搜档网
当前位置:搜档网 › (真正的好东西)偏最小二乘回归=多元线性回归分析+典型相关分析+主成分分析

(真正的好东西)偏最小二乘回归=多元线性回归分析+典型相关分析+主成分分析

(真正的好东西)偏最小二乘回归=多元线性回归分析+典型相关分析+主成分分析
(真正的好东西)偏最小二乘回归=多元线性回归分析+典型相关分析+主成分分析

偏最小二乘回归是一种新型的多元统计数据分析方法,它与1983年由伍德和阿巴诺等人首次提出。近十年来,它在理论、方法和应用方面都得到了迅速的发展。密西根大学的弗耐尔教授称偏最小二乘回归为第二代回归分析方法。

偏最小二乘回归方法在统计应用中的重要性主要的有以下几个方面:(1)偏最小二乘回归是一种多因变量对多自变量的回归建模方法。

(2)偏最小二乘回归可以较好地解决许多以往用普通多元回归无法解决的问题。在普通多元线形回归的应用中,我们常受到许多限制。最典型的问题就是自变量之间的多重相关性。如果采用普通的最小二乘方法,这种变量多重相关性就会严重危害参数估计,扩大模型误差,并破坏模型的稳定性。变量多重相关问题十分复杂,长期以来在理论和方法上都未给出满意的答案,这一直困扰着从事实际系统分析的工作人员。在偏最小二乘回归中开辟了一种有效的技术途径,它利用对系统中的数据信息进行分解和筛选的方式,提取对因变量的解释性最强的综合变量,辨识系统中的信息与噪声,从而更好地克服变量多重相关性在系统建模中的不良作用。

(3)偏最小二乘回归之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。

由于偏最小二乘回归在建模的同时实现了数据结构的简化,因此,可以在二维平面图上对多维数据的特性进行观察,这使得偏最小二乘回归分析的图形功能十分强大。在一次偏最小二乘回归分析计算后,不但可以得到多因变量对多自变量的回归模型,而且可以在平面图上直接观察两组变量之间的相关关系,以及观察样本点间的相似性结构。这种高维数据多个层面的可视见性,可以使数据系统的分析内容更加丰富,同时又可以对所建立的回归模型给予许多更详细深入的实际解释。

一、偏最小二乘回归的建模策略\原理\方法

1.1建模原理

设有 q 个因变量{q y y ,...,1}和p 自变量{p x x ,...,1}。为了研究因变量和自变量的统计关系,我们观测了n 个样本点,由此构成了自变量与因变量的数据表X={p x x ,...,1}和.Y={q y y ,...,1}。偏最小二乘回归分别在X 与Y 中提取出成分1t 和

1u (也就是说, 1t 是p x x ,...,1 的线形组合, 1u 是q y y ,...,1 的线形组合).在提取这

两个成分时,为了回归分析的需要,有下列两个要求:

(1) 1t 和1u 应尽可能大地携带他们各自数据表中的变异信息; (2) 1t 与1u 的相关程度能够达到最大。

这两个要求表明,1t 和1u 应尽可能好的代表数据表X 和Y ,同时自变量的成分

1t 对因变量的成分1u 又有最强的解释能力。

在第一个成分1t 和 1u 被提取后,偏最小二乘回归分别实施X 对 1t 的回归以及 Y 对1u 的回归。如果回归方程已经达到满意的精度,则算法终止;否则,将利用 X 被1t 解释后的残余信息以及Y 被1t 解释后的残余信息进行第二轮的成分提取。如此往复,直到能达到一个较满意的精度为止。若最终对 X 共提取了 m 个成分1

t ,…,

m

t ,

偏最小二乘回归将通过实施 k y 对1

t ,…,

m

t ,

回归,然后再表达成k y 关于原变量x

1

,…,

x

m

的回归方程,k=1,2,…,q 。

1.2计算方法推导

为了数学推导方便起见,首先将数据做标准化处理。X 经标准化处理后的数据矩阵记为0E =(E 01,…,E p 0)p n ?,j Y 经标准化处理后的数据矩阵记为

0F =(01F ,…,q F 0)p n ?。

第一步 记1t 是0E 的第一个成分,1w 是0E 的第一个轴,它是一个单位向量,

既||1w ||=1。

记1u 是0F 的第一个成分,1u =0

F c 1

。c 1

是0

F

的第一个轴,并且||c 1||=1。

如果要1

t ,

1u 能分别很好的代表X 与Y 中的数据变异信息,根据主成分分

析原理,应该有

Var(1u )→max Var(1t )→max

另一方面,由于回归建模的需要,又要求1t 对1u 有很大的解释能力,有典型相关分析的思路,1t 与1u 的相关度应达到最大值,既

r (1t ,1u )→max

因此,综合起来,在偏最小二乘回归中,我们要求1t 与1u 的协方差达到最大,既

Cov(1

t ,

1u )=)()(11u t Var Var r(1t ,

1u ) →max

正规的数学表述应该是求解下列优化问题,既

因此,将在||1w ||2=1和||c 1||2=1的约束条件下,去求(w '

1

E '

F

c 1

)的最大

值。

如果采用拉格朗日算法,记

s=w '

1

E

'0

F c 1

-λ1

(w

'

