引起差不多2 dB的尖脉冲(见图4)。如果寄生电容足够大的话,它会引起电路的不稳定和振荡。

图4. 由寄生电容引起的附加尖脉冲。

当寻找有问题的寄生源时,可能用得着几个计算上述那些寄生电容尺寸的基本公式。公式(1)是计算平行极板电容器(见图5

)的公式。

(1)

C 表示电容值,A 表示以cm 2为单位的极板面积,k 表示PCB 材料的相对介电常数,d 表示以cm 为单位

的极板间距离。

图5. 两极板间的电容。

带状电感是另外一种需要考虑的寄生效应,它是由于印制线过长或缺乏接地平面引起的。式(2)示出了计算印制线电感(Inductance )的公式。参见图6

(2)

W 表示印制线宽度,L 表示印制线长度,H 表示印制线的厚度。全部尺寸都以mm

为单位。

图6. 印制线电感。

图7中的振荡示出了高速运算放大器同相输入端长度为2.54 cm 的印制线的影响。其等效寄生电感为29 nH (10-9H ),足以造成持续的低压振荡,会持续到整个瞬态响应周期。图7还示出了如何利用接地平面来减小寄生电感的影响。

图7. 有接地平面和没有接地平面的脉冲响应。

通孔是另外一种寄生源;它们能引起寄生电感和寄生电容。公式(3)是计算寄生电感的公式(参见图8)。

(3)

T表示PCB的厚度,d表示以cm为单位的通孔直径。

图8. 通孔尺寸。

公式(4)示出了如何计算通孔(参见图8)引起的寄生电容值。

[page_break]

εr表示PCB材料的相对磁导率。T表示PCB的厚度。D1表示环绕通孔的焊盘直径。D2表示接地平面中隔离孔的直径。所有尺寸均以cm为单位。在一块0.157 cm厚的PCB上一个通孔就可以增加1.2 nH的寄生电感和0.5 pF的寄生电容;这就是为什么在给PCB布线时一定要时刻保持戒备的原因,要将寄生效应的影响降至最小。

接地平面

实际上需要讨论的内容远不止本文提到的这些,但是我们会重点突出一些关键特性并鼓励读者进一步探讨这个题。本文的最后列出有关的参考文献。

接地平面起到公共基准电压的作用,提供屏蔽,能够散热和减小寄生电感(但它也会增加寄生电容)的功能。虽然使用接地平面有许多好处,但是在实现时也必须小心,因为它对能够做的和不能够做的都有一些限制。

理想情况下,PCB有一层应该专门用作接地平面。这样当整个平面不被破坏时才会产生最好的结果。千万不要挪用此专用层中接地平面的区域用于连接其它信号。由于接地平面可以消除导体和接地平面之间的磁场,所以可以减小印制线电感。如果破坏接地平面的某个区域,会给接地平面上面或下面的印制线引入意想不到的寄生电感。

因为接地平面通常具有很大的表面积和横截面积,所以使接地平面的电阻保持最小值。在低频段,电流会选择电阻最小的路径,但是在高频段,电流会选择阻抗最小的路径。

然而也有例外,有时候小的接地平面会更好。如果将接地平面从输入或者输出焊盘下挪开,高速运算放大器会更好地工作。因为在输入端的接地平面引入的寄生电容,增加了运算放大器的输入电容,减小了相位裕量,从而造成不稳定性。正如在寄生效应一节的讨论中所看到的,运算放大器输入端1 pF 的电容能引起很明显的尖脉冲。输出端的容性负载——包括寄生的容性负载——造成了反馈环路中的极点。这会降低相位裕量并造成电路变得不稳定。

如果有可能的话,模拟电路和数字电路——包括各自的地和接地平面——应该分开。快速的上升沿会造成电流毛刺流入接地平面。这些快速的电流毛刺引起的噪声会破坏模拟性能。模拟地和数字地(以及电源)应该被连接到一个共用的接地点以便降低循环流动的数字和模拟接地电流和噪声。

在高频段,必须考虑一种称为“趋肤效应”的现象。趋肤效应会引起电流流向导线的外表面——结果会使得导线的横截面变窄,因此使直流(DC )电阻增大。虽然趋肤效应超出了本文讨论的范围,这里还是给出铜线中趋肤深度(Skin Depth)的一个很好的近似公式(以cm

为单位):

(5)

低灵敏度的电镀金属有助于减小趋肤效应。

封装

运算放大器通常采用不同的封装形式。所选的封装会影响放大器的高频性能。主要的影响包括寄生效应(前面提到的)和信号路径。这里我们集中讨论放大器的路径输入、输出和电源。

图9示出了采用SOIC 封装(a )和SOT-23封装(b )的运算放大器之间的布线区别。每种封装都有它自身的一些问题。重点看(a ),仔细观察反馈路径就发现有多种方法连接反馈。最重要的是保证印制线长度最短。反馈路径中的寄生电感会引起振铃和过冲。在图9(a )和9(b )中,环绕放大器连接反馈路径。图9(c )示出了另外一种方法——在SOIC 封装下面连接反馈路径——这样就减小了反馈路径的长度。每种方法都有细微的差别。第一种方法会导致印制线过长,会增大串联电感。第二种方法采用了通孔,会引起寄生电容和寄生电感。在给PCB 布线时必须要考虑这些寄生效应的影响及其隐含的问题。SOT-23布线差几乎是最理想的:反馈印制线长度最短,而且很少利用通孔;负载和旁路电容从很短的路径返回到相同的地线连接;正电源端的电容(图9(b )中未示出)直接放在在PCB 的背面的负电源电容的下面。

