搜档网
当前位置:搜档网 › SU-8 3D submicron lithography

SU-8 3D submicron lithography

SU-8 3D submicron lithography
SU-8 3D submicron lithography

Home Search Collections Journals About Contact us My IOPscience

SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2007 J. Micromech. Microeng. 17 R81

(https://www.sodocs.net/doc/5b15212409.html,/0960-1317/17/6/R01)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 61.185.190.199

This content was downloaded on 15/10/2015 at 15:58

Please note that terms and conditions apply.

IOP P UBLISHING J OURNAL OF M ICROMECHANICS AND M ICROENGINEERING J.Micromech.Microeng.17(2007)R81–R95doi:10.1088/0960-1317/17/6/R01

TOPICAL REVIEW

SU-8:a photoresist for high-aspect-ratio and3D submicron lithography

A del Campo and C Greiner

Max-Planck-Institut f¨u r Metallforschung,Heisenbergstra?e3,70569Stuttgart,Germany

E-mail:delcampo@mf.mpg.de

Received8November2006,in?nal form13March2007

Published15May2007

Online at https://www.sodocs.net/doc/5b15212409.html,/JMM/17/R81

Abstract

SU-8has become the favourite photoresist for high-aspect-ratio(HAR)and

three-dimensional(3D)lithographic patterning due to its excellent coating,

planarization and processing properties as well as its mechanical and

chemical stability.However,as feature sizes get smaller and pattern

complexity increases,particular dif?culties and a number of material-related

issues arise and need to be carefully considered.This review presents a

detailed description of these effects and describes reported strategies and

achieved SU-8HAR and3D structures up to August2006.

1.Introduction

Lithography consists of the transfer of a pattern onto a substrate by means of an etching process(?gure1).Resist lithography makes use of an irradiation source and a photosensitive polymer material to perform the pattern transfer.Selective irradiation initiates a series of photochemical processes in the resist which alter the physical and chemical properties of the exposed areas such that they can be differentiated in a subsequent image development step.Most commonly,the solubility of the?lm is modi?ed by either increasing the solubility of exposed areas(yielding a positive image after develop)or decreasing the solubility to yield a negative-tone image.Development of the imaged substrate reveals a pattern on the resist layer which corresponds to the geometry of the mask.

Pushed by the electronic industry,most developments in lithography have mainly been directed at shrinking the lateral dimensions of the imaged features[1–10].The application of different resolution enhancement approaches (illumination sources with shorter irradiation wavelength, projection and immersion optics,phase-shifting masks,etc) and the development of advanced photoresist materials have permitted a reduction of lithographic structures down to sub-100nm dimensions.Current trends have been predicted to improve shrinking to at least45nm in the year2010 [5].

Only recently has attention been paid to the extension of lithographic2D micro and submicron structures to the third dimension.HAR and3D surfaces have become interesting for the fabrication of high luminosity lighting panels and photonic crystals[11–16].When combined with low cost replication methods,HAR and3D structured surfaces enable fabrication of biosensors with increased sensitivity and throughput due to their high effective surface area[17–22]. Miniaturized drug delivery systems[23],advanced scaffolds for tissue engineering[24–32],non-biofouling coatings [33–35]or bioinspired surfaces with controlled adhesion and haptic properties[36–39]constitute other examples of appealing applications.

Resist materials for lithography must satisfy stringent requirements as the lateral feature size shrinks and the aspect ratio increases[40].A suitable viscosity is of particular importance in order to balance opposite requirements involved in different processing steps.Low viscosity facilitates coating of uniform,defect and stress free?lms and,later on,removal of unsolidi?ed resin during development.However,high viscosity is required for reducing the lateral?ow and obtaining stable thick resist?lms needed in HAR patterning.The resist must also possess high polymerization ef?ciency upon light irradiation and adequate reactivity at the irradiation wavelength to achieve high contrast,high resolution and high sensitivity.A high Young’s modulus after processing is important to guarantee mechanical stability of the lithographic

0960-1317/07/060081+15$30.00?2007IOP Publishing Ltd Printed in the UK R81

Topical

Review

(1) Spin-coating photoresist

(3) Masked irradiation

(4) Development, baking

(2) Soft baking

Figure 1.Photolitographic steps with the negative photoresist SU-8.The picture at the bottom shows SU-825micropillars with 5μm diameter and aspect ratio 8.(Spin coating 5s at 500rpm followed by 60s at 900rpm.Soft bake 3min at 65?C,12min at 95?C,slow cooling.Exposure 30.5s with Karl S¨u ss MJB3Mask Aligner,

vacuum contact.Hard bake 1min at 65?C and 4min at 95?C,slow cooling.Development 4min 20s.)

structures.Low shrinkage during polymerization is necessary for dimensional accuracy and to avoid ?lm stress.Good wetting and adhesion of the resist to various substrates,good solubility in safe solvents for development,high thermal stability,good storage stability,low health and environmental hazards,wide process latitudes and low price are also required.

There are a number of commercially available photoresists suitable for HAR applications.Diaplate and Ordyl P-50100are acrylate-based negative photoresists.A positive variant is the novolak resin SPR 220-7.These systems are commercialized in solution form for spin-coating applications.Alternatively,thick photoresists are available in dry ?lm

format,such as Riston R

[41],Ordyl BF 410[42],Etertec R

5600[43],DF 4615[44]and DFR-15[45].Some advantages and disadvantages of each system have been recently described [46].

Undoubtedly,the favourite photoresist for HAR lithography is SU-8[47].Although initially formulated for photolithography,the use of SU-8has now been successfully extended as a resist for x-ray,e-beam and two-photon lithography.Its high chemical and mechanical stability after processing enables direct application of SU-8as a mould material for the fabrication of electroplated structures (LIGA technology [48–51]),and for soft lithography with thermosetting elastomers,for example in PDMS-based micro?uidics [18].It can also be used as a mask for prolonged reactive ion etching of an underlying Si wafer,leading to features with higher aspect ratios and vertical sidewalls.

Lithographic fabrication of SU-8low-aspect-ratio millimetre and micrometre-sized structures is now well O

O

O

O

O

O

O

O

O

O

O

O

Figure 2.Chemical structure of the Bisphenol A Novolak epoxy oligomer contained in SU-8formulations.Eight reactive epoxy functionalities allow a high degree of cross-linking after photoactivation.

established.However,HAR processing still faces important challenges,especially when lateral feature dimensions are shrunk.A good number of works have been recently published which deeply analyse processing problems,and clever solutions have been proposed.The following sections present an overview of the characteristics,processing particularities and structures obtained with this resist.

2.Chemical characteristics of the SU-8photoresist

SU-8is a negative tone,chemically ampli?ed resist.It contains acid–labile groups and a photoacid generator.Irradiation generates a low concentration of a strong acid which will act as a catalyst of the cross-linking process.Subsequent heating of the polymer activates cross-linking and regenerates the acid catalyst.As a consequence,the sensitivity of the resists is signi?cantly increased.In particular,the main components of SU-8are a Bisphenol A Novolak

epoxy oligomer (EPON R

SU-8resin,Shell Chemical)and up to 10wt%triarylsulfonium hexa?uroantimonate salt

(CYRACURE R

UVI,Union Carbide)photoacid generator.Upon irradiation,the photoacid generator decomposes to form hexa?uoroantimonic acid that protonates the epoxides on the oligomer.These protonated oxonium ions are available to react with neutral epoxides in a series of cross-linking reactions after application of heat [52].Each monomer molecule contains eight reactive epoxy sites (?gure 2),and therefore high degree of cross-linking can be obtained after photothermal activation giving a negative tone.This results in high mechanical and thermal stability of the lithographic structures after processing.In fact,fully cross-linked SU-8has a glass-transition temperature around ~200?C,degradation temperature ~380?C and a Young’s modulus E ~4–5GPa (table 1).

The ?rst SU-8products were introduced commercially by MicroChem in 1996.The resist is available in a wide range of formulations to cover a ?lm thickness range from 2to 300μm in a single coating process or to 3mm by multicoating processes [53].The SU-8series is formulated with gamma-butyrolacton as a solvent.SU-8?lms with thickness below 2μm can be obtained by diluting the resist solution with the solvent.More recently,a new generation of SU-8resist,the SU-82000,has also become commercially available.This series is formulated with cyclopentanone as

R82

Topical Review

Table 1.Physical properties of the SU-8photoresist [52],reprinted with permission,?2005AIP.Property

Value

Young’s modulus,E (post-bake at 95?C) 4.02GPa

Young’s modulus,E (hard bake at 200?C) 4.95±0.42GPa Biaxial modulus of elasticity,E /(1?ν) 5.18±0.89GPa Film stress (post-bake at 95?C)

16–19MPa Maximum stress (hard bake at 200?C)34MPa Friction coef?cient (post bake at 95?C)0.19Glass temperature,T g (unexposed)

~50?C Glass temperature,T g (fully cross-linked)>200?C Degradation temperature (fully cross-linked)~380?C

Thermal expansion coef?cient (post-bake 52±5.1ppm K ?1at 95?C)

Polymer shrinkage upon cross-linking

7.5%

solvent and has improved coating and adhesion properties and faster processing times.This is particularly important in thick coatings,where one photolithographic cycle may take more than 2h.Table 2shows the typical values of the processing parameters for the commercially available variants.

3.Lithographic processing with SU-8

Processing of SU-8starts by selecting the adequate commercial variant attending to the desired thickness.Available formulations cover the range from 2to 250μm.These can be spin-coated at 1000–3000rpm depending on the formulation viscosity.If ?lm thicknesses below 5μm are required,previous dilution of the thinnest formulation is required.Films with thickness between 250μm and 1mm can be obtained by superposing several spin-coating steps.Films thicker than 1mm are usually obtained by casting.

Good wetting of the substrate by SU-8is crucial for obtaining homogeneous and stable coatings.This is determined by the substrate surface energy.Being an organic material,SU-8is rather hydrophobic (contact angle of cured resin 73?),and therefore has dif?culties in wetting hydrophilic inorganic substrates,i.e.oxidized silicon wafers.A comparative analysis of the adhesion between SU-8and different substrates (Si,FeNi,Ni,Cu,Cr,Ti and their oxides)

Table 2.SU-8characteristic processing times (in minutes)for different variants and ?lm thicknesses [47].

Viscosity Thickness Soft bake min Soft bake min Post-exposure Post-exposure Development SU-8type (cSt)(μm)at 65?C at 95?C 65?C 95?C (min)SU-8245 1.5–511–3111SU-852905–1513–511–21–3SU-810105010–302–35–712–32–5SU-825250015–403–55–1512–43–6SU-850125040–1005–1015–3014–106–10SU-810051500100–25010–3030–90110–2010–20SU-820027.52–512111SU-82005456–712111SU-820071408.5–101211–22–3SU-8201038013–1512–3122–3SU-82015125021–251–22–512–33–4SU-82025450041–751–33–913–75–7SU-82035700035–1102–55–2013–105–10SU-820501400050–1653–56–3015–126–12SU-8207522000110–2253–59–4517–157–12SU-82100

45000

100–260

5–7

20–60

1

10–15

10–20

can be found in the literature.It was found that Ti and TiO 2substrates show the strongest adhesion to cured SU-8,while Ni substrates show the poorest adhesion [54–57].

Wetting can be improved by applying commercial primers to the inorganic substrate before spin coating SU-8.Primers (HMDS,MPTS,OmniCoat from Microchem Inc.)are low molecular weight organic substances which either strongly adsorb or react with the inorganic surface forming a thin organic layer with lower surface energy which can then be wet by SU-8.

After the coating process,the substrate is soft baked in order to remove the solvent and improve resist–substrate adhesion.This process is accompanied by shrinkage of the ?lm.Soft baking is typically performed by progressive heating the SU-8?lm up to 95?C on a ?at-levelled hotplate.Higher soft-bake temperatures (T >137?C)may initiate thermal cross-linking even if photoactivation has not taken place [58].Lower temperatures or short times leave resist ?lms with a high solvent content which will evaporate and therefore generate high ?lm stress during post-exposure baking.

Exposure is typically performed by masked irradiation with a UV lamp or by scanning lasers at wavelengths above 350nm.Resist’s UV absorption at these wavelengths causes a non-uniform light intensity distribution across the resist ?lm.This can be critical in thick layers used in HAR patterning and may result in lithographic features with pronounced T-pro?les and non-vertical sidewalls.These problems can be avoided using other irradiation sources,such as x-rays,electron beam,proton beam or scanning pulsed femtolasers working at suitable wavelengths for two-photon excitation.

After irradiation,a post-exposure bake increases the cross-linking degree in the irradiated areas and stabilizes them against the action of solvents during the posterior development step.Development is performed by immersing the substrate in propylene glycol methyl ether acetate at room temperature,followed by a rinsing step in water or isopropanol.For applications where the imaged resist forms part of the ?nal device,a subsequent hard-baking step at temperatures between 150and 200?C is recommended.

Removal of SU-8(if necessary)can be performed in hot 1-methyl-2-pyrrolidon,followed by cleaning in HNO 3for

R83

Topical Review

10min.However,removal with this solvent after hard baking does not work properly as a consequence of the high cross-linking degree.In such case,removal needs to be performed by reactive ion etching or laser micromachining.

4.Particularities of HAR lithography with SU-8 The processing steps described in the previous section represent the standard SU-8lithographic procedure.However, processing thick SU-8?lms for HAR patterning has particular dif?culties which will be discussed in the next sections.

4.1.Planarization defects

Although SU-8is specially engineered to render planar surfaces after spin coating,planarization defects occur when the viscosity of the resist solution(and therefore the spin-coated resist?lm)increases.Typical?atness errors for the SU-8system range from10to100μm in resist thickness around1mm[59,60].Other factors such as spinning rims at the wafer edge(‘edge beads’),unintentional tilt,dirt particles, curvature of the substrate or mask,etc,also contribute to reduced surface?atness.

Leaving the?lm to relax on a very?at-levelled position for several minutes to hours allows re?owing and enhances planarization.Mechanical stress generated during spinning may be also alleviated during this https://www.sodocs.net/doc/5b15212409.html,rge edge beads may not re?ow completely and need to be removed by bevelling the edges of the substrate,spraying the periphery of the substrate with solvent or spraying the removal?uid on the bottom side of the substrate.Alternatively,the use of new spinning technologies can also minimize the edge bead and improve the uniformity of SU-8thick?lms.As an example,using a closed chamber around the chuck of the spin coater which rotates with the wafer excludes air turbulence and results in more uniform coatings(GYRSET system from S¨USS Microtech,Germany [61]).

