搜档网
当前位置:搜档网 › 支持向量机(SVM)算法推导及其分类的算法实现

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机(SVM)算法推导及其分类的算法实现
支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现

摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。

Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward.

关键字:SVM、线性分类、核函数、松弛变量、DAG SVM

1. SVM的简介

支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。

对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

2. 线性分类器及其求解

线性分类器,是最简单也很有效的分类器形式。在一个线性分类器中,可以看到SVM 形成的思路,并接触很多SVM 的核心概念。

用一个二维空间里仅有两类样本的分类问题来举例。如图1所示

图1 两类样本分类

C1和C2是要区分的两个类别,在二维平面中它们的样本如图1所示。中间的直线就是一个分类函数,它可以将两类样本完全分开。一般的,如果一个线性函数能够将样本完全正确的分开,就称这些数据是线性可分的,否则称为非线性可分的。

很容易看出来,图1中间那条分界线并不是唯一的,旋转一下,只要不把两类数据分错,仍然可以达到分类的效果,稍微平移一下,也可以。对同一个问题存在多个分类函数的时候,哪一个函数更好呢?必须要先找一个指标来量化“好”的程度,通常使用分类间隔来衡量。设平面中的直线方程为:

(x)wx b g =+ (1) 设i x 是一个有某一对象抽取出的n 维向量,i y 为分类标记,则可以定义点到某一超平面的间隔:

(w b)i i y x δ=+

(2) 用||||w w 和||||

b w 替代(2)式中的w 和b 得: 1|(x )|||||i i g w δ= (3)

将(3)式得到的间隔称为几何间隔,几何间隔所表示的正是点到超平面的欧氏距离,以上是单个点到某个超平面的距离定义,同样可以定义一个点的集合(就是一组样本)到某个超平面的距离为此集合中离超平面最近的点的距离。图2更加直观的展示出了几何间隔的含义。

图2 分割超平面

图2中,H 是分类面,H1和H2是平行于H ,且过离H 最近的两类样本的直线,H1与H ,H2与H 之间的距离就是几何间隔。几何间隔与样本的误分次数间存在关系:

2

2()R δ≤误差分数

其中的δ是样本集合到分类面的间隔,max ||x ||,i 1,...,n i R ==,即R 是所有

样本中向量长度最长的值。从上式可以看出,误分次数的上界由几何间隔决定。因此选择几何间隔来作为评价一个解优劣的指标,几何间隔越大的解,它的误差上界越小。因此最大化几何间隔成了我们训练阶段的目标。

从(3)式可知,几何间隔与||w||是成反比的,因此最大化几何间隔与最小化||w||等价。通常不是固定||w||的大小而寻求最大几何间隔,而是固定间隔(例如固定为1),寻找最小的||w||。

此时变成一个最优化问题,若想寻找一个小||w||,就可以用下面的式子表示:

min ||||w

但实际上对于这个目标,常常使用另一个完全等价的目标函数来代替,如下:

2

1min ||||2w

如果直接来解这个求最小值问题,很容易看出当||w||=0的时候就得到了目标函数的最小值。反映在图2中,就是

1H 与2H 两条直线间的距离无限大,这个时候,所有的样本点都位于

1H 和2H 中间,而我们原本的意图是,1H 右侧的被分为正类,2H 左侧的被分为负类,位于两类中间的样本则拒绝分类。这样,所有样本点都进入了无法分类的灰色地带。造成这种结果的原因是在描述问题的时候只考虑了目标,而没有加入约束条件,于是可以添加约束条件:

[()b]1(i 1,2,...,n)i i y w x ?+≥=(n 是总的样本数)

于是可以将两类分类转化成数学形式,如下:

21min ||||2[()b]-10(i 1,2,...,n)i i w y w x ?????+≥=? (4)

在这个问题中,自变量就是w ,而目标函数是w 的二次函数,所有的约束条件都是w 的线性函数,这种规划问题就是二次规划(Quadratic Programming ,QP ),由于它的可行域是一个凸集,因此它是一个凸二次规划。

样本确定了w ,用数学的语言描述,就是w 可以表示为样本的某种组合: 1122n n w x x x ααα=++?+

(5) 式子中的i α是拉格朗日乘子,而i x 是样本点,也是向量,n 就是总样本点的个数。

为了方便描述,以下开始严格区别数字与向量的乘积和向量间的乘积,我会用i i x α表示数字和向量的乘积,而用,i j x x <>表示向量,i j x x 的内积。因此(1)式严格的形式应该是:

(x),b g w x =<>+ (6)

w 不仅跟样本点的位置有关,还跟样本的类别有关。因此用下面这个式子表示w :

121122n n n w x x y x y y ααα=++?+ (7)

其中的

i y 就是第i 个样本的标签,它等于1或者-1。其实以上式子的拉格朗日乘子12,,,n ααα?中,只有很少的一部分不等于0,这部分不等于0的拉格朗

日乘子后面所乘的样本点,其实都落在1H 和2H 上,也正是这部分样本唯一的确

定了分类函数。这部分可以确定分类的样本点,就叫做支持向量。因此原来的g(x)表达式可以写为:

1(x),b

(),n i i i i g w x y x x b

α==<>+=<>+∑, (8)

其中,1()

n i i i i w y x α==∑上式可以变形为:

1(x),n i i i i g y x x b

α==<>+∑ (9)

此时消去了上式中的w ,问题从求w 变成了求α。这样就简化了原问题的求解,以这样的形式描述问题以后,优化问题少了很大一部分不等式约束。接下来看看 SVM 在线性分类器上所做的重大改进——核函数。

3. SVM 中的核函数

根据模式识别理论,低维空间线性不可分的模式通过非线性映射到高维特征空间则可能实现线性可分,但是如果直接采用这种技术在高维空间进行分类或回归,则存在确定非线性映射函数的形式和参数、特征空间维数等问题,而最大的障碍则是在高维特征空间运算时存在的“维数灾难”。采用核函数技术可以有效地解决这样问题。