图9. 同一运算放大器电路的布线区别。(a)SOIC封装,(b)SOT-23封装,(c)在PCB下面采用

RF的SOIC封装。

低失真放大器的引脚排列:ADI公司提供的一些运算放大器(例如AD80451)采用了一种新的低失真引脚排列,有助于消除上面提及的两个问题;而且它还提高了其它两个重要方面的性能。LFCSP的低失真引脚排列,如图10所示,将传统运算放大器的引脚排列按着逆时针方向移动一个引脚并且增加了一个输出引脚作为专用的反馈引脚。

图10. 采用低失真引脚排列的运算放大器。

低失真引脚排列允许输出引脚(专用反馈引脚)和反相输入引脚之间可以靠近连接,如图11所示。这样极大地简化和改善了布线。

图11. AD8045低失真运算放大器的PCB布线。

这种引脚排列还有一个好处就是降低了二次谐波失真。传统运算放大器的引脚配置中引起二次谐波失真的一个原因是同相输入和负电源引脚之间的耦合作用。LFCSP封装的低失真引脚排列消除了这种耦合所以极大地降低了二次谐波失真;在有些情况下最多可降低14 dB。图12示出了AD80992采用SOIC封装和LFCSP封装失真性能的差别。

这种封装还有一个好处——功耗低。LFCSP封装有一个裸露的焊盘,它降低了封装的热阻,从而能改善θJA值约40%。因为降低了热阻,所以降低了器件的工作温度,也就相当于提高可靠性。

图12 . AD8099不同封装失真性能对比——相同的运算放大器采用SOIC和LFCSP封装。

目前,ADI公司提供采用新的低失真引脚排列三种高速运算放大器:AD8045,AD8099和AD80003。

布线和屏蔽

PCB上存在各种各样的模拟和数字信号,包括从高到低的电压或电流,从DC到GHz频率范围。保证这些信号不相互干扰是非常困难的。

回顾前面“谁都别信”部分的建议,最关键的是预先思考并且为了如何处理PCB上的信号制定出一个计划。重要的是注意哪些信号是敏感信号并且确定必须采取何种措施来保证信号的完整性。接地平面为电信号提供一个公共参考点,也可以用于屏蔽。如果需要进行信号隔离,首先应该在信号印制线之间留出物理距离。下面是一些值得借鉴的实践经验:

?减小同一PCB中长并联线的长度和信号印制线间的接近程度可以降低电感耦合。

?减小相邻层的长印制线长度可以防止电容耦合。

?需要高隔离度的信号印制线应该走不同的层而且——如果它们无法完全隔离的话——应该走正交印制线,而且将接地平面置于它们之间。正交布线可以将电容耦合减至最小,而且地线会形成一

种电屏蔽。在构成控制阻抗印制线时可以采用这种方法。

高频(RF)信号通常在控制阻抗印制线上流动。就是说,该印制线保持一种特征阻抗,例如50Ω(RF应用中的典型值)。两种最常见的控制阻抗印制线,微带线4和带状线5都可以达到类似的效果,但是实现的方法不同。

微带控制阻抗印制线,如图13所示,可以用在PCB 的任意一面;它直接采用其下面的接地平面作为其参

考平面。

图13. 微带传输线。

公式(6)可以用于计算一块FR4

板的特征阻抗。

(6)

H 表示从接地平面到信号印制线之间的距离,W 表示印制线宽度,T 表示印制线厚度;全部尺寸均以密耳(mils )(10-3英寸)为单位。εr 表示PCB 材料的介电常数。

带状控制阻抗印制线(参见图14)采用了两层接地平面,信号印制线夹在其中。这种方法使用了较多的印制线,需要的PCB 层数更多,对电介质厚度变化敏感,而且成本更高——所以通常只用于要求严格的应用

中。

图14. 带状控制阻抗印制线。

用于带状线的特征阻抗计算公式如公式(7)所示。

(7)

保护环,或者说“隔离环”,是运算放大器常用的另一种屏蔽方法,它用于防止寄生电流进入敏感结点。其基本原理很简单——用一条保护导线将敏感结点完全包围起来,导线保持或者迫使它保持(低阻抗)与

敏感结点相同的电势,因此使吸收的寄生电流远离了敏感结点。图15(a)示出了用于运算放大器反相配置和同相配置中的保护环的原理图。图15(b)示出用于SOT-23-5封装中两种保护环的典型布线方法。

图15. 保护环。(a)反相和同相工作。(b)SOT-23-5封装。

还有很多其它的屏蔽和布线方法。欲获得有关这个问题和上述其它题目的更多信息,建议读者阅读下列参考文献。

结论

高水平的PCB布线对成功的运算放大器电路设计是很重要的,尤其是对高速电路。一个好原理图是好的布线的基础;电路设计工程师和布线设计工程师之间的紧密配合是根本,尤其是关于器件和接线的位置问题。需要考虑的问题包括旁路电源,减小寄生效应,采用接地平面,运算放大器封装的影响,以及布线和屏蔽的方法。