In contact lithography,?atness errors hinder conformal contact of the mask and resist during irradiation.The resulting air gaps cause diffraction effects(Fresnel diffraction).This result in pattern edges being irradiated with higher doses and, consequently,pattern enlargement at the top of the features (T-pro?le).The diffraction error increases with increasing resist thickness and gap distance.Figure3shows the effects of Fresnel diffraction for different gap distances and exposure doses[62,63].Whereas vertical sidewalls were obtained under conformal contact,remarkable T pro?les were seen with increasing gap distance.Asymmetrical air gaps(tilted mask on the surface of the photoresist)caused asymmetrical T-pro?les with overhanging rims in only one side of the feature. Estimation models have been recently proposed to predict the sidewall pro?les of SU-8based on the effects of Fresnel diffraction and absorption[63].

Different methods have been used to reduce diffraction effects.Placing a soft cushion beneath the substrate causes convex bending of the wafer and improves conformal contact when large edge beads are present(?gure4)[64].This method has permitted patterning of4in wafers with145μm thick and 80μm wide SU-8bars separated by8μm wide microchannels (aspect ratio>18)[64

].Figure3.The effect of air gaps between mask and resist during exposure[63],reprinted with permission,?2006IOP.T-pro?les instead of vertical walls are obtained.Stronger negatively sloped sidewall angles are obtained with increasing gap distance at a?xed exposure dose.Increasing the exposure dose partially compensates the negatively sloped sidewall,however,at the drawback of an enlargement of the pattern width.

(This?gure is in colour only in the electronic version)

The diffraction error can also be corrected by?lling the gap between the mask and photoresist with an index match material(refractive index of SU-8:n=1.668atλ=365nm, n=1.650atλ=405nm[47]).Filling with glycerol(refractive index1.470–1.475)has shown to improve pattern?delity[60]. Exposure of a156μm thick SU-8?lm to irradiation through a 25μm striped pattern and a100μm air gap resulted in a45% pattern width error.Filling the gap with glycerol compensated diffraction effects,and straight walls without appreciable error were obtained[60].Perfect match of the refractive index of the liquid and the SU-8further reduces diffraction effects. Using Cargille refractive index matching liquid,patterns with feature size6μm,1150μm high(aspect ratio>190)and high quality sidewalls have been recently reported(?gure5) [59].Microstructures with a thickness up to2mm could also be fabricated[59].

4.2.Film stress and solvent gradients

Solvent removal during soft baking is accompanied by volume shrinking and mechanical stress.The accumulated stress increases with increasing?lm thickness and feature lateral dimensions and may result in debonding of the resist layer from the substrate if adhesion is weak.Recent studies have demonstrated that the soft-baking time is the major factor contributing to the overall?lm internal stress during processing (up to50%),followed by exposure dose,post-exposure bake time and development time with a30,15and5%contribution, respectively[65].

The soft-baking time determines the?nal solvent content of the resist.Short soft-baking times leave a softer resist ?lm which is less prone to internal stress during subsequent

R84

Topical

Review

Figure4.Soft cushion technology compensates edge bead effects and improves conformal contact between mask and resist[64],reprinted with permission from Springer Science and Business Media.The pictures below the diagram show how145μm thick and80μm wide

SU-8bars separated by8μm wide microchannels(aspect ratio>18)are successfully obtained with this technology.

(a)(b)(c)

Figure5.1150μm high microcylinders obtained using different matching refractive index liquids for gap compensation[59],reprinted with permission,?2005Elsevier.(a)Microcylinders with10μm wall thickness and45μm internal diameter obtained using a?ltered light source and no gap compensation.(b)Microcylinders with8μm wall thickness and30μm internal diameter obtained using broadband exposure and glycerin gap compensation.(c)Microcylinders with6μm wall thickness and20μm internal diameter obtained using PMMA ?lter and gap compensation with optical index matching liquid.As the wall thickness is reduced,the physical strength becomes too low to maintain the freestanding positions.

processing steps.However,high levels of solvent after soft baking may result in(1)formation of bubbles during post-exposure baking,(2)collapse of features due to lower mechanical stability at the bottom because of the higher solvent content and(3)increased lateral diffusion rates of the acid generator molecules outside of the masked areas during post-exposure baking and therefore lower contrast between cross-linked and un-cross-linked areas[66].If the resist is too hard,cross-linking in the irradiated areas will be hindered. Consequently,the optimum soft-baking time needs to be optimized for each particular thickness and application.

In SU-8?lms with thicknesses above1mm obtained by single casting,soft baking typically takes10–30h depending on the?lm thickness.Residual solvent after soft baking single cast SU-8?lms of1mm on a hot plate represents on average7%.Solvent content in3mm thickness represents 12%[67].Two strategies have been proposed to reduce the solvent content of such thick?lms:multiple casting and dry casting.In the multiple casting method,a1mm thick layer of SU-8is soft baked until a solvent content of7%is reached. Next,a new layer of SU-8is cast on top of the previous layer, and soft baking is repeated.The procedure is repeated until the desired height is reached.It is expected that minimal diffusion of solvent occurs from the added layer into the already soft-baked layer and,as a result,solvent content would be reduced. However,the results show an average solvent content of9% in a3mm?lm after three coating steps and45h soft-baking time.In the dry chip casting method,a1mm layer of SU-8 is?rst soft baked,cut into pieces and reconstituted to form a thick SU-8?lm.Reconstitution is performed at105?C,where SU-8is melted,and in vacuum.3mm SU-8?lms fabricated by this method have average solvent contents of about7%.

The distribution of solvent across the?lm thickness is another crucial factor[68].In single cast2mm thick?lms, the solvent content varies typically from10.4%at the top and 5.4%at the bottom of the resist?lm.Solvent evaporation during soft baking is diffusion controlled.The evaporation rate is determined by the diffusion coef?cient of the solvent in the resist,which increases exponentially with increasing temperature and free volume.The free volume is determined by the amount of retained solvent,which acts as a plasticizer. At the beginning of the soft baking,the solvent evaporates quickly because of the very high solvent concentration.The diffusion coef?cient is large enough to evaporate solvent from

R85

Topical

Review

Figure 6.(a )Transmission spectrum of 1mm thick unexposed SU-8100[59],reprinted with permission,?2005Elsevier.(b )Transmitted intensity of an SU-8?lm at different wavelengths after increasing exposure times [71],reprinted with permission,?2006AIP.

the bottom of the ?lm and,therefore,there is no signi?cant solvent gradient across the ?lm thickness.The evaporation rate decreases gradually as the solvent content decreases and,consequently a solvent gradient appears in the ?lm.If the soft-baking temperature is high,the solvent near the surface is evaporated completely while the solvent level of interior is still high.A ‘skin’of dried,glassy polymer appears on the ?lm and hinders diffusion of the solvent from the interior.

Solvent gradients become more pronounced as the thickness is increased.The length scale of diffusion of the solvent during the soft baking becomes so large that the solvent trapped below the surface cannot escape easily.Furthermore,the problem is not necessarily solved by extending the time of the soft bake inde?nitely because,eventually,the level of cross-linking that occurs during the soft bake (albeit at a very low rate)will reach an unacceptable level whereby the SU-8can no longer completely develop [66].

Solvent content and solvent gradients may also vary depending on the equipment used for soft baking [69,70].Two baking methods are commonly used:hot plates and ovens.In an oven,the resist is uniformly heated by convection from all sides.Skin formation on the resist surface is often observed,which reduces further solvent evaporation.This phenomenon can be avoided by hot plate baking.Here,the resist is heated from below by heat conduction,and a temperature gradient develops in the resist layer (higher temperature at the bottom of the resist).This has a favourable effect in thinner resist layers (convection,quicker solvent remove).However,for large thickness a uniform bake of the layer is not possible anymore.

Infrared irradiation has also being used for soft baking [69].This method allows a more uniform heating of the resist layer,permits lower soft-baking temperatures and shorter baking times,and yields patterns with lower residual stress and,consequently,higher aspect ratio.4.3.Resist UV absorption

As a photosensitive organic material,SU-8absorbs light in the UV range (?gure 6(a ))[59].Absorption increases progressively during exposure due to the chemical changes induced during photoactivation (?gure 6(b ))[71].Consequently,there is a gradual light intensity drop across the ?lm thickness when an UV beam penetrates the resist layer from the top to the bottom,and this drop becomes more pronounced during exposure.This results in the top part of the resist being irradiated with higher dosage as the bottom part,and generates T-pro?les instead of vertical pro?les in photolithographic SU-8structures.

The UV absorption spectrum of the unexposed SU-8resist shows much higher absorbance at shorter wavelengths than at longer wavelengths.In addition,the absorbance change during exposure is also more pronounced at short wavelengths.This means that the longer wavelength components of the irradiation source penetrate further down and expose the bottom part.For this reason,it is recommended to ?lter out the wavelengths below 365nm during exposure.PMMA ?lters have shown the best performance [59].

In particular cases,the high absorption of the short UV wavelengths can be advantageous [72].Freestanding structures on the top of SU-8pillars have been realized by ?rst exposing a layer of SU-8at 365nm to generate the pillars and subsequently exposing a second SU-8layer to 313nm UV to generate the overhangs.Under these conditions,only the second SU-8layer is photoactivated in the second exposure and the underlying photoresist can be removed during development.

4.4.Long development times

Pattern development involves diffusion of developer molecules into the non-cross-linked SU-8regions and diffusion of solvated polymer chains out of them to the developer solution.The time required for development is determined by the exposure dose,soft-baking time and temperature,the temperature and agitation during development and the geometry of the pattern.HAR features such as narrow and deep holes,tubes,or horizontally orientated long channels are more dif?cult to develop.This process,if possible at all,may take many hours and cause dramatic damage of ?ne features as a consequence of swelling of cross-linked regions or debonding of the resist layer from the wafer.

Development has been accelerated by moderately increasing the temperature of the developing solution,by reducing the exposure time and consequently the cross-linking degree or by agitation [73].Stirring of the developer solution enhances diffusion,which increases the development rate.Downward orientation of the wafer during stirring has been demonstrated to improve development of HAR structures,as it allows gravitational forces to aid in the removal of resist [74,75].

R86

Topical

Review

(a)(b)(c)

Figure7.Pattern collapse due to capillary forces during drying.When a substance crosses the boundary from liquid to gas,the size of the liquid decreases.As this happens,surface tension at the solid–liquid interface pulls against any structure that the liquid is attached to.The acting forces are represented in(a)[81],reprinted with permission,?1995AIP.Delicate structures,such as photoresist features,tend to collapse by this surface tension as the interface(drying front)moves by.(b)Collapsed SU-8micropillars with5μm diameter and aspect ratio>8.(c)SU-8HAR pillars reinforced with bridges for avoiding collapse[79],reprinted with permission from Springer Science and Business Media.These were fabricated by double exposing an SU-8layer to x-rays to image HAR pillars and to low dose UV to image the ?ne walls connecting neighbouring pillars.The low dose UV exposure is performed so that cross-linking in the SU-8only occurs to a shallow depth.After development,50μm square pillars separated by63μm spacings and connected by10μm wide and113μm height bridges were obtained from a1.5mm thick resist.The bridges hold the columns in place and collapse is overcome even if the features are densely packed.

Stirring during development is not always bene?cial. Strong stirring may cause HAR structures to de?ect in the pressure gradient and this may lead to pattern deformation, debonding,adhesion between nearby structures and?nally pattern loss.Sonic development in its two categories, ultrasonic and megasonic,can be applied to solve this problem. Ultrasonic development uses frequencies in the kilohertz range to agitate the developer.This increases the pressure at the resist surface and accelerates diffusion and development.However, ultrasonic waves also cause vibrations in the pattern structure which may result in cracking and debonding over time.For this reason,ultrasonic baths are not always bene?cial in HAR processing.

Megasonic agitation,which uses frequencies well above the vibrational modes of the resist structures(typically1to 10MHz),has been proved to be more effective.SU-8 structures ranging from20μm to1.5mm in height and with aspect ratios up to50by optical and well over100by x-ray lithography have been reported[76,77].Conventional development restricted the feature’s aspect ratio to30. Parameters such as damping capacity,agitation power density, orientation of the sonic wave relative to the features and substrate may also in?uence the process but have not yet been considered.

4.5.Collapse of structures during rinsing

As the AR of the features increases and their lateral size decreases,collapse of the SU-8pattern becomes an important problem.Collapse occurs when the adhesive forces between the features in contact overcome the forces required for bending them.Simple mechanical calculations have established the dependence of pattern collapse on Young’s modulus of the resist material,its surface energy and the pattern geometry(height,width and interfeature distance)[78]. The maximum AR achievable increases with increasing SU-8 stiffness,decreasing SU-8surface energy and increasing feature spacing.Increasing SU-8stiffness may be performed by adding inorganic?llers to the resist formulation.However, composite SU-8exhibits higher viscosity and this may worsen planarization properties.Alternatively,the cross-linking degree may also be increased,although this may result in higher volume shrinkage and increased?lm stress.Recently, collapse has been prevented by reinforcing the SU-8HAR structures through‘bridges’which prevent them from lateral bending[79].Figure7(c)shows an example.

In lithographic processing,there is a more dramatic reason for pattern collapse.It occurs during development and rinse, and is a consequence of the capillary forces acting on the resist walls during solvent evaporation and causing bending and stiction of neighbouring features[6,80–83](?gure7). Capillary forces increase with increasing surface tension of the rinsing liquid and decreasing contact angle between liquid and resist(i.e.increased wetting of the resist by the liquid)[84]. Substitution of the rinse water by water/alcohol mixtures with lower surface tension(72mN m?1for water and21.8mN m?1 for isopropanol)has been proposed as an alternative to avoid collapse during drying[85].However,this method has been rejected by other authors because of the strong wetting of SU-8by isopropanol(contact angle,θ=20?for isopropanol and81?for water).Other low-surface-tension solvents such as per?uorohexane(10mN m?1)have also been suggested[86,87].However,these solvents lack compatibility with SU-8processing chemicals(per?uorocarbon solvents have poor miscibility with the developer and rinse solution). Furthermore,the?nite value of its surface tension is still not suf?cient to prevent pattern collapse in nanolithography,even though it is so small.