如图3所示,当分类问题在低纬空间无法用线性分类方法解决时,可以通过

φ将低纬空间的数据映射到高纬特征空间中,从而达到线性可分的目的。

图3 低纬度向高纬度空间映射

从低纬度向高纬度转化关键在于寻在一个φ函数,但对目前没有一个系统的方法。对映射过程推导如下:

12121231232222112211222222

11121222211222

(,),(,)(,,),(,,)(2,),(2,)2()

(,)(,)T T T T T T T

T

T T T

T

T T T T T x x x x z z z z z z x x x x x x x x x x x x x x x x x x x x x x K x x φφ<>=<>

=<>

=++=+=<>= (10)

从上式可以得出,我们只关心高维空间里内积的值,而核函数就是接受低空间的输入,并计算出在高纬空间的内积值。(,)T K x x ,就是我们要找的核函数。如图4

图4 在映射过程中的核函数

于是上式,可以表示为1(x)(,)n i i i i g y K x x b

α==+∑。尽管给的问题是线性不可

分的,但凡是要求内积的时候我们就选定的核函数来算。这样求出来的α再和你选定的核函数一组合,就可以得到线性分类器。但是任然存在以下两个问题:

1.既然有很多的核函数,针对具体问题该怎么选择?

2.如果使用核函数向高维空间映射后,问题仍然是线性不可分的,那怎么办?

第一个问题:对核函数的选择,现在还缺乏指导原则!各种实验的观察结果的确表明,某些问题用某些核函数效果很好,用另一些就很差,但是一般来讲,径向基核函数是不会出太大偏差的一种,首选。

对第二个问题的解决则引出了SVM 中的另一个概念:松弛变量。

4. SVM 中的松弛变量

假设有另一个训练集,只比原先这个训练集多了一个样本,映射到高维空间以后,也就多了一个样本点,但是这个样本的位置是这样的,如图5:

图5 新增加了一个样本后分类的结果

就是图中黄色那个点,它是方形的,因而它是负类的一个样本,这单独的一个样本,使得原本线性可分的问题变成了线性不可分的。这样类似的问题(仅有少数点线性不可分)叫做“近似线性可分”的问题。

对于人类思维,在大量的样本基础上,可能会认为图5中的黄点是错误的,是噪声,会自动的剔除掉。人的思维对于噪声数据具有容错性,可程序没有。由于我们原本的优化问题的表达式中,确实要考虑所有的样本点,在此基础上寻找正负类之间的最大几何间隔,而几何间隔本身代表的是距离,是非负的,像上面这种有噪声的情况会使得整个问题无解。这种解法其实也叫做“硬间隔”分类法,因为他硬性的要求所有样本点都满足和分类平面间的距离必须大于某个值。说明硬间隔的分类法其结果容易受少数点的控制。

针对硬间隔的问题,解决方法也很明显,就是仿照人的思路,允许一些点到分类平面的距离不满足原先的要求。由于不同的训练集各点的间距尺度不太一样,因此用间隔(而不是几何间隔)来衡量有利于我们表达形式的简洁。原先对样本点的要求是:

[()]1(1,2,...,)()i i y wx b i n n +≥=是样本数 (11) 该式说明,离分类面最近的样本点函数间隔也要比1大。如果要引入容错性,就给1这个硬性的阈值加一个松弛变量,即允许:

[()]1(1,2,...,)()

0i i i i y wx b i n n ξξ+≥-=≥是样本数 (12)

因为松弛变量是非负的,因此最终的结果是要求间隔可以比1小。但是当某些点出现这种间隔比1小的情况时(这些点也叫离群点),意味着放弃了对这些点的精确分类,而这对分类器来说是种损失。但是放弃这些点也带来了好处,那就是使分类面不必向这些点的方向移动,因而可以得到更大的几何间隔。显然必须权衡这种损失和好处。得到的分类间隔越大,好处就越多。原始的硬间隔分类对应的优化问题:

21min ||||2..[()b]-10(i 1,2,...,n)i i w S T y w x ?????+≥=? (13)

2||||w 就是目标函数,希望它越小越好,因而损失就必然是一个能使之变大的量。那如何来衡量损失,有两种常用的方式,

或者

两种方法没有大的区别。如果选择了第一种,得到的方法的就叫做二阶软间隔分类器,第二种就叫做一阶软间隔分类器。把损失加入到目标函数里的时候,就需要一个惩罚因子,原来的优化问题就变成了下面这样:

21min ||||2..[()b]1(i 1,2,...,n)0i i i i w S T y w x ζζ????+≥-=??≥??

(14)

这个式子有这么几点要注意: 一是并非所有的样本点都有一个松弛变量与其对应。实际上只有“离群点”才有,没离群的点松弛变量都等于0。

二是松弛变量的值实际上标示出了对应的点到底离群有多远,值越大,点就越远。

三是惩罚因子C 决定了你有多重视离群点带来的损失,显然当所有离群点的松弛变量的和一定时,定的C 越大,对目标函数的损失也越大,此时就暗示着不愿意放弃这些离群点,最极端的情况是你把C 定为无限大,这样只要稍有一

个点离群,目标函数的值马上变成无限大,马上让问题变成无解,这就退化成了硬间隔问题。

四是惩罚因子C不是一个变量,整个优化问题在解的时候,C是一个你必须事先指定的值。

五是尽管加了松弛变量这么一说,但这个优化问题仍然是一个优化问题,解的过程比起原始的硬间隔问题来说,没有任何更加特殊的地方。

从大的方面说优化问题解的过程,就是先试着确定一下w,也就是确定了前面图中的三条直线,这时看看间隔有多大,又有多少点离群,把目标函数的值算一算,再换一组三条直线,再把目标函数的值算一算,如此往复(迭代),直到最终找到目标函数最小时的w。

松弛变量也就是个解决线性不可分问题的方法罢了,核函数的引入不也是为了解决线性不可分的问题么?为什么要为了一个问题使用两种方法呢?

