搜档网
当前位置:搜档网 › ANSYS.非线性_接触分析

ANSYS.非线性_接触分析

ANSYS.非线性_接触分析
ANSYS.非线性_接触分析

接触分析

接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。

接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类

接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。

ANSYS接触能力

ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。

为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS 使用的接触单元和使用它们的过程,下面分类详述。

点─点接触单元

点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)

如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。

点─面接触单元

点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。

如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。

使用这类接触单元,不需要预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有大的变形和大的相对滑动。

Contact48和Contact49都是点─面的接触单元,Contact26用来模拟柔性点─刚性面的接触,对有不连续的刚性面的问题,不推荐采用Contact26因为可能导致接触的丢失,在这种情况下,Contact48通过使用伪单元算法能提供较好的建模能力。

面─面的接触单元

ANSYS支持刚体─柔体的面─面的接触单元,刚性面被当作“目标”面,分别用Targe169和Targe170来模拟2─D和3—D的“目标”面,柔性体的表面被当作“接触”面,用Conta171,Conta172,Conta173,Conta174来模拟。一个目标单元和一个接单元叫作一个“接触对”程序通过一个共享的实常号来识别“接触对”,为了建立一个“接触对”给目标单元和接触单元指定相同的实常的号。

与点─面接触单元相比,面─面接触单元有好几项优点,

·支持低阶和高阶单元

·支持有大滑动和摩擦的大变形,协调刚度阵计算,单元提法不对称刚度阵的选项。

·提供工程目的采用的更好的接触结果,例如法向压力和摩擦应力。

·没有刚体表面形状的限制,刚体表面的光滑性不是必须允许有自然的或网格离散引

起的表面不连续。

·与点─面接触单元比,需要较多的接触单元,因而造成需要较小的磁盘空间和CPU 时间。

·允许多种建模控制,例如:

·绑定接触

·渐变初始渗透

·目标面自动移动到补始接触

·平移接触面(老虎梁和单元的厚度)

·支持死活单元

使用这些单元,能模拟直线(面)和曲线(面),通常用简单的几何形状例如圆、抛物线、球、圆锥、圆柱采模拟曲面,更复杂的刚体形状能使用特殊的前处理技巧来建模。

执行接触分析

不同的接触分析类型有不同的过程,下面分别讨论

面─面的接触分析

在涉及到两个边界的接触问题中,很自然把一个边界作为“目标”面而把另一个作为“接触”面,对刚体─柔体的接触,“目标”面总是刚性的,“接触”面总是柔性面,这两个面合起来叫作“接触对”使用Targe169和Conta171或Conta172来定义2-D接触对,使用Targe170和Conta173或Conta174来定义3-D接触对,程序通过相同的实常收号来识别“接触对”。接触分析的步骤:

执行一个典型的面─面接触分析的基本步骤列示如下:

1.建立模型,并划分网格

2.识别接触对

3.定义刚性目标面

4.定义柔性接触面

5.设置单元关键字和实常的

6.定义/控制刚性目标面的运动

7.给定必须的边界条件

8.定义求解选项和载荷步

9.求解接触问题

10.查看结果

步骤1:建立模型,并划分网格

在这一步中,你需要建立代表接触体几何形状的实体模型。与其它分析过程一样,设置单元类型,实常的,材料特性。用恰当的单元类型给接触体划分网格。

命令:AMESH

VMESH

GUI:Main Menu>Preprocessor>mesh>Mapped>3 or4 Sided

Main Menu>Pneprocessor>mesh>mapped>4 or 6 sided

步骤二:识别接触对

你必须认识到,模型在变形期间哪些地方可能发生接触,一是你已经识别出潜在的接触面,你应该通过目标单元和接触单元来定义它们,目标和接触单元跟踪变形阶段的运动,构成一个接触对的目标单元和接触单元通过共享的实常号联系起来。

接触环(区域)可以任意定义,然而为了更有效的进行计算(主要指CPU时间)你可能想定义更小的局部化的接触环,但能保证它足以描述所需要的接触行为,不同的接触对必须通过不同的实常数号来定义(即使实常数号没有变化)。

由于几何模型和潜在变形的多样形,有时候一个接触面的同一区域可能和多个目标面产生接触关系。在这种情况下,应该定义多个接触对(使用多组覆盖层接触单元)。每个接触对有不同的实常数号。

步骤三:定义刚性目标面

刚性目标面可能是2—D的或3─D的。在2—D情况下,刚性目标面的形状可以通过

一系列直线、圆弧和抛物线来描述,所有这些都可以用TAPGE169来表示。另外,可以使用它们的任意组合来描述复杂的目标面。

在3—D情况下,目标面的形状可以通过三角面,圆柱面,圆锥面和球面来推述,所有这些都可以用TAPGE170来表示,对于一个复杂的,任意形状的目标面,应该使用三角面来给它建模。

控制结点(Pilot)

刚性目标面可能会和“pilot结点“联系起来,它实际上是一个只有一个结点的单元,通过这个结点的运动可以控制整个目标面的运动,因此可以把pilot结点作为刚性目标的控制器。整个目标面的受力和转动情况可以通过pilot结点表示出来,“pilot结点”可能是目标单元中的一个结点,也可能是一个任意位置的结点,只有当需要转动或力矩载荷时,“pilot 结点”的位置才是重要的,如果你定义了“pilot结点”ANSYS程序只在“pilot结点”上检查边界条件,而忽略其它结点上的任何约束。

对于圆、圆柱、圆锥、和球的基本图段,ANSYS总是使用条一个结点作为“pilot结点”

基本原型

你能够使用基本几形状来模拟目标面,例如:“圆、圆柱、圆锥、球。直线、抛物线、弧线、和三角形不被允许、虽然你不能把这些基本原型彼此合在一起,或者是把它们和其它的目标形状合在一起以便形成一个同一实常数号的复杂目标面。但你可以给每个基本原型指定它自己的实常的号。

单元类型和实常数

在生成目标单元之前,首先必须定义单元类型(TARG169或TARG170)。

命令:ET

GUI:main menu>preprocessor>Element Type> Add/Edit/Delete

随后必须设置目标单元的实常数。

命令:Real

GUI:main menn>preprocessor>real constants

对TARGE169和TARGE170仅需设置实常数R1和R2,而只有在使用直接生成法建立目标单元时,才需要从为指定实常数R1、R2,另外除了直接生成法,你也可以使用ANSYS 网格划分工具生成目标单元,下面解释这两种方法。

使用直接生成法建立刚性目标单元

为了直接生成目标单元,使用下面的命令和菜单路径。

命令:TSHAP

GUI:main menu>preprocessor>modeling-create>Elements>Elem Attributes

随后指定单元形状,可能的形状有:

·straight line (2D)

·parabola (2-D)

·clockwise arc(2-D)

·counterclokwise arc (2-D)

·circle(2-D)

·Triangle (3-D)

·Cylinder (3-D)

·Cone (3-D)

·Sphere (3-D)

·Pilot node (2-D和3-D)

一旦你指定目标单元形状,所有以后生成的单元都将保持这个形状,除非你指定另外一种形状。

然后你就可以使用标准的ANSYS直接生成技术生成结点和单元。

命令:N

E

GUI:main menu>pnoprocessor> modeling- create> nodes

main menu>pnoprocessor> modeling- create>Elements

在建立单元之后,你可以通过列示单元来验证单元形状

命令:ELIST

GUI:utility menu>list>Elements>Nodes+Attributes

使用ANSYS网格划分工具生成刚性目标单元

你也可以使用标准的ANSYS网格划分功能让程序自动地生成目标单元,ANSYS程序将会以实体模型为基础生成合适的目标单元形状而忽略TSHAP命令的选项。

为了生成一个“PILOT结点”使用下面的命令或GUI路径:

命令:Kmesh

GUI:main menu>proprocessor>meshing-mesh>keypoints

注意:KMESH总是生成“PILOT结点”

为了生成一个2─D目标单元,使用下面的命令和GUI路径:

ANSYS在每条直线上生成一条单一的线,在样条曲线上生成抛物线部分,在每条圆弧和倒角上生成圆弧部分,如果所有的圆弧形成一个封闭的圆,ANSYS生成一个单一的圆段。

命令:LMESH

GUI:main menu>pneprocessor>mesling-mesh>lines

为了生成3─D的目标单元,使用下面的命令或GUI路径。

如果实体模型的表面部分形成了一个完整的球,圆柱或圆锥,那么ANSYS程序自动生成一个基本的3─D目标单元,因为生成较少的单元,从而使你分析计算更有效率,对任意形状的表面,应该使用Amesh命令来生成目标单元,在这种情况下,网格形状的质量不是重要的,而目标单元的形状是否能完成好的模拟刚性面的表面几何形状显得更重要。

命令:AMESH

GUI:main menu>preprocessor>-meshing-mesh>Area

ANSYS在所有可能的面上推荐使用三角形的映射网格划分,如果在表面的边界上没有曲率,则在网格划分时,指定那条边界分为一分,下面的命令或GUI路径将尽可能的生成一个映射网格(如果不能进行映射,它将生成自由网格)

命令:MSHKFY,2

GUI:main menu>preprocessor>-meshling-mesh>-Ares-Target Surf

建模和网格划分的注意点:

一个目标面可能由两个或多个面断的区域组成,你应该尽可能地通过定义多个目标面来使接触区域局部比(每个目标面有一个不同的实常数号)刚性目标面上由的离散能足够指述出目标面的形状,过粗的网格离散可能导致收敛问题。如果刚性面有一个实的凸角,求解大的滑动问题时很难获得收敛结果,为了避免这些建模问题,在实体模型上,使用线或面的倒角来使尖角光滑比,或者在曲率突然变化的区域使用更细的网格。

注意:不能使用镜面对称技术(ARSYSM,LSYMM)来映射圆、圆柱、圆锥或球面到对称平面的另一边,因为每个实常数的设置不能同时赋给多个基本原型段。

检验目标面的接触方向。

目标面的结点号顺序是重要的,因为它定义了接触主向,对2─D接触问题,当沿着目标线从第一个结点移向第二个结点时,变形体的接触单元必须位于

目标面的右边。

对3─D接触问题,目标三角形单元号应该使刚性面的外法线方向指向接触面,外法线通过右手原则来定义

为了检查法线方向,显示单元坐标系

命令:/PSYMS,ESYS,1

GUI:Utility menu>plotctrls>symbols

如果单元法向不指向接触面,选择单元反转表面的法向的方向。

命令:ESURF,,REVE

GUI:main menu>preprocossor>create>Element>on free surf

步骤4:定义柔性体的接触面

为了定义柔性体的接触面,必须使用接触单元CONFA171或CONFA172(对2─D)或CONTA173或CONTA174(对3─D)来定义表面

程序通过组成变形体表面的接触单元来定义接触表面,接触单元与下面覆盖的变形体单元有同样的几何特性,接触单元与下面覆盖的变形体单元必须处于同一阶次(低阶或高阶)