电磁兼容(Electro - Magnetic Compatibility,简称EMC)是一门新兴综合性学科,它主要研究电磁干扰和抗干扰问题。电磁兼容性是指电子设备或系统在规定的电磁环境电平下,不因电磁干扰而降低性能指标,同时它们本身产生的电磁辐射不大于限定的极限电平,不影响其它系统的正常运行,并达到设备与设备、系统与系统之间互不干扰、共同可靠工作的目的。电磁干扰( EM I)产生是由于电磁干扰源通过耦合路径将能量传递给敏感系统造成的,它包括由导线和公共地线的传导、通过空间辐射或近场耦合3种基本形式。实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响,所以保证印制电路板电磁兼容性是整个系统设计的关键,本文主要讨论电

磁兼容技术及其在多层印制线路板( Printed Circuit Board,简称PCB)设计中的应用。

PCB是电子产品中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接,是各种电子设备最基本的组成部分。如今,大规模和超大规模集成电路已在电子设备中得到广泛应用,而且元器件在印刷电路板上的安装密度越来越高,信号的传输速度更是越来越快,由此而引发的EMC问题也变得越来越突出。 PCB 有单面板(单层板)、双面板(双层板)和多层板之分。单面板和双面板一般用于低、中密度布线的电路和集成度较低的电路,多层板使用高密度布线和集成度高的电路。从电磁兼容的角度看单面板和双面板不适宜高速电路,单面、双面布线已满足不了高性能电路的要求,而多层布线电路的发展为解决以上问题提供了一种可能,并且其应用变得越来越广泛。

1 多层布线的特点

PCB是由具有多层结构的有机和无机介质材料组成,层之间的连接通过过孔来实现,过孔镀上或填充金属材料就可以实现层之间的电信号导通。多层布线之所以得到广泛的应用,究其原因,有以下特点:

(1)多层板内部设有专用电源层、地线层。电源层可以作为噪声回路,降低干扰;同时电源层还为系统所有信号提供回路,消除公共阻抗耦合干扰。减小了供电线路的阻抗,从而减小了公共阻抗干扰。

(2)多层板采用了专门地线层,对所有信号线而言都有专门接地线。信号线的特性:阻抗稳定、易匹配,减少了反射引起的波形畸变;同时,采用专门的地线层加大了信号线和地线之间的分布电容,减小了串扰。

2 印制电路板的叠层设计

2. 1 PCB的布线规则

多层电路板的电磁兼容分析可以基于克希霍夫定律和法拉第电磁感应定律。根据克希霍夫定律,任何时域信号由源到负载的传输都必须有一个最低阻抗的路径。

具有多层的PCB常常用于高速、高性能的系统,其中的多层用于直流(DC)电源或地参考平面。这些平面通常是没有任何分割的实体平面,因为具有足够的层用作电源或地层,因此没有必要将不同的DC电压置于同一层上。该层将会用作与它们相邻的传输线上信号的电流返回通路。构造低阻抗的电流返回通路是这些平面层最重要的EMC目标。

信号层分布在实体参考平面层之间,它们可以是对称的带状线和非对称的带状线。以一个12层板为例说明多层板的结构和布局。其分层结构为T - P - S - P - S - P - S - P - S - S - P - B,“T”为顶层,“P”为参考平面层,“S”为信号层,“B”为底层。从顶层至底层依次为第1层、第2层、??第

12层。顶层和底层用作元件的焊盘,信号在顶层和底层不应传输太长的距离,以便减少来自走线的直接辐射。不相容的信号线应相互隔离,这样做的目的是避免相互之间产生耦合干扰。高频与低频、大电流与小电流、数字与模拟信号线是不相容的,元件布置中就应该把不相容元件放在印制板上不同的位置,在信号线的布置上仍要注意把它们隔离。设计时要注意以下3个问题:

(1)确定哪个参考平面层将包含用于不同的DC电压的多个电源区。假设第11层有多个DC电压,就意味着设计者必须将高速信号尽可能远离第10层和底层,因为返回电流不能流过第10层以上的参考平面,并且需要使用缝合电容,第3、5、7和9层分别为高速信号的信号层。重要信号的走线尽可能以一个方向布局,以便优化层上可能的走线通道数。分布在不同层上的信号走线应互相垂直,这样可以减少线间的电场和磁场的耦合干扰,第3和第7层可以设定为“东西”走线,而第5和第9层设置为“南北”走线。走线布在哪一层要根据其到达目的地的方向。

(2)高速信号走线时层的变化,及哪些不同的层用于一个独立的走线,确保返回电流从一个参考平面流到需要的新参考平面。这样是为了减小信号环路面积,减小环路的差模电流辐射和共模电流辐射。环路辐射与电流强度、环路面积成正比。实际上,最好的设计并不要求返回电流改变参考平面,而是简单地从参考平面的一侧改变到另一侧。如信号层的组合可以用作信号层对:第3层和第5层,第5层和第7层,第7层和第9层,这就允许一个东西方向和南北方向形成一个布线组合。但是第3层和第9层的组合就不应使用,因为这要求返回电流从第4层流到第8层。尽管一个去耦电容可以放置在过孔附近,但在高频时由于存在引线和过孔电感而使电容失去作用。并且这种走线会使信号环路面积增大,不利减小电流辐射。