1

1

w -1)-λ2 (c '

1c 1-1)

对s 分别求关于1

w ,c 1,λ1和λ2的偏导并令之为零,有

1

w s

??=E '00

F c 1

-λ

1

21w =0 (1 -2)

1

c s

??=F '00E 1w -λ2

2c 1

=0 (1-3)

1

λ??s =-(w '

11w -1)=0 (1-4)

2

λ??s =-(c '

1c 1-1)=0 (1-5) 由式(1-2)~(1-5),可以推出

>=<==1010100'1'21,22c F w E c F E w λλ

记100'1'21122c F E w ===λλθ,所以,1θ正是优化问题的目标函数值. 把式(1-2)和式(1-3)写成

11100'w c F E θ= (1-6)

11100'c w E F θ= (1-7)

将式(1-7)代入式(1-6),有

12

1100'00'w w E F F E θ= (1-8)

同理,可得

12

1100'00'c c F E E F θ= (1-9)

可见,1w 是矩阵00'00'E F F E 的特征向量,对应的特征值为2

1θ.1θ是目标函数值,它要求取最大值,所以, 1w 是对应于00'00'E F F E 矩阵最大特征值的单位特征向量.而另一方面, 1c 是对应于矩阵00'00'F E E F 最大特征值2

1θ的单位特征向量. 求得轴1w 和1c 后,即可得到成分

101w E t = 101c F u = 然后,分别求0E 和0F 对1t ,1u 的三个回归方程

11'10E p t E += (1-10)

11'10*+=F q u F (1-11) 11'10F r t F += (1-12) 式中,回归系数向量是

2

11

0'1||||t t E p = (1-13) 2

11

0'1||

||u u F q = (1-14) 2

11

0'1||||t t F r =

(1-15) 而1E ,1*F ,1F 分别是三个回归方程的残差矩阵.

第二步 用残差矩阵1E 和1F 取代0E 和0F ,然后,求第二个轴2w 和2c 以及第二个成分2t ,2u ,有

2t =1E 2w 2u =1F 2c

211'2'222,c F E w u t >==<θ

2w 是对应于矩阵11'11'E F F E 最大特征值2

2θ的特征值, 2c 是对应于矩阵11'11'F E E F 最大特征值的特征向量.计算回归系数

222

1'2||||t t E p =

2

22

1'2||||t t F r = 因此,有回归方程

22'21E p t E += 22'21F r t F += 如此计算下去,如果X 的秩是A ,则会有

A A p t p t E '1'10++= (1-16)

A A A F r t r t F +++='1'10 (1-17)

由于,A t t ,,1 均可以表示成p E E 001,, 的线性组合,因此,式(1-17)还可以还原

成k k F y 0*

=关于k j E x 0*=的回归方程形式,即

Ak p kp k k F x x y +++=**

11*αα k=1,2,…,q

Ak F 是残差距阵A F 的第k 列。

1.3交叉有效性

下面要讨论的问题是在现有的数据表下,如何确定更好的回归方程。在许多情形下,偏最小二乘回归方程并不需要选用全部的成分A t t ,,1 进行回归建模,而是可以象在主成分分析一样,采用截尾的方式选择前m 个成分

))(,(X A A m 秩=<,仅用这m 个后续的成分m t t ,,1 就可以得到一个预测性较好

的模型。事实上,如果后续的成分已经不能为解释0F 提供更有意义的信息时,采用过多的成分只会破坏对统计趋势的认识,引导错误的预测结论。在多元回归分析一章中,我们曾在调整复测定系数的内容中讨论过这一观点。 下面的问题是怎样来确定所应提取的成分个数。

在多元回归分析中,曾介绍过用抽样测试法来确定回归模型是否适于预测应用。我们把手中的数据分成两部分:第一部分用于建立回归方程,求出回归系数估计量

B b ,拟合值B y ?以及残差均方和2?B σ;再用第二部分数据作为实验点,代入刚才所求得的回归方程,由此求出2??T T y σ和。一般地,若有≈2?T σ2

?B σ,则回归方程会有更好的预测效果。若 >>2?T σ2

?B σ,则回归方程不宜用于预测。

在偏最小二乘回归建模中,究竟应该选取多少个成分为宜,这可通过考察增加一个新的成分后,能否对模型的预测功能有明显的改进来考虑。采用类似于抽样测试法的工作方式,把所有n 个样本点分成两部分:第一部分除去某个样本点i 的所有样本点集合(共含n-1个样本点),用这部分样本点并使用h 个成分拟合一个回归方程;第二部分是把刚才被排除的样本点i 代入前面拟合的回归方程,得到j y 在

样本点i 上的拟合值)(?i hj y

-。对于每一个i =1,2,…,n,重复上述测试,则可以定义j y 的预测误差平方和为hj PRESS ,有

∑=--=n

i i hj ij hj y

y PRESS 12)()?( (1-18)

定义Y 的预测误差平方和为h PRESS ,有

∑==p

j hj h PRESS PRESS 1 (1-19)