下面的变形体单元可能是实体单元、壳单元、梁单元或超单元,接触面可能壳或梁单元任何一边。

与目标面单元一样,你必须定义接触面的单元类型,然后选择正确的实常数号(实常数号必须与它对应目标的实常数号相同)最后生成接触单元。

单元类型:

下面简单描述四种类型的接触单元

CONTA171:这是一种2─D,2个结点的低附线单元,可能位于2─D实体,壳或梁单元的表面

CONTA172:这是一个2─D的,3结点的高阶抛物线形单元,可能位于有中结点的2─D实体或梁单元的表面

CONTA173:这是一个3─D的,4结点的低阶四边形单元可能位于3─D实体或壳单元的表面,它可能褪化成一个结点的三角形单元。

CONTA174:这是一个3─D,8结点的高阶四边形单元,可能位于有中结点的3─D实体或壳单元的表面,它可能褪化成6结点的三角形单元。

不能在高阶柔性体单元的表面上分成低阶接触单元,反之也不行,不能在高阶接触单元上消去中结点。

命令:ET

GUI:main menu>preprocessor>Element type>Add/Edit/Delete

实常数和材料特性

在定义了单元类型之后,需要选择正确的实常数的设置,每个接触对的接触面和目标面必须有相同的实常数号,而每个接触对必须有它自己不同的实常数号。

ANSYS使用下面柔性体单元的材料特性来计算一个合适的接触(或罚)刚度,如果下面的单元是一个超单元。接触单元的材料的设置必须与超单元形成时的原始结构单元相同,生成接触单元。

我们既可以通过直接生成法生成接触单元,也可以在柔性体单元的外表面上自动生成接触单元,我们推荐采用自动生成法,这种方法更为简单和可靠。

可以通过下面三个步骤来自动生成接触单元

1、选择结点

选择已划分网格的柔性体表面的结果,如果你确定某一部分结点永远不会接触到目标面,你可以忽略它以便减少计算时间,然而,你必须保证设有漏掉可能会接触到目标面的结点。

命令:NSEL

GUI:main menu>preprocessor>create>Element>on>free surf

2、生成接触单元

命令:ESURF

GUI:main menu>preprocessor>create>Element>on free surf

如果接触单元是附在已用实体单元划分网格的面或体上,程序会自动决定接触计算所需的外法向,如果下面的单元是梁或壳单元,则必须指明哪个表面(上表面或下表面)是接触面

命令:ESURF,TOP OR BOTIOM

GUI:main menu>preprocessor>create>Element>on free surf

使用上表面生成接触单元,则它们的外法向与梁或壳单元的法向相同,使用下表面生成接触单元,则它们的外法向与梁或壳单元的法向相反,如果下面的单元是实体单元,则TOP 或BOTTOM选项不起作用

3、检查接触单元外法线的方向,当程序进行是否接触的检查时,接触面的外法线方向是重要的,对3─D单元,按结点程序号以右手定则来决定单元的外法向,接面的外法向应该指向目标面,否则,在开始分析计算时,程序可能会认为有面的过度渗透而很难找到初始解。在此情况下,程序一般会立即停止执行,你可以检查单元外法线方向是否正确。

命令:/PSYMB

GUI:Utility menu>plotctrls>symbols

当发现单元的外法线方向不正确时,必须通过倒不正确单元的结点号来改变它们。

命令:ESURF,REVE

GUI:main menu>preprocossor>Create>Elements on free surf

步骤5:设置实常数和单元关键字

程序使用九个实常数和好几个单元关键字来控制面─面接触单元的接触行为。

实常数

9个实常数中,两个(R1和R2)用采定义目标面单元的几何形状,乘下的7个用来控制接触行为。

R1和R2定义目标单元几何形状

FKN 定义法向接触刚度因子

FTOLN 定义最大的渗透范围

ICONT 定义初始靠近因子

PINB 定义“Pinball"区域

PMIN和PMAX 定义初始渗透的容许范围

TAUMAR 指定最大的接触摩擦

命令:R

GUI:main menu> preprocessor>real constant

对实常数FKN,FTOLN,ICONT,PINB,PMAX,和PMIN,你既可以定义一个正值也可以定义一个负值,程序将正值作为比例因子,将负值作为真实值,程序将下面覆盖原单元的厚度作为ICON,FTOLN,PINB,PMAX和PMIN的参考值,例如对ICON,0.1表明初始间隙因子是0.1*下面覆盖层单元的厚度。然而,-0.1表明真实缝隙是0.1,如果下面覆盖层单元是超单元,则将接触单元的最小长度作为厚度。

单元关键字

每种接触单元都饭知好几个关键字,对大多的接触问题缺省的关键字是合适的,而在某些情况下,可能需要改变缺省值,来控制接触行为。

接触算法(罚函数+拉格郎日或罚函数)(KEYOPT(2))

出现超单元时的应力状态(DEYOPT(3))

接触方位点的位置(KEYOPI(4))

刚度矩阵的选择(KEYOPT(6))

时间步长控制(KEYOPT(7))

初始渗透影响(KEYOPT(9))

接触表面情况(KEYOPT(12))

命令:KEYOPT

ET

GUI:main menu>preprocessor>Elemant Type>Add/Edit/Delete

选择接触算法:

对面─面的接触单元,程序可以使用扩增的拉格朗日算法或罚函数方法,通过使用单元关键字KETOPT(2)来指定。

扩张的拉格朗日算法是为了找到精确的拉格朗日乘子而对罚函数修正项进行反复迭代,与罚函数的方法相比,拉格朗日方法不易引起病态条件,对接触刚度的灵敏度较小,然而,在有些分析中,扩增的拉格朗日方法可能需要更多的迭代,特别是在变形后网格变得太扭曲时。

使用拉格朗日算法的同时应使用实常数FTOLN

FTOLN为搠格朗日算法指定容许的最大渗艉,如果程序发现渗透大于此值时,即使不平衡力和位移增量已经满足了收敛准则,总的求解仍被当作不收敛处理,FTLON的缺省值为0.1,你可以改变这个值,但要注意如果此值太小可能会造成太多的迭代次数或者不收敛。

决定接触刚度

所有的接触问题都需要定义接触刚度,两个表面之间渗量的大小取决了接触刚度,过大的接触刚度可能会引起总刚矩阵的病态,而造成收敛困难,一般来谘,应该选取足够大的接触刚度以保证接触渗透小到可以接受,但同时又应该让接触刚度足够小以使不会引起总刚矩阵的病态问题而保证收敛性。

程序会根据变形体单元的材料特性来估计一个缺省的接触刚度值,你能够用实常数FKN

来为接触刚度指定一个比例因子或指定一个真正的值,比例因子一般在0.01和10之间,当避免过多的迭代次数时,应该尽量使渗透到达极小值。

为了取得一个较好的接触刚度值,又可需要一些经验,你可以按下面的步骤过行。

1、 开始时取一个较低的值,低估些值要比高估些值好因为由一个较低的接触刚度导

致的渗透问题要比 过高的接触刚度导致的收敛性困难,要容易解决。

2、 对前几个子步进行计算

3、 检查渗透量和每一子步中的平衡迭代次数,如果总体收敛困难是由过大的渗透引

起的(而不是由不平衡力和位移增量引起的),那么可能低估了FKN 的值或者是

将FTOLN 的值取得大小,如果总体的收敛困难是由于不平衡力和位移增量达到收

敛值需要过多的迭代次数,而不是由于过大的渗透量,那么FKN 的值可能被高估。

4、 按需要调查FKN 或FTOLN 的值,重新分析。

选择摩擦类型。

在基本的库仑摩擦模型中,两个接触面在开始相互滑动之前,在它们的界面上会有达到某一大小的剪应力产生,这种状态则作粘合状态(stick)库仑摩擦模型定义了一个等效剪应力。)一旦剪应力超过此值后,两个表面之间将开始相互滑动,这种状态,叫作滑动状态(Sliding )粘合\滑动计算决定什么时候一个点从粘合状态到滑动状态或从滑动状态变到粘合状态,摩擦系数可以是任一非负值。程序缺省值为表面之间无摩擦,对rough 或bonded 接触(KEYOPT (2)=1(或3),程序将不管给定的MV 值而认为摩擦阻力无限大。

程序提供了一个不管接触压力的故而人为指定最大等效剪应力的选项,如果等效剪应力达到此值时,滑动发生。看图,4─1,为了指定接触界面上最大许可剪应力,设置常数 TAUMAX (缺省为1.0E20),这种限制剪应力的情况一般用于接触压力非常大的时候,以至于用库仑理论计算出的界面剪应力超过了材料的屈服极限。一对TAUMAX 的一个合理高估为y

σ3(y

σ3是材料的mises 屈服应力)。

图4—1 摩擦模式

对无摩擦rough 和bonded 接触,接触单元刚度矩阵是对称的,而涉及到摩擦的接触问题产生一个不对称的刚度,而在每次迭代使用不对称的求解器比对称的求解器需要更多的计算时间,因此ANSYS 程序采用对称化算法。通过采用这种算法大多的摩擦接触问题能够使用对称系统的求解器来求解。如果摩擦应力在整个位移范围内有相当大的影响,并且摩擦应力的大小高度依赖于求解过程。对刚度阵的任何对称近似都可能导致收敛性的降低,在这种情况下,选择不对称求解选项(KEYOPT (6)=1)来改善收敛性。

选择检查接触与否的位置

接触检查点位于接触单元的积分点上,在积分点上,接触单元不渗透进入目标面,然而,目标面能渗透进入接触面,看图4—2。

图4—2 接触检查点位于高斯积分点上

ANSYS面─接触单元使用GAUSS积分点作为缺省值,GAUSS积分点通常会比Newton-Cotes/robatto结点积分项产生更精确的结果,Newton-cotes/lobatto使用结点本身作为积分点,通过KEYOPT(4)来选择,你想使用的方法,然而,使用结点本身作为积分点仅应该用于角接触问题(看图4─3)。

图4—3 接触检查点位于高斯结点上

然而,使用结点作为接触发现点,可能会导致其它的收敛性问题,例如“滑脱”(结点滑下目标面的边界)看图4─4,对大多的点─面的接触问题,我们推荐使用其它的点─面的接触单元,例如CONTA26、CONTA48和CONTA49。