其实两者还有微妙的不同。一般的情况下,在原始的低维空间中,样本相当的不可分,无论怎么找分类平面,总会有大量的离群点,此时用核函数向高维空间映射一下,虽然结果仍然是不可分的,但比原始空间里的要更加接近线性可分的状态,此时再用松弛变量处理那些少数“冥顽不化”的离群点,就简单有效得多了。至此一个比较完整的支持向量机框架就有了,简单说来,支持向量机就是使用了核函数的软间隔线性分类法。

5.惩罚因子和数据偏斜

偏斜问题,也叫数据集偏斜(unbalanced),它指的是参与分类的两个类别(也可以指多个类别)样本数量差异很大。比如说正类有10,000个样本,而负类只给了100个,这会引起的问题显而易见,如图7:

图6 数据集偏斜现象

方形的点是负类。H ,H1,H2是根据给的样本算出来的分类面,由于负类的样本很少很少,所以有一些本来是负类的样本点没有提供,比如图7中两个灰色的方形点,如果这两个点有提供的话,那算出来的分类面应该是H’,H2’和H1,他们显然和之前的结果有出入,实际上负类给的样本点越多,就越容易出现在灰色点附近的点,算出的结果也就越接近于真实的分类面。但现在由于偏斜的现象存在,使得数量多的正类可以把分类面向负类的方向“推”,因而影响了结果的准确性。解决数据集偏斜问题的方法之一就是在惩罚因子上作文章,那就是给样本数量少的负类更大的惩罚因子,表示我们重视这部分样本,因此我们的目标函数中因松弛变量而损失的部分就变成了:

110

P P i j i j p i C C ζζζ+-

==++≥∑∑ (15) 其中i=1…p 都是正样本,j=p+1…p+q 都是负样本。那C +和C -怎么确定呢?它们的大小是试出来的(参数调优),但是他们的比例可以有些方法来确定。但是这样并不够好,如图6,发现正类之所以可以“欺负”负类,其实并不是因为负类样本少,真实的原因是负类的样本分布的不够广(没扩充到负类本应该有的区域)。比如,现在想给政治类和体育类的文章做分类,政治类文章很多,而体育类只提供了几篇关于篮球的文章,这时分类会明显偏向于政治类,如果要给体育类文章增加样本,但增加的样本仍然全都是关于篮球的。虽然体育类文章在数量

上可以达到与政治类一样多,但过于集中了,结果仍会偏向于政治类!所以给C

+确定比例更好的方法应该是衡量他们分布的程度。比如可以算算他们在空和C

-

间中占据了多大的体积,例如给负类找一个超球,它可以包含所有负类的样本,再给正类找一个超球,比比两个球的半径,就可以大致确定分布的情况。显然半径大的分布就比较广,就给小一点的惩罚因子。

6.SVM的改进DAG SVM

SVM是一种典型的两类分类器,而现实中要解决的问题,往往是多类的问题,比如文本分类,数字识别。如何由两类分类器得到多类分类器,就是一个值得研究的问题。以文本分类为例,现成的方法有很多,其中一种一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样:

图7 对任意两个类构建一个分类器

多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类。这样一次性求解的方法计算量实在太大,大到无法实用的地步。

“一类对其余”的方法,就是每次仍然解一个两类分类的问题。比如有5个类别,第一次就把类别1的样本定为正样本,其余2,3,4,5的样本合起来定为负样本,这样得到一个两类分类器,它能够指出一篇文章是还是不是第1类的;第二次我们把类别2 的样本定为正样本,把1,3,4,5的样本合起来定

为负样本,得到一个分类器,如此下去,可以得到5个这样的两类分类器。这种方法的好处是每个优化问题的规模比较小,而且分类的时候速度很快。但有时也会出现两种很尴尬的情况,例如拿一篇文章每一个分类器都说它是属于它那一类的,或者每一个分类器都说它不是它那一类的,前者叫分类重叠现象,后者叫不可分类现象。对于分类重叠倒,随机选一个结果都不至于太离谱,或者看看这篇文章到各个超平面的距离,哪个远就判给哪个。不可分类现象就着实难办了,只能把它分给第6个类别了,本来各个类别的样本数目是差不多的,但“其余”的那一类样本数总是要数倍于正类,这就人为的造成了“数据集偏斜”问题。

再退一步,还是解两类分类问题,还是每次选一个类的样本作正类样本,而负类样本则变成只选一个类,这就避免了偏斜。因此过程就是算出这样一些分类器,第一个只回答“是第1类还是第2类”,第二个只回答“是第1类还是第3类”,第三个只回答“是第1类还是第4类”,如此下去,可以马上得出,这样的分类器应该有5 X 4/2=10个。虽然分类器的数目多了,但是在训练阶段所用的总时间却比“一类对其余”方法少很多,在真正用来分类的时候,把一篇文章扔给所有分类器,第一个分类器会投票说它是“1”或者“2”,第二个会说它是“1”或者“3”,让每一个都投上自己的一票,最后统计票数,如果类别“1”得票最多,就判这篇文章属于第1类。这种方法显然也会有分类重叠的现象,但不会有不可分类现象,因为总不可能所有类别的票数都是0。这还是类别数为5的时候,类别数如果是1000,要调用的分类器数目会上升至约500,000个。

再退一步,还是像一对一方法那样来训练,只是在对一篇文章进行分类之前,先按照图8的样子来组织分类器

图8 DAG SVM训练方法

这样在分类时,就可以先问分类器“1对5”,如果它回答5,就往左走,再问“2对5”这个分类器,如果它还说是“5”,就继续往左走,这样一直问下去,就可以得到分类结果。优点是,只调用了4个分类器,分类速度快,且没有分类重叠和不可分类现象!缺点是,假如最一开始的分类器回答错误,那么后面的分类器是无论如何也无法纠正它的错误的,其实对下面每一层的分类器都存在这种错误向下累积的现象。DAG方法好于它们的地方就在于,累积的上限,不管是大是小,总是有定论的,有理论证明。而一对其余和一对一方法中,尽管每一个两类分类器的泛化误差限是知道的,但是合起来做多类分类的时候,误差上界是多少,无法知道,这意味着准确率低到0也是有可能的。而且现在DAG方法根节点的选取,也有一些方法可以改善整体效果,我们总希望根节点少犯错误为好,因此参与第一次分类的两个类别,最好是差别特别特别大,大到以至于不太可能把他们分错;或者就总取在两类分类中正确率最高的那个分类器作根节点,或者我们让两类分类器在分类的时候,不光输出类别的标签,还输出一个类似“置信度”等。

参考文献

[1]. Bahlmann C, Haasdonk B, Burkhardt H. Online handwriting recognition with support vector machines-a kernel approach[C]//Frontiers in Handwriting Recognition, 2002. Proceedings. Eighth International Workshop on. IEEE, 2002: 49-54.