显然,如果回归方程的稳健性不好,误差就很大,它对样本点的变动就会十分敏感,这种扰动误差的作用,就会加大h PRESS 的值。

另外,再采用所有的样本点,拟合含h 个成分的回归方程。这是,记第i 个样本

点的预测值为hji y

?,则可以记j y 的误差平方和为hj SS ,有 ∑=-=n

i hji ij hj y

y SS 1

2)?( (1-20) 定义Y 的误差平方和为h SS ,有

∑==p

j hj h SS SS 1 (1-21)

一般说来,总是有h PRESS 大于h SS ,而h SS 则总是小于1-h SS 。下面比较1-h SS 和

h PRESS 。1-h SS 是用全部样本点拟合的具有h-1个成分的方程的拟合误差; h PRESS 增加了一个成分h t ,但却含有样本点的扰动误差。如果h 个成分的回归方

程的含扰动误差能在一定程度上小于(h-1)个成分回归方程的拟合误差,则认为增加一个成分h t ,会使预测结果明显提高。因此我们希望)/(1-h h SS PRESS 的比值能越小越好。在SIMCA-P 软件中,指定

2195.0)/(≤-h h SS PRESS

195.0-≤h h SS PRESS 时,增加成分h t 就是有益的;或者反过来说,当

195.0->h h SS PRESS 时,就认为增加新的成分h t ,对减少方程的预测误差无明显的改善作用.

另有一种等价的定义称为交叉有效性。对每一个变量k y ,定义

k

h hk

hk SS PRESS Q )1(2

1--

= (1-22)

对于全部因变量Y ,成分h t 交叉有效性定义为

)

1()1(1

211--=-

=-

=∑∑h h

k

h q

k hk

h

SS PRESS SS

PRESS

Q (1-23)

用交叉有效性测量成分h t 对预测模型精度的边际贡献有如下两个尺度。 (1)

当0975.0)95.01(22

=-≥h Q 时, h t 成分的边际贡献是显著的。显而易见, 0975.02

≥h

Q 与2195.0)/(<-h h SS PRESS 是完全等价的决策原则。 (2) 对于k=1,2,…,q,至少有一个k,使得

0975.02

≥h Q

这时增加成分h t ,至少使一个因变量k y 的预测模型得到显著的改善,因此,也可以考虑增加成分h t 是明显有益的。

明确了偏最小二乘回归方法的基本原理、方法及算法步骤后,我们将做实证分析。

附 录

function w=maxdet(A) %求矩阵的最大特征值 [v,d]=eig(A); [n,p]=size(d); d1=d*ones(p,1);

d2=max(d1);

i=find(d1==d2);

w=v(:,i);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%

function [c,m,v]=norm1(C)

%对数据进行标准化处理

[n,s]=size(C);

for i=1:n

for j=1:s

c(i,j)=(C(i,j)-mean(C(:,j)))/sqrt(cov(C(:,j)));

end

end

m=mean(C);

for j=1:s

v(1,j)=sqrt(cov(C(:,j)));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%

function [t,q,w,wh,f0,FF]=fun717(px,py,C)

% px自变量的输入个数

% py输入因变量的个数。

% C输入的自变量和因变量组成的矩阵

% t提取的主成分

% q为回归系数。

% w最大特征值所对应的特征向量。

% wh处理后的特征向量

% f0回归的标准化的方程系数

% FF原始变量的回归方程的系数

c=norm1(C); %norm1为标准化函数

y=c(:,px+1:px+py); %截取标准化的因变量

E0=c(:,1:px);

F0=c(:,px+1:px+py);

A=E0'*F0*F0'*E0;

w(:,1)=maxdet(A); %求最大特征向量

t(:,1)=E0*w(:,1); %提取主成分

E(:,1:px)=E0-t(:,1)*(E0'*t(:,1)/(t(:,1)'*t(:,1)))'; % 获

得回归系数

p(:,1:px)=(E0'*t(:,1)/(t(:,1)'*t(:,1)))';

for i=0:px-2

B(:,px*i+1:px*i+px)=E(:,px*i+1:px*i+px)'*F0*F0'*E(:,px*i+1:px*i+px);

w(:,i+2)=maxdet(B(:,px*i+1:px*i+px));

% maxdet为求最大特征值的函数

t(:,i+2)=E(:,px*i+1:px*i+px)*w(:,i+2);

p(:,px*i+px+1:px*i+2*px)=(E(:,px*i+1:px*i+px)'*t(:,i+2)/(t(:,i+2)'*t(:,i+2)))';

E(:,px*i+px+1:px*i+2*px)=E(:,px*i+1:px*i+px)-t(:,i+2)*(E(:,px*i+1:px*i+px)'*t(:,i+ 2)/(t(:,i+2)'*t(:,i+2)))';

end

for s=1:px

q(:,s)=p(1,px*(s-1)+1:px*s)';

end

[n,d]=size(q);

for h=1:px

iw=eye(d);

for j=1:h-1

iw=iw*(eye(d)-w(:,j)*q(:,j)');

end

wh(:,h)=iw*w(:,h);

end

for j=1:py

zr(j,:)=(regress1(y(:,j),t))'; %求回归系数

end

for j=1:px

fori=1:py %生成标准化变量的方程的系数矩阵

w1=wh(:,1:j);

zr1=(zr(i,1:j))';

f0(i,:,j)=(w1*zr1)';

end

[normxy,meanxy,covxy]=norm1(C); %n ormxy标准化后的数据矩阵

%meanxy每一列的均值

%covxy每一列的方差

ccxx=ones(py,1)*meanxy(1,1:px);

ccy=(covxy(1,px+1:px+py))'*ones(1,px);

ccx=ones(py,1)*(covxy(1,1:px));

ff=ccy.*f0(:,:,j)./ccx;

fff=-(sum((ccy.*ccxx.*f0(:,:,j)./ccx)')-meanxy(1,px+1:px+py))';