图4—4 结点滑脱

调整初始接触条件

在动态分析中,刚体运动一般不会引起问题,然而在静力分析中,当物体没有足够的约束时会产生刚体运动,有可能引起错误而终止计算。

在仅仅通过接触的出现来约束刚体运动时,必须保证在初始几何体中,接触对是接触的,换句话说,你要建立模型以便接触对是“刚好接触”的,然而这样作可能会遇到以下问题:·刚体外形常常是复杂的,很难决定第一个接触点发生在哪儿

·既使实体模型是在初始接触状态,在网格划分后余于数值舍入误差;两个面的单元网格之间也可能会产生小的缝隙。

·接触单元的积分点和目标单元之间可能有小的缝隙。

同理,在目标面和接触面之间可能发生过大的初始渗透,在这种情况下,接触单元可能会高估接触力,导致不收敛或民接触面之间脱离开接触关系。定义初始接触也许是建立接触分析模型时最重要的方面,因此,程序提供了几种方法来调整接触对的初始接触条件。

注意:下面的技巧可以在开始分析时独立执行成几个联合起来执行,它们是为了消除由于生成网格造成的数值舍入误差而引起的小缝隙或渗透,而不是为了改正网格或几何数据的错误。

1、使用实常数ICONT来指定一个好的初始接触环,初始接触环是指沿着目标面的

“调整环”的深度,如果没有人为指定ICONT的值,程序会根据几何尺寸来给

ICONT提供一个小值,同时输出一个表时什么值被指定的警告信息,对ICONT

一个正值表示相对于下面变形体单元厚度的比例因子,一个负值表示接触环的真

正值,任何落在“调整环”敬域内的接触检查点被自动移到目标面上,(看图4—

5(a))建议使用一个小的ICONT值否则,可能会发生大的不连续(看图4─5(b))

图4—5 用ICON进行接触面的调整

(a) 调整前

(b) 调整后

2、使用实常数PMIN和PMAX来指定初始容许的渗透范围,当指定PMAX或PMIN

后,在开始分析时,程序会将目标面移到初始接触状态,如果初始渗透大于PMAX,程序会调整目标面的减少渗透,接触状态的初始调节仅仅通过平移来实现。

对给定载或给定位移的刚性目标面将会执行初始接触状态的初始调节。同样,对没有指定边界条件的目标面也可以进行初始接触的调整。

当目标面上的节点,有给的零位移值时,使用PMAX和PMIN的初始调节将不会被执

行。

注意:ANSYS程序独立地处理目标面上节点的自由度,例如:如果你指定自中度UX 值为“0”,那么,沿着X方向就没有初始调查,然而,在Y和Z方向仍然会激活PMAX和PMIN选项。

初始状态调整是一个迭代过程,程序最多进行20次迭代,如果目标面不能进入可接受的渗透范围,程序会给出一个警告信息,你可能需要调整你的初始几何模型。

图4─6给出了一个初始接触调整迭代失败的例子。目标面的UY被约束住。因此,初始接触唯一容许的调整是在X方向,然而,在这个问题中,刚性目标面在X方向的任何运动都不会引起初始接触。

图4—6 一个初始调整失败的例子

3、设置KEYOPI(9)=1来消除初始渗透,看图4─7。

图4—7 消除初始始渗透

在某些情况下,例如过盈装配问题,期望有过度的渗,为了缓解收敛性困难,在第一个载荷步中设置KEYOTI(9)=2来使过度渗透渐进到0,看图4─8。当使用这种方法时,在第一个载步中不要给定其它任何载荷,也就是说要保证载荷是渐进的(KBC,0)

图4—8 渐进初始渗透

在开始分析时,程序会给出每个目标面的初始接触状态的输出信息,(在输出窗口或输出文件中),这个信息有助于决定每个目标面的最大渗透成最小间隙。

对于给定的目标面如果没有发现接触,可能是目标面离接触面太远(超出了Piaball区域或者是接触/目标单元已经被杀死。

决定接触状态和Pinball区域。

接触单元相对于目标面的运动和位置决定了接触单元的状态;程序检测每个接触单元并给出一种状态

·STAT=0 未合的远区接触

·STAT=1 未合的近区接触

·STAT=2 滑动接触

·STAT=3 粘合接触

当目标面进入pinball区域后,接触单元就被当作未合上的近区域接触,pinball区域是以接触单元的积分点为中心的。使用实常数PINB来为pinball指定一个比例因子(正值)或其实值(负值),缺省时,程序将pinball区域定义为一个以4*变形体单元厚度为半径的圆(对2-D问题)或球(对3-D问题)。

检查接触的计算时间依赖于pinball区域的大小,远区接触单元的计算是简单的且计算时间较少,近区接触计算将要接触的接触单元是较慢的,并是较复杂,当单元已经接触时,计算最为复杂。

如果刚性面有好几个凸形区域,为了克服伪接触定义,设置一个合适的pinball区域是有用的,名而对大多数问题,缺省值是合适的

选择表面作用模式

通过设置kcyopt(12)来选择下面的某种作用模式

·法问单边接触(KEYOPT(12)=0)

·.粗糙接触,用来模拟无滑动的,表面相当粗糙的摩擦接触问题,这种设置对应于摩擦系数无限大(MU),因此用户定义的摩擦系的(MU)被忽略KEYOPT

(12)=1)

·.不分开的接触,用来模拟那种一是接触就再不分开的问题,这种不分开是指对法方接触而言,允许有相对滑动。(KEYOPT(12)=2)

·.绑定接触用来模拟那种接触一是发生表面在所省方向都被绑定的问题。一旦接触就再也不能脱开也不允许有相对滑动(KEYOPT(12)=3)用超单元建立接触模型

面一面的接触单元能模拟刚体和另一个有的运动的线单性体的接触,而线单性体又以体用超单元来建模,这大大降低了进行接触代的自由度数,记住任荷接触结定都必须是超单元的主自由度。

既然超单元仅仅由一组保留的结点自由度组成,它没有用来定义接触的表面几何形状,因此,必须在形成超单元之前在单元表面上成接触单元,来自超单元的信息包括结点连结和组合刚度,但是没有材料特性和应力状态,(是否轴支称,平面应力或平面应变),一个限制是接触单元的材料特性设置必须与形成超单元之前的原始单元的材料特性相同。

使用KEYOPT(3)来提供接触分析的信息,对2─D单元(CONTA171 CONTA172)关键字选项如下所示:

·.不使用超单元(KETOPT(3)=0)

·.轴对称(KEYOPT(3)=1)

·.平面应变或单位厚度的平面应力(KEYOPT(3)─2)

·.需要厚度输X的平面应力(KEYOPT(3)=3),对这种情况使用实常数的R2

来指定指定厚度

对3─D单元(CONTA173,CONTA174)关键字选项如下示:

·使用H单元(KETOPI(3)=0)

·使用超单元(KEYOPI(3)=1)

考虑厚度影响

程序够用KEYOPI(11)来考虑壳(2-D和3-D)和梁(2-D)的厚度缺省时,程序不考虑单元厚度,用或中面来表示它。当设置KFTOPI(11)=1时则考虑梁或壳的厚度,从底面或顶面来计算接触距离,建模时要考虑到厚度,记住刚性目标面会向任一边移动,半个梁或壳单元的厚度,当使用壳单元181号时,在变形期间厚度的变化也将被考虑。

使用时间步长控制

时间步长控制是一个自动时间步长特征,这个特征预测什么时间接触单元的状态,将发生变化或者需要二分当前的时间步长,使用KEYOPT(7)来选择下列四种行为之一来控制时间步长。KEYOPT(7)=0时不提供控制,KEYOPT(7)=3提供最多的控制。

·KEYOPI(7)=0,设有控制,时间步的大小不受预测影响,当自动时间步长被激活且允许一个很小的时间步长时,这个设置是合适的。

·KETOPI(7)=1如果一次迭代期间有太大的渗透发生或者接触状态突然变化,则进行时间步长二分。

·KEYOPI(7)=2对下一个子步预测一个合理的时间增量

·KETOPI(7)=3对下一个子步,预测一个最小的时间增量

使用死活单元选项

面─面的接触单元允许激活或杀死单元,能够在分析的某一阶段中杀死这个单元而在以后的阶段再重新激活它,这个特征对于模拟复杂的金属戍形过程是有用的、在此过程的不同分析阶段有多个目标需要和接触面相互作用,回弹模拟常常需要在成形过程的后期移走刚性工具。

步骤六:

控制刚性目标的运动。

按照物体的原始外形来建立的且整个表刚性目标面是面的运动是通过“pilot”结点上的

给定来定义的,(如果没有定义“pilot”结点,则通过刚性目标面上的不同结点。)为了控制整个目标面的运动,在下面的任何情况下都必须使用"pilot"结点。

·目标面上作用着给定的外力

·目标面发生旋转

·目标面和其它单元相连(例结构质量单元)

"pilot"结点的厚度代表着整个刚性面的运动,你可以在"pilot"结点上给定边界条件(位移、初速度)集中载转动等等,为了考虑刚体的质量,在"pilot"结点上定义一个质量单元。

当使用"pilot"结点时,记住下面的几点局限性

·每个目标面只能有一个“Pilot"的结点

·.圆、圆锥、圆柱、球的第一个结点(结点工)是”pilot“结点,你不能另外定义或改变"pilot"结点

·.程序忽略不是"lilot"结点的所有其它结点上的边条件。

·.只有“pilot”结点能与其它单元相连

·.当定义了“pilot”结点后,不能使用约束方程(CF)或结点来耦合(CP)来控制目标面的自由度,如果你在刚性面上给定任意载荷或者约束,你必须定义

“pilot”结点,是在"pilot"结点上加载,如果没有使用“pilot”结点,则只能有

刚体运动。

在每个载步的开始,程序检查每个目标面的边界条件,如果下面的条件都满足,那么程序将目标面作为固定处理:

·在目标面结点上没有明确定义边界条件或给定力

·.目标面结点没有和其它单元相连

·.没有目标面结上使用约束方程或结点来合

在每个载体步的末尾,程序将会放松被内部设置的约束条件

步骤7:给变形体单元加必要的边界条件

现在可以按需要加上任你边界条件。加载过程与其它的分析类型相同

步骤8:定义求解和载步选项

接触问题的收敛性随问题不同而不同,下面列式了一些典型的在大多数面—面的接触分析中推荐使用的选项

·时间步长必须足够以描述适当的接触。如果时间步太大,则接触力的光滑传递会被破坏,设置精确时间步长的可信赖的方法是打开自动时间步长。

命令:Autots,on

GUI:Main Menu>Solution>-load step opts-Time/Frequence>Time&Time step

/Time& substeps ·.如果在迭代期间接触状态变化,可能发生不连续,为了避免收敛太慢,使用修改的刚度阵,将牛顿一拉普森选项设置成FULL

命令:NROPT,FULL,,OFF

GUI:Main Menu>Solution>Analysis options

不要使用自下降因子,对面一面的问题,自适应下降因子通常不会提供任何帮助,因此我们建议关掉它。

·设置合理的平衡迭代次数,一个合理的平衡迭代次数通常在25和50之间

命令:NEQIT

GUI:Main Menu>Solution>-load step opts-Nonlinear>Equilibriwm iter

·因为大的时间增量会使代趋向于变得不稳定,使用线性搜索选项来使计算稳定化。

命令:LNSRCH

GUI:Main menu>solution>-load step opts-Nonlinear>lins search

·除非在大转动和动态分析中,打开时间步长预测器选项

命令:PRED

GUI:main mean>solarion>-load step opis-nonlinear>predictor

·在接触分析中许多不收敛问题是由于使用了太大的接触刚度引起的,(实常数FKN)