[2]. Mandel M I, Ellis D P W. Song-level features and support vector machines for music classification[C]//ISMIR 2005: 6th International Conference on Music Information Retrieval: Proceedings: Variation 2: Queen Mary, University of London & Goldsmiths College, University of London, 11-15 September, 2005. Queen Mary, University of London, 2005: 594-599.

[3]. Chen P, Liu S. An improved dag-svm for multi-class classification[C]//Natural Computation, 2009. ICNC'09. Fifth International Conference on. IEEE, 2009, 1: 460-462.

[4]. Xuegong Z. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1): 32-42.

[5]. Joachims T. Making large scale SVM learning practical[J]. 1999.

[6]. Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge university press, 2000.

[7]. Niebles J C, Wang H, Fei-Fei L. Unsupervised learning of human action categories using spatial-temporal words[J]. International Journal of Computer Vision, 2008, 79(3): 299-318.

[8]. Deselaers T, Pimenidis L, Ney H. Bag-of-visual-words models for adult image classification and filtering[C]//Pattern Recognition, 2008. ICPR 2008. 19th International Conference on. IEEE, 2008: 1-4.

[9]. Bergman S. The kernel function and conformal mapping[M]. AMS Bookstore, 1970.

[10]. Sahami M, Heilman T D. A web-based kernel function for measuring the similarity of short text snippets[C]//Proceedings of the 15th international conference on World Wide Web. ACM, 2006: 377-386.

(完整版)支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

平面向量常见题型与解题方法归纳学生版

平面向量常见题型与解题方法归纳 (1) 常见题型分类 题型一:向量的有关概念与运算 例1:已知a是以点A(3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a的终点坐标是. 例2:已知| a |=1,| b |=1,a与b的夹角为60°, x =2a-b,y=3b-a,则x与y的夹角的余弦是多少 题型二:向量共线与垂直条件的考查 r r r r 例1(1),a b r r为非零向量。“a b⊥r r”是“函数()()() f x xa b xb a =+?-

为一次函数”的 A 充分而不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 (2)已知O ,N ,P 在ABC ?所在平面内,且 ,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA ?=?=?,则点O ,N ,P 依次是ABC ?的 A.重心 外心 垂心 B.重心 外心 内心 C.外心 重心 垂心 D.外心 重心 内心 例2.已知平面向量a =(3,-1),b =(21, 2 3).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b ,且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间. 例3: 已知平面向量a ?=(3,-1),b ?=(2 1,23),若存在不为零的实数k 和角α,使向量c ?=a ?+(sin α -3)b ?, d ?=-k a ?+(sin α)b ?,且c ?⊥d ?,试求实数k 的

取值范围. 例4:已知向量)1,2(),2,1(-==b a ,若正数k 和t 使得向量 b t a k y b t a x 1)1(2 +-=++=与垂直,求k 的最小值. 题型三:向量的坐标运算与三角函数的考查 向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查. 例7.设函数f (x )=a · b ,其中向量a =(2cos x , 1), b =(cos x ,3sin2x ), x ∈R.(1)若f(x )=1-3且x ∈[-

支持向量机分类器

支持向量机分类器 1 支持向量机的提出与发展 支持向量机( SVM, support vector machine )是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,最初由V.Vapnik 等人在1995年首先提出,近几年来在其理论研究和算法实现等方面都取得了很大的进展,开始成为克服“维数灾难”和过学习等困难的强有力的手段,它的理论基础和实现途径的基本框架都已形成。 根据Vapnik & Chervonenkis的统计学习理论 ,如果数据服从某个(固定但未知的)分布,要使机器的实际输出与理想输出之间的偏差尽可能小,则机器应当遵循结构风险最小化 ( SRM,structural risk minimization)原则,而不是经验风险最小化原则,通俗地说就是应当使错误概率的上界最小化。SVM正是这一理论的具体实现。与传统的人工神经网络相比, 它不仅结构简单,而且泛化( generalization)能力明显提高。 2 问题描述 2.1问题引入 假设有分布在Rd空间中的数据,我们希望能够在该空间上找出一个超平面(Hyper-pan),将这一数据分成两类。属于这一类的数据均在超平面的同侧,而属于另一类的数据均在超平面的另一侧。如下图。 比较上图,我们可以发现左图所找出的超平面(虚线),其两平行且与两类数据相切的超平面(实线)之间的距离较近,而右图则具有较大的间隔。而由于我们希望可以找出将两类数据分得较开的超平面,因此右图所找出的是比较好的超平面。 可以将问题简述如下: 设训练的样本输入为xi,i=1,…,l,对应的期望输出为yi∈{+1,-1},其中+1和-1分别代表两类的类别标识,假定分类面方程为ω﹒x+b=0。为使分类面对所有样本正确分类并且具备分类间隔,就要求它满足以下约束条件: 它追求的不仅仅是得到一个能将两类样本分开的分类面,而是要得到一个最优的分类面。 2.2 问题的数学抽象 将上述问题抽象为: 根据给定的训练集