FF(:,:,j)=[fff,ff]; %生成原始变量方程的常数项和系数矩阵

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%

function [r,Rdyt,RdYt,RdYtt,Rdytt,VIP]=fun8y(px,py,c)

X=c(:,1:px);

Y=c(:,px+1:px+py);

x=norm1(X);

y=norm1(Y);

[t,q,w]=fun717(px,py,[X,Y]);

r1=corrcoef([y,t]);

r=r1(py+1:px+py,1:py)';

Rdyt=r.^2;

RdYt=mean(Rdyt)

for m=1:px

RdYtt(1,m)=sum(RdYt(1,1:m)');

end

for j=1:py

for m=1:py

Rdytt(j,m)=sum(Rdyt(j,1:m)');

end

end

for j=1:px

for m=1:px

Rd(j,m)=RdYt(1,1:m)*((w(j,1:m).^2)');

end

end

for j=1:px

VIP(j,:)=sqrt((px*ones(1,px)./RdYtt).*Rd(j,:));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%

function [r,Rdxt,RdXt,RdXtt,Rdxtt]=fun8x(px,py,c)

X=c(:,1:px);

Y=c(:,px+1:px+py);

x=norm1(X);

y=norm1(Y);

[t,q,w]=fun717(px,py,[X,Y]);

r1=corrcoef([x,t]);

r=r1(px+1:px+px,1:px)';

Rdxt=r.^2;

RdXt=mean(Rdxt);

for m=1:px

RdXtt(1,m)=sum(RdXt(1,1:m)');

end

for j=1:px

for m=1:px

Rdxtt(j,m)=sum(Rdxt(j,1:m)');

end

end

% for j=1:px

% for m=1:px

% Rd(j,m)=RdXt(1,1:m)*((w(j,1:m).^2)');

% end

% end

% for j=1:px

% VIP(j,:)=sqrt((px*ones(1,px)./RdYtt).*Rd(j,:));

% end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%

function [t,u]=TU(px,py,C)

%t提取的自变量的主成分

%u 提取的因变量的主成分

c=norm1(C);

y=c(:,px+1:px+py);

E0=c(:,1:px);

F0=c(:,px+1:px+py);

A=E0'*F0*F0'*E0;

w(:,1)=maxdet(A);

t(:,1)=E0*w(:,1);

B=F0'*E0*E0'*F0;

cc(:,1)=maxdet(B);

u(:,1)=F0*cc(:,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%

function drew(px,py,c)

X=c(:,1:px);

Y=c(:,px+1:px+py);

[line,l]=size(Y);

[t,q,w,wh,f0,FF]=fun717(px,py,c);

YY=X*FF(:,2:px+1,3)'+ones(line,1)*FF(:,1,3)';

subplot(1,1,1,1)

bar(f0(:,:,3))

title(' 直方图')

legend('SG','TZBFB','FHL','JK','HPZD','JPZD','TZ','ZG','GPK')

grid on

plot(YY(:,4),Y(:,4),'+');

lsline

for i=1:py

v=mod(i,4);

d=(i-v)/4;

subplot(2,2,v,d+1)

plot(YY(:,i),Y(:,i),'*');

lsline

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%

function [ Qhj,Qh,prey]=crossval7(px,py,c)

%px是自变量的个数;

%py是因量

PRESShj=zeros(px,py);

X=c(:,1:px);

Y=c(:,px+1:px+py);

x=norm1(X);

y=norm1(Y);

[line,row]=size(x);

for h=1:px

for j=1:line

newx=X;

newy=Y;

newx(j,:)=[];

newy(j,:)=[];

[t,p0,w,wh,f0,FF]=fun717(px,py,[newx,newy]);

prey(j,:,h)=X(j,:)*FF(:,2:px+1,h)'+FF(:,1,h)';

end

PRESShj(h,:)=sum((Y-prey(:,:,h)).^2);

end

PRESSh=(sum(PRESShj'))';

for h=1:px

[t1,p0,w,wh,f0,FF]=fun717(px,py,c);

prey2(:,:,h)=X(:,:)*FF(:,2:px+1,h)'+ones(line,1)*FF(:,1,h)';

SShj(h,:)=sum((Y-prey2(:,:,h)).^2);

end

SSh=(sum(SShj'))';

Qhj=ones(px-1,py)-PRESShj(2:px,:)./SShj(1:px-1,:); % 错位

Qh=ones(px-1,1)-PRESSh(2:px,1)./SSh(1:px-1,1);