检验是否使用了合适的接触刚度。

步骤九:求解

现在可以对接触问题进行求解,求解过程与一般的非线问题求解过程相同

第十步:检查结果

接触分析的结果主要包括位移、应力、应变,支,和接触信息(接触压力、滑动等)你可以在一般的后处理器(post1)或时间历程后处理器(post26)中查看结果。

注意点:

1.为了在post1中查看结果,数据库文件所包含的模型必须与用于求解的模型相同。

2.必须存在结果文件

在post1中查看结果

1.从输出文件中查看分析是否收敛。

如果不收敛,你可能不想后处理,而更在乎为什么不收敛。

如果已经收敛,继续后处理。

2.进入post1如果你的模型不在当前的数据库中,使用恢复命令(resume)来恢复它。

命令:/post1

GUI:main menu>General postproc

3.读入所期望的载荷步和子步的结果,这可以通过载荷步和子步数也可以通过时间

来实现。

命令:SET

GUI:main menu>generad postproc

4.使用下面的任何一个选项来显示结果

选项:显示变形形状态

命令:PLDISP

GUI:main menu>general postproc>plot resnlt deformed shape

选项:等值显示

命令:PLNSOL

PLESOL

GUI:main menu>general postproc>plot result>contour plot-noded solu 或

element和solu 使用这个选项来显示应力,应变或其它项的等值图,如果相邻的单元有不同的材料行为(例如塑性或多弹性材料特性,不同的材料类型,或不同的死活属性)则在结果显示时应避免结点应力平均错误。

也可以将定的接触信息用等值图显示出来,对2─D接触分析,模型用灰色表示,所要求显示的项将沿着接触单元存在的模型的边界以梯型面积表示出来,对3─D接触分析,模型将用灰色表示,而要求的项在接触单元存在的2─D表面上等值显示。

还可以等值显示单元表的数据和线性化单元数据。

命令:PLETAB

PLLS

GUI:main menu>general postproc>Element Table>Plot Element Table

main menu> General Postproc>Plot Results>-Contour plot-line Elem Res 选项:列表显示

命令:PRNSOL

PRESOL

PRRSOL

PRETAB

PRITER

NSORT

ESORT

GUI:Main menu>General Postproc>List Results>Noded Solution

Main menu>General Postproc>Lost Results>Element Solution

Main menu>General Postproc>List Results>Reaction Solution

在列表显示它们之前,可以用NSORT和ESORT来对它们进行排序

选项:动画

可以动画显示接触结果随时间的变化

命令:ANIME

GUI:Wility menn>Plotctrls >Animate>Contours lner fime

post26中查看结果

你也可以使用post26来查看一个非线性结构对加载历程的响应使用post26,可以比较一个变量陡另一个变量的变化关系,例如,可以画出某个结点位移随给定载的曲线关系,某个结点的塑性应变与时间的关系,一个典型的post26后处理过程需要分以下几个步骤

1.从输出文件中检查是否分析已经收敛

2.求解已收敛,进入post26,如果模型不在当前数据库中恢复它

命令:/Post26

GUI:Main menu>Timehist Postpro

3.定义变量

命令:NSOL

ESOL

RFORCE

GUI:Main menu>Time Hist Postpro>Define Variable

4.画曲线或列表显示

命令:PL VAR

PRV AR

EXTREM

GUI:Main menu>Time Hist Postproc>Graph Variable

Main menu>Time Hist Postproc>List Variarle

Main menu>Time Hist Postproc>List Extremes

点─面接触分析

我们能使用点─面接触单元来模拟一个表面和一个结点的接触,另外,可以通过把表面指定为一组结点,从而用点─面接触来代表面─面的接触。

ANSYS程序的点─面接触单元允许下列非线性行为:

·有大变形的面─面接触分析

·接触和分开

·库仑摩擦滑动

·热传递

点─面的接触是一种在工程应用中普遍发生的现象,例如:夹子、金属成形等等,工程技术人员对由于结构之间的接触而产生的应力变形为和温度改变是感兴趣的。

使用点─面的接触单元

在ANSYS程序中点─面的接触是通过跟踪一个表面(接触面)上的点相对于另一表面(目标面)上的线或面的位置来表示的,程序使用接触单元来跟踪两个面的相对位置,接触单元的形状为三角形,四面体或锥形,其底面由目标面上的节点组成,而顶点为接触面上的节点。

图4─9绘出了二组的接触单元(COWTA(48))和三维的接触单元(COWTA(49))

图4─9 (a)2-D接触单元—COWTAC48

(b)3-D接触单元─COWTAC49

(c)2-D接触单元─COWTAC26

如果目标面是刚性的,而问题又是2-D的,则可以使用CONTA26来建模

点─面接触分析的步骤

下面列出了典型的点─面接触分析的基本步骤

1.建模并划分网格

2.识别接触对

3.生成接触单元

4.设置单元关键字和实常数

5.给定必须的边界条件

6.定义求解选项

7.求解

8.查看结果

第1步:建模,划分网格

在这一步中,需要建立代表接触体几何形状的模型,设置单元类型,实常数和材料特性,用适当的单元类型划分网格

命令:AMESH

VMESH

GUI:Main menu>Pneprocossor>Mesh>Mapped>3 or 4 Sided

Main menu>Pneprocessor>Mesh>Mapped>4 to 6 sided

应该避免使用有中结点的单元,特别是在3维问题中,因为这些单元表面节点上“有效刚度”是很不均匀的,例如,对95号单元来说,角结点上有一个负刚度。然而,是接触关系建立,ANSYS程序的点─面接触算法假定刚度均匀分布在面上的所有结点上,因此,在接触分析中使用这些单元时,能导致收敛困难。

仅仅在使用COWTA48的2维分析中,才可以在接触面上使用中结点单元,但不能在目标面上使用中结点单元,当生成48号接触单元的时候,目标面上的中节点将被忽略,这样将会导致在目标面上不均匀的力传递。

第2步,识别接触对

你必须认识到在变形过程中,哪儿可能发生接触,一是你已知认识到潜在接触面,通过接触单元来定义它们,为了更有效地进行计算(主要指CPU时间),你可能想,定义比较小的,局部的接触区域,但要保证你所定义的接触区域能模拟所有必须的接触。

由于几何形状和潜在变形的多样化,可能有多个目标面和同一个接触面相互作用,在这种情况下,必须定义多个接触对,对每个表面,你需要建立一个包含

表面节点的组元。

命令:CM

GUI:Utility>Select>Comp/Assembly>Cneate Component

然后就可以使用这些表面结点,在接触面之间形成所有有可能的接触形状。如果你能肯定某些面永远不会相互接触,那么应该适当的包括更多的结点

第三步:生成接触单元

在生成接触单元之前,首先必须定义单元类型,对点─面的接触使用CONTAC48(2维)和CONTAC49(3维)

命令:ET

GUI:Main menu>Pneprocessor>Eloment Type>Add/Edit/Relete

然后再定义接触单元的实常数,每个不同的接触面应该有一个不同的实常数号,即便实常的值相同,因为使用不同的实常数号,程序能够较好的区分出是壳的顶面还底面接触,或者是能够在不同的接触面进行较好的区分。例如:在角接触中,每条也应该有它自己的实常数号,如图4─10所示,另一种典型应用是梁的双边接触,如图4─11所示

命令:R

RMODIF

GUI:Main menu>Pneprocessor>Real Constants

接着就是在对应的接触对之间生成接触单元。

命令:GCGEN

GUI:Main menu>Pnprocossor>Cneate>Elements>At Confactsrf

对生成点─面的接触单元的几点提示。

·一般来说,生成的接触单元不需超过所需要的2─3,使用“限制半径”(RADC)或“生成的单元数”(NUMC)选项来限制生成的接触单元数,如果生成的接触单元数超过所需的10或更多,则会极大增加计算时间,同时也需要大量的硬盘空间。

·进行接触分析时在接触面上建议使用无中结点的单元。

·对梁或壳单元需要通过“目标面”(TLAB)选项来指定单元数一边是目标面。

·对于卷曲的(非平面)目标面,使用CONTA49的“基本形状”(shape)选项来指定单元的基本形状是三角形,这个选项能使目标单元较好的模拟目标面的原形。

·每次在新的接触对之间生成接触单元时,都指定一个新的实常数号,既使接触单元的实常数值没有改变,生成对称或反对称的接触单元。

你可以选择生成对称的或反对称的接触单元,用一个简单的GCGEN命令定义一对接触面生成一种反对称的接触方式。在这种情况下,一个面是接触面而另一个是目标面,另外你可以使用两个GCGEN命令,将两个面都定义成即是目标面又是接触面,这种情况叫作对称接触方式,例如:考虑两个面A和B,在第一个GCGEN命令中,将面A指定为接触面,面B指定为目标面,而在第二个GCGEN命令中,将面A指定为目标面,而将面B指定为接触面,下面是在前处理中生成接触单元的标准命令流输入。

NSEL,S,NODE…!在接触面上选择一组结点

CM,CONTACT,NODE !将所造结点生成组元“COMTACT”

NSEL,S,NODE…!大目标面上选择一组新结点

CM,TARGET,NODE !将所选结点生成组元“TARGET”

NSEL,ALL

GCGEN,CONTACT,TARGET

GCGEN,TARGET,CONTACT

一般来说,对称接触方式是一种更好的方法,因为它不需要特别考虑哪个面是接触面,哪个面是目标面,相反,反对称接触方式在区分目标面和接触面时需

要遵守以下规则:

·如果一个面的接触部分是平的或凹的,而另一个面的接触部分是尖的或凸的,则应该将平凹面作为目标面,

·如果两个接触面都是平的,则可以任意选择

·如果两个接触面都凸的,应该将两个面中较平的作为目标面

·如果一个接触部分有尖边,而另一个没有,则有尖边的面应作为接触面。

生成已经开始接触的模型,那就是建立开始变形时的模型,这样,单元实际上已经彼此重叠在一起,用这种方法,在对结构进行分析时只需使用一个载荷步,同时应该打开“线性搜索”选识,从许多过盈分析问题中发现,为了得到收敛的结果,必须打开此选项。