(3)为参考平面层选定DC电压。该例中,由于处理器内部信号处理的高速性,致使在电源/地参考引脚上存在大量的噪声。因此,在为处理器提供相同DC电压上使用去耦电容器非常重要,并且尽可能有效地使用去耦电容器。降低这些元件电感的最好方法是连接走线尽可能短和宽,并且尽可能使过孔短和粗。

如果第2层分配为“地”,且第4层分配为处理器的电源,则过孔距离放置处理器和去耦电容器的顶层应该尽可能短。延伸到板的底层的过空剩余部分不包含任何重要的电流,而且距离短不会具有天线作用。表1列出了叠层设计布局的参考配置。

叠层设计布局的参考配置

2. 2 20 - H规则及3 -W 法则

在多层PCB板电磁兼容性设计中,确定多层板电源层与边沿的距离和解决印制条间的距离有两个基本原则: 20 - H规则及3 - W法则。

20 - H原则:由于磁通之间的连接, RF电流通常存在于电源平面的边缘,这种层间的耦合称为边缘效应,当使用高速的数字逻辑和时钟信号时,电源平面间会互相耦合RF电流,如图1所示。为减小这种效应,电源平面的物理尺寸都应该比最靠近地平面的物理尺寸至少小20H (H为电源平面和地平面之间的距离),电源的边缘效应通常发生在10H左右, 20H时约10%的磁通被阻断,如果想达到98%磁通被阻断的话,则需要100%的边界值,如图1所示。 20 - H规则决定了电源平面和最近的接地平面间的物理距离,这个距离包括敷铜厚度、预填充和绝缘分离层。使用20 - H可以提高PCB自身的谐振频率。

PCB的RF边缘效应

3 - W法则:当两条印制线间距较小时,两条线之间会发生电磁串扰,这会使有关电路功能失常,为避免这种干扰,应保持任何线条间距不小于3倍印制线条宽度,即不小于3W (W为印制线条宽度)。印制线条宽度取决于线条阻抗的要求,太宽会影响布线密度,太窄会影响传输到终端的信号完整性和强度。时钟电路、差分对、I/O端口的布线都是3 - W原则的基本应用对象。 3 - W原则

只是表示了串扰能量衰减70%的电磁通量线边界,若要求更高,如保证串扰能量衰减98%的电磁通量边界线就必须采用10W间隔。

2. 3 地线的布置

首先,要建立分布参数的概念,高于一定频率时,任何金属导线都要看成是由电阻、电感构成的器件。所以接地引线具有一定阻抗并且构成电气回路,不管是单点接地还是多点接地,都必须构成低阻抗回路进入真正的地或机架。25mm 长的典型印制线大约会表现15~ 20nH电感,加上分布电容的存在,就会在接地板和设备机架之间构成谐振电路。其次,接地电流流经接地线时,会产生传输线效应和天线效应。当线条长度为1 /4波长时,表现出很高的阻抗,接地线实际上是开路的,接地线反而成为向外辐射的天线。最后,接地板上充满高频电流和骚扰形成的涡流,因此,在接地点之间构成许多回路,这些回路的直径(或接地点间距)应小于最高频率波长的1 /20. 选择恰当的器件是设计成功的重要因素,特别是在选择逻辑器件时,尽量选择上升时间比5ns长的,决不要选比电路要求时序快的逻辑器件。

2. 4 电源线的布置

对于多层板,采用电源层- 地层结构供电,这种结构的特性阻抗比轨线对小得多,可以做到小于1Ω。这种结构具有一定的电容,不必在每个集成芯片旁加高频去耦电容。即使层电容容量不够,需要外加去耦电容时,也不要加在集成芯片旁边,可加在印制板的任何地方。集成芯片的电源脚和地脚可以通过金属化通孔直接与电源层和地层连接,所以供电环路总是最小的。由于“电流总是走阻抗最小途径”原则,地层上的高频回流总是紧贴在轨线下面走,除非有地层隔缝阻挡,因此信号环路也总是最小的。可见电源层- 地层结构与轨线对供电相比较,具有布置简单灵活、电磁兼容性好等优点。

3 结束语

总之,在多层PCB设计中,元器件要分组放置,以防止产生组间干扰; 高速电路位置要安排恰当,以免通过电场耦合或磁场耦合干扰其他电路; 根据情况分别设置地线,以防止共地线阻抗耦合干扰; 供电环路面积应该减小到最低程度,且不同电源的供电环路不要重叠,以避免产生磁场耦合;不相容的信号线要相互隔离,以免产生耦合干扰; 还应减小信号环路面积,以降低环路辐射和共模辐射.

pcb布局布线技巧经验大汇总

PCB电路板布局、布线基本原则 一、元件布局基本规则 1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开; 2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围 3.5mm (对于M2.5)、4mm(对于M3)内不得贴装元器件; 3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路; 4. 元器件的外侧距板边的距离为5mm; 5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm; 6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm; 7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布; 8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔; 9. 其它元器件的布置: 所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直; 10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm); 11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。重要信号线不准从插座脚间穿过; 12、贴片单边对齐,字符方向一致,封装方向一致; 13、有极性的器件在以同一板上的极性标示方向尽量保持一致。 二、元件布线规则 1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线; 2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil; 3、正常过孔不低于30mil; 4、双列直插:焊盘60mil,孔径40mil; 1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil; 无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil; 5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线