Freeze drying offers another alternative,but this process requires large processing times[88].Supercritical drying using CO2after replacement of rinsing water(insoluble in CO2)by alcohols(soluble in CO2)provides another route for preventing collapse.In a supercritical liquid,the surface tension becomes negligible and the capillary force is nonexistent.However,special equipment to withstand high pressures and elevated temperatures is required[87].This factor renders this method not universally applicable for wet processing.

R87

Topical Review

5.HAR patterns obtained from SU-8

5.1.By UV exposure

Optimized UV lithography conditions have afforded line patterns with aspect ratios up to20from SU-8?lms with thickness ranging from200to700μm[89].Isolated SU-8 structures with up to1.5mm height and aspect ratio15have also been reported[90–92].Carefully optimized post-baking conditions have improved the aspect ratio of isolated structures with1150μm height up to40[93].

5.2.By x-ray exposure

X-rays are a quite convenient exposure method for HAR lithography,although the dif?cult access to synchrotron radiation strongly restricts the use of this lithography to the broad public.Due to their short wavelengths(7–12?A),x-rays are able to deeply penetrate thick photoresist layers without being absorbed by the material and create HAR structures with vertical sidewalls.In fact,SU-8pillars with an8μm diameter and aspect ratio up to100have been reported[94].

SU-8shows high sensitivity to x-rays and therefore requires low exposure times for patterning[95].However, the high-energy x-ray irradiation induces?uorescence when it penetrates the resist,which can travel laterally into the masked areas and initiate cross-linking of SU-8[96,97].This causes blurring of the transferred pattern and decreases lateral resolution.Better pattern de?nition has been achieved when the resist is left in oxygen atmosphere(or in air)for some hours before soft baking[96,97].This has been explained as a consequence of oxygen molecules diffusing in the?lm and inhibiting the subsequent photochemical reaction.Oxygen is a strong free-radical scavenger and kills the free radicals generated by?uorescence in the masked areas,providing a better pattern de?nition.

5.3.By electron beam lithography

Although SU-8was initially developed for optical lithography, it is increasingly used as highly sensitive negative-tone e-beam resist for nanopatterning.SU-8offers higher sensitivity (typically150times higher)and therefore faster exposure and throughput than traditional PMMA-based e-beam resists.A comparison of the performance of SU-8in e-beam lithography against other negative-tone resists has been recently reported [98].Note that the electron-beam radiation chemistry can differ substantially from the photolytic path,and there is poor correlation between photosensitivity and e-beam sensitivity.

The small penetration depth of low energy electrons restricts the use of e-beam patterning to resist thickness below200nm and therefore limit the AR of the patterned features.There are no commercial formulations of SU-8for this thickness regime and typically the SU-8formulation with the lowest solid content is thinned with cyclopentanone solvent to obtain solid content values~5%and thicknesses below 200nm[99].

Another limitation of e-beam patterning is that the spatial distribution of electrons at the resist interface is not con?ned to the diameter of the primary electron beam.Instead the impinging electrons scatter and expose resist molecules much further from the point of impact,leading to a loss in resolution known as‘proximity effect’.Electron wavelengths on the order of1?A can be easily achieved,but electron scattering limits the attainable resolutions to>10nm.In the case of SU-8,being a chemically ampli?ed resist,pattern broadening also occurs as a consequence of the diffusion of the photoacid generator during post-exposure baking.In spite of these limitations,linewidths down to70nm with a pitch of 300nm in a200nm thick SU-8layer[100],linewidths down to30nm in a150nm thick SU-8layer[101]and even sub-30nm lines with a pitch down to300nm in a100nm thick SU-8layer[99]have been achieved.

5.4.By proton beam lithography

High-energy ions,such as Ga+,H+or He+,are able to deeply penetrate a resist material with well-de?ned paths.During its trajectory in the material,the probability that an ion interacts with an electron is several orders of magnitude larger than for nuclear scattering.Because of the high mismatch in mass between the ion and the electron,ion–electron interactions do not result in any signi?cant deviation in the trajectory of the ion from the straight-line path.These features allow ion beam writing to fabricate HAR structures with smooth and vertical sidewalls and high packing densities[102].The penetration depth depends on the ion energy.The minimum lateral size of the pattern is mainly determined by the size and shape of the beam spot.

A2.5MeV proton beam focused to sizes between1.5and 2.5μm was used to expose SU-8with thicknesses between 5and95μm[103].Posts with1.5μm in diameter in 40μm resist layers were obtained.Lines with60and 120nm width supported by pillars with2μm diameter have also been written in10μm thick SU-8?lms.This con?guration ensures the integrity of the narrow walls with aspect ratio>160during development.AFM characterization of the roughness of these structures gave a sidewall roughness of2.5nm[104].

HAR voids of100nm width and2μm depth have also been obtained by proton beam lithography in SU-8[105]. Tilted structures with sub-micrometre resolution were also fabricated by varying the incidence angle of the ions[106, 107].

6.3D patterns obtained from SU-8

Several methods have been developed to lithographically fabricate3D structures from SU-8?lms.The most straightforward strategy is based on layer-by-layer processes where multiple coating/irradiation steps are concatenated or iterated,each of them de?ning structures at different levels.In order to minimize the number of processing steps required in the layer-by-layer approach,new strategies with intrinsic3D structuring capability have been developed.

6.1.By layer-by-layer multiexposure

Lithographic fabrication by superposition of SU-8coating and irradiation steps enables3D fabrication using traditional 2D setups and alignment markers on the mask for guiding

R88

Topical

Review

(3) Spin-coat new photoresist layer

(5) Development

(1) Spin-coating photoresist

Figure https://www.sodocs.net/doc/5b15212409.html,yer-by-layer structuring method and example of

fabricated microstructures with SU-825.Base pillars have 50μm diameter and 40μm height.Top pillars have 9μm diameter and 35μm height.The negative effects of misalignment can be seen in the ground collapse of some thin pillars.Processing conditions are as follows:?rst spin coating 5s at 500rpm and 60s at 900rpm,soft bake 3min at 65?C and 12min at 95?C,slow cooling,exposure 32.5s with soft contact using a Karl S¨u ss MJB 3Mask Aligner,hard

bake 1min at 65?C and 4min at 95?

C,slow cooling,development 5min;spin coating second layer 5s at 500rpm and 60s at 1750rpm,soft bake 3min at 65?C and 7min at 95?C,slow cooling,exposure 23s in soft contact mode,alignment of base and top layer using optical microscope and alignment markers in the mask,hard bake 1min at 65?C and 4min at 95?C,slow cooling,development 10min,second hard bake 30min at 150?C followed by slow cooling.

superposition.Figure 8shows a schematic of the process and an example of SU-8patterns obtained by this method.More complex variants combine double-side exposures,sacri?cial photoresist layers and antire?ective coatings with multiexposure [108].

Depending on the ?nal geometry of the pattern,SU-8development needs to be performed after each irradiation step,or can be left to the end and performed in a single step.In the case of HAR structures,single development is specially recommended because of the risk of pattern collapse during drying and the dif?culty of achieving planar resist layers over underlying HAR https://www.sodocs.net/doc/5b15212409.html,ing this method,SU-8hierarchical patterns comprising features with lateral dimensions ranging from 5μm to 2mm and heights from 10to 500μm have been reported.In order to reduce ?lm stress and avoid SU-8cracking during the multicoating processing,SU-8resists of different viscosities (SU-82100and 2010)were sequentially processed and simultaneously developed [109].

3D structures with overhanging features have been fabricated by layer-by-layer exposure through contact printed

(a )

(b )

(c )

(d )

(e )

(f )(g )

Figure 9.The process sequence for the fabrication of overhanging cantilevers in SU-8by layer-by-layer exposure through contact printed shadow masks [110],reprinted with permission,?2006IOP.(a )Contact printing of the mask on an SU-8substrate composed of a polymerized bottom layer covered by a non-polymerized layer.The image shows a schematic cross-section of the stamp and substrate.(b )Spin-on of a thin SU-8layer on the top of the stamped mask.(c )UV-light lithography to de?ne the

cantilever and the microchannel.The embedded mask protects the underlying resist from light exposure.(d )Polymerization of the UV-exposed resist by a post-exposure bake.(e )SU-8development and mask etching to free the cantilever.Release of the chip from the substrate.(f )and (g )Electron microscope images of

microfabricated cantilevers integrated into a micro?uidic channel.The thickness of the beams is 8μm.

shadow masks which were embedded into the SU-8multilayer [110].The mask protected buried resist from subsequent UV exposure and enabled fabrication of 4μm thick and 100μm long cantilevers integrated into a micro?uidic device (?gure 9).

6.2.By inclined /rotated lithography

In conventional lithography the mask and the resist ?lm are perpendicularly aligned with respect to the irradiation source.The light is shadowed by the mask for a one-to-one projection of the pattern on the resist,resulting in vertical,binary-contrast,lithographic pro?les.By tilting the mask and resist ?lm with respect to the beam using a tilting stage,inclined structures have been produced [111].Oblique SU-8cylinders,embedded channels,bridges,V-grooves and truncated cones

R89

Topical Review

Rotated and tilted

Single tilted exposure

Two tilted exposures

Tilted, reflected exposure

(a )(b )(c )(d )Figure 10.Tilted and rotated lithography [111],reprinted with permission,?2004Elsevier.(a )Tilted SU-8pillars obtained by tilted UV single exposure.Tilting angle is 19.5?and scale bar corresponds to 100μm.(b )SU-8structures obtained by UV double exposure.Scale bar corresponds to 200μm.(c )Tapered structures obtained by tilted and rotated UV exposure.Scale bar corresponds to 50μm.(d )SU-8structures fabricated by tilted UV on re?ective substrates (aluminium-coated silicon).Scale bar corresponds to 50μm.

with aspect ratios >4have been fabricated using 100μm thick SU-8layers and a conventional UV mask aligner (?gure 10(a ))[111].Multiple inclined UV exposures along different axes can be exploited to generate complex 3D structures (?gure 10(b ))[22,111,112].Tilted exposure can also be combined with vertical exposure to create asymmetric pillars with vertical and inclined sidewalls [113].

The fabricated structure angle after tilted exposure is different from the exposure angle due to different refractive indices of SU-8,mask and air (n air =1,n glass =1.47,n SU-8=1.668at λ=365nm and 1.650at λ=405nm)[114].Structures with smaller tilt angles than the exposure angle are obtained as a consequence of the refraction of the incident UV light at the interface of each material.For example,a light beam projected on the resist at 45?propagates at an angle of 25.24?.This imposes a theoretical limit of the fabricated structure angle which is 38.7?for a maximum exposure angle of 90?.In order to improve maximum angle,the mismatch of the refractive index between exposure medium and SU-8should be compensated.This has been achieved by using either glycerol (n glycerol =1.47)or water (n water =1.3)as exposure medium instead of air [115,116].As a result,the maximum angle of the inclined structure has been increased to 56.2?.

If the photomask-and photoresist-coated substrates are tilted and simultaneously rotated during irradiation,tapered structures with non-vertical sidewalls can also be generated (?gure 10(c ))[111,117].Such tapered structures are interesting if the SU-8pattern is needed as master for a subsequent replication step because they provide a draft angle and facilitate demoulding [118].

During irradiation,the incident light which penetrates the resist ?lm is always re?ected at the photoresist–substrate interface.Typically,the energy of the re?ected UV is too low to initiate cross-linking of the resist,and therefore this effect is usually not considered.However,if the energy of the re?ected UV is increased (by raising exposure times or by using re?ective substrates)cross-linking may be initiated along the path of the re?ected beam [111].Figure 10(d )shows the structures obtained after single tilted exposure using a re?ective Al-coated silicon wafer.6.3.By modulated exposure

Recently,a number of novel approaches to generate multilevel structures from single resist layers have been demonstrated which avoid time-consuming multiexposure strategies.These are based on special masks and projection optics which allow modulated exposure doses of the resist ?lm.This results in multiple depths of the exposed photoresist across the surface and,consequently,different heights of the photoresist structure remaining after development.

‘Grey scale’lithography makes use of special photomasks which modulate the light intensity according to their grey levels.Two types of grey scale masks can be used:halftone chrome masks and high-energy beam sensitive (HEBS)glass masks.Halftone masks are essentially binary chrome masks with grey levels simulated by different densities of opaque pixels on a transparent background.HEBS glass masks are fabricated by exposing this glass to controlled doses of a high-energy electron beam,causing the reduction of silver ions in the glass.Areas of the mask with high concentrations of reduced silver ions correspond to high levels of grey shading.This method has been used to produce suspended 10μm thick grid structures on the top of 15to 100μm high SU-8pillars [119,120].

Grey masks are dif?cult and expensive to fabricate.Masks with a topographical pattern of a UV-absorbing photoresist with features of different heights can also generate differential UV doses and are more affordable [121].Due to the absorption of UV energy by the photoactive and dye ingredients in the mask,irradiation doses vary according to the height of the mask features.Such masks have been fabricated by lithographic structuring of a AZ4620resist layer on a glass substrate,followed by re?owing of the resist features to form hemispheres.Different curvatures were obtained by re?owing under various geometries,temperatures and time conditions.UV exposure of the SU-8layer through such grey mask forms curved SU-8structures due to the differential exposure dose.

Photolithographic masks containing scale coloured patterns printed on transparent ?lms have also been used for modulated exposure [122].Exposing an SU-8layer through the coloured mask renders features with different heights as a consequence of the differences in the UV absorption by the colours,and therefore transmitted intensity to the SU-8?lm.6.4.By holographic lithography

3D patterns can be created on SU-8?lms by holographic lithography (or interference lithography,IL).This exposure method is based on the interference of coherent laser beams

R90

Topical Review

(a)(c)

(b)(d) Figure11.SU-8structures with fcc symmetry fabricated with

four-beam holographic lithography using decreasing exposure dosage[126],reprinted with permission,?2003AIP:(a)160, (b)130,(c)100and(d)60mJ cm?2.

to form a periodic,sinusoidal intensity pattern in space.By exposing SU-8to this illumination pattern,periodic structures are obtained after development.Different symmetry patterns can be generated by controlling the number,amplitude,phase, wave vector and polarization of the interfering beams.Two-beam IL creates1D surface relieves.2D gratings can be produced by overlaying two sequential exposures at90?or by interfering three https://www.sodocs.net/doc/5b15212409.html,ing additional beams in a single exposure or overlaying multiple exposures,3D periodic structures can also be fabricated.

