搜档网
当前位置:搜档网 › 人人都能懂的量子理论

人人都能懂的量子理论

人人都能懂的量子理论
人人都能懂的量子理论

人人都能懂的量子理论

你是否曾被量子物理里面那些稀奇古怪的思想搞得神经错乱?

首先,不要惊慌。神经错乱的不只你一个。正如具有传奇色彩的美国物理学家理查德?q费曼所说:“我可以大胆地说,没有人懂量子理论。”

然而,要描述这个世界,量子理论又是确实不可少的。

在这篇文章中,我们将把量子理论的思想一一分解,让谁都能懂。

什么是量子理论?

经过几千年的争论,我们现在终于知道了,物质追根究底是由像电子、夸克这样的微观粒子组成的。这些小家伙像乐高积木一样组合在一起,形成了原子和分子,而原子和分子又是拼成宏观世界的“乐高积木”。

为了描述微观世界是如何运作的,科学家发展出一套叫量子力学的理论。这个理论做出的预言虽然非常古怪(例如,粒子可以同时出现在两个地方),但它是目前物理学中最精确的理论,在过去近百年里经受住了严格的检验。没有量子理论,我们周围的许多技术,包括电脑和智能手机里的芯片,都是不可想象的。

量子理论很古怪,但它的正确性不容怀疑。科学家们所争论的,仅仅是如何解释它。

“量子”到底是啥意思?

假如妈妈吩咐你:“把这罐辣酱放到厨房储物柜里。”储物柜是分层的。你可以选择放在这一层或那一层,但你总不能把辣酱放在相邻两层之间,譬如2.5层吧。因为那是没有意义的。

用物理学上的术语说,你家的储物柜是“量子化”的,只能分成离散的一层,两层,三层……不可能再细分为0.6层,1.5层,2.8层,3.45层……

在量子的世界里,任何东西也都是量子化的。举例来说,原子中的电子只能呆在一些离散的能量层里(称为能级)。跟你家厨房的储物柜一样,两个相邻的能级之间,是没有它的立足之地的。

但是量子的行为十分诡异。假如你给待在较低层的电子一个能量,它就会跳到更高的层。这叫量子跃迁。不过,你给的能量必须合适才行,即刚好等于两层之间的能量差,否则它会“耍脾气”拒收。

设想你脚下有一个“量子足球”,在你10米之外有一些由近及远的沟,它们相当于一条条能级。一般人会想,用的力太小,固然球飞不起来,但用的力很大,让球飞起来总没问题吧?但事实上不是。仅当你踢“量子足球”的

力不多不少刚好能让它掉到这条那条沟里的时候,它才会呼啸而起,否则任你怎么踢,它也会待在原地不动。很奇怪吧?

还有另外一个类比。假如你驾驶着一辆“量子汽车”,你只能以5千米/时、20千米/时或80千米/时的速度行驶,在它们之间的速度是不允许的。换挡的时候,你突然就从

5千米/时跳到了20千米/时。速度的变化是瞬间发生的,你几乎觉察不到加速的过程。这可以叫速度的“量子化”。

量子力学VS经典力学

上述例子已经让你稍稍领略了量子世界的诡异。说实话,统治我们熟悉的“经典”世界的规则在微观世界基本上都失效了。只有少数几个硕果仅存,像能量守恒、电荷守恒等等。

“经典”是物理学家用于描述“日常感觉”的术语――当事物的表现不超出你日常经验的范围,我们就说它是“经典”的。

台球就是一个经典物体。在碰到另一个球或桌沿之前,它总是在球桌上沿着一条直线滚动,这完全符合我们的日常经验。但球里每一个单独的原子的运动,却遵循着量子力学的规律,比如说,它随时都可以消失。

但这并不意味着,微观和宏观世界的规律完全“老死不相往来”。作为物理规律,量子规律无疑更基本,但是当

很多粒子聚集在一起时,其整体行为就非常趋近于经典物体的行为了,这时你就可以用经典规律来描述。比如说,组成台球的一个粒子,或许非常“任性”,但是数以亿计的粒子聚在一起时,彼此的“任性”相互抵消,整体行为就越来越“中规中矩”。你要是有一台超级计算机,把组成台球的上亿个原子考虑进去,然后完全按照量子力学来计算,你会发现,这上亿个原子的整?w运动跟直接用牛顿力学来描述是一样的。

这叫对应原理。就是说大量微观粒子聚集一起时,诡异的量子效应将会消失,其整体行为就会变得“经典”。这条原理在某些情况下很有用。比如一些大分子团,要说它是经典物体呢,似乎太小了;要说它是量子物体呢,似乎又太大了。这时候,我们就可以量子规律和经典规律双管齐下。本来只要用量子规律即可,但计算量太大了。既然存在对应原理,我们就可以把一部分计算简化成经典物体来处理。

海森堡不确定性原理

在量子物理学中,某些东西从严格意义上说是不可知的。例如,你永远不可能同时知道电子的位置和动量,正如你永远不可能让硬币的两个面都朝上。

有些书上教你这样去理解不确定性原理:例如,要想知道电子在哪里,你须得用某种东西(例如光子)探测它。

但光是一种波,它的分辨率决定于它的波长,波长越短分辨率越高。所以为了把电子的位置测量得更准确,你最好是选用波长越短的光。但光又是一种粒子,其能量与波长成反比,波长越短能量越高。光子能量越大,对电子的碰撞也越大。这样一来,不管你的探测多么小心,都会改变电子的动量。在经典世界,观察或测量对观察对象的干扰可以忽略不计,但在微观世界,干扰无论如何是不能忽略的。

这样说当然也没错。不过,不确定性原理事实上比上述这样的理解更深刻。它说的是,自然界有一种天生的模糊性。在测量之前,电子的状态(包括它的位置、动量),是各种可能状态的叠加。它处于一种叠加态。叠加态具有天然的“模棱两可性”:既可能是这样,又可能是那样,或者说几种可能性同时并存。仅当测量时,它才被迫选择一种确定的状态呈现出来。