高速PCB设计指南

高速PCB设计指南 第一篇 PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。 自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理

既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个

pcb布局布线基本原则

PCB布局、布线基本原则 一、元件布局基本规则 1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块, 电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路 分开; 2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件, 螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴 装元器件; 3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔, 以免波峰焊后过孔与元件壳体短路; 4. 元器件的外侧距板边的距离为5mm; 5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm; 6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰, 不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装 孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm; 7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布; 8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇 流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接

连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源 线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电 源插头的插拔; 9. 其它元器件的布置: 所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上 极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直; 10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充, 网格大于8mil(或0.2mm); 11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。重要信 号线不准从插座脚间穿过; 12、贴片单边对齐,字符方向一致,封装方向一致; 13、有极性的器件在以同一板上的极性标示方向尽量保持一致。 二、元件布线规则 1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线; 2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil; 3、正常过孔不低于30mil; 4、双列直插:焊盘60mil,孔径40mil; 1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil; 无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil; 5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。 如何提高抗干扰能力和电磁兼容性 在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性? 1、下面的一些系统要特别注意抗电磁干扰: (1) 微控制器时钟频率特别高,总线周期特别快的系统。 (2) 系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。

PCB布线的常见规则

PCB布线的常见规则 1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、 地线的考虑不周到而引起的干扰,会使产品的性能 下降,有时甚至影响到产品的成功率。所以对电、 地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证 产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因, 现只对降低式抑制噪音作 以表述: 众所周知的是在电源、地线之间加上去耦电容。 尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是: 地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可 用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) 用大面积铜层作地线用,在印制板上把没被用上 的地方都与地相连接作为地线用。或是做成多层板, 电源,地线各占用一层。 2、数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合 构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度 强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB 对外界只有一个结点,所以必须在PCB 内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口 处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。 3、信号线布在电(地)层上 在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会 给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其 次才是地层。因为最好是保留地层的完整性。 4、大面积导体中连接腿的处理 在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就 电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易 造成虚焊点。所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样, 可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。

pcb布局布线技巧及原则

pcb 布局布线技巧及原则 [ 2009-11-16 0:19:00 | By: lanzeex ] PCB 布局、布线基本原则 一、元件布局基本规则 1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开; 2. 定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安 装孔周围3.5mm (对于 M2.5)、4mm(对于M3内不得贴装元器件; 3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路; 4. 元器件的外侧距板边的距离为5mm; 5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm; 6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧 贴印制线、焊盘,其间距应大于2mm定位孔、紧固件安装孔、椭圆孔及板 中其它方孔外侧距板边的尺寸大于3mm; 7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布; 8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座

及焊接连接器的布置间距应考虑方便电源插头的插拔; 9. 其它元器件的布置: 所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直; 10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm); 11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。重要信号线不准从插座脚间穿过; 12、贴片单边对齐,字符方向一致,封装方向一致; 13、有极性的器件在以同一板上的极性标示方向尽量保持一致。二、元件布线规则1、画定布线区域距PCB板边w 1mm的区域内,以及安装孔周围1mm内,禁止布线; 2、电源线尽可能的宽,不应低于18mil ;信号线宽不应低于12mil ;cpu 入出线不应低于10mil (或8mil );线间距不低于10mil ; 3、正常过孔不低于30mil ; 4、双列直插:焊盘60mil ,孔径40mil ; 1/4W 电阻:51*55mil (0805 表贴);直插时焊盘62mil ,孔径42mil ;无极电容:51*55mil (0805 表贴);直插时焊盘50mil ,孔径28mil ; 5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。如何提高抗干扰能力和电磁兼容性在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性?

高速PCB设计指南

高速PCB设计指南之一 第一篇PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和

PCB电路板布局技巧

PCB电路板布局技巧

PCB布局、布线基本原则 一、元件布局基本规则1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4.元器件的外侧距板边的距离为5mm;5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9.其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil; 4、双列直插:焊盘60mil,孔径40mil;