支持向量机算法

支持向量机算法 [摘要] 本文介绍统计学习理论中最年轻的分支——支持向量机的算法,主要有:以SVM-light为代表的块算法、分解算法和在线训练法,比较了各自的优缺点,并介绍了其它几种算法及多类分类算法。 [关键词] 块算法分解算法在线训练法 Colin Campbell对SVM的训练算法作了一个综述,主要介绍了以SVM为代表的分解算法、Platt的SMO和Kerrthi的近邻算法,但没有详细介绍各算法的特点,并且没有包括算法的最新进展。以下对各种算法的特点进行详细介绍,并介绍几种新的SVM算法,如张学工的CSVM,Scholkopf的v-SVM分类器,J. A. K. Suykens 提出的最小二乘法支持向量机LSSVM,Mint-H suan Yang提出的训练支持向量机的几何方法,SOR以及多类时的SVM算法。 块算法最早是由Boser等人提出来的,它的出发点是:删除矩阵中对应于Lagrange乘数为零的行和列不会对最终结果产生影响。对于给定的训练样本集,如果其中的支持向量是已知的,寻优算法就可以排除非支持向量,只需对支持向量计算权值(即Lagrange乘数)即可。但是,在训练过程结束以前支持向量是未知的,因此,块算法的目标就是通过某种迭代逐步排除非支持向时。具体的做法是,在算法的每一步中块算法解决一个包含下列样本的二次规划子问题:即上一步中剩下的具有非零Lagrange乘数的样本,以及M个不满足Kohn-Tucker条件的最差的样本;如果在某一步中,不满足Kohn-Tucker条件的样本数不足M 个,则这些样本全部加入到新的二次规划问题中。每个二次规划子问题都采用上一个二次规划子问题的结果作为初始值。在最后一步时,所有非零Lagrange乘数都被找到,因此,最后一步解决了初始的大型二次规划问题。块算法将矩阵的规模从训练样本数的平方减少到具有非零Lagrange乘数的样本数的平方,大减少了训练过程对存储的要求,对于一般的问题这种算法可以满足对训练速度的要求。对于训练样本数很大或支持向量数很大的问题,块算法仍然无法将矩阵放入内存中。 Osuna针对SVM训练速度慢及时间空间复杂度大的问题,提出了分解算法,并将之应用于人脸检测中,主要思想是将训练样本分为工作集B的非工作集N,B中的样本数为q个,q远小于总样本个数,每次只针对工作集B中的q个样本训练,而固定N中的训练样本,算法的要点有三:1)应用有约束条件下二次规划极值点存大的最优条件KTT条件,推出本问题的约束条件,这也是终止条件。2)工作集中训练样本的选择算法,应能保证分解算法能快速收敛,且计算费用最少。3)分解算法收敛的理论证明,Osuna等证明了一个定理:如果存在不满足Kohn-Tucker条件的样本,那么在把它加入到上一个子问题的集合中后,重新优化这个子问题,则可行点(Feasible Point)依然满足约束条件,且性能严格地改进。因此,如果每一步至少加入一个不满足Kohn-Tucker条件的样本,一系列铁二次子问题可保证最后单调收敛。Chang,C.-C.证明Osuna的证明不严密,并详尽地分析了分解算法的收敛过程及速度,该算法的关键在于选择一种最优的工

向量与三角形内心、外心、重心、垂心知识的交汇

向量与三角形内心、外心、重心、垂心知识的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++0OC OB OA O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ? =++0OC OB OA ?? ?=-+-+-=-+-+-0 )()()(0)()()(321321y y y y y y x x x x x x ??? ??? ?++=++=?3 3321321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 OC OB OA ++ 02=+=OD OA ∴OD AO 2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为A B C ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足. 0)(=?=-??=?CA OB OC OA OB OC OB OB OA AC OB ⊥? 同理BC OA ⊥,AB OC ⊥ ?O 为A B C ?的垂心 (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O OC c OB b OA a ?=++0为A B C ?的内心. 证明:b AC c AB 、 分别为AC AB 、方向上的单位向量, ∴ b AC c AB + 平分BAC ∠, (λ=∴AO b AC c AB +),令c b a b c ++= λ O A B C D E O A B C D E

向量证明重心(精选多篇)

经典合同 向量证明重心 姓名:XXX 日期:XX年X月X日

向量证明重心 向量证明重心 三角形abc中,重心为o,ad是bc边上的中线,用向量法证明ao=2od (1).ab=12b,ac=12c。ad是中线则ab+ac=2ad即12b+12c=2ad,ad=6b+6c;bd=6c-6b。od=xad=6xb+6xx。(2).e是ac中点。作df//be 则ef=ec/2=ac/4=3c。平行线分线段成比od/ad=ef/af即 (6xb+6xc)/(6b+6c)=3c/9c,x(6b+6c)/(6b+6c)=1/3,3x=1。 (3).od=2b+2c,ao=ad-od=4b+4c=2(2b+2c)=2od。 2 设bc中点为m∵pa+pb+pc=0∴pa+2pm=0∴pa=2mp∴p为三角形abc 的重心。上来步步可逆、∴p是三角形abc重心的充要条件是pa+pb+pc=0 3 如何用向量证明三角形的重心将中线分为2:1 设三角形abc的三条中线分别为ad、be、cf,求证ad、be、cf交于一点o,且ao:od=bo:oe=co:of=2:1 证明:用归一法 不妨设ad与be交于点o,向量ba=a,bc=b,则ca=ba-bc=a-b 因为be是中线,所以be=(a+b)/2,向量bo与向量be共线,故设bo=xbe=(x/2)(a+b) 同理设ao=yad=(y/2)(ab+ac)=y/2(-a+b-a)=-ya+(y/2)b 在三角形abo中,ao=bo-ba 所以-ya+(y/2)b=(x/2)(a+b)-a=(x/2-1)a+(x/2)b 因为向量a和b线性无关,所以 第 2 页共 17 页

支持向量机原理及应用(DOC)

支持向量机简介 摘要:支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。我们通常希望分类的过程是一个机器学习的过程。这些数据点是n 维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 关键字:VC 理论 结构风险最小原则 学习能力 1、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解