好比一枚“量子硬币”,当它落下之前,它的状态是“正面朝上”和“背面朝上”两种状态的叠加。仅当它落到地面静止下来,它才被迫选择停留在两种状态中的一种。

波粒二象性

量子物体(如光子和电子)具有分裂的个性――有时它们的行为像波,有时又像粒子。它们的表现取决于你设

计实验时,是以波还是粒子来看待它们。 例如,我们知道,粒子的运动是有轨迹的,而波的特点是在整个空

间弥漫,没有确定的?迹。当你把量子物体当作粒子看待(如用粒子探测器探测它),想知道它的运动轨迹,好,那它就表现得像个粒子。假如你在设计实验的时候,想看看

它的波的特性,如干涉、衍射等,好,它就表现出波的特性。

在量子力学中有一个著名的双狭缝实验。它之所以著名,是因为展示了量子的许多奇怪特征。下面我们就以它

为例子来谈谈。

假如你在一个水池里设置一个有两条竖直狭缝的屏障,然后用手指蘸一下水产生水波,水波会穿过两条狭缝。穿

过两狭缝的水波会在屏障后面互相干涉,形成一个干涉图案。

如果你把屏障从水里拿出,朝狭缝发射一堆子弹,它

们就会直接穿过这条或那条狭缝,在屏障后留下两条分明

的弹痕,而不会产生干涉图案。

这是经典的波和粒子在双狭缝实验中的表现。但诡异

的是,微观粒子譬如电子,可以同时表现出两者。

假如你朝狭缝发射电子,甚至像发射子弹一样控制好,一次发射一个,起初屏障后面开始形成两条明显的“弹痕”,说明电子表现得像粒子;但随着你发射的电子渐多,弹痕

也渐渐模糊起来,最后竟然在屏幕上显示出明暗相间的干

涉图案,这时它又表现得像波了。倒好像每个电子同时穿

过了两条狭缝,并与自身干涉。

按照不确定性原理,可以这样解释:因为电子是一个

量子物体,我们不能确切地知道它的位置。电子有机会穿

过一条狭缝,也有机会穿过另一条狭缝――因为两者都是

可能的,所以它实际上同时经历了两个过程。换句话说,

确实是每个电子同时穿过了两条狭缝,并与自身干涉。

现在,更诡异的事情来了。假如你在两狭缝边上各放

置一个粒子探测器,来观察电子到底穿过了哪条狭缝。你

的意图可以得逞,比如电子击中探测器的探头,不断发出

明亮的闪烁,你高兴地欢呼:“你这个鬼家伙,终于被我

逮着了!你刚才走的是这条缝,现在走的是那条缝。”但是,等你把头探到屏障后面,就会发现大事不妙:干涉图案竟

然消失不见了,只留下像弹痕一样的两条直截分明的狭缝

投影。

按前面的解释,这是因为你知道了电子穿过哪个狭缝

之后,它不就再处于叠加态,所以只能选择一条路径,通

过一条狭缝。电子的波动行为消失了,表现得完全像粒子。

如果你对上述解释还感到头疼,那么请想一想这个事实,或许多少受些安慰:物理学家其实也不太能接受这样

的解释,他们一直都在为这个明显的悖论想破脑壳。

波函数

这是一种用来描述波-粒子的数学。

至关重要的是,一个量子波函数可以包含有许多种可能的解,每一个解都对应着一种可能的现实,波函数则是这许多种可能的解按一定概率的叠加。譬如,一个“量子硬币”的波函数包含“正面朝上”和“背面朝上”两种解,每一种解都对应一种现实,实现的概率各为50%。

令人惊讶的是,叠加态中不同的解似乎还相互作用。这一点,在前面的双缝实验中我们其实已经看到了,当电子同时经历了两个可能的轨迹,既穿过这条缝,也穿过另一条缝时,就会产生干涉。

我们的观察或者测量,似乎对波函数起着一种神秘但又至关重要的作用,即造成波函数的坍缩,迫使原先处于各种可能的叠加态做出非此即彼的选择。好像我们对自然说:“喂,别再跟我含糊其辞,必须给我一个明确的答复。”于是自然只好吞吞吐吐做出“是与否”,“此与彼”的答复。

观察为什么能迫使波函数坍缩呢?这是谁也解释不了的机制,所以很神秘。

测量导致的波函数坍缩,叠加态崩溃,是不可逆的,不可恢复的。这正是量子通信的基础。量子通信优于传统

通信的最大亮点是保密性好。为什么它能做到这一点呢?因为信息的载体(比如光子)被窃听者截获之后,他为了得到信息,不能不对它进行测量,但测量之后,光子的状态就改变了,这样就很容易被通信的双方察觉。所以量子通信虽然没办法阻止被人窃听,但窃听者很容易暴露自己。

叠加态和薛定谔的猫

想象一只猫和一小瓶氰化物被放置在一个密闭的盒子里。瓶子上方有一把用电子开关控制着的锤子。如果开关被随机发生的量子事件(例如铀原子的衰变)触发,锤子就会砸下来,把盛有氰化物的瓶子砸碎,猫就会一命呜呼。

这个由奥地利物理学家薛定谔设想的思想实验,是用来说明叠加态的概念的。

铀原子的衰变遵循量子规律,所以它的波函数有两个解:衰变或不衰变。根据量子理论,在进行测量之前,这两种可能性都是存在的。事实上你可以认为,在测量之前,铀原子同时衰变又不衰变,处于两者的叠加态之中。

因为猫的命运维系于铀原子的衰变情况,所以你不得不承认,当铀原子处于衰变和不衰变的叠加态时,猫也将处于一种活和死的叠加态。即是说,在我们打开箱子观察之前,这只猫处于既死又活的状态。

叠加态是量子计算机的基础。传统的计算机只对0和

1操作。1比特的信息,就是0或1。但是量子计算机直接对1量子比特进行操作,而1量子比特是0和1两种状态的任意叠加,这种叠加形式几乎是无限的。这正是量子计算机与传统计算机的运行速度不可同日而语的原因。

什么是量子纠缠?