Theoretical works have predicted the appropriate laser beam con?gurations to achieve different periodic3D structures (e.g.bcc,fcc,gyroid or diamond symmetries)[123,124]. Among them,only a few have been manufactured[125–132]. Four-beam IL has proved to give fcc[126,127](?gure11), simple cubic,bcc[128]and diamond-like[129,130]SU-8 patterns.The interference pattern of six equally spaced circumpolar linearly polarized side beams and a circularly polarized central beam has been used to fabricate spiral microstructures[131].The pitch and separation of the spirals were varied by changing the angle between the side beams and the central beam.Ten-beam IL has produced3D periodic quasicrystals[132].

The spatial light intensity distribution within the interference pattern generates a spatial distribution of elastic and plastic properties of the fabricated structures,with higher mechanical properties observed at the nodes[133]. 3D structures of this kind can be considered as composite networks with potentially peculiar properties associated with the nonuniformity of their internal elastic properties.Initial experiments with2D patterns have shown their capability of highly plastic deformation,a property which is not expected from glassy,highly cross-linked SU-8?lms[133].

The periodic structures obtained by IL?nd preferential application in photonics.This application requires resist materials with a refractive index>2to open omnidirectional band gaps.Therefore,structures formed from SU-8(n=1.6) are not appropriate for this application.Instead,they have been used as templates for inorganic structures with a larger index contrast,whereas the SU-8pattern is in?ltrated with silica precursors and burned away.The remaining silica negative is then?lled with silicon and the silica is selectively etched away.

Alternatively,the refractive index of SU-8layers has been modulated taking advantage of the higher refractive index of thermally cross-linked SU-8(at T>137?C)versus that of cross-linked SU-8after UV exposure(1.5930and1.5858, respectively)[58].The0.0072refractive index difference is a consequence of the lower solvent content and therefore higher density of the thermally cross-linked material due to the long thermal treatment time.Exposing a44μm SU-8?lm to UV irradiation through a mask with a pixel size of 15μm and a mean resolution of2.11μm,followed by a post-exposure baking at95?C and a thermal baking at170?C(no development!)yields an SU-8?lm with a lateral modulation of refractive index in exposed/non-exposed regions.

6.5.By stereolithography of resist multilayers Stereolithography historically refers to the technology of creating3D objects from computer aided design patterns by adding and exposing photoresist layers to scanning UV lasers. When the process is repeated sequentially after adding new resin layers on top of the cured one,3D structures can be created with micrometre precision[134].

6.6.By laser scanning of single resist layers

Nd:Y AG lasers operating at a wavelength of355nm have been used to expose the SU-8photoresist through a two-axis scan head and expander lens[135,136].This exposure method produces a nonuniform distribution of laser power along its incident axis.By this means,in-plane and in-depth processing is achievable by controlling the current to the pump diodes and by varying the focus level to yield the desired exposure energy at the appropriate spot in the photoresist.This method allows the fabrication of micro?uidic components such as cantilevered valves,embedded channels and other shapes requiring gaps between layers from a single SU-8layer.The reported maximum scan?eld size is100×100mm2,while the minimum spot size is20μm.This limits the lateral resolution of the patterned features.

In the last few years,picosecond and femtosecond lasers have been used for3D structuring to achieve higher precision exploiting two-photon absorption(TPA). Conventional electronic transitions caused by the absorption of a single photon of energy hν1may be produced by the simultaneous absorption of two photons,each photon providing half the energy of the transition(hν1/2). The probability of a molecule absorbing two photons simultaneously(de?ned by the TPA cross section,δTPA)is proportional to the square of the intensity of the input beam. This implicates that two-photon absorption requires the use of very powerful lasers and occurs only at the focal plane where the intensity is maximized.As a consequence,processes based on TPA present much higher lateral resolution than those based on single-photon absorption.

Although selection rules for single-photon and two-photon excitation are different,most resins that polymerize under UV exposure can undergo similar reactions by TPA,

R91

Topical Review

(a)(b)(c)

Figure12.(a),(b)3D structures obtained by TPL using SU-8[52],reprinted with permission,?2005AIP.(c)SEM image of photonic spiral structures obtained by TPL using SU-8with a180?phase shift between adjacent spirals[140].

provided that the irradiation intensity is high enough.This seems to be the case for SU-8,as patterns with pillars,planes and cage microstructures[52,137,138]and3D nanostructures with lateral sizes as small as120nm[139]have been obtained by this technique(?gure12).Photonic structures with spiral architectures have been obtained from SU-8layers using a femtosecond Ti:Sapphire laser with a central wavelength at800nm and are shown in?gure12[140–142].Other authors have combined IL to de?ne a periodic host photonic crystal,and a scanning two-photon excitation laser to create a waveguide and embedded microcavities at a depth of5μm in a12μm layer[143].

A recent report suggests that exposure of SU-8to femtosecond lasers may directly induce localized thermal polymerization as a consequence of a temperature rise at the focal region[144].This mechanism allows direct development after exposure without the need of a post-bake process and therefore the fabrication of patterns with smaller lateral size.

7.Discussion

SU-8can be processed with a number of patterning techniques to render high-aspect-ratio and3D submicron structures. The irradiation source and con?guration used for processing determine the maximum lateral resolution,aspect ratio and geometrical complexity of the patterned features.Simple SU-8structures(pillars and walls)with aspect ratio above 100but a maximum lateral resolution of8μm have been reported after UV exposure.Better lateral resolution(<1μm) maintaining high aspect ratios has been achieved using x-rays. High-energy beams may render even smaller structures,but with limited aspect ratio.It is worth to mention that these techniques are not available at any research lab and are not suitable for industrial implementation due to their high cost and low throughput.

Photolithographic patterning of complex SU-8structures is possible using multiexposure methods.The complexity of the achievable designs correlates with the number of coating/exposure steps and this limits the industrial implementation of these strategies.Interference lithography provides increased throughput in3D patterning at the cost of reduced?exibility of pattern geometry(only symmetric structures).Two-photon laser scanning overcomes the ?exibility issue and allows serial writing of arbitrary geometries.However,writing speeds are slow and costly high intensity laser beams are required.

Some of the dif?culties of SU-8processing may be overcome with improved formulations of the system.In this context,SU-8based resists containing silica nanoparticles up to15wt%have been recently described[145,146]. These systems seem to show higher sensitivity and lower expansion coef?cient than the unreinforced SU-8.Particle loadings below2.5wt%result in better resist adhesion to the substrate,lower stress and less cracks after processing without compromising the lateral resolution and the vertical sidewall pro?les.Above this value,the resolution decreases drastically,followed by a dif?culty to develop the exposed parts of the photoresist.The silica particles are abrasive and therefore decrease the wear rate and frictional coef?cient of the unreinforced SU-8material.

In addition,novel formulations may expand the application?eld of SU-8.As an example formulations of SU-8resist with conductive properties have been reported[147, 148].These contain silver nanoparticles in concentrations above the percolation threshold(6vol.%).Depending on the silver volume fraction,the composite structures show electrical resistivities between104and10?4 cm.As a consequence, the conductive photoresist can be used for direct manufacture of electrically conductive microcomponents.

References

[1]Gates B D et al2005New approaches to nanofabrication:

molding,printing,and other techniques Chem.Rev.

1051171–96

[2]Gates B D et al2004Unconventional nanofabrication Annu.

Rev.Mater.Res.34339–72

[3]Xia Y N and Whitesides G M1998Soft lithography Angew.

Chem.Int.Ed.37551–75

[4]Wallraff G M and Hinsberg W D1999Lithographic imaging

techniques for the formation of nanoscopic features Chem.

Rev.991801–21

[5]Rothschild M2005Projection optical lithography Mater.

Today818–24

[6]Brunner T A2003Why optical lithography will live forever

J.Vac.Sci.Technol.B212632–7

[7]Ito T and Okazaki S2000Pushing the limits of lithography

Nature4061027–31

[8]Willson C G and Trinque B C2003The evolution of

materials for the photolithographic process J.Photopoly.

Sci.Technol.16621–7

[9]Rothschild M et al2004Liquid immersion lithography:why,

how,and when?J.Vac.Sci.Technol.B222877–81 [10]Gil D et al2004Immersion lithography:new opportunities

for semiconductor manufacturing J.Vac.Sci.Technol.B

223431–8

R92

Topical Review

[11]Ye J-Y et al2002Fabrication and optical characteristics of

silicon-based two-dimensional photonic crystals with

honeycomb lattice https://www.sodocs.net/doc/5b15212409.html,mun.211205–13

[12]Cuisin C et al2000Fabrication of three-dimensional

photonic structures with submicrometer resolution by

x-ray lithography J.Vac.Sci.Technol.B183505–9 [13]Campbell M et al2000Fabrication of photonic crystals for

the visible spectrum by holographic lithography

Nature40453–6

[14]Lin S Y et al1998A three-dimensional photonic crystal

operating at infrared wavelengths Nature394251–3 [15]Heyderman L J et al2003High volume fabrication of

customised nanopore membrane chips Microelectron.

Eng.67–68208–13

[16]Kee C S et al2005Photonic band gaps and defect modes of

polymer photonic crystal slabs Appl.Phys.Lett.86051101 [17]Kuwabara K et al2004Fluorescence measurements of

nanopillars fabricated by high-aspect-ratio nanoprint

technology Microelectron.Eng.73–74752–6

[18]Delamarche E et al2005Micro?uidics for processing

surfaces and miniaturizing biological assays Adv.Mater.

172911–33

[19]Burns M A et al1998An integrated nanoliter DNA analysis

device Science282484–7

[20]Wagler P F et al2003Microfabrication of a BioModule

composed of micro?uidics and digitally controlled

microelectrodes for processing biomolecules Smart Mater.

Struct.12757–62

[21]Thorsen T et al2002Micro?uidic large-scale integration

Science298580–4

[22]Romanato F et al2004X-ray lithography for3D micro?uidic

applications Microelectron.Eng.73–74870–5

[23]P′e renn`e s F et al2006Sharp beveled tip hollow microneedle

arrays fabricated by LIGA and3D soft lithography with

polyvinyl alcohol J.Micromech.Microeng.16473–9 [24]Brown R A et al2005Ultrarapid engineering of biomimetic

materials and tissues:fabrication of nano-and

microstructures by plastic compression Adv.Funct.

Mater.151762–70

[25]Popov V K et al2004Laser stereolithography and

supercritical?uid processing for custom-designed implant

fabrication J.Mater.Sci.,Mater.Med.15123–8

[26]Liu Y et al20053D femtosecond laser patterning of collagen

for directed cell attachment Biomaterials264597–605 [27]Kusakabe H et al2004Osseointegration of a

hydroxyapatite-coated multilayered mesh stem

Biomaterials252957–69

[28]Hoque M E et al2005Fabrication using a rapid prototyping

system and in vitro characterization of PEG-PCL-PLA

scaffolds for tissue engineering J.Biomater.Sci.Polym.

Ed.161595–610

[29]Martina M et al2005Developing macroporous bicontinuous

materials as scaffolds for tissue engineering

Biomaterials265609–16

[30]Jones A C et al2004Investigation of microstructural features

in regenerating bone using micro computed tomography

J.Mater.Sci.,Mater.Med.15529–32

[31]Hutmacher D W2001Scaffold design and fabrication

technologies for engineering tissues—state of the art

and future perspectives J.Biomater.Sci.Polym.Ed.

12107–24

[32]Palmaz J C et al1999In?uence of surface topography on

endothelialization of intravascular metallic material

J.Vasc.Intervent.Radiol.10439–44

[33]Granhag L M et al2004Roughness-dependent removal of

settled spores of the green alga Ulva(syn.Enteromorpha)

exposed to hydrodynamic forces from a water jet

Biofouling20117–22

[34]Hoipkemeier-Wilson L et al2004Antifouling potential of

lubricious,micro-engineered,PDMS elastomers against

zoospores of the green fouling alga Ulva(Enteromorpha)

Biofouling2053–63[35]Callow M E et al2002Microtopographic cues for settlement

of zoospores of the green fouling alga Enteromorpha

Biofouling18237–45

[36]Geim A K et al2003Microfabricated adhesive mimicking

gecko foot-hair Nature Mater.2461–3

[37]Jin M et al2005Superhydrophobic aligned polystyrene

nanotube?lms with high adhesive force Adv.Mater.

171977–81

[38]Sitti M and Fearing R S2003Synthetic gecko foot-hair

micro/nano-structures as dry adhesives J.Adhes.Sci.

Technol.171055–73

[39]Yurdumakan B et al2005Synthetic gecko foot-hairs from

multiwalled carbon nanotubes https://www.sodocs.net/doc/5b15212409.html,mun.3799–801 [40]Ito H2005Chemical ampli?cation resists for

microlithography Adv.Polym.Sci.17237–245

[41]https://www.sodocs.net/doc/5b15212409.html,/pcm.

[42]http://www.tok.co.jp/products/products-e2.htm.

[43]https://www.sodocs.net/doc/5b15212409.html,/dry?lm.htm.

[44]https://www.sodocs.net/doc/5b15212409.html,/stack/volumes/voli/

store/specs/4615spec.htm.

[45]https://www.sodocs.net/doc/5b15212409.html,/kpr/facility.htm.

[46]Koukharenko E et al2005A comparative study of different

thick photoresists for MEMS applications J.Mater.Sci.,

Mater.Electron.16741–7

[47]https://www.sodocs.net/doc/5b15212409.html,/products/su eight.htm.

[48]Chang H K and Kim Y K2000UV-LIGA process for high

aspect ratio structure using stress barrier and C-shaped

etch hole Sensors Actuators A84342–50

[49]Kim S-H et al2002A high-aspect-ratio comb actuator using

UV-LIGA surface micromachining and(110)silicon bulk

micromachining J.Micromech.Microeng.12128–35 [50]Kupka R K et al2000Microfabrication:LIGA-X and

applications Appl.Surface Sci.16497–110

[51]Liu J-Q et al2006A novel method to fabricate complex

three-dimensional microstructures Microsyst.

Technol.12786–9

[52]Teh W H et al2005Effect of low numerical-aperture

femtosecond two-photon absorption on(SU-8)resist for

ultrahigh-aspect-ratio microstereolithography J.Appl.

Phys.97054907

[53]Lorenz H et al1998High-aspect-ratio,ultrathick,

negative-tone near-UV photoresist and its applications for

MEMS Sensors Actuators A6433–9

[54]Liu J et al2004Process research of high aspect ratio

microstructure using SU-8resist Microsyst.Technol.