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

excel一元及多元线性回归实例

野外实习资料的数理统计分析 一元线性回归分析 一元回归处理的是两个变量之间的关系,即两个变量X和Y之间如果存在一定的关系,则通过观测所得数据,找出两者之间的关系式。如果两个变量的关系大致是线性的,那就是一元线性回归问题。 对两个现象X和Y进行观察或实验,得到两组数值:X1,X2,…,Xn和Y1,Y2,…,Yn,假如要找出一个函数Y=f(X),使它在 X=X1,X2, …,Xn时的数值f(X1),f(X2), …,f(Xn)与观察值Y1,Y2,…,Yn趋于接近。 在一个平面直角坐标XOY中找出(X1,Y1),(X2,Y2),…,(Xn,Yn)各点,将其各点分布状况进行察看,即可以清楚地看出其各点分布状况接近一条直线。对于这种线性关系,可以用数学公式表示: Y = a + bX 这条直线所表示的关系,叫做变量Y对X的回归直线,也叫Y对X 的回归方程。其中a为常数,b为Y对于X的回归系数。 对于任何具有线性关系的两组变量Y与X,只要求解出a与b的值,即可以写出回归方程。计算a与b值的公式为:

式中:为变量X的均值,Xi为第i个自变量的样本值,为因变量的均值,Yi为第i个因变量Y的样本值。n为样本数。 当前一般计算机的Microsoft Excel中都有现成的回归程序,只要将所获得的数据录入就可自动得到回归方程。 得到的回归方程是否有意义,其相关的程度有多大,可以根据相关系数的大小来决定。通常用r来表示两个变量X和Y之间的直线相关程度,r为X和Y的相关系数。r值的绝对值越大,两个变量之间的相关程度就越高。当r为正值时,叫做正相关,r为负值时叫做负相关。r 的计算公式如下: 式中各符号的意义同上。 在求得了回归方程与两个变量之间的相关系数后,可以利用F检验法、t检验法或r检验法来检验两个变量是否显著相关。具体的检验方法在后面介绍。

SPSS线性回归分析案例

回归分析 实验内容:基于居民消费性支出与居民可支配收入的简单线性回归分析 【研究目的】 居民消费在社会经济的持续发展中有着重要的作用。影响各地区居民消费支出的因素很多,例如居民的收入水平、商品价格水平、收入分配状况、消费者偏好、家庭财产状况、消费信贷状况、消费者年龄构成、社会保障制度、风俗习惯等等。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的经济模型去研究。 【模型设定】 我们研究的对象是各地区居民消费的差异。由于各地区的城市与农村人口比例及经济结构有较大差异,现选用城镇居民消费进行比较。模型中被解释变量Y选定为“城市居民每人每年的平均消费支出”。从理论和经验分析,影响居民消费水平的最主要因素是居民的可支配收入,故可以选用“城市居民每人每年可支配收入”作为解释变量X,选取2010年截面数据。 1、实验数据 表1: 2010年中国各地区城市居民人均年消费支出和可支配收入

2、实验过程 作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图,如图1:

表2 模型汇总b 表3 相关性 从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立如下线性模型:Y=a+bX

表4 系数a 3、结果分析 表2模型汇总:相关系数为0.965,判定系数为0.932,调整判定系数为0.930,估计值的标准误877.29128 表3是相关分析结果。消费性支出Y与可支配收入X相关系数为0.965,相关性很高。 表4是回归分析中的系数:常数项b=704.824,可支配收入X的回归系数a=0.668。a的标准误差为0.034,回归系数t的检验值为19.921,P值为0,满足95%的置信区间,可认为回归系数有显著意义。得线性回归方程Y=0.668X+704.824. 【实验结论】 (1)结果显示,变量之间具有如下关系式:Y=0.668X+704.824.也就是说消费与收入之间存在稳定的函数关系。随着收入的增加,消费将增加,但消费的增长低于收入的增长。这与凯尔斯的绝对收入消费理论刚好吻合。但为了研究方便,这里假设边际消费倾向为常数。由公式知X每增长1个单位,Y增加0.668个单位。

eviews多元线性回归案例分析

中国税收增长的分析 一、研究的目的要求 改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为519.28亿元到2002年已增长到17636.45亿元25年间增长了33倍。为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。 影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。(2)公共财政的需求,税收收入是财政的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。(3)物价水平。我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。(4)税收政策因素。我国自1978年以来经历了两次大的税制改革,一次是1984—1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。税制改革对税收会产生影响,特别是1985年税收陡增215.42%。但是第二次税制改革对税收的增长速度的影响不是非常大。因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。 二、模型设定 为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收”(简称“税收收入”)作为被解释变量,以放映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数” 从《中国统计年鉴》收集到以下数据 财政收入(亿元) Y 国内生产总值(亿 元) X2 财政支出(亿 元) X3 商品零售价格指 数(%) X4 1978519.283624.11122.09100.7 1979537.824038.21281.79102 1980571.74517.81228.83106