量子纠缠是指当两个粒子(例如光子)密切相关时,对一个粒子的测量立即就会影响到另一个粒子,不管两者相距有多远,哪怕一个在地球上,一个在宇宙的边缘。

这有点像你还是个孩子的时候,可能玩过的一个游戏:叔叔每只手里都攥着一个彩球,一红一蓝。先让你看,看完把它们在背后混合。混合完再拿出来,让你猜每只手中球的颜色。从你的角度来看,这两个球就像发生了“纠缠”――如果他左手拿的是红球,那就意味着他右手拿的必定是蓝球;反之亦然。

但量子的情况更神秘,因为在叠加态中,每个“球”并没有确定的颜色。任何时刻,都能以同样的概率显现红或蓝,而且是完全随机的。

你如果观察一个“量子球”,那么它的波函数坍缩,它将被迫选择一种确定的颜色显现,比如说是红色。可是与此同时,远在宇宙边缘的另一个纠缠的“量子球”,它的波函数也立刻坍缩,它也立刻以一种确定的互补颜色显现了,

比如说是蓝色。问题是,我们对后者并未做任何直接的观测,没有对它产生任何作用呀。

这样一来,对一对量子纠缠的粒子中的一个进行操作(比如说观察),似乎立刻就能影响到另一个粒子,不管它们相距多远。爱因斯坦觉得,这违反了他的相对论提出的“任何运动或作用力的传递都不能超过光速”的原理,所以他给量子纠缠贴上了“幽灵般的相互作用”的标签。

量子纠缠是“量子隐态传输”的基础。所谓量子隐态传输,就是把甲地的一个粒子的状态瞬间转移到乙地的另一个粒子上,如同某些科幻小说中描写的“超时空传输”。不过请注意,这里传输的不是粒子本身,而是粒子的状态,即传输的仅是信息。

量子理论的解释

量子理论的上述思想尽管非常神秘,也很诱人,但说实话,大多数物理学家并不特别关心,他们是实用主义者,只关心最后的计算结果:理论怎么解释就随他去吧,只要计算结果跟实验相符就够了。

当然,也有一些比较有哲学气质的物理学家试图澄清这些问题,所以他们对量子理论做出种种解释。这些解释在本刊2017年11A期的《量子物理的巅峰对决》一文中已谈得很详细,这里只把主要的几种解释简单介绍一下。

哥本哈根学派的解释――在我们测量之前,确定的现

实是不存在的。只有我们在观察的那一刻,观察的行为导致波函数“塌缩”,一种确定的现实才呈现出来。

多世界解释――每一次对量子的测量都将触发无数平行宇宙的诞生,叠加态中的每一个可能性,分别都在每一个新生的宇宙中成为了现实。你之所以观察到薛定谔猫还活着,仅仅因为这个“你”碰巧跟那只活的猫处于同一个新生宇宙中而已。

德布罗意的导波解释――微观粒子的行为跟经典粒子差不多,只是你要把它们想象成像冲浪者一样骑在所谓的导波上。粒子产生波,而波又引导粒子运动,如此反复。

浅谈量子信息技术

浅谈量子信息技术 贝尔学院韩笑 (一) 引言 众所周知,信息技术经常出现在人们的视野之中,是许多人都很熟悉的词汇。它是主要用于管理和处理信息所采用的各种技术的总称。主要是应用计算机科学和通信技术来设计、开发、安装和实施信息系统及应用软件。它也常被称为信息和通信技术。主要包括传感技术、计算机技术和通信技术。 而量子信息技术,其与信息技术最显著的区别就在于“量子”两个字。量子信息技术是量子物理与信息技术相结合发展起来的新学科,主要包括量子通信和量子计算2个领域。量子通信主要研究量子密码、量子隐形传态、远距离量子通信的技术等等;量子计算主要研究量子计算机和适合于量子计算机的量子算法。 (二) 量子信息技术的具体含义 那么到底量子信息技术相比信息技术,它的高端之处在哪呢? 首先,应该着重于“量子”这两个字。在量子力学中,量子信息是关于量子系统“状态”所带有的物理信息。通过量子系统的各种相干特性(如量子并行、量子纠缠和量子不可克隆等),进行计算、编码和信息传输的全新信息方式。 量子是一个态.所谓态在物理上不是一个具体的物理量,也不是一个单位,也不是一个实体,而是一个可以观测记录的一组记录(也就是确定组不变量去测量另外一组量),但是这组记录可以运算.并可以求出某时刻对是已观测的纪录对比十分吻合.这个就是波动力学的基础。要解决量子信息.首先要在逻辑有一个多值逻辑理论,才能通过对于量子态对应于一个实体,也就是现在所谓的给量子的态赋给予实体的功能,这样就可以实现某些交换,也就是可以计算,只要这组态符合一定的条件,由波动力学①,结论一定成立。这就是量子信息学的基础,如果一旦能找到符合理论的这些态,则计算能力将不是现有计算机的N信部题,而是的一0时计算的超量完成.对某个有限大的数组在量子态可以理论上是0时完成,也就是超距变换。这是量子信息学的研究动力。 根据摩尔定律,每十八个月计算机微处理器的速度就增长一倍,其中单位面积(或体积)上集成的元件数目会相应地增加。可以预见,在不久的将来,芯片元件就会达到它能以经典方式工作的极限尺度。因此,突破这种尺度极限是当代信息科学所面临的一个重大科学问题。量子信息的研究就是充分利用量子物理基本原理的研究成果,发挥量子相干特性的强大作用,探索以全新的方式进行计算、编码和信息传输的可能性,为突破芯片极限提供新概念、新思路和新途径。量子力学与信息科学结合,不仅充分显示了学科交叉的重要性, 而且量子信息的最终物理实现, 会导致信息科学观念和模式的重大变革。事实上,传统计算机也是量子力学的产物,它的器件也利用了诸如量子隧道现象等量子效应。但仅仅应用量子器件的信息技术,并不等于是现在所说的量子信息。目前的量子信息主要是基于量子力学的相干特征,重构密码、计算和通讯的基本原理。 量子特性在信息领域中有着独特的功能,在提高运算速度、确保信息安全、增大信息容量和提高检测精度等方面可能突破现有经典信息系统的极限,于是便诞生了一门新的学科分支——量子信息科学。它是量子力学与信息科学相结合的产物,包括:量子密码、量子通信、量子计算和量子测量等,近年来,在理论和实验上已经取得了重要突破,引起各国政府、科技界和信息产业界的高度重视。人们越来越坚信,量子信息科学为信息科学的发展开创了新的原理和方法,将在21世纪发挥出巨大潜力。

量子力学和经典力学联系的实例分析

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 量子力学与经典力学的联系的实例分析 摘要:量子力学与经典力学研究的对象不同,范围不同,二者之间是不是不可逾越的?当然不是,在一定条件下,二者可以过渡.本文首先对量子力学和经典力学的关系进行了分析,其次通过具体的实例来说明量子力学过渡到经典力学的条件,最后分析出从运动学角度,经典力学向量子力学过渡可归结为从泊松括号向对易得过渡.