10265–8

[55]Dai W et al2005A quantitative study on the adhesion

property of cured SU-8on various metallic surfaces

Microsyst.Technol.11526–34

[56]Conradie E H and Moore D F2002SU-8thick photoresist

processing as a functional material for MEMS applications

J.Micromech.Microeng.12368–74

[57]Khoo H S et al2003Mechanical strength and interfacial

failure analysis of cantilevered SU-8microposts

J.Micromech.Microeng.13822–31

[58]Ong B H et al2006Photothermally enabled lithography for

refractive-index modulation in SU-8photoresist Opt.Lett.

311367–9

[59]Yang R and Wang W2005A numerical and experimental

study on gap compensation and wavelength selection in

UV-lithography of ultra-high aspect ratio SU-8

microstructures Sensors Actuators B110279–88

[60]Chuang Y J et al2002Reduction of diffraction effect of UV

exposure on SU-8negative thick photoresist by air gap

elimination Microsyst.Technol.8308–13

[61]http://www.suss.de.

[62]Tian X et al2005Simulation of deep UV lithography with

SU-8resist by using365nm light source Microsyst.

Technol.11265–70

[63]Kang W-J et al2006Novel exposure methods based on

re?ection and refraction effects in the?eld of SU-8

lithography J.Micromech.Microeng.16821–31

R93

Topical Review

[64]Zhang J et al2005Reduction of diffraction effect for

fabrication of very high aspect ratio micro-channels in

SU-8over large area by soft cushion technology

Microsyst.Technol.11519–25

[65]Barber R L et al2005Optimization of SU-8processing

parameters for deep x-ray lithography Microsyst.

Technol.11303–10

[66]Becnel C et al2005Ultra-deep x-ray lithography of densely

packed SU-8features:II.Process performance as a

function of dose,feature height and post exposure bake

temperature J.Micromech.Microeng.151249–59 [67]Becnel C et al2005Ultra-deep x-ray lithography of densely

packed SU-8features:I.An SU-8casting procedure to

obtain uniform solvent content with accompanying

experimental results J.Micromech.Microeng.151242–8 [68]Liu G et al2005Fabrication of high-aspect-ratio

microstructures using SU8photoresist Microsyst.

Technol.11343–6

[69]Kubenz M et al2003Effective baking of thick and ultra-thick

photoresist layers by infrared radiation Microelectron.

Eng.67–68495–501

[70]Wang C et al2005A novel method for the fabrication of

high-aspect ratio C-MEMS structures

J.Microelectromech.Syst.14348–58

[71]Gaudet M et al2006Variation of absorption coef?cient and

determination of critical dose of SU-8at365nm Appl.

Phys.Lett.88024107

[72]Ceyssens F and Puers R2006Creating multi-layered

structures with freestanding parts in SU-8J.Micromech.

Microeng.16S19–23

[73]Chan-Park M B et al2004Fabrication of large SU-8mold

with high aspect ratio microchannels by UV exposure dose

reduction Sensors Actuators B101175–82

[74]Cheng C-M and Chen R-H2004Key issues in fabricating

microstructures with high aspect ratios by using deep

x-ray lithography Microelectron.Eng.71335–42

[75]Cheng C-M and Chen R-H2001Development behaviors

and microstructure quality of downward-development in

deep x-ray lithography J.Micromech.Microeng.

11692–6

[76]Meyer P et al2002Investigations of the development rate of

irradiated PMMA microstructures in deep x-ray

lithography Microelectron.Eng.63319–28

[77]Williams J D and Wang W2004Using megasonic

development of SU-8to yield ultra-high aspect ratio

microstructures with UV lithography Microsyst.

Technol.10694–8

[78]Hui C Y et al2002Constraints on microcontact printing

imposed by stamp deformation Langmuir181394–407 [79]Peele A G et al2005Overcoming SU-8stiction in high

aspect ratio structures Microsyst.Technol.11221–4 [80]Tanaka T et al1993Mechanism of resist pattern collapse

J.Electrochem.Soc.140L115–6

[81]Namatsu H et al1995Dimensional limitations of silicon

nanolines resulting from pattern distortion due to

surface-tension of rinse water Appl.Phys.Lett.662655–7 [82]Cao H B et al2000Comparison of resist collapse properties

for deep ultraviolet and193nm resist platforms J.Vac.Sci.

Technol.B183303–7

[83]Zhang X et al2004Chemical-mechanical photoresist drying

in supercritical carbon dioxide with hydrocarbon

surfactants J.Vac.Sci.Technol.B22818–25

[84]Kondo T et al2006Reduction of capillary force for

high-aspect ratio nanofabrication Appl.Phys.A811583–6 [85]Tanaka T et al1993Mechanism of resist pattern collapse

during development process Japan.J.Appl.Phys.

1326059–64

[86]Yamashita Y1996Sub-0.1μm patterning with high aspect

ratio of5achieved by preventing pattern collapse Japan.J.

Appl.Phys.1352385–6

[87]Namatsu H et al2000Supercritical resist dryer J.Vac.Sci.

Technol.B18780–4

[88]Tanaka T et al1993Freeze-drying process to avoid resist

pattern collapse Japan.J.Appl.Phys.1325813–4 [89]Dentinger P M et al2002High aspect ratio patterning with a

proximity ultraviolet source Microelectron.Eng.

61–21001–7

[90]Loechel B2000Thick-layer resists for surface

micromachining J.Micromech.Microeng.10108–15 [91]O’Brien J et al2001Advanced photoresist technologies for

microsystems J.Micromech.Microeng.11353–8

[92]Lin C H et al2002A new fabrication process for ultra-thick

micro?uidic microstructures utilizing SU-8photoresist

J.Micromech.Microeng.12590–7

[93]Williams J D and Wang W J2004Study on the postbaking

process and the effects on UV lithography of high aspect

ratio SU-8microstructures J.Microlithogr.Microfabr.

Microsyst.3563–8

[94]Bogdanov A L and Peredkov S S2000Use of SU-8

photoresist for very high aspect ratio x-ray lithography

Microelectron.Eng.53493–6

[95]Wong D et al2006Study of x-ray lithographic conditions for

SU-8by Fourier transform infrared spectroscopy

Microelectron.Eng.831912–7

[96]Shew B Y et al2004Oxygen quenching effect in ultra-deep

x-ray lithography with SU-8resist J.Micromech.

Microeng.14410–4

[97]Shew B-Y et al2005X-ray micromachining SU-8resist for a

terahertz photonic?lter J.Phys.D:Appl.Phys.

381097–103

[98]Bilenberg B et al2006Comparison of high resolution

negative electron beam resists J.Vac.Sci.Technol.B

241776–9

[99]Bilenberg B et al2006High resolution100kV electron beam

lithography in SU-8Microelectron.Eng.831609–12 [100]Pepin A et al2004Exploring the high sensitivity of SU-8 resist for high resolution electron beam patterning

Microelectron.Eng.73–74233–7

[101]Aktary M et al2003High-resolution pattern generation using the epoxy novolak SU-82000resist by electron beam

lithography J.Vac.Sci.Technol.B21L5–7

[102]van Kan J A et al2004Proton beam writing:a progress review Int.J.Nanotechnol.1464–79

[103]Auzelyte V et al2006Exposure parameters for MeV

proton beam writing on SU-8Microelectron.Eng.

832015–20

[104]van Kan J A et al2003Three-dimensional nanolithography using proton beam writing Appl.Phys.Lett.831629–31 [105]Ansari K et al2004Fabrication of high aspect ratio100nm metallic stamps for nanoimprint lithography using proton

beam writing Appl.Phys.Lett.85476–8

[106]Munnik F et al2003High aspect ratio,3D structuring of photoresist materials by ion beam LIGA Microelectron.

Eng.67–6896–103

[107]Osipowicz T et al2000The use of proton microbeams for the production of microcomponents Nucl.Instrum.Methods

Phys.Res.B16183–9

[108]Chuang Y J et al2003A novel fabrication method of

imbedded micro-channels by using SU-8thick-?lm

photoresist Sensors Actuators A10364–9

[109]Mata A et al2006Fabrication of multi-layer SU-8

microstructures J.Micromech.Microeng.16276–84 [110]Hae?iger D and Boisen A2006Three-dimensional

microfabrication in negative resist using printed masks

J.Micromech.Microeng.16951–7

[111]Han M et al20043D microfabrication with inclined/rotated UV lithography Sensors Actuators A11114–20 [112]Sato H et al2004Three-dimensional micro-structures

consisting of high aspect ratio inclined micro-pillars

fabricated by simple photolithography Microsyst.

Technol.10440–3

[113]Mekaru H et al2002Quasi-3D microstructure fabrication technique utilizing hard x-ray lithography of synchrotron

radiation Microsyst.Technol.936–40

R94

Topical Review

[114]Sato H et al2004In-channel2D micromesh structures using maskless multi-angle exposures and their micro?lter

application Sensors Actuators A11187–92

[115]Yang R et al2005Microfabrication and test of a

three-dimensional polymer hydro-focusing unit for?ow

cytometry applications Sensors Actuators A118259–67 [116]Sato H et al2006Improved inclined multi-lithography using water as exposure medium and its3D mixing microchannel

application Sensors Actuators A128183–90

[117]Park J-Y et al20053D optical microstructure fabrication and its bonding to micro IR detector using elastomeric

polymer Microsyst.Technol.11168–78

[118]Turner R et al2003Tapered LIGA HARMs J.Micromech.

Microeng.13367–72

[119]Galas J C et al2004Fabrication of three-dimensional

microstructures using standard ultraviolet and

electron-beam lithography J.Vac.Sci.Technol.B

221160–2

[120]Kudryashov V et al2003Grey scale structures formation in SU-8with e-beam and UV Microelectron.Eng.

67–68306–11

[121]Hung K-Y et al2005Application of3D gray mask for the fabrication of curved SU-8structures Microsyst.

Technol.11365–9

[122]Taff J et al2006Fabricating multilevel SU-8structures in a single photolithographic step using colored masking

patterns J.Vac.Sci.Technol.A24742–6

[123]Chan T Y M et al2005Photonic band gap templating using optical interference lithography Phys.Rev.E71046605 [124]Li E et al2006Predication of multi-dimensional photonic crystal structures generated by multi-beam interference in

holographic lithography Smart Mater.Struct.15S158–64 [125]Kondo T et al2001Femtosecond laser interference technique with diffractive beam splitter for fabrication of

three-dimensional photonic crystals Appl.Phys.Lett.

79725–7

[126]Wang X et al2003Three-dimensional photonic crystals fabricated by visible light holographic lithography Appl.

Phys.Lett.822212–4

[127]Wu L et al2005Fabrication of large area two-and

three-dimensional polymer photonic crystals using single

refracting prism holographic lithography Appl.Phys.

Lett.86241102

[128]Ullal C K et al2004Photonic crystals through holographic lithography:simple cubic,diamond-like,and gyroid-like

structures Appl.Phys.Lett.845434–6

[129]Zhong Y C et al2005Photonic crystal with diamond like structure fabricated by holographic lithography Appl.

Phys.Lett.87061103

[130]Sharp D N et al2003Holographic photonic crystals

with diamond symmetry Phys.Rev.B

68205102[131]Pang Y K et al2005Chiral microstructures(spirals)

fabrication by holographic lithography Opt.Express

137615–20

[132]Wang X et al2006Realization of optical periodic

quasicrystals using holographic lithography Appl.Phys.

Lett.88051901

[133]Choi T et al2006The elastic properties and plastic behavior of two-dimensional polymer structures fabricated by laser

interference lithography Adv.Funct.Mater.161324–30 [134]Bertsch A et al19993D microfabrication by combining microstereolithography and thick resist UV lithography

Sensors Actuators A7314–23

[135]Li B et al2004Rapid three-dimensional manufacturing of micro?uidic structures using a scanning laser system Appl.

Phys.Lett.852426–8

[136]Li B et al2006Thickness management in three-dimensional laser manufacturing of suspended structures in a

single SU-8layer Rev.Sci.Instrum.77065103

[137]Teh W H et al2004SU-8for real three-dimensional

subdiffraction-limit two-photon microfabrication Appl.

Phys.Lett.844095–7

[138]Juodkazis S et al2005Two-photon lithography of nanorods in SU-8photoresist Nanotechnology16846–9

[139]LaFratta C N et al2004Replication of

two-photon-polymerized structures with extremely high

aspect ratios and large overhangs J.Phys.Chem.B

10811256–8

[140]Seet K K et al2005Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing Adv.

Mater.17541–5

[141]Seet K K et al2006Three-dimensional circular spiral

photonic crystal structures recorded by femtosecond

pulses J.Non-Cryst.Solids3522390–4

[142]Seet K K et al2006Three-dimensional horizontal circular spiral photonic crystals with stop gaps below1mm Appl.

Phys.Lett.88221101

[143]Scrimgeour J et al2006Three-dimensional optical

lithography for photonic microstructures Adv.Mater.

181557–60

[144]Seet K K et al2006Feature-size reduction of

photopolymerized structures by femtosecond optical

curing of SU-8Appl.Phys.Lett.89024106

[145]Jiguet S et al2006Effect of?ller behavior on nanocomposite SU8photoresist for moving micro-parts Microelectron.