多元线性回归分析范例

国际旅游外汇收入是国民经济发展的重要组成部分,影响一个国家或地区旅游收入的因素包括自然、文化、社会、经济、交通等多方面的因素,本例研究第三产业对旅游外汇收入的影响。《中国统计年鉴》把第三产业划分为12个组成部分,分别为x1农林牧渔服务业,x2地质勘查水利管理业,x3交通运输仓储和邮电通信业,x4批发零售贸易和餐饮业,x5金融保险业,x6房地产业,x7社会服务业,x8卫生体育和社会福利业,x9教育文化艺术和广播,x10科学研究和综合艺术,x11党政机关,x12其他行业。采用1998年我国31 个省、市、自治区的数据,以国际旅游外汇收入(百万美元)为因变量y,以如上12 个行业为自变量做多元线性回归,其中自变量单位为亿元人民币。即样本量n=31,变量p=12。 利用SPSS软件对数据进行处理,输出: 图1 输入/移除变量 图1即输入了所有模型中的变量,分别为 x1:农林牧渔服务业 x2:地质勘查水利管理业 x3:交通运输仓储和邮电通信业 x4:批发零售贸易和餐饮业 x5:金融保险业 x6:房地产业 x7:社会服务业 x8:卫生体育和社会福利业 x9:教育文化艺术和广播 x10:科学研究和综合艺术 x11:党政机关 x12:其他行业

图2 模型概述 即回归方程对样本观测值的拟合程度,复相关系数R=0.875,决定系数R 2=0.935。由决定系数接近1,得出回归拟合的效果较好,但是并不能作为严格的显著性检验。由R 2决定模型优劣时需慎重,尤其是样本量与自变量个数接近时。 图3 回归方程显著性的F 检验 F=10.482,F α(n,n-p-1)=F α(30,18)=2.11(α=0.05),P 值=0.000,表明回归方程高度显著,即12个自变量整体对因变量y 产生显著线性影响。但是并不能说明回归方程中所有自变量都对因变量y 有显著影响,因此还要对回归系数进行检验。 图4 回归系数的显著性t 检验(t 0.05(20)=1.725) y 对12个自变量的线性回归方程为: 1234 5678 9101112y 205.388 1.438 2.622 3.2970.9465.521 4.068 4.16215.40417.3389.15510.536 1.37x x x x x x x x x x x x =--++--++-++-+

多元线性回归分析预测法

多元线性回归分析预测法 (重定向自多元线性回归预测法) 多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法) [编辑] 多元线性回归分析预测法概述 在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。 多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 [编辑] 多元线性回归的计算模型[1] 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释

因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。 设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为: 其中,b0为常数项,为回归系数,b1为固定时,x1每增加一 个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: 其中,b0为常数项,为回归系数,b1为固定时,x2每增加一 个单位对y的效应,即x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: y = b0 + b1x1 + b2x2 + e 建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是: (1)自变量对因变量必须有显著的影响,并呈密切的线性相关; (2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的; (3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度; (4)自变量应具有完整的统计数据,其预测值容易确定。 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为 解此方程可求得b0,b1,b2的数值。亦可用下列矩阵法求得

案例分析报告(一元线性回归模型)

案例分析报告(2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月

案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模

多元回归分析法的介绍及具体应用

多元回归分析法的介绍及具体应用

————————————————————————————————作者: ————————————————————————————————日期: ?

多元回归分析法的介绍及具体应用 在数量分析中,经常会看到变量与变量之间存在着一定的联系。要了解变量之间如何发生相互影响的,就需要利用相关分析和回归分析。回归分析的主要类型:一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析以及逻辑回归分析等。这里主要讲的是多元线性回归分析法。 1. 多元线性回归的定义 说到多元线性回归分析前,首先介绍下医院回归线性分析,一元线性回归分析是在排除其他影响因素或假定其他影响因素确定的条件下,分析某一个因素(自变量)是如何影响另一事物(因变量)的过程,所进行的分析是比较理想化的。其实,在现实社会生活中,任何一个事物(因变量)总是受到其他多种事物(多个自变量)的影响。 一元线性回归分析讨论的回归问题只涉及了一个自变量,但在实际问题中,影响因变量的因素往往有多个。例如,商品的需求除了受自身价格的影响外,还要受到消费者收入、其他商品的价格、消费者偏好等因素的影响;影响水果产量的外界因素有平均气温、平均日照时数、平均湿度等。 因此,在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。这就产生了测定多因素之间相关关系的问题。 研究在线性相关条件下,两个或两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。 多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上更为复杂,一般需借助计算机来完成。 2. 多元回归线性分析的运用 具体地说,多元线性回归分析主要解决以下几方面的问题。 (1)、确定几个特定的变量之间是否存在相关关系,如果存在的话,找出它们

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

(完整word版)多元线性回归模型案例分析

多元线性回归模型案例分析 ——中国人口自然增长分析一·研究目的要求 中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。 影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。 二·模型设定 为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据

设定的线性回归模型为: 1222334t t t t t Y X X X u ββββ=++++ 三、估计参数 利用EViews 估计模型的参数,方法是: 1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ”。在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。其中已有变量:“c ”—截距项 “resid ”—剩余项。在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。 年份 人口自然增长率 (%。) 国民总收入(亿元) 居民消费价格指数增长 率(CPI )% 人均GDP (元) 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 2006 5.38 213132 1.5 16024