支持向量机算法学习总结

题目:支持向量机的算法学习 姓名: 学号: 专业: 指导教师:、 日期:2012年6月20日

支持向量机的算法学习 1.理论背景 基于数据的机器学习是现代智能技术中的重要方面,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。迄今为止,关于机器学习还没有一种被共同接受的理论框架,关于其实现方法大致可以分为三种: 第一种是经典的(参数)统计估计方法。包括模式识别、神经网络等在内,现有机器学习方法共同的重要理论基础之一是统计学。参数方法正是基于传统统计学的,在这种方法中,参数的相关形式是已知的,训练样本用来估计参数的值。这种方法有很大的局限性,首先,它需要已知样本分布形式,这需要花费很大代价,还有,传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意。 第二种方法是经验非线性方法,如人工神经网络(ANN)。这种方法利用已知样本建立非线性模型,克服了传统参数估计方法的困难。但是,这种方法缺乏一种统一的数学理论。 与传统统计学相比,统计学习理论(Statistical Learning Theory或SLT)是一种专门研究小样本情况下机器学习规律的理论。该理论针对小样本统计问题建立了一套新的理论体系,在这种体系下的统计推理规则不仅考虑了对渐近性能的要求,而且追求在现有有限信息的条件下得到最优结果。V. Vapnik 等人从六、七十年代开始致力于此方面研究[1],到九十年代中期,随着其理论的不断发展和成熟,也由于神经网络等学习方法在理论上缺乏实质性进展,统计学习理论开始受到越来越广泛的重视。 统计学习理论的一个核心概念就是 VC 维(VC Dimension)概念,它是描述函数集或学习机器的复杂性或者说是学习能力(Capacity of the machine)的一个重要指标,在此概念基础上发展出了一系列关于统计学习的一致性(Consistency)、收敛速度、推广性能(GeneralizationPerformance)等的重要结论。 支持向量机方法是建立在统计学习理论的 VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以

三角形重心、外心、垂心、内心的向量表示及其性质55674

向量的重心、垂心、内心、外心、旁心 三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法。 重心:ABC ?中、每条边上所对应的中线的交点; 垂心:ABC ?中、每条边上所对应的垂线上的交点; 内心:ABC ?中、每个角的角平分线的交点(内切圆的圆心); 外心:ABC ?中、每条边上所对应的中垂线的交点(外接圆的圆心)。 一、重心 1、O 是ABC ?的重心?0=++OC OB OA 若O 是ABC ?的重心,则ABC AOB AOC BOC ?=?=?=?3 1 故=++, )(3 1 PC PB PA PG ++=?G 为ABC ?的重心. 2、 P 是△ABC 所在平面内任一点.G 是△ABC 的重心?)(3 1 ++=. 证明: +=+=+=?)()(3+++++= ∵G 是△ABC 的重心 ∴0=++GC GB GA ?0=++CG BG AG ,即PC PB PA PG ++=3 由此可得)(3 1 ++=.(反之亦然(证略)) 3、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足 ()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的重心. 例1 若O 为ABC ?内一点,0OA OB OC ++= ,则O 是ABC ? 的( ) A .内心 B .外心 C .垂心 D .重心

1、O 是ABC ?的垂心??=?=? 若O 是ABC ?(非直角三角形)的垂心,则 故tan tan tan =++C B A 2、H 是面内任一点,?=?=??点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥?=??=-???=?00)(, 同理⊥,⊥.故H 是ABC ?的垂心. (反之亦然(证略)) 3、P 是ABC △所在平面上一点,若PA PC PC PB PB PA ?=?=?,则P 是ABC △的垂心. 由PA PB PB PC ?=?,得()0P B P A P C ?-=,即0P B C A ?=,所以PB CA ⊥.同理可证PC AB ⊥,PA BC ⊥. ∴P 是ABC △的垂心.如图1. 4、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足 cos cos AB AC OP OA AB B AC C λ?? ?=++ ??? ,(0)λ∈+∞,,则动点P 的轨迹一定通过 ABC △的垂心. 例2 P 是△ABC 所在平面上一点,若?=?=?,则P 是△ABC 的() A .外心 B .内心 C .重心 D .垂心 图1 A