关键词:量子力学;经典力学;过渡 从高中到大学低年级,我们所涉及的物理学内容均为经典物理学范畴,经典物理学理论在宏观低速范围内已是相当完善,正如十九世纪末一些物理学家所描述的那样,做机械运动的物体,当运动速度小于真空中的光速时准确地遵从牛顿力学规律;分子热运动的规律有完备的热力学和统计力学理论;电磁运动有麦克斯韦方程加以描述;光的现象有光的波动理论,整个物理世界的重要规律都已发现,以后的工作只要重复前人的实验,提高实验精度,在测量数据后面多添加几个有效数字而已.正因如此为何在学完经典物理学以后还要继续学习近代物理学,如何引入近代物理学就显得格外重要. 毫无疑问近代物理学的产生是物理学上号称在物理学晴朗的天空上“两朵小小的乌云”造成的[1],正是这引发了物理学的一场大革命.这“两朵小小的乌云”即黑体辐射实验和迈克尔逊-莫雷实验.1900年为了解释黑体辐射实验,普朗克能量子的假设,导致了量子理论思想的萌芽,接着光电效应、康普顿效应以及原子结构等一系列问题上,经典物理都碰到了无法克服的困难,通过引入量子化思想,这些问题都迎刃而解,这就导致了描述微观世界的理论-量子力学的建立. 在经典物理十分成熟、完备的情况下引入静近代物理学,毫无疑问必须强调以下问题:(1)经典物理学的适用范围是宏观低速运动;(2)19世纪末20世纪初,物理学已经研究到微观现象和高速运动的新阶段;(3)新的研究范畴必须引入新的理论,这样,近代物理学的出现也就顺理成章了. 尽管强调经典物理学的适用范围是宏观低速运动,但碰到微观高速问题,人们依旧习惯于首先用已知非常熟悉的经典物理来解决物理学家如此,我们也不例外.无疑用经典物理学去解决高速微观问题最终必将以失败而告终.然而在近代物理学课程的研究中有意识地首先让经典物理学去碰壁,去得出结论,但结论是矛盾的和错误的,然后,引出近代物理学的有关理论,问题最后迎刃而解[2]. 经典物理学是在宏观和低速领域物理经验的基础上建立起来的物理概念和理论体系,其基础是牛顿力学和麦克斯韦电磁学.近代物理学则是在微观和高速领域物理实验的基础上建立起来的概念和理论体系,其基础是相对论和量子力学,必须指出,在相对论和量子力学建立以后的当代物理学研究中.虽然大量的是近代物理学问题,但也有不少属于经典物理学问题.因此不能说有了近代物理学就可抛弃经典物理学. 量子力学是物理学研究的经验扩充到微观领域的结果.因此,量子力学的建立必然是以经典力学为基础,它们之间存在必然的联系,量子力学修改了物理学中关于物理世界的描述以及物理规律陈述的基本概念.量子力学关于微观世界的各种规律的研究给

简述建立量子力学基本原理的思想方法

简述建立量子力学基本原理的思想方法 摘要:量子力学是大学物理专业的一门必修理论基础课程,它研究的对象是分子、原子和基本粒子。本文对建立量子力学基本原理的思想方法作一简单叙述,供学员在学习掌握量子力学的基本理论和方法时参考。 关键词:量子力学;力学量;电子;函数 作者简介 0引言 19世纪末,由于科学技术的发展,人们从宏观世界进入到微观领域,发现了一系列经典理论无法解释的现象,比较突出的是黑体辐射、光电效应和原子线光谱。普朗克于1900年引进量子概念后,上述问题才开始得到解决。爱凶斯坦提出了光具有微粒性,从而成功地解释了光电效应。 1量子力学 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 2玻尔的两条假设 玻尔在前人工作的基础上提出了两条假设,成功地解释了氢原子光谱,但对稍微复杂的原予(如氦原子)就无能为力。直到1924年德布罗意提出了微观粒子具有波粒二象性之后才得到完整解释。 1924年,德布罗意在普朗克和爱因斯坦假设的基础上提出了微观粒子具有波粒二象性的假设,即德布罗意关系。1927年,戴维孙和革末将电子作用于镍单晶,得到了与x射线相同的衍射现象,从而圆满地说明了电子具有波动性。 2.1自由粒子的波动性和粒子性 它的运动是最简单的一种运动,它充分地反映了自由粒子的波动性和粒子性,将波(平面波)粒( p,E) 二象性统一在其中。如果粒子不是自由的,而是在一个变化的力场中运动,德布罗意波则不能描写。我们将用一个能够充分反映二象性特点的

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

[波谱学讲义-核磁共振]ch2-核磁共振的理论描述(S1量子力学基础)

[波谱学讲义-核磁共振]ch2-核磁共振的理论描述(S1量子力学基础)

核磁共振波谱学 第二章核磁共振的理论描述 同Bloch方程不同,density matrix formalism 可以严格描述核自旋体系的动力学过程。 2.1 量子力学基础 一基本假设 第一条基本假设: 微观体系的状态被一个波函数完全描述,从这个波函数可得出体系的所有性质。波函数一般应满足连续性、有限性和单值性。 第二条基本假设: 力学量用厄密算符表示。 1 算符:运算符号,作用于函数,结果还是函数 2 如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表达式中将动量p换成算符i ?得出。 L r p L r p i r =?→=?=-??