主成分分析及二次回归分析的

基于主成分分析及二次回归分析的城市生活垃圾热值建模 1. 引言 随着人们经济水平的提高、环保意识的增强、环保法规日益严格和国家垃圾处理产业化政策的实施,垃圾填埋处理的弊端将引起重视、运营费用将大大增加,而垃圾焚烧处理的优势将逐渐呈现出来并最终获得人们的认可。以城市生活垃圾为燃料而建立垃圾电站进行电力生产,很好的实现了生活垃圾的无害化、资源化利用。 而我国的城市生活垃圾成分复杂,用作为燃料时稳定性较差,因此分析垃圾的成分、计算垃圾的热值模型是垃圾焚烧发电的工艺设计和运营管理中必不可少的基础性工作。 因为我国不同地区人们生活习惯及生活条件差异较大,导致城市生活垃圾成分也存在很大的地域性差异,因此,本文以深圳市为例,对深圳市宝安区的生活垃圾采样数据进行分析,并建立其计算模型。 2. 回归分析及主成分分析理论 2.1. 回归分析 回归分析是一种应用极为广泛的数量分析方法。它用于分析事物之间的统计关系,通过回归方程的形式描述和反应这种关系。 2.2. 一般回归模型 如果变量与随机p 变量y 之间存在着相关关系,通常就意味着当x , x ....x 1 2 p x , x ....x取定值后y 便有相应的概率分布与之对应,其概率模型为: = ( , ... ) +e (2-1)1 2 p y f x x x其中p为称自变量,y 称为因变量,为自变量的确定性关系,ε表示x , x ....x 1 2 ( , .... ) 1 2 p f x x x随机误差。 2.3. 线性回归模型 回归模型分为线性回归模型和非线性回归模型,线性回归又有一元线性回归和多元线性回归之分。当变量之间的关系是线性关系的模型都称为线性回归模 型,否则就称之为非线性回归模型。当概率模型(2-1)中的回归函数为线性函数时,有: = b + b + b +e (2-2)p p y x ... x 0 1 1其中βi 是p+1 个未知参数,β0 称为回归常数,β1...βp 称为回归系数。 2.4. 主成分分析 上述的线性回归模型的应用前提是作为自变量的各指标之间相互独立,即不

回归分析概要(多元线性回归模型)

第二章 回归分析概要 第五节 多元线性回归分析 一 模型的建立与假定条件 在一元线性回归模型中,我们只讨论了包含一个解释变量的一元线性回归模型,也就是假定被解释变量只受一个因素的影响。但是在现实生活中,一个被解释变量往往受到多个因素的影响。例如,商品的消费需求,不但受商品本身的价格影响,还受到消费者的偏好、收入水平、替代品价格、互补品价格、对商品价格的预测以及消费者的数量等诸多因素的影响。在分析这些问题的时候,仅利用一元线性回归模型已经不能够反映各变量间的真实关系,因此,需要借助多元线性回归模型来进行量化分析。 1. 多元线性回归模型的基本概念 如果一个被解释变量(因变量)t y 有k 个解释变量(自变量)tj x ,k j ,...,3,2,1=, 同时,t y 不仅是tk x 的线性函数,而且是参数0β和k i i ,...3,2,1=,β(通常未知)的线性函数,随即误差项为t u ,那么多元线性回归模型可以表示为: ,...22110t tk k t t t u x x x y +++++=ββββ ),..,2,1(n t = 这里tk k t t t x x x y E ββββ++++=...)(22110为总体多元线性回归方程,简称总体回归方程。 其中,k 表示解释变量个数,0β称为截距项,k βββ...21是总体回归系数。k i i ,...3,2,1=,β表示在其他自变量保持不变的情况下,自变量tj X 变动一个单位所引起的因变量Y 平均变动的数量,因而也称之为偏回归系数。 当给定一个样本n t x x x y tk t t t ,...2,1),,...,,(21=时,上述模型可以表示为: ???? ??? ???????????+++++=+++++=+++++=+++++=t tk k t t t k k k k k k u x x x y u x x x y u x x x y u x x x y ββββββββββββββββ (22110333223110322222211021112211101) 此时,t y 与tj x 已知,i β与t u 未知。 其相应的矩阵表达式为:

多元回归分析SPSS

多元线性回归分析预测法 多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法) [编辑] 多元线性回归分析预测法概述 在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。 多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 [编辑] 多元线性回归的计算模型[1] 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。

设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为: 其中,b 0为常数项,为回归系数,b1为固定时,x1每增加一 个单位对y的效应,即x 1对y的偏回归系数;同理b2为固定时,x2每增加一 个单位对y的效应,即,x 2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: 其中,b 0为常数项,为回归系数,b1为固定时,x2每增加 一个单位对y的效应,即x 2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: y = b 0 + b1x1 + b2x2 + e 建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自 变量的选择,其准则是: (1)自变量对因变量必须有显著的影响,并呈密切的线性相关; (2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的; (3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之 因的相关程度; (4)自变量应具有完整的统计数据,其预测值容易确定。 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为 解此方程可求得b 0,b1,b2的数值。亦可用下列矩阵法求得

多元线性回归实例分析

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

点击“分析”——回归——线性——进入如下图所示的界面:

将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入) 如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)

主成分分析法概念及例题.doc

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

SPSS多元线性回归分析实例操作步骤

SPSS 统计分析 多元线性回归分析方法操作与分析 实验目的: 引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。 实验变量: 以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。 实验方法:多元线性回归分析法 软件:spss19.0 操作过程: 第一步:导入Excel数据文件 1.open data document——open data——open;

2. Opening excel data source——OK. 第二步: 1.在最上面菜单里面选中Analyze——Regression——Linear,Dependent (因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise. 进入如下界面: 2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、

Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue. 3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.