PCBLayout布局布线基本规则

布局: 1、顾客指定器件位置是否摆放正确 2、BGA与其它元器件间距是否≥5mm 3、PLCC、QFP、SOP各自之间和相互之间间距是否≥2.5 mm 4、PLCC、QFP、SOP与Chip 、SOT之间间距是否≥1.5 mm 5、Chip、SOT各自之间和相互之间的间距是否≥0.3mm 6、PLCC表面贴转接插座与其它元器件的间距是否≥3 mm 7、压接插座周围5mm范围内是否有其他器件 8、Bottom层元器件高度是否≤3mm 9、模块相同的器件是否摆放一致 10、元器件是否100%调用 11、是否按照原理图信号的流向进行布局,调试插座是否放置在板边 12、数字、模拟、高速、低速部分是否分区布局,并考虑数字地、模拟地划分 13、电源的布局是否合理、核电压电源是否靠近芯片放置 14、电源的布局是否考虑电源层的分割、滤波电容的组合放置等因素 15、锁相环电源、REF电源、模拟电源的放置和滤波电容的放置是否合理 16、元器件的电源脚是否有0.01uF~0.1uF的电容进行去耦 17、晶振、时钟分配器、VCXO\TCXO周边器件、时钟端接电阻等的布局是否合理 18、数字部分的布局是否考虑到拓扑结构、总线要求等因素 19、数字部分源端、末端匹配电阻的布局是否合理 20、模拟部分、敏感元器件的布局是否合理 21、环路滤波器电路、VCO电路、AD、DA等布局是否合理 22、UART\USB\Ethernet\T1\E1等接口及保护、隔离电路布局是否合理 23、射频部分布局是否遵循“就近接地”原则、输入输出阻抗匹配要求等 24、模拟、数字、射频分区部分跨接的回流电阻、电容、磁珠放置是否合理 外形制作: 1、外形尺寸是否正确? 2、外形尺寸标注是否正确? 3、板边是否倒圆角≥1.0mm 4、定位孔位置与大小是否正确 5、禁止区域是否正确 6、Routkeep in距板边是否≥0.5mm 7、非金属定位孔禁止布线是否0.3mm以上 8、顾客指定的结构是否制作正确 规则设置: 1、叠层设置是否正确? 2、是否进行class设置 3、所有线宽是否满足阻抗要求? 4、最小线宽是否≧5mil 5、线、小过孔、焊盘之间间距是否≥6mil,线到大过孔是否≥10mil

PCB板基本设计规则

一、PCB板基础知识 PCB概念 PCB是英文(Printed Circuie Board)印制线路板的简称。通常把在绝缘材上,按预定设计,制成印制线路、印制元件或两者组合而成的导电图形称为印制电路。而在绝缘基材上提供元器件之间电气连接的导电图形,称为印制线路。这样就把印制电路或印制线路的成品板称为印制线路板,亦称为印制板或印制电路板。 PCB几乎我们能见到的电子设备都离不开它,小到电子手表、计算器、通用电脑,大到计算机、通迅电子设备、军用武器系统,只要有集成电路等电子无器件,它们之间电气互连都要用到PCB。它提供集成电路等各种电子元器件固定装配的机械支撑、实现集成电路等各种电子元器件之间的布线和电气连接或电绝缘、提供所要求的电气特性,如特性阻抗等。同时为自动锡焊提供阻焊图形;为元器件插装、检查、维修提供识别字符和图形。 PCB是如何制造出来的呢?我们打开通用电脑的健盘就能看到一张软性薄膜(挠性的绝缘基材),印上有银白色(银浆)的导电图形与健位图形。因为通用丝网漏印方法得到这种图形,所以我们称这种印制线路板为挠性银浆印制线路板。而我们去电脑城看到的各种电脑主机板、显卡、网卡、调制解调器、声卡及家用电器上的印制电路板就不同了。它所用的基材是由纸基(常用于单面)或玻璃布基(常用于双面及多层),预浸酚醛或环氧树脂,表层一面或两面粘上覆铜簿再层压固化而成。这种线路板覆铜簿板材,我们就称它为刚性板。再制成印制线路板,我们就称它为刚性印制线路板。单面有印制线路图形我们称单面印制线路板,双面有印制线路图形,再通过孔的金属化进行双面互连形成的印制线路板,我们就称其为双面板。如果用一块双面作内层、二块单面作外层或二块双面作内层、二块单面作外层的印制线路板,通过定位系统及绝缘粘结材料交替在一起且导电图形按设计要求进行互连的印制线路板就成为四层、六层印制电路板了,也称为多层印制线路板。 现在已有超过100层的实用印制线路板了。 PCB板的元素 1.工作层面 对于印制电路板来说,工作层面可以分为6大类, 信号层(signal layer) 内部电源/接地层(internal plane layer) 机械层(mechanical layer)主要用来放置物理边界和放置尺寸标注等信息,起到相应的提示作用。 EDA软件可以提供16层的机械层。 防护层(mask layer)包括锡膏层和阻焊层两大类。锡膏层主要用于将表面贴元器件粘贴在 PCB上,阻焊层用于防止焊锡镀在不应该焊接的地方。 丝印层(silkscreen layer)在PCB板的TOP和BOTTOM层表面绘制元器件的外观轮廓和放置 字符串等。例如元器件的标识、标称值等以及放置厂家标志,生产日 期等。同时也是印制电路板上用来焊接元器件位置的依据,作用是使 PCB板具有可读性,便于电路的安装和维修。 其他工作层(other layer)禁止布线层Keep Out Layer 钻孔导引层drill guide layer 钻孔图层drill drawing layer

高速PCB设计心得

一:前言 随着PCB系统的向着高密度和高速度的趋势不断的发展,电源的完整性问题,信号的完整性问题(SI),以及EMI,EMC的问题越来越突出,严重的影响了系统的性能甚至功能的实现。所谓高速并没有确切的定义,当然并不单单指时钟的速度,还包括数字系统上升沿及下降沿的跳变的速度,跳变的速度越快,上升和下降的时间越短,信号的高次谐波分量越丰富,当然就越容易引起SI,EMC,EMI的问题。本文根据以往的一些经验在以下几个方面对高速PCB的设计提出一些看法,希望对各位同事能有所帮助。 ●电源在系统设计中的重要性 ●不同传输线路的设计规则 ●电磁干扰的产生以及避免措施 二:电源的完整性 1.供电电压的压降问题。 随着芯片工艺的提高,芯片的内核电压及IO电压越来越小,但功耗还是很大,所以电流有上升的趋势。在内核及电压比较高,功耗不是很大的系统中,电压压降问题也许不是很突出,但如果内核电压比较小,功耗又比较大的情况下,电源路径上的哪怕是0.1V 的压降都是不允许的,比如说ADI公司的TS201内核电压只有 1.2V,内核供电电流要 2.68A,如果路径上有0.1欧姆的电阻,电 压将会有0.268V的压降,这么大的压降会使芯片工作不正常。如何尽量减小路径上的压降呢?主要通过以下几种方法。