3 厄密算符满足:对于任意的两个函数,ψ,φ ψφψφ* * ??= ( )F dx F dx 4 本征值方程: F φλφ= F 在本征态中的观察值为其本征值。本征函数族满足正交性,厄密算符的本征函数族有完备性。 厄密算符的本征值为实数。 第三条假设: 态迭加原理:当φ1、φ2、…φn …是体系的可能状态时,它们的线性迭加ψ也是体系的一个可能的状态;也可以说,当体系处于态ψ时,体系部分地处在φ1、φ2、…φn …中。 将体系的状态波函数ψ用厄密算符 F 的本征函数φn 展开 ( F n n n φλφ=): ψ=∑c n n n φ 则在态ψ中测量力学量F 得到结果为λn 的几率是c n 2,力学量F 的平均值为 F F d d c n n n ==** ??∑ψψτψψτ λ 2 第四条基本假设: 体系的状态波函数满足薛定谔方程:i t H ?ψ?ψ= H 是体系的哈密顿算符。

浅谈量子通信技术

题目浅谈量子通信技术课程现代通信技术基础班级 学号 姓名 指导老师 2011 年12月10日

浅谈量子通信技术 摘要:量子通信(Quantum Teleportation)是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通讯是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注。基于量子力学的基本原理,量子通信具有高效率和绝对安全等特点,并因此成为国际上量子物理和信息科学的研究热点。 关键词语: 量子通信量子力学 1、引言 量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。按其所传输的信息是经典还是量子而分为两类。前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。所谓隐形传送指的是脱离实物的一种“完全”的信息传送。从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品。但是,量子力学的不确定性原理不允许精确地提取原物的全部信息,这个复制品不可能是完美的。因此长期以来,隐形传送不过是一种幻想而已。 2、量子通信的的提出 自1 9世纪进入通信时代以来,人们就梦想着像光速一样(甚至比光速更快)的通信方式.在这种通信方式下,信息的传递不再通过信息载体(如电磁波)的直接传输,也不再受通信双方之间空间距离的限制,而且不存在任何传输延时,它是一种真正的实时通信.科学家们试图利用量子非效应或量子效应来实现这种通信方式,这种通信方式被称为量子通信.与成熟的通信技术相比,量子通信具有巨大的优越性,已成为国内外研究的热点.近年来在理论和实践上均已取得了重要的突破,引起各国政府、科技界和信息产业界的高度重视.从人类信息交流

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学和经典力学的区别与联系(完整版)

量子力学和经典力学的区别与联系 量子力学和经典力学在的区别与联系 摘要 量子力学是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,他们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解和掌握量子力学的概念和原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就是:在经典物理中,运动状态描述的特点为状态量都是一些实验可以测量得的,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都是不确定的。但是当微观粒子积累到一定量是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系 三、目录 摘要............................................................ ............ ... ... ...... (1) 关键字.................................................................. ...... ... ... ...... (1) 正文..................................................................... ...... ... ... ...... (3) 一、量子力学及经典力学基本内容及理论...... ............ ... ............ ...... ... (3) 经典力学基本内容及理论........................... ...... ......... ...... (3) 量子力学的基本内容及相关理论.................................... ...... (3) 二、量子力学及经典力学在表述上的区别与联系.................. ...... ... ...... (4)

2021年世界量子信息技术科研及产业化研究

2021年世界量子信息技术科研及产业化研究 一、引言 在当前欧美等发达国家纷纷启动量子信息国家战略背景下,量子信息技术已成为全球最热的科技竞争焦点之一。美国、中国、日本、加拿大及欧洲等国家和地区在加快量子信息技术基础研究和应用研 发过程中,愈发重视创新成果的保护和运用。近5年来,量子信息科研产出和技术专利大量涌现。本文在对最新的量子信息领域专利申请和科研论文趋势进行分析的基础上,为量子信息技术和产业发展提供参考。 二、量子信息领域科研成果 通过对超过4 万篇量子信息技术论文进行统计,按照Web of Science学科分类,发现论文主要分布在物理学、光学、工程等领域,同时与计算科学、化学、数学等领域也有较多关联[2]。其中,物理学(多学科)占16.13%、光学占14.90%、物理(应用)占11.79%、物理(原子、分子与化学)占 9.51%、工程(电气与电子)占6.65%。另外,全球发文量排前20名的期刊汇聚了超过45%的量子信息相关科研论文,分布较集中。 量子信息作为数学、信息学、物理学及计算机科学等学科的交叉前沿领域,经过论文筛选和关键词聚类分析发现,关键词关系图呈现出3个主要的聚簇。

第一个聚簇主要围绕量子物理实现技术,包括超导(Superconductivity)、NV色心(Color Center)、硅量子点(Silicon Quantum Dots)等。 第二个聚簇主要围绕量子加密和通信技术,包括量子密钥分发(Quantum Key Distribution)、量子隐形传态(Quantum Teleportation)、安全直接通信(Secure Direct Communication)、单光子探测器(Single Photon Detector)、量子克隆(Quantum Cloning)等。 第三个聚簇主要围绕量子计算和量子信息学技术,包括量子算法(Quantum Algorithm)、搜索算法(Search Algorithm)、神经网络(Neural Networks)、深度学习算法(Deep Learning Algorithms)、纠错算法(Error Correction)、量子图像处理(Quantum Image Processing)等,在第二个和第三个聚簇交汇处出现量子测量领域相关技术。 此外,量子退火(Quantum Annealing)、粒子群优化(Particle Swarm Optimization)、可逆逻辑(Reversible Logic)、单光子探测器(Single Photon Detector)等关键词位于词云的边缘,与量子计算和量子密码学关系比较紧密,与其他主题的关系较弱。 随着人们对量子信息技术的兴趣日益高涨,对最近3年新增关键词词频进行统计发现,科研方向出现了一些新的关注点,如量子霸权(Supremacy)、量子区块链(Block Chain)、量子发射器(Quantum Emitters)、分布稳健(Distribution Robust)、几何自旋(Geometric

量子力学和经典力学的区别与联系

量子力学和经典力学在的区别与联系 摘要 量子力学是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,他们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解和掌握量子力学的概念和原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就是:在经典物理中,运动状态描述的特点为状态量都是一些实验可以测量得的,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都是不确定的。但是当微观粒子积累到一定量是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系

目录 三、目录 摘要 (1) 关键字 (1) 正文 (3) 一、量子力学及经典力学基本内容及理论……………………………………………… 3 经典力学基本内容及理论 (3) 量子力学的基本内容及相关理论 (3) 二、量子力学及经典力学在表述上的区别与联系 (4) 微观粒子和宏观粒子的运动状态的描述 (4) 量子力学中微观粒子的波粒二象性 (5) 三、结论:量子力学与经典力学的一些区别对比 (5) 参考文献 (6)