命令:LNSRCH,ON

GUI:main menu>Preprocessor>load>No linesr>Line Search

用一个较弱的初始法向刚度(实常数KN)来生成已经开始接触的模型进行计算,然后在以后的载步中,使用新的R命令来逐步增加KN的值到一适当的值。(在此方法中,必须明确定义切向刚度佳,而不能使用缺省值)

第四步:设置单元关键字和实常数

使用点─面的接触单元时,程序使用四个单元关键字和几个实常数来控制接触行为

单元关键字:

CONTAC48和CONTAC49使用下面的单元关键字

KEYOPT(1):选择正确的自由度(包含或不包括温度)

KEYOP(2):选择罚函数的方法或罚函数+拉格朗日方法

KEYOPT(3):选择摩擦类型;无摩擦弹性库仑摩擦或刚性库仑摩擦。

KEYOPT(7):选择接触时间步预测控制

命令:KEYOPT

ET

GUI:Main Mneu>Pneporcessor>Element Type >Add/Delete

摩擦类型

你需要选择一种摩擦类型,点─面接触单元支持弹性库仑摩擦和刚性库仑摩擦,弹性库仑摩擦允许存在粘合和滑动状态,粘合区被当作一个刚度为KT的弹性区来处理,在变形期间当接触面是粘合而不是滑动的时候,选择这种摩擦类型是好的,刚性库仑行为仅仅允许有滑动摩,而接触面不能粘合,仅仅在两个面处理持续的相对滑动时,才选择这种摩擦类型,如果运动停止或逆转,将会遇到收敛性的问题。

罚函数与罚函数+拉格朗日方法

协调控制方法保证一个面不会渗透进入另一个面超过某一容许量,这可以通过罚函数方法或罚函数+拉格朗日方法来实现,在这种方法中,将有力加在接触结点上,直到接触结点渗透进入目标面。

热─结构结触

如果两个温度不同的物体此接触,在它们之间将会发生热传递我们能够联合这种点─面的接触单元和热─结构来合场单元来模拟这种情况下的热传递,(对不关心应力的分析,能够用标准的热单元来给系统的固定部分建模。)其关键字设置如表1─2所示,这些单元的热─结构都被激活,(必须为实常数COND(接触传导率)定义一个值,以模拟接触界面之间的热量流动)

接触预测

CONTAC48和CONTAC49对控制接触时间预测提供了三个选项。

·没有预测:当自动时间步被找开并允许小的时间步时,大多的静力分析使用此选项,如果允许一个足够小的时间步自动时间步长二分特征将会把步长减小到必要的大小,然而,二分法并不是一种需要进行时间预测的有效方法,对在加载过程中,有不连续接触区域的那些问题,时间步预测是必须的。

·合理的时间步:为了保持一个合理的时间/载增量,需要在接触预测中选择此项。

此项在时间步长预测器正在完好运行的静态分析中,或在连续接触(滚动接触)的瞬态分析中是有用的,如果接触点的位置随时间的变化是一个非线性函数,那么线性时间步长预测不可能是有效的,虽然其它的非线性特征能够小时间步以使线性时间步长预测能够提供很好的预测效果。

·最小的时间/载荷增量预测,无论什么时候,当接触状态发生的改变时,预测会取一个最小的时间/载荷增量,这个选项在碰撞和断续接触的瞬态分析中是有用的,或者用于由于线性预测不起作用而导致的第二个选项无用时,为了更有效的进行计算,仅仅对处于初始接触状态的那些接触单元使用此选项。

实常数

CONTAC48和CONTAC49使用下面的实常数

·KN定义法向接刚度。

·KT定义粘合接触刚度

·TOLN 定义最大的渗透容差

·FACT定义静摩擦与动摩擦的比值

·TOLS定义一个小的容差以增加目标面的长度。

·COND定义接触传导率

命令:R

GUI:Main menu>Preprocessor>Real Constants

法向刚度

我们必须给接触刚度KN提供一个值,(对KN设有缺省值)KN应该是足够大的以便不会引起过大的渗透,但又不应该大到导致病态条件,对大多的接触分析,应该按下面的公式来估计KN的值。

KN=fEh

f:控制接触协调性的因子,这个因子通常在0.01和100之间,开始时通常取f=1

E: 杨氐模量如果接触发生在两种不同的材料间,考虑使用杨氏模量较小者)

h:特征接触长度,这个值取决于问题几何形状的特殊性

在3维外形中,h应该等于典型的接触目标长度(也就是目标面的平方根)或者典型的单元尺寸,对大多数柔体—柔体的接触问题,通常发现处于接触状态的平均单元尺寸几乎等于目标长度。当目标长度与典型的单元尺寸当相差很大时,应该使用典型的单元尺寸来作为h的值,在2维平面应力或应变问题中,对平面应变或无厚度输入的平面应力问题,让h=1,对于有厚度输入的平面应力问题,让h等于厚度,在2维轴对称分析中,让h等于平均接触半径

当估计柔软结构的KN值时(特别是在梁或壳的模型中)应该在两个接触体上进行一

个简单的迭代分析来计算局部接触刚度,如图:4─9示

图1─9 计算柔软结构的接触刚度

KN=P/(1△11+1△21)

上式中:P=作用在接触位置的点载(位置1和2)

△1,△2=位置1和2的结点位移

在计算KN时,使用体系的实际边界条件,(就是说KN不是赫兹接触刚度,它考虑了整个结构的柔度)

粘合刚度

弹性区的大小取决于你使用的粘合刚度的值(KT)与法向刚度KN一样,你可能想使用一个较大的粘合刚度,但不要大到影响收敛性,一般来说,粘合刚度KT应该比法向刚度KN 1,2或3的量级。

如果你想模拟单性库仑摩擦,程序将会使用到KT的值。程序使用KT=KN/100作为缺省值,然而与KN一样,如果KT太大,可能会经历一个病态条件,因此,对大多的情况,KT的缺省值可能是不适合的。

渗透容差:

当使用罚函数+拉格朗日方法时(KEYOPT(2)=1),在表面法方向给定的绝对容差(TOLN),被用来决定是否满足渗透协调性,如果接触结点渗进目标的距离在TOLN的范围内,则认为满足接触协调性,TOLN的值必须是的而是长度单位TOLN的值一般约为表面单元尺寸的1%,如果将TOLN的值定得太小,可能要浪费大量的计算时间。

静摩擦与动摩擦系的比值。

如果KEYOPT(3)=0,不考虑两个表面间的摩擦,则实常数KT和FACT都不需要,当KEYOPT(3)=1或2时,需要输入摩擦系数,MU它可以被指定为一个温度的函数,此时,MU的值被作为动摩擦系数,而静摩擦系数是FACT*MU。

目标长度

如果两个接触面上的结点是一一对应的,或者在靠近对称边界上有接触产生时,于接触结点目标面上的两个邻近单元之间来回摆动,因而可能会导致求解振荡,当发生这种情况时,可能会极大地增加求解时间,为了克服这个问题,可以给实常数TOLS指定一个值,这将在目标面的两个邻近单元之间建立一个“缓冲区”,TOLS的值是一个特征接触长度的百分比,那就是说:TOLS=0.5将建立一个宽度接触长度的0.5%的缓冲区。

热传导率

对热─结构接触的问题为了描述通过接触界面的传导率,需要定义一个接触传导率(实常数(CONT))单位是热量/(时间*温度)通过接触界面的热传导率通常的接触体自身的传导率,因为从微观上说接触表面是不光滑的,只有整个接触面的一个小的百分比面积处于真正的接触中,因而导致了传导率的降低。因此,通常不能用接触体的热传导来描述接触界面的热传导率,对理想热接触(在接触面上没有温度降)将使用一个大的CONT值,可以能100KA/L这个量级上,K是接触体的传导率,A和L是接触单元的面积和长度,通常情况下考虑到不理想的热传导,应该给COND输入一个小得多的值

第五步,加上必要的边界条件

加载过程与其它分析过程相同,值得注意的是:在分析期间如果两个物体分开,那么刚

度矩阵变得奇异和不可求解(在静力分析中),如果是刚度矩阵变得奇异程度将会给出“Piloot ratio”的警告信息,但程序仍会设法求解,最终会出现一个"negatiue main diagonal" 或"Dof Limif exleeded"的信息。

为了克服这个问题,采用下面的某种建议

·建模时,使接触体处于恰好接触的位置

·使用给定位移来将它移到某个位置

·使用很弱的弹簧把两个分开的物体连起来,使用动态方法求解。

第6步定义求解选项

接触问题的收敛性与问题的特殊性有关,下面列出了一些典型的,在大多的点─面的接触分析中推荐采用的选项。

·使用KEYOPI(7)来设置合适的时间步长

·时间步长必须是足够小的,如果时间步长太大,接触力的光滑传递将被破坏,设置一精确良的可信方法是打开自动时间步长

命令:Autots,on

GUI:Main menu>Solution>-Load Stop opts-Time/Frequenc>Time & Time step/Time Substops

·设置一个合适的平衡迭代次数,一个合理的平衡迭代次数通常在25和70之间。

命令:NEQZT

GUI:Main menu>Solution>-Load Stop opis- >Equilibriam iter

·除非在大转动分析中,打开时间步长预测。

命令:PRED

GUI:Main menu>Solution>Load Stop opts-Nonlinear>Predictor

·设置中顿一拉普森选项到“FULL”,同时打开自下降因子

命令:NROPT,FULL,ON

GUI:main menu>solutim>Analysis opfions

·在接触分析中,许多的不收敛性是由使用了太大的接触刚度(实常数KN)造成的,如果是这样,减少接触刚度然重启动(此时必须明确定义切向刚度)·相反,如果在接触分析中发生太大渗透,则是使用了一个太小的KN值,此时,在下面的几个载步中逐步增加KN的值然后重启动,(此时也必须明确定义切向刚度)

第7步:求解

求解过程与其它分析过程相同

第8步:查看结果

我们可以采用一般的后处理器POST1或时间历程后处理器POST26来查看结果。

接触单元的输出量包括:

·单元的现在状态和过去状态的

分开(没有接触)

接触粘合状态

接触滑动状态

粘合=1,滑动=2或-2,分开=3或4

·两个表面间的距离,如果是正值,那么两个面是分开的(STA T=3或4)如果是负值则代表渗透量(STAT=1或2)

·法向力Fn(FN)

·滑动力Fs(FS)

使用单元CONTAC26

CONTAC26是ANSYS的点─刚性面接触单元,使用CONTAC26时,需注意以下几点:·这种单元是通过总体X─Y评面上的3个结点来定义的,能用于2维平面应力,平面应变和轴对称问题。