a:尽量保证电源路径的畅通,减小路径上的阻抗,包括热焊盘的连接方式,应该尽量的保持电流的畅通,如下图1和图2的比较,很明显图2中选择的热焊盘要强于图1。 b:尽量增加大电流层的铜厚,最好能铺设两层同一网络的电源,以保证大电流能顺利的流过,避免产生过大的压降,关于电流大小和所流经铜厚的关系如表1所示。 (表1) 1 oz.铜即35微M厚, 2 oz.70微M, 类推 举例说,线宽0.025英寸,采用2 oz.盎斯的铜,而允许温升30度,

PCB布线的基本原则

PCB布线的基本原则 一位同事负责布的一块步进电机驱动板,性能指标老是达不到文档提到的性能,虽然能用,大电流丢步,高速上不去,波形差,在深入分析之后发现违背了一些PCB布线的基本原则,修改之后性能就非常好,这让我再一次的感受到PCB布线的重要性,尤其是我们经常做大功率电源、传感器这类对PCB布线要求极为严格的。 前几天在MSOS群中,网友“嗡嗡”提出PCB布线问题,我有感于之前步进电机布线引起的问题,把这个PCB布线用常识来理解,通俗易懂、避开电路回路、电磁场传输线等高深复杂,越讲越讲不清的东西,从根本上让大家明白怎么回事,不被一些专业术语约束,获得群内网友的认同。 PCB布线,就是铺设通电信号的道路连接各个器件,这好比修道路,连接各个城市通汽车,完全一回事。 道路建设要求一去一回两条线,PCB布线同样道理,需要形成一个两条线的回路,对于低频电路角度上讲,是回路,对于高速电磁场来讲,是传输线,最常见的如差分信号线。比如USB、网线等。对于传输线的阻抗特性等,本文不做进一步讲解。 可以说,差分信号线,是连接器件信号的理想模型。对信号要求越高的,越要靠近差分信号线。 当一块板子器件非常多,若都按差分线布,一是PCB的面积太大,二是要布2N条线,工作量太大,难度也很大,于是人们针对实际需求提出了多层PCB的概念,最典型的就是双面PCB板。把底部一层作为公共的参考回路,这样布线只需要布N+1根即可,PCB版面也大大缩小。

公共参考回路,也就是大家常说的参考地,针对大部分嵌入式行业来说,信号因为数字化后对信号质量要求不是很高,这样采用整层的参考地,可以缩小板面,又提高效率,大大节约了时间,深受大家喜欢。实际上缩小板面就是缩短信号线长度,也可以部分抵消因为参考地引起的信号质量下降问题,所以在实际中,这种引入参考地的PCB布线效果,基本接近差分线理想模型。到了今天,我们都习惯于这种方式,似乎PCB布线,就是要有一层参考地,没有为什么。 在双面板设计中,因为经常有交叉线存在,需要跳线到地层做交叉线交换,这个需要特别指出的是,这个跳线不能太长,若太长,容易分割参考地,尤其是对于一些信号质量要求高的线,底部的参考地不能被分割,。否则信号的回路被完全破坏,参考地失去了意义。所以一般的讲,参考地层只适合做信号线的短跳线用,信号线尽量布顶层,或者引入更多层的PCB板。 路与路之间靠的太近容易出现影响,比如坐高铁的时候,感觉的到对面开来火车对自己所坐火车的影响。信号线也一样,不能靠的太近,若信号线与信号线之间是平行的,一定要保持一定的距离,这个以实验为准,并且底部要有很好的参考地。低频小信号下,一般影响不是很大,高频强信号是需要注意的。 对于高频、大电流方面的PCB布线,比如开关电源等,最忌讳的就是驱动信号被输出强电流、强电压干扰。MOS管的驱动信号,很容易受输出强电流的影响,两者要保持一定的距离,不要靠的太近。模拟音响时代,运放放大倍数过高,就会出现自激效应,原因同MOS 管一样。 PCB布线的载体是PCB板,一般参考地跟PCB板边离1mm附近,信号线离参考地边缘1mm 附近,这样把信号都约束在PCB板内,可以降低EMC辐射。 当对PCB设计还没有概念的,就多想想我们日常的道路,两者完全一致。

PCB布线规则详解

1 电源、地线的处理既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能 下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证 产品的质量。对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作 以表述:众所周知的是在电源、地线之间加上去耦电容。尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是: 地线>电源线>信号线,通常信号线宽为:0.2~ 0.3mm,最经细宽度可达0.05~0.07mm,电源线为 1.2~ 2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) 用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2、数字电路与模拟电路的共地处理现在有许多PCB 不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要