量子力学和经典力学的区别与联系

量子力学与经典力学在的区别与联系 摘要 量子力学就是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不就是绝对的,而就是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,她们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解与掌握量子力学的概念与原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果就是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说就是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就就是:在经典物理中,运动状态描述的特点为状态量都就是一些实验可以测量得的,即在理论上这些量就是描述运动状态的工具,实际上它们又就是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都就是不确定的。但就是当微观粒子积累到一定量就是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系 目录 三、目录 摘要 (1) 关键字 (1) 正文 (3) 一、量子力学及经典力学基本内容及理论……………………………………………… 3 1、1 经典力学基本内容及理论 (3) 1、2 量子力学的基本内容及相关理论 (3) 二、量子力学及经典力学在表述上的区别与联系 (4) 2、1 微观粒子与宏观粒子的运动状态的描述 (4) 2、2 量子力学中微观粒子的波粒二象性 (5) 三、结论:量子力学与经典力学的一些区别对比 (5) 参考文献 (6) 量子力学与经典力学在的区别与联系 一、量子力学及经典力学基本内容及理论 1、1经典力学基本内容及理论 经典力学就是在宏观与低速领域物理经验的基础上建立起来的物理概念与理论体

量子力学基本原理

量子力学基本原理 量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。 状态函数 物理体系的状态由状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期望值由一个包含该算符的积分方程计算。(一般而言,量子力学并不对一次观测确定地预言一个单独的结果。取而代之,它预言一组可能发生的不同结果,并告诉我们每个结果出现的概率。也就是说,如果我们对大量类似的系统作同样地测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果做出预言。)状态函数的模平方代表作为其变量的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。 根据狄拉克符号表示,状态函数,用<Ψ|和|Ψ>表示,状态函数的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(?/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。 状态函数可以表示为展开在正交空间集里的态矢比如 ,其中|i>为彼此正交的空间基矢, 为狄拉克函数,满足正交归一性质。态函数满足薛定谔波动方程, ,分离变数后就能得到不显含时状态下的演化方程 ,En是能量本征值,H是哈密顿算子。 于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。

2019最新量子信息技术行业专题报告

量子信息技术行业 专题报告 2019年6月12日 正文目录 1、第二次量子技术革命爆发在即 (4) 1.1、量子信息科学概述 (5)

1.2、各国政策支持助推量子信息科学快速发展 (5) 1.3、量子信息底层基于量子特性 (8) 2、量子计算机将重构未来计算 (9) 2.1、量子计算机与传统计算机的区别 (9) 2.2、国内外资金加速涌入量子计算机领域 (11) 2.3、重构世界:量子计算机的未来 (14) 2.4、量子计算市场潜力巨大 (15) 3、中国量子通信产业化进程世界领先 (15) 3.1、量子通信安全性好于传统通信 (16) 3.2、全球量子通信产业化提速,中国产业化进程领先 (17) 3.3、市场规模巨大,产业链基本形成 (20) 4、投资建议 (22) 4.1、神州信息:京沪干线的主建设方,发力量子通信应用领域23 5、风险分析 (25) 图表目录 图1:第二次量子革命的主要突破领域 (5) 图2:世界主要国家支持量子技术发展 (8) 图3:我国从国家战略、技术引领、工程建设等多角度支持量子技术产业

化发展 (8) 图4:量子比特包含的信息量远高于传统比特 (9) 图5:量子计算机工作原理流程图 (10) 图6:量子计算的逻辑门路 (11) 图7:量子计算可以实现并行计算 (11) 图8:IBM Q System One (12) 图9:D-wave 2000Q (13) 图10:历年各国量子计算技术专利申请情况 (13) 图11:各公司在量子计算的专利申请情况 (13) 图12:量子计算市场爆发情况预测 (15) 图13:量子密钥分发基本架构 (17) 图14:量子通信技术研究与应用发展历程 (17) 图15:“墨子号”量子实验卫星 (19) 图16:量子通信技术专利年申请量 (20) 图17:我国量子通信市场规模及其预测 (21) 图18:2021 年量子通信下游应用领域分布 (21) 图19:我国量子保密通信产业总体视图 (21) 表1:各国量子技术政策汇总 (7) 表2:国外量子计算机发展历程 (12) 表3:我国量子计算领域的发展历程 (14) 表4:21 世纪后国外量子通信发展历程 (18) 表5:国内量子通信发展历程 (19)

量子力学与统计力学各章习题Word版

《量子力学与统计力学》各章习题 习题一 1.1、一颗质量为20克的子弹以仰角30o初速率500米/秒从60米的高度处射出。求在重力 作用下该子弹着地前的轨道以及射出50秒后对射出点的位矢、速度、动量、角动量、动 能和机械能。(不考虑空气阻力,重力加速度取10米/秒2 ,地面为零重力势能面)。 1.2、在极坐标平面中任取两点P 1和P 2,但它们和极点三者不共线。试分别画出在P 1和P 2处 的极坐标单位矢。 1.3、在球坐标系中任取一点P ,试画出P 点的球坐标单位矢。 1.4、对于做斜上抛运动的子弹,以抛出点为坐标系原点建立直角坐标系。试分别选取两组不 同的广义坐标,并用之表示子弹在任一时刻的直角坐标。 1.5、氢原子由一个质子和一个电子组成。试说明一个孤立氢原子体系是基本形式的Lagrange 方程适用的体系。 1.6、证明: Lagrange 方程的基本形式(1.59)式可写为如下的Nielsen 形式: αα αQ q T q T =??-??2 ,s ,,2,1 =α 1.7、设一个s 自由度的体系的广义坐标为αq ),,2,1(s =α。试证明存在一个任意可微函 数),,,,(21t q q q F s ,由它与该体系的Lagrange 函数构成的如下函数 dt t q q q dF s ) ,,,,(L L 21 + =' 满足Langrange 方程(1.67)式。 1.8、设一个s 自由度的体系的广义坐标为αq ),,2,1(s =α,满足Langrange 方程(1.67) 式的Lagrange 函数为),,,,,,,,(L 2121t q q q q q q s s 。设存在另一组广义坐标αξ,),,2,1(s =α,且有变换方程 ),,,,(21t q q s ξξξαα =,s ,,2,1 =α 此变换叫做点变换。证明: 若通过上述点变换将),,,,,,,,(L 2121t q q q q q q s s 变 换为),,,,,,,,(L L 2121t s s ξξξ ξξξ =,则有 s dt d , ,2 ,1 ,0L )L ( ==??-??αξξα α 这就是说,Lagrange 方程的形式与所选用的广义坐标无关。 1.9、一个质量为m 的物体在地球(质量为M )引力场中做周期运动。以地心为极点在轨道平面 上建立极坐标系),(?r ,并选极坐标为广义坐标。 1)、写出该物体的Lagrange 函数,广义动量,所受的广义力,并由Lagrange 方程导出 该物体的径向和横向运动方程; 2)、写出该物体的Hamilton 函数, 并由Hamilton 正则方程导出该物体的径向和横向运动方程。