Eng.831273–6

[146]Jiguet S et al2006SU-8nanocomposite photoresist with low stress properties for microfabrication applications

Microelectron.Eng.831966–70

[147]Jiguet S et al2006SU8-silver photosensitive nanocomposite Adv.Eng.Mater.2006719–24

[148]Jiguet S et al2005Conductive SU8photoresist for

microfabrication Adv.Funct.Mater.151511–6

R95

智能物流介绍

智能物流 智能物流是利用集成智能化技术,使物流系统能模仿人的智能,具有思维,感知,学习,推理判断和自行解决物流中某些问题的能力。智能物流的未来发展将会体现出四个特点:智能化,一体化和层次化,柔性化与社会化。在物流作业过程中的大量运筹与决策的智能化;以物流管理为核心,实现物流过程中运输,存储,包装,装卸等环节的一体化和智能物流系统的层次化;智能物流的发展会更加突出"以顾客为中心"的理念,根据消费者需求变化来灵活调节生产工艺;智能物流的发展将会促进区域经济的发展和世界资源优化配置,实现社会化。通过智能物流系统的四个智能机理,即信息的智能获取技术,智能传递技术,智能处理技术,智能运用技术。 基本信息 回到顶部意见反馈 智能物流就是利用条形码、射频识别技术、传感器、全球定位系统等先进的物联网技术通过信息处理和网络通信技术平台广泛应用于物流业运输、仓储、配送、包装、装卸等基本活动环节,实现货物运输过程的自动化运作和高效率优化管理,提高物流行业的服务水平,降低成本,减少自然资源和社会资源消耗。物联网为物流业将传统物流技术与智能化系统运作管理相结合提供了一个很好的平台,进而能够更好更快地实现智能物流的信息化、智能化、自动化、透明化、系统的运作模式。智能物流在实施的过程中强调的是物流过程数据智慧化、网络协同化和决策智慧化。智能物流在功能上要实现6 个"正确",即正确的货物、正确的数量、正确的地点、正确的质量、正确的时间、正确的价格,在技术上要实现:物品识别、地点跟踪、物品溯源、物品监控、实时响应。 主要技术折叠编辑本段 自动识别技术 自动识别技术是以计算机、光、机、电、通信等技术的发展为基础的一种高度自动化的数据采集技术。它通过应用一定的识别装置,自动地获取被识别物体的相关信息,并提供给后台的处理系统来完成相关后续处理的一种技术。它能够帮助人们快速而又准确地进行海量数据的自动采集和输入,在运输、仓储、配送等方面已得到广泛的应用。经过近30年的发展,

物流TMS系统说明

上海博科资讯股份有限公司运输管理信息系统介绍 上海博科资讯股份有限公司 版权所有

1 系统管理模块: 为维护系统的正常运行而进行的系统管理操作,包括基础数据的维护、字典类数据管理、系统配置管理等功能。 1.1 基础数据 基础数据维护主要用于维护运行本系统会用到的与托运商、承运商、货物、路线、地点、计费等有关的基本资料,这些基本资料在进行具体的作业流程操作时,会在不同的场合中被调用。基本资料信息一定要输入完全,否则会出现找不到您所要的数据的现象,严重地会导致无法进行后续作业的结果。 ?托运商/货主基本信息 ?托运商的收货人基本信息 ?货主商品信息 ?承运商基本信息 ?车辆基本信息 ?驾驶员基本信息 ?业务员基本信息 ?银行基本信息 ?保险公司基本信息 ?行车线路信息 ?区域信息 ?省份信息 ?城市信息 ?分公司信息 ?部门信息 ?人员信息 ?……

1.2 字典类数据 字典类的设定是系统正常运行的前提,其实就是本系统的一个数据字典,它把所有在系统中所要使用到的选择项(就是软件中常用的下拉框中)的内容以数字的方式来描述,并设置每一个类型都有一个系统能识别的在系统中是惟一的序列号,为系统的处理提供方便。简单说来,字典类,即是一些只有代号和名称的简单基本资料 1.3 系统配置 对系统初始化和系统运行时的一些重要数据的设定和对系统运行中积累的历史数据做备份和删除处理。 同时可对企业门户网站子系统进行管理和维护。具体可分为对加入会员的审核和管理、对登录的客户信息的审核和管理,以及对在线订单的格式、内容的审核和管理等。 对于录入表单可以灵活设置,各个表单提供不涉及业务逻辑计算的可自定义的备用字段,系统配置管理可对备用字段进行定义和修改。 1.4 日志管理 出于安全起见,对于每个用户每次进入系统所进行的每次操作,系统都有详细记录。包括查询操作日志、清除操作日志、参数设置。此模块独立运行,且只能由系统管理员使用。 日志中记录了每天每个用户在本系统中进行的每一个详细操作。包括在打开的操作窗口中所做的新增、修改、删除等操作以及打印报表的操作等。 查看日志用于查看某一时间段内指定用户对某一程序资料进行的操作。 2 权限管理 用户权限管理是供系统管理员维护本系统的用户使用的。主要为系统模块清单、程序清单、用户组设置和用户设置。其中系统模块清单显示了本系统的三大模块;程序清单描述本系统所有可进行权限控制的菜单资料,用户组程序权限、用户程序权限将引用此资料。用户组、用户设置用于维护可使用本系统的用户及其程序权限。

互联网+智慧物流平台

互联网+智慧物流平台-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

“互联网+智慧物流平台”项目情况介绍益阳市响当当物流信息服务有限公司于2018年5月16日经益阳市工商局注册成立,公司类型:有限责任公司,注册资金200万元,公司经营范围包括:普通货运、仓储服务、物流方案设计、货运新信息中介、物流信息咨询、供应链管理、电子商务等,公司注册地点:益阳中南电子商务产业园,法人代表:尹翔,统一信息社会代码:91430900MA4PECGP5C。 益阳市响当当物流信息服务有限公司自成立以来,专注城乡集散货物运输领域,以“打造智慧物联城市”为企业使命,以“智慧运营,节能减排,低碳出行”为企业宗旨。一年来,先后获得了中华人民共和国道路运输经营许可证,2018年6月经益阳市交通警察支队批准,对公司新能源纯电动货车实施通行优惠政策,并设置了“响当当新能源专用车道”,2018年10月24日公司入驻益阳青年创新创业孵化基地,入孵企业编号:011号。 一、打造“互联网+智慧物流平台” 为了加快现代物流业的发展,建设以现代运输业为重点,以信息技术为支撑,集系统化、信息化、新能源为一体的综合性物流产业。益阳市响当当物流信息服务有限公司深入开展市场调查,对原有的货物运输主要以大宗商品

为主,以大客户为主,以业务员上门联系为主,忽视集散货物运输的潜在市场,决定在服务大宗商品物流的基础上,把触角伸向集散客户,搭建智能物流服务平台,根据客户需求,完成对客户商品的仓储管理、运输管理、配送管理等物流服务。 信息技术的发展为智慧物流提供了发展的必要条件,而国家大力推进综合物流枢纽建设,支持运用“互联网+智慧物流”,打通城市货运“最后一公里”,为企业提供了政策支持。物流的快速、准确传递,配送订单的自动处理,使下单、保管、运输实现了一体化。为此,公司建设“互联网+智慧物流”平台,通过发展货物集散转运、仓储配送、装卸搬运、加工集拼等基础货运服务新业态,实现网上交易撮合,平台整合资源,货的配送货物,人工装卸搬运。达到方便用户解决货运“最后一公里”,降低物流成本的目的。同时,公司采用新能源汽车作为运输工具,内置GPS定位系统,既可调度就近车辆参与运输,也可满足客户需要追踪货物所在位置,在能源制约、环境污染等大背景下,既可实现绿色物流,也满足了我市智慧城市建设的需要。 公司投入资金450万元,搭建“响当当货嘀”平台,购买新能源汽车51辆,以线上网约、线下配送的形式,打

智慧物流平台V使用手册

智慧物流管理平台(Version 1.0) 使用手册 赣州悦芽科技有限公司 2017年1月10日

平台综述 吉集号平台V1.0平台分为3个部分PC端,APP端,微信端组成,平台有3个角色:企业,物流公司,司机; 平台主要实现找货找车,企业和物流公司具有发布货源权限。货源报价,选择报价签单。签单成功支付费用。司机询价,司机在APP端进行报价,与司机签单。司机来到装货地点对货物进行装货,运输,并送货达到目的地,发货方通过线下确认真实到货后在到订单系统里选择完成订单。评价订单等功能 ◆该系统对用户计算机的要求如下: ?监视器分辨率:推荐使用1024×768,800×600也可; ?IE的版本:要求IE6.0以上版本。 ◆IE浏览器设置 修改IE的设置:从IE的功能菜单上选择:工具->Internet选项->常规->设置,选择“每次访问此页时检查”选项,点击次【确定】按钮,设置完成。分别如下图1、2所示: 图 1 图2 在如上图1页面,切换到【安全】选项卡,进行IE安全设置,首先选择“受信任站点”,并点击【站点】,打开“可信站点”对话框,在添加网站区域以“”的格式添加到“网站”项中,连续点击两次【确定】,设置完成。 图3

第一部分 PC端 1.1 系统登录 1.1.1注册 注册选择身份角色 选择好身份之后,进入注册页面 真实姓名输入框:键入用户的真实姓名。 手机号输入框:键入用户的手机号,手机号为唯一性,已注册的不能再继续注册; 获取验证码:下发短信至用户填写的手机号中 验证码输入框:键入相应的手机短信验证码信息。 密码输入框:键入用户的系统登录口令。 点击【提交】按钮,用户注册成功 1.1.2登录 〗,打开“吉集号”系统登录窗口,如图1-1。 图1-1 平台登录窗口 用户名输入框:键入用户的系统登录名。 密码输入框:键入用户的系统登录密码。 点击【登录】按钮,系统进行身份角色判断,判断成功后进入主页,主界面,若用户名或密码输入错误,则显示图1-2所示的登录窗口,请输入正确的用户名和密码。 图1-2重新登录系统窗口 1.1.3认证账号 刚注册的账号,登录平台主页时,账号是未认证状态, 1.1.4退出登录 点击系统功能菜单的【退出】按钮,退出系统且返回至登录界面。

智能物流系统方案简介

一、 系统概述 该系统是北斗(或GPS )定位技术和Zigbee 区域定位技术相结合的先进的物流货运管理系统。该系统的使用可以有效降低运载车辆的管理难度,随时受控车辆信息。 通过随车部署的北斗(或GPS )定位终端设备监测车辆是否运行在规定线路上及其实时的具体位置,通过GPRS (或SMS )功能实时上报车辆位置信息及其状态信息以及被监测的托盘状态信息到运营中心,以达到监测车辆及随车托盘在各个城市及不同城市之间运行的整个过程。无论被监测托盘车辆在什么地方,运营中心的监控界面都可以实时显示其所在的具体位置信息和状态信息。 每个车辆随车安装一台北斗(或GPS )定位终端设备,该设备的功能有三个,一、定位车辆的实时位置;二、接收网关设备监测到的托盘的状态信息;三、发送车辆及装载托盘的实时位置信息和状态信息。 系统布设时根据每个车辆装载的托盘的具体规格,会在每个托盘上部署不同数量或规格的有源标签,在每个车辆驾驶室内安装定位网关设备,以达到将随车托盘定位到车辆的网关设备无线信号覆盖的区域内。网关设备实时读取为每个托盘配置的不同ZigBee 电子标签上的数据信息。网关设备与定位终端设备连接,将随车托盘的状态信息通过GPRS (或SMS )网络传回计算机监控中心,实现对车辆随车装载托盘的实时监测。 智能物流系统方案简介 【最新资料,WORD 文档,可编辑修改】

第一批试点工程部署在北京、郑州、广州三个城市及城市之间路段。三个城市之间车辆对开,车辆总共需要300辆,托盘箱周转周期设定10天,托盘箱共需要25200个。 二、系统特点 实时北斗(或GPS)定位追踪:实现运输车辆24小时实时北斗(或GPS)定位、车辆位置追踪,通过运营中心的系统平台监测到车辆的地理位置信息。 针对大型物流配送中心、自营分销企业、电子商务企业等的大型物流管理系统,在传统的进销存基础上,更加注重货物的仓储和运输的过程实时状态监控、管理、费用结算和成本控制、形成更加全面的分销物流信息化管理体系。 ?全互联网化,实现采购部、销售部、仓储物流部和财务部的协同处理、实时查询。 ?实现货物物流过程的全程监控 ?支持运输计划、调车、发运、跟踪、签收和考核多节点信息贯穿始终。 ?支持跨区域多库房数据集中管理。 ?可选移动PDA设备,支持发运、签收环节的数据实时上传服务器。 ?多种GPS接口完成到场、到达和过程的自动监控和差错对证。 ?可与物流系统接口,实现货物配送状态的自动跟踪。 ?提供正规短信平台,自动发出订单和货物变动通知。 系统优势: 1. 区别于传统进销存增加物流管理

智能物流系统方案简介

智能物流系统方案简介 【最新资料,WORD文档,可编辑修改】 一、系统概述 该系统是北斗(或GPS)定位技术和Zigbee区域定位技术相结合的先进的物流货运管理系统。该系统的使用可以有效降低运载车辆的管理难度,随时受控车辆信息。 通过随车部署的北斗(或GPS)定位终端设备监测车辆是否运行在规定线路上及其实时的具体位置,通过GPRS(或SMS)功能实时上报车辆位置信息及其状态信息以及被监测的托盘状态信息到运营中心,以达到监测车辆及随车托盘在各个城市及不同城市之间运行的整个过程。无论被监测托盘车辆在什么地方,运营中心的监控界面都可以实时显示其所在的具体位置信息和状态信息。 每个车辆随车安装一台北斗(或GPS)定位终端设备,该设备的功能有三个,一、定位车辆的实时位置;二、接收网关设备监测到的托盘的状态信息;三、发送车辆及装载托盘的实时位置信息和状态信息。 系统布设时根据每个车辆装载的托盘的具体规格,会在每个托盘上部署不同数量或规格的有源标签,在每个车辆驾驶室内安装定位网关设备,以达到将随车托盘定位到车辆的网关设备无线信号覆盖的区域内。网关设备实时读取为每个托盘配置的不同ZigBee电子标签上的数据信息。网关设备与定位终端设备连接,将随车托盘的状态信息通过GPRS(或SMS)网络传回计算机监控中心,实现对车辆随车装载托盘的实时监测。 第一批试点工程部署在北京、郑州、广州三个城市及城市之间路段。三个城市之间车

辆对开,车辆总共需要300辆,托盘箱周转周期设定10天,托盘箱共需要25200个。二、系统特点 实时北斗(或GPS)定位追踪:实现运输车辆24小时实时北斗(或GPS)定位、车辆位置追踪,通过运营中心的系统平台监测到车辆的地理位置信息。 针对大型物流配送中心、自营分销企业、电子商务企业等的大型物流管理系统,在传统的进销存基础上,更加注重货物的仓储和运输的过程实时状态监控、管理、费用结算和成本控制、形成更加全面的分销物流信息化管理体系。 全互联网化,实现采购部、销售部、仓储物流部和财务部的协同处理、实时 查询。 实现货物物流过程的全程监控 支持运输计划、调车、发运、跟踪、签收和考核多节点信息贯穿始终。 支持跨区域多库房数据集中管理。 可选移动PDA设备,支持发运、签收环节的数据实时上传服务器。 多种GPS接口完成到场、到达和过程的自动监控和差错对证。 可与物流系统接口,实现货物配送状态的自动跟踪。 提供正规短信平台,自动发出订单和货物变动通知。 系统优势:

智能物流系统方案设计简介

系统介绍 一、系统概述 该系统就是北斗(或GPS)定位技术与Zigbee区域定位技术相结合的先进的物流货运管理系统。该系统的使用可以有效降低运载车辆的管理难度,随时受控车辆信息。 通过随车部署的北斗(或GPS)定位终端设备监测车辆就是否运行在规定线路上及其实时的具体位置,通过GPRS(或SMS)功能实时上报车辆位置信息及其状态信息以及被监测的托盘状态信息到运营中心,以达到监测车辆及随车托盘在各个城市及不同城市之间运行的整个过程。无论被监测托盘车辆在什么地方,运营中心的监控界面都可以实时显示其所在的具体位置信息与状态信息。 每个车辆随车安装一台北斗(或GPS)定位终端设备,该设备的功能有三个,一、定位车辆的实时位置;二、接收网关设备监测到的托盘的状态信息;三、发送车辆及装载托盘的实时位置信息与状态信息。 系统布设时根据每个车辆装载的托盘的具体规格,会在每个托盘上部署不同数量或规格的有源标签,在每个车辆驾驶室内安装定位网关设备,以达到将随车托盘定位到车辆的网关设备无线信号覆盖的区域内。网关设备实时读取为每个托盘配置的不同ZigBee电子标签上的数据信息。网关设备与定位终端设备连接,将随车托盘的状态信息通过GPRS(或SMS)网络传回计算机监控中心,实现对车辆随车装载托盘的实时监测。 第一批试点工程部署在北京、郑州、广州三个城市及城市之间路段。三个

城市之间车辆对开,车辆总共需要300辆,托盘箱周转周期设定10天,托盘箱共需要25200个。 二、系统特点 实时北斗(或GPS)定位追踪:实现运输车辆24小时实时北斗(或GPS)定位、车辆位置追踪,通过运营中心的系统平台监测到车辆的地理位置信息。 针对大型物流配送中心、自营分销企业、电子商务企业等的大型物流管理系统,在传统的进销存基础上,更加注重货物的仓储与运输的过程实时状态监控、管理、费用结算与成本控制、形成更加全面的分销物流信息化管理体系。 ?全互联网化,实现采购部、销售部、仓储物流部与财务部的协同处理、实时查询。 ?实现货物物流过程的全程监控 ?支持运输计划、调车、发运、跟踪、签收与考核多节点信息贯穿始终。 ?支持跨区域多库房数据集中管理。 ?可选移动PDA设备,支持发运、签收环节的数据实时上传服务器。 ?多种GPS接口完成到场、到达与过程的自动监控与差错对证。 ?可与物流系统接口,实现货物配送状态的自动跟踪。 ?提供正规短信平台,自动发出订单与货物变动通知。 系统优势:

什么是物流平台

物流成本指物流过程中所耗费的各种资源的货币表现,是物品在实体运动过程中,如包装、装卸、运输、储存、流通加工、论文发表物流信息等各个环节所支出的人力、物力、财力的总和。在强调提高产品附加值的激烈竞争时代,通过对物流成本的有效把握,利用物流各个要素之间的关系,科学、合理地组织物流活动,可以使企业以低在库水准和大量的输送最大限度地降低物流成本。目前我国的制造业企业对物流成本的管理重视不够。基于对物流成本有效管理的重大意义,本文对我国制造业企业可以采用的物流成本管理模式探讨如下: 一、供应链管理 供应链是产品生产和流通中所涉及的原材料供应商、生产商、批发商、零售商及最终消费者组成的供需网络。把供货商、生产商、销售商等在一条供应链上的所有节点企业联系起来进行优化,使生产资料以最快的速度通过各个环节到达客户手中,这就是供应链管理(Supply Chain Management,SCM)。下图是制造企业的供应链的结构: 设计供应链系统时,需要在时间、空间和生产资源三方面对企业进行重新规划。时间上对企业的生产制造和供应流程进行重构,使产品的差异点尽量在靠近最终顾客的时间点完成。空间上充分考虑生产区与客户和供应商之间的合理布局,减少产品运输时间,避免不必要的库存,降低运输成本和储存成本。在生产上统一管理所有供应商的物料,使其成为一个整体,降低了企业的采购成本,并保证了企业充分的物资供应。合理选址是供应链管理的重要组成部分,为供应链中的各个组成部分寻找最佳的地理位置关系到企业的长期发展。在选择位 置时,必须考虑以下几个因素:客户所在地、供应商所在地、直接成本、间接成本。下面是企业运输成本随位置而改变的变化图: 制造业物流成本管理模式的探讨

工业4.0中智能工厂、智能生产、智能物流的系统介绍

工业4.0中的智能工厂、智能生产、智能物流 --面向工业4.0的智能工厂 智能工厂是构成工业4.0的核心元素。在智能工厂内不仅要求单体设备是智能的,而且要求工厂内的所有设施、设备与资源(机器、物流器具、原材料、产品等)实现互通互联,以满足智能生产和智能物流的要求。通过互联网等通信网络,使工厂内外的万物互联,形成全新的业务模式。 从某种意义上说,工业4.0是用CPS系统对生产设备进行智能升级,使其可以智能地根据实时信息进行分析、判断、自我调整、自动驱动生产,构成一个具有自律分散型系统(ADS)的智能工厂,最终实现制造业的大规模、低成本定制化生产。 在建设智能工厂时,要重点关注模块化、数字化、自动化和智能化四大技术课题。模块化是实现智能工厂规模化生产和客户需求个性化定制的前提条件,这需要主要零部件供应商向模块供应商转型,全程参与产品设计、供应模式选择以及单元化物流的规划。 数字化,纵向看是实现工厂内各个层面,乃至每台设备数字化建模与互联互通;横向看,是打造从客户需求,到产品设计、供应商集成、制造以及物流服务的全流程供应链集成体系。 智能化,制造企业应搭建一个虚实融合系统,根据客户个性化定制需求,实现虚拟的设计、制造与装配,再通过智能工厂完成生产制造过程,有效解决定制产品周期长、效率低、成本高的问题。在智能工厂里企业可与客户实现零距离对话,客户也可通过多种方式参与到产品“智造”全过程中来。 面向工业4.0的智能生产 工业4.0时代,随着信息技术向制造业全面渗入,可实现对生产要素的高灵

活配置和大规模定制化生产,由此打破传统的生产流程、生产模式及管理方式。 未来是智能联网式生产的时代,不仅是单一工厂、而是企业多个工厂之间将通过联网构建起虚拟制造体系,为企业生产提供全面智能支持。而标准化、模块化和数字化的产品设计,是实现智能生产的前提。 德国汽车工业已率先引入低成本客户化定制的概念,产品设计实现了标准化与模块化,生产制造实现了全面信息化与深度自动化,基本达到了智能生产、智能装配、智能物流以及智能供应链管理。 以宝马3系为例,从325i到335i多个车型的发动机共用同一产线,绝大部分硬件是通用的,只是通过选配不同的电控和软件产品来实现发动机产品多样化,这种低成本、定制化生产的核心基础即是标准化。为此,宝马能在不改变生产节拍的前提下,实现每台下线车型都能满足大规模定制的市场需求,即每一台宝马汽车都是根据客户化定制生产出来的。 工业4.0时代的制造企业不再自上而下地推动生产,而是从客户需求开始,实现订单、客户化设计,采购、物流、生产计划到生产的全流程拉式生产,并通过虚实融合实现各环节的互通互联。这种高效灵活的拉动生产方式也代表着制造业未来的发展方向。 面向工业4.0的智能物流 工业4.0时代,客户需求高度个性化,产品创新周期继续缩短,生产节拍不断加快,这些不仅是智能生产面临的重要课题,也是对支撑生产的物流系统提出的巨大挑战。 智能物流是工业4.0核心组成部分。在工业4.0智能工厂框架内,智能物流是联接供应、制造和客户的重要环节,也是构建未来智能工厂的基石。智能单元化物流技术、自动物流装备以及智能物流信息系统是打造智能物流的核心元素。

智能物流系统方案简介完整版

智能物流系统方案简介 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

一、 系统概述 该系统是北斗(或GPS )定位技术和Zigbee 区域定位技术相结合的先进的物流货运管理系统。该系统的使用可以有效降低运载车辆的管理难度,随时受控车辆信息。 通过随车部署的北斗(或GPS )定位终端设备监测车辆是否运行在规定线路上及其实时的具体位置,通过GPRS (或SMS )功能实时上报车辆位置信息及其状态信息以及被监测的托盘状态信息到运营中心,以达到监测车辆及随车托盘在各个城市及不同城市之间运行的整个过程。无论被监测托盘车辆在什么地方,运营中心的监控界面都可以实时显示其所在的具体位置信息和状态信息。 每个车辆随车安装一台北斗(或GPS )定位终端设备,该设备的功能有三个,一、定位车辆的实时位置;二、接收网关设备监测到的托盘的状态信息;三、发送车辆及装载托盘的实时位置信息和状态信息。 系统布设时根据每个车辆装载的托盘的具体规格,会在每个托盘上部署不同数量或规格的有源标签,在每个车辆驾驶室内安装定位网关设备,以达到将随车托盘定位到车辆的网关设备无线信号覆盖的区域内。网关设备实时读取为每个托盘配置的不同ZigBee 电子标签上的数据信息。网关设备与定位终端设备连接,将随车托盘的状态信息通过GPRS 智能物流系统方案简介 【最新资料,WORD 文档,可编辑修改】

(或SMS)网络传回计算机监控中心,实现对车辆随车装载托盘的实时监测。 第一批试点工程部署在北京、郑州、广州三个城市及城市之间路段。三个城市之间车辆对开,车辆总共需要300辆,托盘箱周转周期设定10天,托盘箱共需要25200个。 二、系统特点 实时北斗(或GPS)定位追踪:实现运输车辆24小时实时北斗(或GPS)定位、车辆位置追踪,通过运营中心的系统平台监测到车辆的地理位置信息。 针对大型物流配送中心、自营分销企业、电子商务企业等的大型物流管理系统,在传统的进销存基础上,更加注重货物的仓储和运输的过程实时状态监控、管理、费用结算和成本控制、形成更加全面的分销物流信息化管理体系。 全互联网化,实现采购部、销售部、仓储物流部和财务部的 协同处理、实时查询。 实现货物物流过程的全程监控 支持运输计划、调车、发运、跟踪、签收和考核多节点信息 贯穿始终。 支持跨区域多库房数据集中管理。 可选移动PDA设备,支持发运、签收环节的数据实时上传服 务器。 多种GPS接口完成到场、到达和过程的自动监控和差错对 证。

物流系统介绍

系统简介 库存管理系统利用计算机和软件的优势,使库存管理人员从原来繁琐低效的纯人工纸质管理模式中解脱出来,操作员只需要将入库、出库单据录入到系统后,即可享有以下服务: 1、随时了解库存状况,并对库存信息的进行有效的管理; 2、随时生成、打印或使用系统提供的管理报表和统计分析功能; 3、通过智能化预警提醒功能,提前及时了解即将需要开展的工作。这些提醒信息包括库存数量预警、寿命件使用预警、有效期预警、库存货位预警等信息; 这些功能能够有效保证库存管理工作的质量,显著提高库管的工作效率,降低库管工作成本。 系统包含入库管理、出库管理、管理报表、统计分析、预警提示、备份恢复等模块。系统提供统一的用户管理和认证,保证用户管理的科学性和易用性;操作权限控制到每个功能点;所有的入库和出库操作都包含复核功能,经复核后的数据操作员不能再修改;同时系统将所有修改数据的操作记录日志,并保存在数据库中,方便查询,有效保证了系统运行的安全性和可靠性。 系统功能简介 1、预警管理 预警管理包括库存物品预警和库存货位预警,库存物品预警又分为库存数量预警、寿命件使用预警、有效期预警、物品定期维护提醒方面的功能。 库存物品预警 为了使库存中的设备物品数量、质量始终处于满足预期要求的状态,有效保障生产工作的正常进行,我们可以为相关设备物品的数量或质量设定一个阈值,当库存数据达不到正常库存要求时发出预警信息,提醒补充设备物品的数量或保证产品质量等信息。 库存预警分为以下几种: 2、库存管理报表 提供了系统各种操作数据的明细和汇总,包括入库、出库的明细和汇总,以及各分项如采购入库、领用归还、借货入库、借出还入、领用出库、退货出库、借入归还、借货出库、库存调拨、库存盘点、库存报废等功能的明细和汇总数据。 3、统计分析 统计分析模块包括库存发生汇总统计和明细统计、库存资产统计和库存资产折旧统计等功能。 机要仓库物资管理系统

工业4.0中智能工厂、智能生产、智能物流的系统介绍

工业4.0中的智能工厂、智能生产、智能物流 --面向工业4.0的智能工厂 智能工厂是构成工业4.0的核心元素。在智能工厂内不仅要求单体设备是智能的,而且要求工厂内的所有设施、设备与资源(机器、物流器具、原材料、产品等)实现互通互联,以满足智能生产和智能物流的要求。通过互联网等通信网络,使工厂内外的万物互联,形成全新的业务模式。 从某种意义上说,工业4.0是用CPS系统对生产设备进行智能升级,使其可以智能地根据实时信息进行分析、判断、自我调整、自动驱动生产,构成一个具有自律分散型系统(ADS)的智能工厂,最终实现制造业的大规模、低成本定制化生产。 在建设智能工厂时,要重点关注模块化、数字化、自动化和智能化四大技术课题。模块化是实现智能工厂规模化生产和客户需求个性化定制的前提条件,这需要主要零部件供应商向模块供应商转型,全程参与产品设计、供应模式选择以及单元化物流的规划。 数字化,纵向看是实现工厂内各个层面,乃至每台设备数字化建模与互联互通;横向看,是打造从客户需求,到产品设计、供应商集成、制造以及物流服务的全流程供应链集成体系。 智能化,制造企业应搭建一个虚实融合系统,根据客户个性化定制需求,实现虚拟的设计、制造与装配,再通过智能工厂完成生产制造过程,有效解决定制产品周期长、效率低、成本高的问题。在智能工厂里企业可与客户实现零距离对话,客户也可通过多种方式参与到产品“智造”全过程中来。 面向工业4.0的智能生产 工业4.0时代,随着信息技术向制造业全面渗入,可实现对生产要素的高灵活配置和大规模定制化生产,由此打破传统的生产流程、生产模式及管理方式。 未来是智能联网式生产的时代,不仅是单一工厂、而是企业多个工厂之间将通过联网构建起虚拟制造体系,为企业生产提供全面智能支持。而标准化、模块

物流系统介绍

系统简介 ????库存管理系统利用计算机和软件的优势,使库存管理人员从原来繁琐低效的纯人工纸质管理模式中解脱出来,操作员只需要将入库、出库单据录入到系统后,即可享有以下服务: ????1、随时了解库存状况,并对库存信息的进行有效的管理; ????2、随时生成、打印或使用系统提供的管理报表和统计分析功能; ????3、通过智能化预警提醒功能,提前及时了解即将需要开展的工作。这些提醒信息包括库存数量预警、寿命件使用预警、有效 ???? ???? 1 ???? ???? 2 ???? 3、统计分析 ????统计分析模块包括库存发生汇总统计和明细统计、库存资产统计和库存资产折旧统计等功能。 机要仓库物资管理系统

系统简介 ????机要仓库管理系统是专门为机要仓库开发的库存物资管理系统,通过系统的建设,实现对机要仓库物资的信息化管理,提高库管工作效率和质量,增加库管信息的传递和处理效率,为仓库物资的科学管理提供有力支持。 系统功能简介 1、库存管理模块 ????库存管理模块提供库存日常管理所需的各种功能,包括对装备入库、出库、借出还回、报废和更 ???? 功能。 3、 ????“ 用性。 ????