(整理)(真正的好东西)偏最小二乘回归=多元线性回归分析+典型相关分析+主成分分析.

偏最小二乘回归是一种新型的多元统计数据分析方法,它与1983年由伍德和阿巴诺等人首次提出。近十年来,它在理论、方法和应用方面都得到了迅速的发展。密西根大学的弗耐尔教授称偏最小二乘回归为第二代回归分析方法。 偏最小二乘回归方法在统计应用中的重要性主要的有以下几个方面:(1)偏最小二乘回归是一种多因变量对多自变量的回归建模方法。 (2)偏最小二乘回归可以较好地解决许多以往用普通多元回归无法解决的问题。在普通多元线形回归的应用中,我们常受到许多限制。最典型的问题就是自变量之间的多重相关性。如果采用普通的最小二乘方法,这种变量多重相关性就会严重危害参数估计,扩大模型误差,并破坏模型的稳定性。变量多重相关问题十分复杂,长期以来在理论和方法上都未给出满意的答案,这一直困扰着从事实际系统分析的工作人员。在偏最小二乘回归中开辟了一种有效的技术途径,它利用对系统中的数据信息进行分解和筛选的方式,提取对因变量的解释性最强的综合变量,辨识系统中的信息与噪声,从而更好地克服变量多重相关性在系统建模中的不良作用。 (3)偏最小二乘回归之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 由于偏最小二乘回归在建模的同时实现了数据结构的简化,因此,可以在二维平面图上对多维数据的特性进行观察,这使得偏最小二乘回归分析的图形功能十分强大。在一次偏最小二乘回归分析计算后,不但可以得到多因变量对多自变量的回归模型,而且可以在平面图上直接观察两组变量之间的相关关系,以及观察样本点间的相似性结构。这种高维数据多个层面的可视见性,可以使数据系统的分析内容更加丰富,同时又可以对所建立的回归模型给予许多更详细深入的实际解释。 一、偏最小二乘回归的建模策略\原理\方法

一般线性回归分析案例

一般线性回归分析案例 1、案例 为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康的影响,随机抽取了30个观测数据,基于多员线性回归分析的理论方法,对儿童体内几种必需元素与血红蛋白浓度的关系进行分析研究。这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu)。 表一血红蛋白与钙、铁、铜必需元素含量 (血红蛋白单位为g;钙、铁、铜元素单位为ug) case y(g)ca fe cu 17.0076.90295.300.840 27.2573.99313.00 1.154 37.7566.50350.400.700 48.0055.99284.00 1.400 58.2565.49313.00 1.034 68.2550.40293.00 1.044 78.5053.76293.10 1.322 88.7560.99260.00 1.197 98.7550.00331.210.900 109.2552.34388.60 1.023 119.5052.30326.400.823 129.7549.15343.000.926 1310.0063.43384.480.869 1410.2570.16410.00 1.190 1510.5055.33446.00 1.192 1610.7572.46440.01 1.210 1711.0069.76420.06 1.361 1811.2560.34383.310.915 1911.5061.45449.01 1.380 2011.7555.10406.02 1.300 2112.0061.42395.68 1.142 2212.2587.35454.26 1.771 2312.5055.08450.06 1.012 2412.7545.02410.630.899 2513.0073.52470.12 1.652 2613.2563.43446.58 1.230

多元线性回归分析—内容提要与案例

多元线性回归分析—内容提要 1.多元线性回归的数学模型 【模型的理论假设】设p x x x ,,,21 是) 2 ( ≥p 个自变量(解释变量),y 是因变量,则多元线性回归模型的理论假设是 εββββ+++++=p p x x x y 22110,),0(~2σεN , 其中,p ββββ,,,,210 是1+p 个未知参数,0β称为回归常数,p βββ,,,21 称为回归系数,),0(~2σεN 为随机误差. 【模型的建立】求p 元线性函数 p p x x x Ey ββββ++++= 22110 的经验回归方程 p p x x x y ββββ?????22110++++= , 其中,y ?是Ey 的统计估计,p ββββ?,,?,?,?210 分别是,,,,,210p ββββ 的统计估计,称为经验回归系数. 【模型的数据结构】设对变量向量y x x x p ,,,,21 的n 次观测得到的样本数据为 ),,,,(21i ip i i y x x x ,) 1 ( ,,2,1 +>=p n i .为了今后讨论方便,我们引进矩阵 ??????? ??=n y y y y 21,??????? ??=np n p p x x x x x x X 1221111111,?????? ? ??=p ββββ????10 ,????? ?? ??=n εεεε 21 于是,多元线性回归模型的数据结构为 εβ+=X y 称为多元样本回归方程,其中n p X rank <+=1)(,) ,(~21n n n n I O N ??σε且各个i ε相互独立. 由于矩阵X 是样本数据,X 的数据可以进行设计和控制,因此,矩阵X 称为回归设计矩阵或资料矩阵. 注释 对多元线性回归模型理论假设的进一步说明:

相关主题