·结点2叫作接触结点,通常连到有限元模型的表面上

ansys非线性分析指南

ANSYS 非线性分析指南(1) 基本过程 第一章结构静力分析 1. 1 结构分析概述 结构分析的定义: 结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身、骨架;海洋结构,如船舶结构;航空结构,如飞机机身、机翼等,同时还包括机械零部件,如活塞传动轴等等。 在ANSYS 产品家族中有七种结构分析的类型,结构分析中计算得出的基 本未知量- 节点自由度,是位移;其他的一些未知量,如应变、应力和反力, 可通过节点位移导出。 七种结构分析的类型分别是: a. 静力分析- 用于求解静力载荷作用下结构的位移和应力等。静力分析 包括线性和非线性分析。而非线性分析涉及塑性、应力刚化、大变形、大应变、超弹性、接触面和蠕变,等。 b. 模态分析- 用于计算结构的固有频率和模态。 c. 谐波分析- 用于确定结构在随时间正弦变化的载荷作用下的响应。 d. 瞬态动力分析- 用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。 e. 谱分析- 是模态分析的应用拓广,用于计算由于响应谱或PSD 输入 随机振动引起的应力和应变。 f. 屈曲分析- 用于计算屈曲载荷和确定屈曲模态,ANSYS 可进行线性特征值和非线性屈曲分析。 g. 显式动力分析- ANSYS/LS-DYNA可用于计算高度非线性动力学和复 杂的接触问题。 除了前面提到的七种分析类型,还有如下特殊的分析应用: ? 断裂力学 ? 复合材料 ? 疲劳分析

? p-Method 结构分析所用的单元:绝大多数的ANSYS 单元类型可用于结构分析。单元类型从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元 1.2 结构线性静力分析 静力分析的定义: 静力分析计算在固定不变的载荷作用下结构的响应。它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是静力分析可以计算那些固定不变的惯性载荷对结构的影响,如重力和离心力;以及那些可以近似为等价静力作用的随时间变化载荷,如通常在许多建筑规范中所定义的等价静力风载和地震载荷。 静力分析中的载荷: 静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移、应力、应变和力。固定不变的载荷和响应是一种假定,即假定载荷和结构的响应随时间的变化非常缓慢,静力分析所施加的载荷包括: ? - 外部施加的作用力和压力 ? - 稳态的惯性力如中力和离心力 ? - 位移载荷 ? - 温度载荷 线性静力分析和非线性静力分析 静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有的非线性类型:大变形、塑性、蠕变、应力刚化、接触、间隙单元、超弹性单元等,本节主要讨论线性静力分析,非线性静力分析在下一节中介绍。 线性静力分析的求解步骤 1 建模 2 施加载荷和边界条件求解 3 结果评价和分析

ansys学习-非线性静态分析实例

ansys学习-非线性静态分析实例 问题描述 一个子弹以给定的速度射向壁面。壁面假定是刚性的和无摩擦的。将研究子弹和壁面接触后达80微秒长的现象。目的是确定子弹的整个变形,速度历程,以及最大等效Von Mises应变。求解使用SI单位。 用轴对称单元模拟棒。求解最好能通过单一载荷步实现。在这个载荷步中,将同时施加初始速度和约束。将圆柱体末端的节点Y方向约束住以模拟一固壁面。打开自动时间分步来允许ANSYS 确定时间步长。定义分析结束的时间为8E-5秒,以确保有足够长的时间来扑捉整个变形过程。 问题详细说明 下列材料性质应用于这个问题: EX=117.0E09 (杨氏模量) DENS=8930.0 (密度) NUXY=0.35(泊松比) Yield Strength=400.0OE06(屈服强度) Tangent Modulus (剪切模量) 下列尺寸应用于这个问题: 长=32.4E-3m 直径=6.4E-3m 对于这个问题的初始速度是227.0。 图1铜圆柱体图解 求解步骤: 步骤一:设置分析标题 1、选择菜单路径:Utility Menn>File>ChangeTitle。

2、键入文字“Coppery Cylinder Impacting a Rigid Wall” 3、单击OK。 步骤二:定义单元类型 1、选择菜单路径Mail Menu>Preprocessor>Element Type>All/Edit/Delete。 2、单击Add。Library of Element Types(单元类型库)对话框出现。 3、在靠近左边的列表中,单击“Visio Solid”仅一次。 4、选靠近右边的列表中,单击“4node Plas 106”仅一次。 5、单击OK。Library of Element Types 对话框关闭。 6、单击Options (选项)。VISCO106 element type Options(visco106单元类型选项)对话框出现。 7、在关于element behavior(单元特性)的卷动柜中,卷动到“Axisymmetric” 且选中它。 8、单击OK。 9、单击Element Types (单元类型)对话框中的Close。 步骤三:定义材料性质 1、选择菜单路径Main Menu>Preprocessor>Material Props>-Constant-Isotropic. Isotropic Matersal Properties (各向同性材料性质)对话框出现。 2、单击OK来指定材料号为1。另一个I sotropic Material Properties对话框出现。 3、对杨氏模量(EX)键入117.0E09 4、对密度(DENS)键入8930。 5、对泊松比(NUXY)键入0.35。 6、单击OK。 步骤四:定义双线性各向同性强化数据表(BISO) 1、选择菜单路径Main Menu>Preprocessor>Matersal Props>Data Tables> Define/Activate . Define/Activate Data Table(定义数据表)对话柜出现。 2、在关于type of data table(数据表类型)的卷动框中,卷动到“Bilin isotr BISO”且选中它。 3、对material reference number(材料参考号)健入1。 4、对number of temperatures(温度数)键入1和单击OK。 5、选择菜单路径Main Menu>Preprocessor>Material Props>Data Tables>Edit Active. Data Table BISO对话框出现。 6、对YLD Strs(屈服应力)键入400.0e06。 7、对 Tang Mod(剪切模量)键入100.0e06。 8、选择File>Apply & Quit。 9、选择菜单路径Main Menu>Preprosessor>Material Porps>Data Tables>Graph. Graph Data Tables(图形表示数据表)对话框出现。 10、单击OK接受绘制BISO表的缺省。一个BISO表的标绘图出现在ANSYS图形窗口中。 11、在ANSYS TooLbar上单击SAVE_DB。 步骤五、产生矩形 在这一步中,你产生一个代表柱体半横截面积的矩形。

Ansys非线性接触分析和设置

Ansys非线性接触分析和设置 5.4.9 设置实常数和单元关键选项 程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。参见《ANSYS Elements Reference》中对接触单元的描述。 5.4.9.1 实常数 在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。剩下的用来控制接触面单元。 R1和R2 定义目标单元几何形状。 FKN 定义法向接触刚度因子。 FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。 ICONT 定义初始闭合因子。 PINB 定义“Pinball"区域。 PMIN和PMAX 定义初始穿透的容许范围。 TAUMAR 指定最大的接触摩擦。 CNOF 指定施加于接触面的正或负的偏移值。 FKOP 指定在接触分开时施加的刚度系数。 FKT 指定切向接触刚度。 COHE 制定滑动抗力粘聚力。 TCC 指定热接触传导系数。 FHTG 指定摩擦耗散能量的热转换率。 SBCT 指定 Stefan-Boltzman 常数。 RDVF 指定辐射观察系数。 FWGT 指定在接触面和目标面之间热分布的权重系数。

FACT 静摩擦系数和动摩擦系数的比率。 DC 静、动摩擦衰减系数。 命令: R GUI:main menu> preprocessor>real constant 对实常数 FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和 FKT,用户既可以定义一个正值,也可以定义一个负值。程序将正值作为比例因子,将负值作为绝对值。程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和 PMIN 的参考值。例如 ICON = 0.1 表明初始闭合因子是“0.1*下层单元的厚度”。然而,ICON = -0.1 则表示真实调整带是 0.1 单位。如果下伏单元是超单元,则将接触单元的最小长度作为厚度。参见图5-8。 图5-8 下层单元的厚度 在模型中,如果单元尺寸变化很大,而且在实常数如 ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,则可能会出现问题。因为从比例系数得到的实际结果,取决于下层单元的厚度,这就可能引起大、小单元之间的重大变化。如果出现这一问题,请用绝对值代替比例系数。 TCC, FHTG, SBCT, RDVF 和 FWGT 仅用于热接触分析[KEYOPT(1)=1]。 5.4.9.2 单元关键选项 每种接触单元都包括数个关键选项。对大多的接触问题,缺省的关键选项是合适的。而在某些情况下,可能需要改变缺省值。下面是可以控制接触行为的一些关键选项: 自由 度 KEYOPT(1) 接触算法(罚函数+拉格朗日乘子或罚函数) KEYOPT(2) 存在超单元时的应力状态(仅2D) KEYOPT(3)

ANSYS结构非线性分析指南_第三章

第三章几何非线性与屈曲分析 3.1 几何非线性 3.1.1 大应变效应 一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。首先,如果这个单元的形状改变,它的单元刚度将改变(图3-1(a))。其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变(图3-1(b))。小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级)。 相反,大应变分析考虑由单元的形状和取向改变导致的刚度改变。因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。通过发出NLGEOM,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。这种效应改变单元的形状和取向,且还随单元转动表面载荷。(集中载荷和惯性载荷保持它们最初的方向。)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。在ANSYS/Linear Plus程序中大应变效应是不可用的。 图3-1 大应变和大转动 大应变过程对单元所承受的总旋度或应变没有理论限制。(某些ANSYS单元类型将受到总应变的实际限制──参看下面。)然而,应限制应变增量以保持精度。因此,总载荷应当被分成几个较小的步,这可用〔NSUBST,DELTIM,AUTOTS〕命令自动实现(通过GUI路径Main Menu>Solution>Time/Frequent)。无论何时如果系统是非保守系统,如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。 3.1.2 应力-应变 在大应变求解中,所有应力─应变输入和结果将依据真实应力和真实(或对数)应变(一维时,

ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析

!ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析 !学习重点: !1、强化非线性屈曲知识 首先了解屈曲问题。在理想化情况下,当F < Fcr时, 结构处于稳定平衡状态,若引入一个小的侧向扰动力,然后卸载, 结构将返回到它的初始位置。当F > Fcr时, 结构处于不稳定平衡状态, 任何扰动力将引起坍塌。当F = Fcr时,结构处于中性平衡状态,把这个力定义为临界载荷。在实际结构中, 几何缺陷的存在或力的扰动将决定载荷路径的方向。在实际结构中, 很难达到临界载荷,因为扰动和非线性行为, 低于临界载荷时结构通常变得不稳定。 要理解非线性屈曲分析,首先要了解特征值屈曲。特征值屈曲分析预测一个理想线弹性结构的理论屈曲强度,缺陷和非线性行为阻止大多数实际结构达到理想的弹性屈曲强度,特征值屈曲一般产生非保守解, 使用时应谨慎。 !理论解,根据Euler公式。其中μ取决于固定方式。 !有限元方法, 已知在特征值屈曲问题: 求解,即可得到临界载荷 而非线性屈曲问题: 其中为结构初始刚度,为有缺陷的结构刚度,为位移矩阵,为载荷矩阵。 非线性屈曲分析时考虑结构平衡受扰动(初始缺陷、载荷扰动)的非线性静力分析,该分析时一直加载到结构极限承载状态的全过程分析,分析中可以综合考虑材料塑性、几何非线性、接触、大变形。非线性屈曲比特征值屈曲更精确,因此推荐用于设计或结构的评价。 !2、熟悉WB中非线性屈曲分析流程 (1) 前处理,施加单元载荷,进行预应力静力分析。 (2) 基于预应力静力分析,指定分析类型为特征值屈曲分析,完成特征值屈曲分析。 (3) 在APDL模块将一阶特征屈曲模态位移乘以适当系数,将此变形后的形状当做非线性分析的初始模型。

ANSYS中文翻译官方手册_接触分析

一般的接触分类 (2) ANSYS接触能力 (2) 点─点接触单元 (2) 点─面接触单元 (2) 面─面的接触单元 (3) 执行接触分析 (4) 面─面的接触分析 (4) 接触分析的步骤: (4) 步骤1:建立模型,并划分网格 (4) 步骤二:识别接触对 (4) 步骤三:定义刚性目标面 (5) 步骤4:定义柔性体的接触面 (8) 步骤5:设置实常数和单元关键字 (10) 步骤六: (21) 步骤7:给变形体单元加必要的边界条件 (21) 步骤8:定义求解和载步选项 (22) 第十步:检查结果 (23) 点─面接触分析 (25) 点─面接触分析的步骤 (26) 点-点的接触 (35) 接触分析实例(GUI方法) (38) 非线性静态实例分析(命令流方式) (42) 接触分析 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。

非线性-接触分析

接触分析 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS 使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。 使用这类接触单元,不需要预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有大的变形和大的相对滑动。 Contact48和Contact49都是点─面的接触单元,Contact26用来模拟柔性点─刚性面的接触,对有不连续的刚性面的问题,不推荐采用Contact26因为可能导致接触的丢失,在这种情况下,Contact48通过使用伪单元算法能提供较好的建模能力。 面─面的接触单元 ANSYS支持刚体─柔体的面─面的接触单元,刚性面被当作“目标”面,分别用Targe169和Targe170来模拟2─D和3—D的“目标”面,柔性体的表面被当作“接触”面,用Conta171,Conta172,Conta173,Conta174来模拟。一个目标单元和一个接单元叫作一个“接触对”程序通过一个共享的实常号来识别“接触对”,为了建立一个“接触对”给目标单元和接触单元指定相同的实常的号。 与点─面接触单元相比,面─面接触单元有好几项优点, *支持低阶和高阶单元 *支持有大滑动和摩擦的大变形,协调刚度阵计算,单元提法不对称刚度阵的选项。 *提供工程目的采用的更好的接触结果,例如法向压力和摩擦应力。 *没有刚体表面形状的限制,刚体表面的光滑性不是必须允许有自然的或网格离散引起的表面不连续。

ANSYS结构非线性分析指南连载四

ANSYS结构非线性分析指南连载四--第四章材料非线性分析 (二) (2014-04-27 10:47:15) 转载▼ 标签: it 4.3 超弹性分析 4.3.1 超弹理论 4.3.1.1 超弹的定义 一般工程材料(例如金属)的应力状态由一条弹塑性响应曲线来描述,而超弹性材料存在一个弹性势能函数,该函数是一个应变或变形张量的标量函数,而该标量函数对应变分量的导数就是相应的应力分量。 上式中:[S]=第二皮奥拉-克希霍夫应力张量 W=单位体积的应变能函数 [E]=拉格朗日应变张量 拉格朗日应变可以由下式表达:[E]=1/2([C]-I) 其中:[I]是单位矩阵,[C]是有柯西-格林应变张量 其中[F]是变形梯度张量,其表达式为: x:变形后的节点位置矢量 X:初始的节点位置矢量 如果使用主拉伸方向作为变形梯度张量和柯西-格林变形张量的方向,则有: 其中: J=初始位置与最后位置的体积比 材料在第i个方向的拉伸率 在ANSYS程序中,我们假定超弹材料是各向同性的,在每个方向都有完全相同的材料特性,在这种情况下,我们既可以根据应变不变量写出应变能密度函数,也可以根据主拉伸率写出应变能密度函数。 应变不变量是一种与坐标系无关的应变表示法。使用它们就意味着材料被假定是各向同性的。Mooney -Rivlin和Blatz-Ko应变能密度函数都可以用应变不变量表示,应变不变量可以柯西-格林应变张量和主拉伸率表示出来:

一个根据应量不变量写出来的应变能密度函数如下: 为材料常数,上式是两个常数的Mooney-Rivlin应变能密度函数。 超弹材料可以承受十分大的弹性变形,百分之几百的应变是很普遍的,既然是纯弹性应变,因此超弹性材料的变形是保守行为,与加载路径无关。 4.3.1.2 不可压缩缩性 大多数超弹材料,特别是橡胶和橡胶类材料,都是几乎不可压缩的,泊松比接近于0.5,不可压缩材料在静水压力下不产生变形,几乎不可压缩材料的泊松比一般在0.48至0.5之间(不包含0.5),对这些材料,在单元公式中必须考虑不可压缩条件。在ANSYS程序中,不可压缩超弹单元修改了应变能密度函数,在单元中明确地包含了压力自由度。压力自由度使不可压缩条件得到满足,而不降低求解速度。压力自由度是一种内部自由度,被凝聚在单元内部。 4.3.1.3 超弹单元 有三种单元适合于模拟超弹性材料: 不可压缩单元有HYPE56,58,74和158,这些单元适用于模拟橡胶材料。 可压缩单元有HYPER84和86,HYPER84既可以是4节点矩形也可以是8节点矩形单元,这种单元主要用来模拟泡沫材料。 18X族单元(除LIMK和BEAM单元外,包括SHELL181, PLANE182,PLANE183,SOLID185,SOLID186,和SOLID187)。18X族单元消除了体积锁定,既适用于不可压材料,又适用于可压材料。参见《ANSYS Elements Reference》的“Mixed U-P Formulations”。 4.3.2 超弹材料选项 超弹性可用于分析橡胶类材料(elastomers),这种材料可承受大应变和大位移,但体积改变极微(不可压缩)。这种分析需用到大应变理论[ NLGEOM ,ON]。图4-13是一个例子。 图4-13 超弹性结构 在ANSYS超弹性模型中,材料响应总是假设各向同性和等温性。由于这一假设,应变能势函数按应变不变量来表示。除非明确指出,超弹性材料还假设为几乎或完全不可压缩材料。材料热膨胀也假定为各向同性的。 ANSYS在模拟不可压缩或几乎不可压缩超弹性材料时,应变能势函数有几种选项。这些选项均适用于SHELL181,PLANE182, PLANE183, SOLID185, SOLID186, SOLID187 单元。可以通过TB ,HYPER 命令的 TBOPT参数进入这些选项。

ANSYS 非线性_结构分析

目录 非线性结构分析的定义 (1) 非线性行为的原因 (1) 非线性分析的重要信息 (3) 非线性分析中使用的命令 (8) 非线性分析步骤综述 (8) 第一步:建模 (9) 第二步:加载且得到解 (9) 第三步:考察结果 (16) 非线性分析例题(GUI方法) (20) 第一步:设置分析标题 (21) 第二步:定义单元类型 (21) 第三步:定义材料性质 (22) 第四步:定义双线性各向同性强化数据表 (22) 第五步:产生矩形 (22) 1

第六步:设置单元尺寸 (23) 第七步:划分网格 (23) 第八步:定义分析类型和选项 (23) 第九步:定义初始速度 (24) 第十步:施加约束 (24) 第十一步:设置载荷步选项 (24) 第十二步:求解 (25) 第十三步:确定柱体的应变 (25) 第十四步:画等值线 (26) 第十五步:用Post26定义变量 (26) 第十六步:计算随时间变化的速度 (26) 非线性分析例题(命令流方法) (27) 非线性结构分析 非线性结构的定义 在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金 2

属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在 汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性. 图1─1 非线性结构行为的普通例子 3

非线性行为的原因 引起结构非线性的原因很多,它可以被分成三种主要类型: 状态变化(包括接触) 许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。 接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。 几何非线性 如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。一个例的垂向刚性)。随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。 4

关于ansys非线性分析的几点忠告

关于非线性分析的几点忠告 了解程序的运作方式和结构的表现行为 如果你以前没有使用过某一种特别的非线性特性,在将它用于大的,复杂的模型前,构造一个非常简单的 模型(也就是,仅包含少量单元),以及确保你理解了如何处理这种特性。 通过首先分析一个简化模型,以便使你对结构的特性有一个初步了解。对于非线性静态模型,一个初步的 线性静态分析可以使你知道模型的哪一个区域将首先经历非线性响应,以及在什么载荷范围这些非线性将 开始起作用。对于非线性瞬态分析,一个对梁,质量块及弹簧的初步模拟可以使你用最小的代价对结构的 动态有一个深入了解。在你着手最终的非线性瞬时动态分析前,初步非线性静态,线性瞬时动态,和/或模 态分析同样地可以有助于你理解你结构的非线性动态响应的不同的方面。 阅读和理解程序的输出信息和警告。至少,在你尝试后处理你的结果前,确保你的问题收敛。对于与路程 相关的问题,打印输出的平衡迭代记录在帮助你确定你的结果是有效还是无效方面是特别重的。 简化 尽可能简化最终模型。如果可以将3─D结构表示为2─D平面应力,平面应变或轴对称模型,那么这样做, 如果可以通过对称或反对称表面的使用缩减你的模型尺寸,那么这样做。(然而,如果你的模型非对称加 载,通常你不可以利用反对称来缩减非线性模型的大小。由于大位移,反对称变成不可用的。)如果你可 以忽略某个非线性细节而不影响你模型的关键区域的结果,那么这样做。 只要有可能就依照静态等效载荷模拟瞬时动态加载。 考虑对模型的线性部分建立子结构以降低中间载荷或时间增量及平衡迭代所需要的计算时间。 采用足够的网格密度 考虑到经受塑性变形的区域要求一个合理的积分点密度。每个低阶单元将提供和高阶单元所能提供的一样