量子力学原理及其应用

量子力学原理及其应用 师燕光电8班2012059080029 量子力学是近代自然科学的最重要的成就之一.在量子力学的世界里,一个 量子微观体系的状态是由一个波函数来描述的,而非由粒子的位置和动量描述, 这就是它与经典力学最根本的区别。这是被爱因斯坦和玻尔用“上帝跟宇宙玩掷骰子”来形容的学科,也是研究“极度微观领域物质”的物理学分支,它带来了许许多多令人震惊不已的结论——例如科学家们发现,电子的行为同时带有波和粒子的双重特征(波粒二象性),但仅仅是加入了人类的观察活动,就足以立刻改变它们的特性;此外还有相隔千里的粒子可以瞬间联系(量子纠缠):不确定的光子可以同时去向两个方向(海森堡测不准原理);更别提那只理论假设的猫既死了又活着(薛定谔的猫)?? 诸如以上,这些研究结果往往是颠覆性的,因为它们基本与人们习惯的逻辑思维相违背。以至于爱因斯坦不得不感叹道:“量子力学越是取得成功,它自身就越显得荒诞。” 直到现在,与一个世纪之前人类刚刚涉足量子领域的时候相比,爱因斯坦的观点似乎得到了更为广泛的共鸣。量子力学越是在数理上不断得到完美评分,就越显得我们的本能直觉竟是如此粗陋不堪。人们不得不承认,虽然它依然看起来奇异而陌生,但量子力学在过去的一百年里,已经为人类带来了太多革命性的发明创造。正像詹姆斯·卡卡廖斯在《量子力学的奇妙故事》一书引言中的所述:“量子力学在哪?你不正沉浸于其中吗。” 一、量子计算机 量子力学的海森堡测不准原理决定了粒子的位置和动量是不能同时确定的( )。当计算机芯片的密度很大时(即很小)将导致很大, 电子不再被束缚, 产生 量子干涉效应,而这种干涉效应会完全破坏芯片的功能。为了克服量子力学对计算机发展的限制,计算机的发展方向必然和量子力学相结合,这样不仅可以越过 量子力学的障碍,而且可以开辟新的方向。量子计算机就是以量子力学原理直接 进行计算的计算机.保罗·贝尼奥夫在1981 年第一次提出了制造量子计算机的理论。量子计算机的存储和读写头都以量子态存在的,这意味着存储符号可以是0、1 以及它们的叠加。 近年来的种种试验表明,量子计算机的计算和分析能力都超越了经典计算机。它具有如此优越的性质正在于它的存储读取方式量子化。对量子计算机的原理分析可知,以下两个个特性是令量子计算机优越性的根源所在:存储量大,速度高;可以实现量子平行态。 随着现代科学技术的发展,量子计算机也会逐渐走向现实研制和现实运用。量子计算机不但于未来的计算机产业的发展紧密相关,更重要的是它与国家的保密、电子银行、军事和通讯等重要领域密切相关。实现量子计算机是21 世纪科学技术的最重要的目标之一。 二、晶体管 美国《探索》杂志在线版给出的真实世界中量子力学的一大应用,就是人们早已不陌生的晶体管。1945 年的秋天,美国军方成功地制造出世界上第一台真空管计算机ENIAC。据当时的记载,这台庞然大物总重量超过30 吨,占地面积接近一个小型住宅,总花费高达100 万美元。如此巨额的投入,注定了真空管这种

量子力学基本概念及理解

量子力学基本理论及理解 基本概念 概率波 量子力学最基础的东西就就是概率波了,但我认为对概率波究竟就是什么样一种“波”,却并不就是很容易理解的,这个问题直到理查德,费恩曼(而不就是海森伯或者伯恩)提出了单电子实验,才让我们很清楚的瞧到什么就是概率波?有为什么就是概率波。 什么就是概率波?为什么就是概率波? 要回答这些问题,其实很简单,我们只需瞧下费恩曼的理想电子双缝干涉实验(刚开始时理想实验,不过后来都已经过证明了)就行了,我相信大家都会明白的。 下面我们再瞧一下费恩曼给出了什么结果: 1.单独开启缝1或者缝2都会得到强度分布或者符合衍射的图样, 缝1与缝2都开启时得到强度符合干涉图样 2.由两个单缝的图样无论如何得不到双缝的图样,即 3.每次让一个电子通过,长时间的叠加后就得到一个与一次让很多电子 通过双缝完全相同的图案 4.每次得到的就是“一个”电子 其实从这些结果中我们很容易得到为什么必须就是概率波,并且我们也很容易去除那些对概率波不对的理解,也就就是所谓的向经典靠拢的理解,从而得到必须就是概率波的事实。 概率波从字面上来理解,也就就是这种波表示的就是一种概率分布,还就是在双缝干涉中我们瞧一下很简单的一些表现,若果就是概率波的话,我们很关心的就就是这个粒子分布的具体形状,粒子位置的期望值等,在这里我们可以瞧出来波函数经过归一化之后,就就是说电子还就是只有那一个电子,但就是它的位置不确定了,这才形成在一定的范围内的一个云状分布,您要计算某一个范围内的电荷就是多少,这样您会得到一个分数的电荷量,但这只能告诉您电子在您研究的范围内分布的概率有多大,并不就是说在这一范围内真正存在多少电子。

量子科技科普:量子行走与量子信息技术

量子科技科普:量子行走与量子信息技术 觉得量子科技仅仅是科学家关心的事情?那你就out了。事实上,与人工智能相比,量子科技可能更具“颠覆性”,让我们一起快速了解一下量子科技的无限可能吧! 二维空间量子行走首次实现 据最新一期美国《科学·进展》杂志报道,上海交通大学金贤敏团队于近日实现了大规模三维集成光量子芯片,并演示了首个真正空间二维的随机行走量子计算。金贤敏表示,未来他们将继续致力于量子信息技术芯片化和集成化研究。 量子信息技术现在发展到什么程度了? 中国目前已经在量子芯片、量子通信、量子点显示等领域取得了突破,将为社会经济和人类生活带来深远、深刻的影响。吉林大学电子科学与工程学院院长孙洪波指出,量子信息技术已经经历了理论框架、原理验证、系统演示阶段,距离广泛应用还差实用器件这临门一脚。 量子信息与微纳集成器件制备技术相结合,量子系统走向小型化、芯片化和集成化,将为其应用带来关键突破。