支持向量机训练算法综述_姬水旺

收稿日期:2003-06-13 作者简介:姬水旺(1977)),男,陕西府谷人,硕士,研究方向为机器学习、模式识别、数据挖掘。 支持向量机训练算法综述 姬水旺,姬旺田 (陕西移动通信有限责任公司,陕西西安710082) 摘 要:训练SVM 的本质是解决二次规划问题,在实际应用中,如果用于训练的样本数很大,标准的二次型优化技术就很难应用。针对这个问题,研究人员提出了各种解决方案,这些方案的核心思想是先将整个优化问题分解为多个同样性质的子问题,通过循环解决子问题来求得初始问题的解。由于这些方法都需要不断地循环迭代来解决每个子问题,所以需要的训练时间很长,这也是阻碍SVM 广泛应用的一个重要原因。文章系统回顾了SVM 训练的三种主流算法:块算法、分解算法和顺序最小优化算法,并且指出了未来发展方向。关键词:统计学习理论;支持向量机;训练算法 中图分类号:T P30116 文献标识码:A 文章编号:1005-3751(2004)01-0018-03 A Tutorial Survey of Support Vector Machine Training Algorithms JI Shu-i wang,JI Wang -tian (Shaanx i M obile Communicatio n Co.,Ltd,Xi .an 710082,China) Abstract:Trai n i ng SVM can be formulated into a quadratic programm i ng problem.For large learning tasks w ith many training exam ples,off-the-shelf opti m i zation techniques quickly become i ntractable i n their m emory and time requirem ents.T hus,many efficient tech -niques have been developed.These techniques divide the origi nal problem into several s maller sub-problems.By solving these s ub-prob -lems iteratively,the ori ginal larger problem is solved.All proposed methods suffer from the bottlen eck of long training ti me.This severely limited the w idespread application of SVM.T his paper systematically surveyed three mains tream SVM training algorithms:chunking,de -composition ,and sequenti al minimal optimization algorithms.It concludes with an illustrati on of future directions.Key words:statistical learning theory;support vector machine;trai ning algorithms 0 引 言 支持向量机(Support Vector M achine)是贝尔实验室研究人员V.Vapnik [1~3]等人在对统计学习理论三十多年的研究基础之上发展起来的一种全新的机器学习算法,也使统计学习理论第一次对实际应用产生重大影响。SVM 是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。由于SVM 方法有统计学习理论作为其坚实的数学基础,并且可以很好地克服维数灾难和过拟合等传统算法所不可规避的问题,所以受到了越来越多的研究人员的关注。近年来,关于SVM 方法的研究,包括算法本身的改进和算法的实际应用,都陆续提了出来。尽管SVM 算法的性能在许多实际问题的应用中得到了验证,但是该算法在计算上存在着一些问题,包括训练算法速度慢、算法复杂而难以实现以及检测阶段运算量大等等。 训练SVM 的本质是解决一个二次规划问题[4]: 在约束条件 0F A i F C,i =1,, ,l (1)E l i =1 A i y i =0 (2) 下,求 W(A )= E l i =1A i -1 2 E i,J A i A j y i y j {7(x i )#7(x j )} = E l i =1A i -1 2E i,J A i A j y i y j K (x i ,x j )(3)的最大值,其中K (x i ,x j )=7(x i )#7(x j )是满足Merce r 定理[4]条件的核函数。 如果令+=(A 1,A 2,,,A l )T ,D ij =y i y j K (x i ,x j )以上问题就可以写为:在约束条件 +T y =0(4)0F +F C (5) 下,求 W(+)=+T l -12 +T D +(6) 的最大值。 由于矩阵D 是非负定的,这个二次规划问题是一个凸函数的优化问题,因此Kohn -Tucker 条件[5]是最优点 第14卷 第1期2004年1月 微 机 发 展M icr ocomputer Dev elopment V ol.14 N o.1Jan.2004

支持向量机数据分类预测

支持向量机数据分类预测 一、题目——意大利葡萄酒种类识别 Wine数据来源为UCI数据库,记录同一区域三种品种葡萄酒的化学成分,数据有178个样本,每个样本含有13个特征分量。50%做为训练集,50%做为测试集。 二、模型建立 模型的建立首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理,必要时进行特征提取,之后用训练集对SVM进行训练,再用得到的模型来预测试集的分类。 三、Matlab实现 3.1 选定训练集和测试集 在178个样本集中,将每个类分成两组,重新组合数据,一部分作为训练集,一部分作为测试集。 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; % 相应的训练集的标签也要分离出来 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; % 相应的测试集的标签也要分离出来 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; 3.2数据预处理 对数据进行归一化: %% 数据预处理 % 数据预处理,将训练集和测试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine); [mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine]; % mapminmax为MATLAB自带的归一化函数 [dataset_scale,ps] = mapminmax(dataset',0,1); dataset_scale = dataset_scale';

三角形重心外心垂心内心的向量表示及其性质

三角形“四心”向量形式的充要条件应 用 知识点总结 1.0是的重心; 若0是的重心,则故; 为的重心. 2.0是的垂心; 若0是(非直角三角形)的垂心,则 故 3.0是的外心(或) 若0是的外心则 故 4. 0是内心的充要条件是 引进单位向量,使条件变得更简洁。如果记的单位向量为,则刚才0是内心的充要条件可以写成,0是内心的充要条件也可以是。若0是的内心,则故; 是的内心; 向量所在直线过的内心(是的角平分线所在直线);

xx 例 (一)将平面向量与三角形内心结合考查 例1. O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足,则P 点的轨迹一定通过的() (A)外心(B)内心(C)重心(D)垂心 解析:因为是向量的单位向量设与方向上的单位向量分别为,又,则原式可化为,由菱形的基本性质知AP平分,那么在xx,AP平分,贝卩知选B. (二)将平面向量与三角形垂心结合考查“垂心定理” 例2. H是厶ABC所在平面内任一点,点H是厶ABC的垂心. 由, 同理,.故H是厶ABC的垂心.(反之亦然(证略)) 例3.(xx)P 是厶ABC所在平面上一点,若,则P是厶ABCF(D ) A.外心 B.内心 C.重心 D.垂心 解析: 由. 即 贝S所以P为的垂心.故选D. (三)将平面向量与三角形重心结合考查“重心定理” 例4. G是厶ABC所在平面内一点,=0点G是厶ABC的重心. 证明作图如右,图中 连结BE和CE贝S CE=GB BE=GCBGCE平行四边形D是BC的中点,AD为BC边 上的中线. 将代入=0,

得=0,故G是厶ABC的重心.(反之亦然(证略)) 例5. P是厶ABC所在平面内任一点.G是厶ABC的重心. 证明 ??*是厶ABC的重心/? =0=0,即 由此可得. (反之亦然(证略)) 例6 若为内一点, ,则是的() A.内心 B.外心 C.垂心 D.重心 解析:由得,如图以OB OC为相邻两边构作平行四边形,贝卩,由平行四边形性质知,,同理可证其它两边上的这个性质,所以是重心,选D。 (四)将平面向量与三角形外心结合考查 例7 若为内一点,,贝是的() A.内心 B.外心 C.垂心 D.重心 解析:由向量模的定义知到的三顶点距离相等。故是的外心 ,选B。 (五)将平面向量与三角形四心结合考查 例8.已知向量,,满足条件++=0, ||=||=||=1 , 求证△ P1P2P3是正三角形.(《数学》第一册(下),复习参考题五B组第6 题) 证明由已知+=-,两边平方得?=,