Ansys第25例非线性分析综合应用实例

第25例非线性分析综合应用实例----钢板卷制成圆筒 本例介绍了综合利用ANSYS非线性分析功能模拟将钢板卷制成圆筒的方法和步骤。25.1问题描述 将钢板卷制成圆筒一般要使用卷板机。图25-1所示为对称式三辊卷板机, 该机器将钢板卷制成圆筒时分为三个步骤:首先,上辊下降使钢板发生挠曲,钢板挠曲线的最低点首先发生屈服;然后,下辊转动驱动钢板向前移动,使钢板各点发生同样的屈服形成圆筒;最后,圆筒卷制完成,上辊上升卸下筒体。 图25-1对称式三辊卷板机 用ANSYS模拟将钢板卷制成圆筒,相应地也分为三个步骤。由于第二个步骤需要模拟上、下辊转动,而ANSYS的SOLIDn单元不支持大转动,位移边界条件不能施加大的转动角度,所以上、下辊需要用壳单元建立有限元模型。上、下辊与钢板的作用需要用接触模拟,钢板卷制成圆筒材料发生屈服,产生大变形, 所以钢板卷制成圆筒包括状态非线性、材料非线性和结构非线性三种非线性。 用ANSYS模拟将钢板卷制成圆筒,计算结果可以得到圆筒直径与上辊下压量的关系,上、下辊受力大小,上、下辊的变形,下辊驱动力矩及卸载回弹等重

25.2 命令流 /CLEAR /FILNAM, EXAMPLE25 /CONFIG, NRES, 2000 /PREP7 /PNUM, VOLU, ON ET, 1, SHELL181 ET, 2, SOLID186 MP, EX, 1, 2E11 MP, DENS, 1, 7800 MP, NUXY, 1, 0.3 MP, EX, 2, 2E11 MP, DENS, 2, 7800 MP, NUXY, 2, 0.3 TB, BKIN, 2, 1 TBTEMP, 0 TBDATA,, 240E6, 0 SECTYPE, 1, SHELL SECDATA, 0.02 CYLIND, 0.38/2, 0, 0.2, 1.7, 0, 360 要数据。因为分析过程复杂,步骤较多,所以本例只采用命令流法执行命令。 !清除数据库,新建文件 ! 指定任务名为?EXAMPLE25 “ !设置最大子步数 !前处理 !进入前处理器 !打开体号 !选择单元类型,壳单元用于划分上、下辊 !实体单元用于划分钢板 !定义材料模型 1 的弹性模量 ! 定义材料模型 1 的密度 !定义材料模型 1 的泊松比 !定义材料模型 2 的弹性模量 ! 定义材料模型 2 的密度 !定义材料模型 2 的泊松比 ! 定义材料模型 2 的屈服极限、切向模量 !定义截面 !壳厚度

Ansys使用技巧-非线性收敛准则

ansys计算非线性时会绘出收敛图,其中横坐标是cumulative iteration number 纵坐标是absolute convergence norm。他们分别是累积迭代次数和绝对收敛范数,用来判断非线性分析是否收敛。 ansys在每荷载步的迭代中计算非线性的收敛判别准则和计算残差。其中计算残差是所有单元内力的范数,只有当残差小于准则时,非线性叠代才算收敛。ansys的位移收敛是基于力的收敛的,以力为基础的收敛提供了收敛量的绝对值,而以位移为基础的收敛仅提供表现收敛的相对量度。一般不单独使用位移收敛准则,否则会产生一定偏差,有些情况会造成假收敛.(ansys非线性分析指南--基本过程Page.6) 。因此ansys官方建议用户尽量以力为基础(或力矩)的收敛误差,如果需要也可以增加以位移为基础的收敛检查。ANSYS缺省是用L2范数控制收敛。其它还有L1范数和L0范数,可用CNVTOL命令设置。在计算中L2值不断变化,若L2

ansys学习非线性静态分析实例

a n s y s学习非线性静态分 析实例 Newly compiled on November 23, 2020

ansys学习-非线性静态分析实例 问题描述 一个子弹以给定的速度射向壁面。壁面假定是刚性的和无摩擦的。将研究子弹和壁面接触后达80微秒长的现象。目的是确定子弹的整个变形,速度历程,以及最大等效Von Mises应变。求解使用SI单位。 用轴对称单元模拟棒。求解最好能通过单一载荷步实现。在这个载荷步中,将同时施加初始速度和约束。将圆柱体末端的节点Y方向约束住以模拟一固壁面。打开自动时间分步来允许ANSYS确定时间步长。定义分析结束的时间为8E-5秒,以确保有足够长的时间来扑捉整个变形过程。 问题详细说明 下列材料性质应用于这个问题: EX= (杨氏模量) DENS= (密度) NUXY=(泊松比) Yield Strength=(屈服强度) Tangent Modulus (剪切模量) 下列尺寸应用于这个问题: 长=-3m 直径=-3m 对于这个问题的初始速度是。 图1铜圆柱体图解 求解步骤: 步骤一:设置分析标题 1、选择菜单路径:Utility Menn>File>ChangeTitle。 2、键入文字“Coppery Cylinder Impacting a Rigid Wall” 3、单击OK。 步骤二:定义单元类型

1、选择菜单路径Mail Menu>Preprocessor>Element Type>All/Edit/Delete。 2、单击Add。Library of Element Types(单元类型库)对话框出现。 3、在靠近左边的列表中,单击“Visio Solid”仅一次。 4、选靠近右边的列表中,单击“4node Plas 106”仅一次。 5、单击OK。Library of Element Types 对话框关闭。 6、单击Options (选项)。VISCO106 element type Options(visco106单元类型选项)对话框出现。 7、在关于element behavior(单元特性)的卷动柜中,卷动到“Axisymmetric” 且选中它。 8、单击OK。 9、单击Element Types (单元类型)对话框中的Close。 步骤三:定义材料性质 1、选择菜单路径Main Menu>Preprocessor>Material Props>-Constant-Isotropic. Isotropic Matersal Properties (各向同性材料性质)对话框出现。 2、单击OK来指定材料号为1。另一个I sotropic Material Properties对话框出现。 3、对杨氏模量(EX)键入 4、对密度(DENS)键入8930。 5、对泊松比(NUXY)键入。 6、单击OK。 步骤四:定义双线性各向同性强化数据表(BISO) 1、选择菜单路径Main Menu>Preprocessor>Matersal Props>Data Tables> Define/Activate . Define/Activate Data Table(定义数据表)对话柜出现。 2、在关于type of data table(数据表类型)的卷动框中,卷动到“Bilin isotr BISO”且选中它。 3、对material reference number(材料参考号)健入1。 4、对number of temperatures(温度数)键入1和单击OK。 5、选择菜单路径Main Menu>Preprocessor>Material Props>Data Tables>Edit Active. Data Table BISO对话框出现。 6、对YLD Strs(屈服应力)键入。 7、对 Tang Mod(剪切模量)键入。

ANSYS中的接触分析教程

一般的接触分类 (1) ANSYS接触能力 (2) 点─点接触单元 2 点─面接触单元 2 面─面的接触单元 2 执行接触分析 (3) 面─面的接触分析 3 接触分析的步骤: 3 步骤1:建立模型,并划分网格 (3) 步骤2:识别接触对 (4) 步骤2:指定接触面和目标面 3 步骤4:定义刚性目标面 (3) 步骤5:定义柔性体的接触面 (5) 步骤6:设置实常数和单元关键字 (7) 步骤7:控制刚体目标的运动 (13) 步骤8:给变形体单元加必要的边界条件 (14) 步骤9:定义求解和载荷步选项 14 第十步:检查结果 (15) 点─面接触分析 (16) 点─面接触分析的步骤 (17) 点-点的接触 (22) 接触分析实例(GUI方法) (24) 非线性静态实例分析(命令流方式) (26) 接触分析

接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。

ansys学习非线性静态分析实例

a n s y s学习非线性静态 分析实例 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

ansys学习-非线性静态分析实例 问题描述 ??? 一个子弹以给定的速度射向壁面。壁面假定是刚性的和无摩擦的。将研究子弹和壁面接触后达80微秒长的现象。目的是确定子弹的整个变形,速度历程,以及最大等效Von Mises应变。求解使用SI单位。 用轴对称单元模拟棒。求解最好能通过单一载荷步实现。在这个载荷步中,将同时施加初始速度和约束。将圆柱体末端的节点Y方向约束住以模拟一固壁面。打开自动时间分步来允许ANSYS确定时间步长。定义分析结束的时间为8E-5秒,以确保有足够长的时间来扑捉整个变形过程。 问题详细说明 下列材料性质应用于这个问题: EX=? (杨氏模量) DENS=?? (密度) NUXY=(泊松比) Yield Strength=(屈服强度) Tangent Modulus??? (剪切模量) 下列尺寸应用于这个问题: 长=-3m 直径=-3m 对于这个问题的初始速度是。 ? ?????????????????????????????????????????????????????????? 图1铜圆柱体图解 求解步骤: 步骤一:设置分析标题 1、选择菜单路径:Utility Menn>File>ChangeTitle。 2、键入文字“Coppery Cylinder Impacting a Rigid Wall”

3、单击OK。 步骤二:定义单元类型 1、选择菜单路径Mail Menu>Preprocessor>Element Type>All/Edit/Delete。 2、单击Add。Library of Element Types(单元类型库)对话框出现。 3、在靠近左边的列表中,单击“Visio Solid”仅一次。 4、选靠近右边的列表中,单击“4node Plas 106”仅一次。 5、单击OK。Library of Element Types 对话框关闭。 6、单击Options (选项)。VISCO106 element type Options(visco106单元类型选项)对话框出现。 7、在关于element behavior(单元特性)的卷动柜中,卷动到“Axisymmetric” 且选中它。 8、单击OK。 9、单击Element Types (单元类型)对话框中的Close。 步骤三:定义材料性质 1、选择菜单路径Main Menu>Preprocessor>Material Props>-Constant-Isotropic. Isotropic Matersal Properties (各向同性材料性质)对话框出现。 2、单击OK来指定材料号为1。另一个I sotropic Material Properties对话框出现。 3、对杨氏模量(EX)键入 4、对密度(DENS)键入8930。 5、对泊松比(NUXY)键入。 6、单击OK。 步骤四:定义双线性各向同性强化数据表(BISO) 1、选择菜单路径Main Menu>Preprocessor>Matersal Props>Data Tables>????? Define/Activate . Define/Activate Data Table(定义数据表)对话柜出现。 2、在关于type of data table(数据表类型)的卷动框中,卷动到“Bilin isotr BISO”且选中它。 3、对material reference number(材料参考号)健入1。 4、对number of temperatures(温度数)键入1和单击OK。

相关主题