仓储管理系统(L-WMS) 作者:admin???发布日期:2009-10-1309:40:12??? ??系统概述? ???Logis-Warehouse系列仓储管理系统是北京络捷斯特科技发展有限公司在长期物流信息化建设的基础上,借鉴国外先进物流系统设计理念和成熟物流运作经验,研制开发的一系列具有自主知识产权,符合国内物流运作及 ??? 、MRPII、OA ?? ·收货 ???)、配送 ??? EDI 货品经流通加工移入货架上的储位等等。同时,系统通过储位管理模块提供建议性的储位以实现仓库存放空间的最大利用。 ·出货 ???出货与收货是相反的两个作业流程。客户的订单录入系统,系统产生拣货单,客户订单的货品经拣取过程后配送出库。出货程序管理能够加速客户订单的履行与仓库货品的管理。 ???系统能够对配送进行管理,根据路线选择货品配载,车辆调度等等。

智能物流系统方案简介

智能物流系统方案 简介

系统介绍 一、系统概述 该系统是北斗(或GPS)定位技术和Zigbee区域定位技术相结合的先进的物流货运管理系统。该系统的使用能够有效降低运载车辆的管理难度,随时受控车辆信息。 经过随车部署的北斗(或GPS)定位终端设备监测车辆是否运行在规定线路上及其实时的具体位置,经过GPRS(或SMS)功能实时上报车辆位置信息及其状态信息以及被监测的托盘状态信息到运营中心,以达到监测车辆及随车托盘在各个城市及不同城市之间运行的整个过程。无论被监测托盘车辆在什么地方,运营中心的监控界面都能够实时显示其所在的具体位置信息和状态信息。 每个车辆随车安装一台北斗(或GPS)定位终端设备,该设备的功能有三个,一、定位车辆的实时位置;二、接收网关设备监测到的托盘的状态信息;三、发送车辆及装载托盘的实时位置信息和状态信息。 系统布设时根据每个车辆装载的托盘的具体规格,会在每个托盘上部署不同数量或规格的有源标签,在每个车辆驾驶室内安装定位网关设备,以达到将随车托盘定位到车辆的网关设备无线信号覆盖的区域内。网关设备实时读取为每个托盘配置的不同ZigBee电子标签上的数据信息。网关设备与定位终端设备连接,将随车托盘的状态信息经过GPRS(或SMS)网络传回计算机监控中心,实现对车辆随车装载托盘的实时监测。 第一批试点工程部署在北京、郑州、广州三个城市及城市之间路段。三个城市之间车辆对开,车辆总共需要300辆,托盘箱周转周期设定10天,托盘箱共需要25200个。

二、系统特点 实时北斗(或GPS)定位追踪:实现运输车辆24小时实时北斗(或GPS)定位、车辆位置追踪,经过运营中心的系统平台监测到车辆的地理位置信息。 针对大型物流配送中心、自营分销企业、电子商务企业等的大型物流管理系统,在传统的进销存基础上,更加注重货物的仓储和运输的过程实时状态监控、管理、费用结算和成本控制、形成更加全面的分销物流信息化管理体系。 ?全互联网化,实现采购部、销售部、仓储物流部和财务部的协同处理、实时查询。 ?实现货物物流过程的全程监控 ?支持运输计划、调车、发运、跟踪、签收和考核多节点信息贯穿始终。 ?支持跨区域多库房数据集中管理。 ?可选移动PDA设备,支持发运、签收环节的数据实时上传服务器。 ?多种GPS接口完成到场、到达和过程的自动监控和差错对证。 ?可与物流系统接口,实现货物配送状态的自动跟踪。 ?提供正规短信平台,自动发出订单和货物变动通知。 系统优势:

智能物流系统方案简介

智能物流系统方案简介文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

一、 系统概述 该系统是北斗(或GPS )定位技术和Zigbee 区域定位技术相结合的先进的物流货运管理系统。该系统的使用可以有效降低运载车辆的管理难度,随时受控车辆信息。 通过随车部署的北斗(或GPS )定位终端设备监测车辆是否运行在规定线路上及其实时的具体位置,通过GPRS (或SMS )功能实时上报车辆位置信息及其状态信息以及被监测的托盘状态信息到运营中心,以达到监测车辆及随车托盘在各个城市及不同城市之间运行的整个过程。无论被监测托盘车辆在什么地方,运营中心的监控界面都可以实时显示其所在的具体位置信息和状态信息。 每个车辆随车安装一台北斗(或GPS )定位终端设备,该设备的功能有三个,一、定位车辆的实时位置;二、接收网关设备监测到的托盘的状态信息;三、发送车辆及装载托盘的实时位置信息和状态信息。 系统布设时根据每个车辆装载的托盘的具体规格,会在每个托盘上部署不同数量或规格的有源标签,在每个车辆驾驶室内安装定位网关设备,以达到将随车托盘定位到车辆的网关设备无线信号覆盖的区域内。网关设备实时读取为每个托盘配置的不同ZigBee 电子标签上的数据信息。网关设备与定位终端设备连接,将随车托盘的状态信息通过GPRS (或SMS )网络传回计算机监控中心,实现对车辆随车装载托盘的实时监测。 智能物流系统方案简介 【最新资料,WORD 文档,可编辑修改】

第一批试点工程部署在北京、郑州、广州三个城市及城市之间路段。三个城市之间车辆对开,车辆总共需要300辆,托盘箱周转周期设定10天,托盘箱共需要25200个。 二、系统特点 实时北斗(或GPS)定位追踪:实现运输车辆24小时实时北斗(或GPS)定位、车辆位置追踪,通过运营中心的系统平台监测到车辆的地理位置信息。 针对大型物流配送中心、自营分销企业、电子商务企业等的大型物流管理系统,在传统的进销存基础上,更加注重货物的仓储和运输的过程实时状态监控、管理、费用结算和成本控制、形成更加全面的分销物流信息化管理体系。 全互联网化,实现采购部、销售部、仓储物流部和财务部的协同处理、 实时查询。 实现货物物流过程的全程监控 支持运输计划、调车、发运、跟踪、签收和考核多节点信息贯穿始终。 支持跨区域多库房数据集中管理。 可选移动PDA设备,支持发运、签收环节的数据实时上传服务器。 多种GPS接口完成到场、到达和过程的自动监控和差错对证。 可与物流系统接口,实现货物配送状态的自动跟踪。 提供正规短信平台,自动发出订单和货物变动通知。 系统优势: 1. 区别于传统进销存增加物流管理 软件的使用,强制操作人员业务关键数据的记录和保存,使得业务操作的规范得以贯彻执行、重要业务数据保留下来,摆脱以往人为因素的影响,企业管理者掌握得到最新、最全的经营信息。

物流系统介绍

物流系统介绍 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

系统简介 库存管理系统利用计算机和软件的优势,使库存管理人员从原来繁琐低效的纯人工纸质管理模式中解脱出来,操作员只需要将入库、出库单据录入到系统后,即可享有以下服务: 1、随时了解库存状况,并对库存信息的进行有效的管理; 2、随时生成、打印或使用系统提供的管理报表和统计分析功能; 3、通过智能化预警提醒功能,提前及时了解即将需要开展的工作。这些提醒信息包括库存数量预警、寿命件使用预警、有效期预警、库存货位预警等信息; 这些功能能够有效保证库存管理工作的质量,显着提高库管的工作效率,降低库管工作成本。 系统包含入库管理、出库管理、管理报表、统计分析、预警提示、备份恢复等模块。系统提供统一的用户管理和认证,保证用户管理的科学性和易用性;操作权限控制到每个功能点;所有的入库和出库操作都包含复核功能,经复核后的数据操作员不能再修改;同时系统将所有修改数据的操作记录日志,并保存在数据库中,方便查询,有效保证了系统运行的安全性和可靠性。 系统功能简介 1、预警管理

预警管理包括库存物品预警和库存货位预警,库存物品预警又分为库存数量预警、寿命件使用预警、有效期预警、物品定期维护提醒方面的功能。 库存物品预警 为了使库存中的设备物品数量、质量始终处于满足预期要求的状态,有效保障生产工作的正常进行,我们可以为相关设备物品的数量或质量设定一个阈值,当库存数据达不到正常库存要求时发出预警信息,提醒补充设备物品的数量或保证产品质量等信息。 库存预警分为以下几种: 2、库存管理报表 提供了系统各种操作数据的明细和汇总,包括入库、出库的明细和汇总,以及各分项如采购入库、领用归还、借货入库、借出还入、领用出库、退货出库、借入归还、借货出库、库存调拨、库存盘点、库存报废等功能的明细和汇总数据。3、统计分析 统计分析模块包括库存发生汇总统计和明细统计、库存资产统计和库存资产折旧统计等功能。 机要仓库物资管理系统

智能物流物联网公共信息平台项目技术方案(DOC 25页)

智能物流物联网公共信息平台项目技术方案(DOC 25页)

智能物流物联网公共信息平台项目 技术方案

术语 RFID:RFID技术是一种无接触自动识别技术,其基本原理是利用射频信号及其空间耦合、传输特性,实现对静止的或移动中的 待识别物品的自动机器识别。射频识别系统一般由两个部分 组成,即电子标签和阅读器。应用中,电子标签附着在待识 别的物品上,当附着电子标签的待识别物品通过读出范围时, 阅读器自动以无接触的方式远距离将电子标签中的约定识别 信息取出(阅读器可同时读取50个或者以上的标签的数据), 从而实现自动识别物品或自动收集物品标识信息的功能。 3G:第三代移动通信技术(3rd-generation,3G),是指支持高速数据传输的蜂窝移动通讯技术。3G服务能够同时传送声音及 数据信息,速率一般在几百kbps以上。目前3G存在四种标 准:CDMA2000,WCDMA,TD-SCDMA,WiMAX。 GPS:全球定位系统(Global Positioning System,通常简称GPS),又称全球卫星定位系统,是一个中距离圆型轨道卫星导航系 统。它可以为地球表面绝大部分地区(98%)提供准确的定位、 测速和高精度的时间标准。 GIS:地理信息系统 (GIS, Geographic Information System) 是一种基于计算机的工具,它可以对在地球上存在的东西和发 生的事件进行成图和分析。 GIS 技术把地图这种独特的视觉 化效果和地理分析功能与一般的数据库操作(例如查询和统 计分析等)集成在一起。这种能力使 GIS与其他信息系统相 区别,从而使其在广泛的公众和个人企事业单位中解释事件、 预测结果、规划战略等中具有实用价值。 J2EE:Java的企业级框架。 SaaS: Software-as-a-service-软件即服务,SaaS的中文名称为软营或软件运营。SaaS是基于互联网提供软件服务的软件应用 模式。作为一种在21世纪开始兴起的创新的软件应用模式, SaaS是软件科技发展的最新趋势。

智能物流系统方案简介

一、 系统概述 该系统是北斗(或GPS )定位技术和Zigbee 区域定位技术相结合的先进的物流货运管理系统。该系统的使用可以有效降低运载车辆的管理难度,随时受控车辆信息。 通过随车部署的北斗(或GPS )定位终端设备监测车辆是否运行在规定线路上及其实时的具体位置,通过GPRS (或SMS )功能实时上报车辆位置信息及其状态信息以及被监测的托盘状态信息到运营中心,以达到监测车辆及随车托盘在各个城市及不同城市之间运行的整个过程。无论被监测托盘车辆在什么地方,运营中心的监控界面都可以实时显示其所在的具体位置信息和状态信息。 每个车辆随车安装一台北斗(或GPS )定位终端设备,该设备的功能有三个,一、定位车辆的实时位置;二、接收网关设备监测到的托盘的状态信息;三、发送车辆及装载托盘的实时位置信息和状态信息。 系统布设时根据每个车辆装载的托盘的具体规格,会在每个托盘上部署不同数量或规格的有源标签,在每个车辆驾驶室内安装定位网关设备,以达到将随车托盘定位到车辆的网关设备无线信号覆盖的区域内。网关设备实时读取为每个托盘配置的不同ZigBee 电子标签上的数据信息。网关设备与定位终端设备连接,将随车托盘的状态信息通智能物流系统方案简介 【最新资料,WORD 文档,可编辑修改】

过GPRS(或SMS)网络传回计算机监控中心,实现对车辆随车装载托盘的实时监测。 第一批试点工程部署在北京、郑州、广州三个城市及城市之间路段。三个城市之间车辆对开,车辆总共需要300辆,托盘箱周转周期设定10天,托盘箱共需要25200个。 二、系统特点 实时北斗(或GPS)定位追踪:实现运输车辆24小时实时北斗(或GPS)定位、车辆位置追踪,通过运营中心的系统平台监测到车辆的地理位置信息。 针对大型物流配送中心、自营分销企业、电子商务企业等的大型物流管理系统,在传统的进销存基础上,更加注重货物的仓储和运输的过程实时状态监控、管理、费用结算和成本控制、形成更加全面的分销物流信息化管理体系。 全互联网化,实现采购部、销售部、仓储物流部和财务部 的协同处理、实时查询。 实现货物物流过程的全程监控 支持运输计划、调车、发运、跟踪、签收和考核多节点信 息贯穿始终。 支持跨区域多库房数据集中管理。 可选移动PDA设备,支持发运、签收环节的数据实时上传 服务器。 多种GPS接口完成到场、到达和过程的自动监控和差错对 证。

相关主题