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

用于分类的支持向量机

文章编号:100228743(2004)0320075204 用于分类的支持向量机 黄发良,钟 智Ξ (1.广西师范大学计算机系,广西桂林541000;  2.广西师范学院数学与计算机科学系,广西南宁530001) 摘 要:支持向量机是20世纪90年代中期发展起来的机器学习技术,建立在结构风险最小化原理之上的支持向量机以其独有的优点吸引着广大研究者,该文着重于用于分类的支持向量机,对其基本原理与主要的训练算法进行介绍,并对其用途作了一定的探索. 关键词:支持向量机;机器学习;分类 中图分类号:TP181 文献标识码:A 支持向量机S VM (Support Vector Machine )是AT&T Bell 实验室的V.Vapnik 提出的针对分类和回归问题的统计学习理论.由于S VM 方法具有许多引人注目的优点和有前途的实验性能,越来越受重视,该技术已成为机器学习研究领域中的热点,并取得很理想的效果,如人脸识别、手写体数字识别和网页分类等. S VM 的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界. 1 基本原理 支持向量机理论最初来源于数据分类问题的处理,S VM 就是要寻找一个满足要求的分割平面,使训练集中的点距离该平面尽可能地远,即寻求一个分割平面使其两侧的margin 尽可能最大. 设输入模式集合{x i }∈R n 由两类点组成,如果x i 属于第1类,则y i =1,如果x i 属于第2类,则y i =-1,那么有训练样本集合{x i ,y i },i =1,2,3,…,n ,支持向量机的目标就是要根据结构风险最小化原理,构造一个目标函数将两类模式尽可能地区分开来,通常分为两类情况来讨论,(1)线性可分,(2)线性不可分. 1.1 线性可分情况 在线性可分的情况下,就会存在一个超平面使得训练样本完全分开,该超平面可描述为: w ?x +b =0(1) 其中,“?”是点积,w 是n 维向量,b 为偏移量. 最优超平面是使得每一类数据与超平面距离最近的向量与超平面之间的距离最大的这样的平面.最优超平面可以通过解下面的二次优化问题来获得: min <(w )= 12‖w ‖2(2) Ξ收稿日期:2004202206作者简介:黄发良(1975-),男,湖南永州人,硕士研究生;研究方向:数据挖掘、web 信息检索. 2004年9月 广西师范学院学报(自然科学版)Sep.2004 第21卷第3期 Journal of G u angxi T eachers Education U niversity(N atural Science Edition) V ol.21N o.3

支持向量机(SVM)简明学习教程

支持向量机(SVM )简明学习教程 一、最优分类超平面 给定训练数据),(,),,(11l l y x y x ,其中n i R x ∈,}1,1{-∈i y 。 若1=i y ,称i x 为第一类的,I ∈i x ;若1-=i y ,称i x 为第二类的,II ∈i x 。 若存在向量?和常数b ,使得?????II ∈<-I ∈>-i i T i i T x if b x x if b x ,0,0?? (1),则该训练集可被超平面 0=-b x T ?分开。 (一)、平分最近点法 求两个凸包集中的最近点d c ,',做d c ,'的垂直平分面x ,即为所求。 02 )(2 22 2 =-- -?-=-d c x d c x d x c T ,则d c -=?,2 ) ()(d c d c b T +-= 。 求d c ,,?? ?? ?≥==≥==∑∑∑∑-=-===. 0,1, . 0,1,1 111 i y i y i i i y i y i i i i i i x d x c αα ααα α

所以2 1 1 2 ∑∑-==-= -i i y i i y i i x x d c αα,只需求出最小的T l ),,(1ααα =。 算法:1)求解. 0,1,1..2121min 1 1 2 12 11≥===-∑∑∑∑∑-===-==i y i y i l i i i i y i i y i i i i i i t s x y x x αααααα;2)求最优超平面0=-b x T ?。 (二)、最大间隔法 附加条件1=?,加上(1)式。记C x C i T x i >=I ∈??min )(1,C x C i T x i <=II ∈??max )(2。 使?????II ∈<-I ∈>-=-= i i T i i T x if b x x if b x t s C C ,0,0,1..2 ) ()()(max 21??????ρ (2) 可以说明在(2)下可以得到一个最优超平面,且该超平面是唯一的。 如何快速生成一个最优超平面??? 考虑等价问题:求权向量w 和b ,使?????II ∈-<-I ∈>-i i T i i T x if b x w x if b x w ,1,1,且?最小。 这种写法已经包含最大间隔。 事实上b C C C x if C b x w x if C b x w i i T i i T =+=??????II ∈=+-))()((21),(1),(121021????中心,而w w =?, 故w b C = ,w C C 1 2)()()(21=-=???ρ。 所以(2)式可以转化为求解: 1 )(..min ≥-b x w y t s w i T i (3) 总结,求最优超平面,只需求解: 1 )(..2 1)(min ≥-= Φb x w y t s w w w i T i T (QP1) 对(QP1)构造lagrange 函数: 令∑=---=l i i T i i b x w y w b w L 1 2]1)([21),,(αα,其中0),,(1≥=T l ααα 为lagrange 乘子。 下求L 的鞍点:

三角形重心、外心、垂心、内心的向量表示及其性质70409

三角形“四心”向量形式的充要条件应用 1.O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 AB C AOB AOC BOC S 31 S S S ????= ==故=++; 1()3 PG PA PB PC =++u u u r u u u r u u u r u u u r ?G 为ABC ?的重心. 2.O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC :: ::=??? 故0OC C tan OB B tan OA A tan =++ 3.O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 OC OB OA ==) 若O 是ABC ?的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:: :: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ?的充要条件是 ( ( ( =?=?=-? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是 ABC ?内心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? ,O 是 ABC ?内心的充要条件也可以是c b a =++ 。若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=?u u u r u u u r u u u r u u u r u u u r u u u r r 是ABC ?的内心; 向量()(0)|||| AC AB AB AC λλ+≠u u u r u u u r u u u r u u u r 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线); (一)将平面向量与三角形内心结合考查 例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满 足 OA OP + +=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ?的( ) (A )外心(B )内心(C )重心(D )垂心 解析:因为 是向量AB u u u r 的单位向量设AB u u u r 与AC u u u r 方向上的单位向量分别为21e e 和, 又

相关主题