考虑它们之间互相干扰问题,特别是地线上的噪音干扰。数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间 互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。 3、信号线布在电(地)层上在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会 给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。 4、大面积导体中连接腿的处理在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就

PCB布局、布线基本细则

PCB布局、布线基本原则 一、元件布局基本规则 1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路 分开; 2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件, 螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴 装元器件;?3. 卧装电阻、电感(插件)、电解电容等元件的下方 避免布过孔,以免波峰焊后过孔与元件壳体短路;?4. 元器件的外 侧距板边的距离为5mm; 5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm; 6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰, 不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装 孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm; 7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;?8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条

接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接 器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆 设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电源插 头的插拔;?9.其它元器件的布置:?所有IC元件单边对齐,有 极性元件极性标示明确,同一印制板上极性标示不得多于两个方 10、板面布线应疏密得 向,出现两个方向时,两个方向互相垂直;? 当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或 0.2mm);? 11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚 焊。重要信号线不准从插座脚间穿过; 12、贴片单边对齐,字符方向一致,封装方向一致;?13、有极性的 器件在以同一板上的极性标示方向尽量保持一致。 二、元件布线规则 1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;? 2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil; 3、正常过孔不低于30mil; 4、双列直插:焊盘60mil,孔径40mil; 1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容: 51*55mil(0805表贴);直插时焊盘50mil,孔径28mil; 5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。 如何提高抗干扰能力和电磁兼容性 1、下面的在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性??? 一些系统要特别注意抗电磁干扰: (1)微控制器时钟频率特别高,总线周期特别快的系统。 ?(2) 系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。?(3)含微弱模拟信号电路以及高精度A/D变换电路的系统。? 2、为增加系统的抗电磁干扰能力采取如下措施: (1) 选用频率低的微控制器:?

ADI的高速PCB设计

The World Leader in High Performance Signal Processing Solutions A Practical Guide to High-Speed Printed Circuit Board Layout

Agenda Overview Schematic Location location location Location, location, location Power supply bypassing Parasitics Ground and power planes Packaging RF Signal routing and shielding Summary

Overview PCB layout is one of the last steps in the design process and often one of the most critical High-speed circuit performance is heavily dependant on High speed circuit performance is heavily dependant on layout A high-performance design can be rendered useless due to a poor or sloppy layout poor or sloppy layout Today’s presentation will help: p y p z Improve the layout process z Ensure expected circuit performance is achieved z Reduce design time L t z Lower cost z Lower stress for you and the PCB designer

pcb设计指南

mp3的设计原理及制作 高速PCB设计指南之一 第一篇PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程 限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布 线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生 反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。 自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般 先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要 断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技 术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过 程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影 响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~ 0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm。对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个 地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用 一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑 它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人 PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们 之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有 在PCB上不共地的,这由系统设计来决定。 3 信号线布在电(地)层上 在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量, 成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是 保留地层的完整性。 4 大面积导体中连接腿的处理 在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘 与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易造成虚焊点。所以兼顾电气 性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散 热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。 5 布线中网络系统的作用 在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对 设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无效的,如被元件腿的 焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来 支持布线的进行。 标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数, 如:0.05英寸、0.025英寸、0.02英寸等。 6 设计规则检查(DRC) 布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的 需求,一般检查有如下几个方面: (1)、线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要 求。 (2)、电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地 方。 (3)、对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。 (4)、模拟电路和数字电路部分,是否有各自独立的地线。 (5)后加在PCB中的图形(如图标、注标)是否会造成信号短路。 (6)对一些不理想的线形进行修改。 (7)、在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影 响电装质量。 (8)、多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。 Copyright by BroadTechs Electronics Co.,Ltd 2001-2002

pcb布局布线技巧及原则

pcb布局布线技巧及原则 pcb布局布线技巧及原则 [ 2018-11-16 0:19:00 | By: lanzeex ] PCB 布局、布线差不多原则 一、元件布局差不多规则 1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采纳就近集中原则,同时数字电路和模拟电路分开; 2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围 3.5mm(关于 M2.5)、4mm(关于M3)内不得贴装元器件; 3. 卧装电阻、电感(插件)、电解电容等元件的下方幸免布过孔,以免波峰焊后过孔与元件壳体短路; 4. 元器件的外侧距板边的距离为5mm; 5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm; 6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm; 7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布; 8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。专门应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座

及焊接连接器的布置间距应考虑方便电源插头的插拔; 9. 其它元器件的布置: 所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,显现两个方向时,两个方向互相垂直; 10、板面布线应疏密得当,当疏密差不太大时应以网状铜箔填充,网格大于8mil(或0.2mm); 11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。重要信号线不准从插座脚间穿过; 12、贴片单边对齐,字符方向一致,封装方向一致; 13、有极性的器件在以同一板上的极性标示方向尽量保持一致。 二、元件布线规则 1、画定布线区域距PCB 板边≤1mm 的区域内,以及安装孔周围1mm 内,禁止布线; 2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu 入出线不应低于10mil(或8mil);线间距不低于10mil; 3、正常过孔不低于30mil; 4、双列直插:焊盘60mil,孔径40mil; 1/4W 电阻: 51*55mil(0805 表贴);直插时焊盘62mil,孔径42mil;无极电容: 51*55mil(0805 表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能显现回环走线。如何提高抗干扰能力和电磁兼容性 在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性?

相关主题