“量子信息技术具有两大优势,一个是大容量,另一个是绝对安全。” 孙洪波介绍说,量子体系的波函数在空间分布具有几率性,将信息加载在几率幅上,加载信息的容量随量子比特数呈指数增长,这就是量子信息大容量、高速度特性。量子通信还一个特点,那就是一旦被窃听,马上就会由于信号丢失被发觉,所以具有物理本质上的绝对安全性。 量子芯片将为芯片产业带来了革命性的突破点 孙洪波认为:目前传统集成电路芯片面临很大挑战,摩尔定理发挥作用的空间越来越小,利用降低线宽、增加单位面积和单位体积内晶体管数目来提高芯片性能的传统做法,已经难以为继。而通过量子信息技术,却有可以让芯片在处理能力和运算速度上产生革命性的提升。 量子科技正在深刻改变我国多个产业的发展

量子统计力学

量子统计力学 一、课程编码: 课内学时:48 学分:3 二、适用学科专业:理论物理、凝聚态物理、光学 三、先修课程:量子力学、热力学与统计力学 四、教学目标 通过本课程的学习,掌握量子统计力学的基本概念,包括系综、配分函数、近独立粒子体系统计分布规律以及相变的分类及其基本规律;提升运用量子统计力学基本方法来分析解决和体系的热力学性质有关的问题的能力。 五、教学方式 课堂教学 六、主要内容及学时分配 1 量子统计物理学基础8学时 1.1 引言 1.2 存粹系综与混合系综 1.3 统计算符 1.4 刘维尔定理 1.5 统计物理的基本假设微正则系综 1.6 正则系综巨正则系综 1.7 计算密度矩阵举例 1.8 从统计物理出发推导三种独立粒子系统的统计分布 1.9 熵增加定律微观可逆性与宏观不可逆性 2 系综的配分函数3学时 2.1 配分函数与统计热力学 2.2 配分函数的经典极限 2.3 由巨正则系综出发推导理想气体的统计分布及物态方程 3 玻色系统8学时 3.1 理想玻色气体性质与BEC 3.2 非理想玻色气体中的BEC 3.3 多普勒致冷和磁--光陷阱 3.4 简谐势阱中理想玻色气体的BEC 4 超流性5学时 4.1 液氦He4中的超流相变 4.2液氦He4 II相的特征 4.3 超流体的涡旋运动 4.4 朗道超流理论 4.5 简并性近理想玻色气体 5 费米系统12学时 5.1 理想费米气体 5.2 朗道抗磁性 5.3 量子霍尔效应 5.4 泡利顺磁性 5.5 正常费米液体I:元激发 5.6 正常费米液体II:准粒子相互作用

6 相变与临界现象基本概念12学时 6.1 相变及其分类 6.2 序参量 6.3 热力学函数的临界指数 6.4 关联函数标度率 6.5 响应函数及其与关联函数的联系 6.6 涨落—耗散 6.7 平均场 6.8 平均场的失效 6.9 标度假设 6.10 普适性 6.11 自发对称破缺 6.12 Goldstone定理 6.13 空间维数与涨落 七、考核与成绩评定 平时成绩(作业):30分 期终考试卷面分:70分 八、参考书及学生必读参考资料 1 必读书(教材)。作者:杨展如。书名:《量子统计物理学》。 出版地:北京。出版社:高等教育出版社。出版年:2010年 2 参考书。作者:张先蔚。书名:《量子统计力学》[第二版]。 出版地:北京。出版社:科学出版社。出版年:2008年。 九、大纲撰写人:杨帆

量子力学基础

量子力学基础 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

第一章量子力学基础 一、教案目的: 通过本章学习,掌握微观粒子运动的特征、量子力学的基本假设,并初步学习运用薛定谔方程去分析和计算势箱中粒子运动的有关问题:b5E2RGbCAP 二、教案内容: 1、微观粒子的运动特征 黑体辐射和能量量子化;光电效应和光子学说;实物粒子的波粒二相性;不确定关系; 2、量子力学基本假设 波函数和微观粒子的状态;物理量和算符;本征态、本征值和薛定谔方程;态叠加原理;泡利原理; 3、箱中粒子的薛定谔方程及其解 三、教案重点 微观粒子运动的特征、量子力学的基本假设 四、教案难点: 量子力学的基本假设 五、教案方法及手段 课堂教案 六、课时分配: 微观粒子的运动特征 2学时 量子力学基本假设 4学时

箱中粒子的薛定谔方程及其解 2学时 七、课外作业 课本p20~21 八、自学内容 1-1微观粒子的运动特征 1900年以前,物理学的发展处于经典物理学阶段<由Newton的经典力学,Maxwell的的电磁场理论,Gibbs的热力学和Boltzmann的统计物理学),这些理论构成一个相当完善的体系,对当时常见的物理现象都可以从中得到说明。p1EanqFDPw 在经典物理学取得上述成就的同时,通过实验又发现了一些新现象,它们是经典物理学无法解释的。如黑体辐射、光电效应、电子波性等实验现象,说明微观粒子具有其不同于宏观物体的运动特征。DXDiTa9E3d 电子、原子、分子和光子等微观粒子,它们表现的行为在一些场合显示粒性,在另一些场合又显示波性,即具有波粒二象性的运动特征。人们对这种波粒二象性的认识是和本世纪物理学的发展密切联系的,是二十世纪初期二十多年自然科学发展的集中体现。RTCrpUDGiT 1.1.1黑体辐射和能量量子化——普朗克< planck)的量子假 说:量子说的起源 黑体是一种能全部吸收照射到它上面的各种波长的光,同时也能在同样条件下发射最大量各种波长光的物体。 带有一个微孔的空心金属球,非常接近于黑体,进入金属球小孔的辐射,经过多次吸收、反射,使射入的辐射全部被吸收。当空腔受热时,空腔壁会发出辐射,极小部分通过小孔逸出。5PCzVD7HxA

相关主题