搜档网
当前位置:搜档网 › 用瑞利_李兹法求解瞬时非稳态滑动轴承油膜力的新算法

用瑞利_李兹法求解瞬时非稳态滑动轴承油膜力的新算法

用瑞利_李兹法求解瞬时非稳态滑动轴承油膜力的新算法
用瑞利_李兹法求解瞬时非稳态滑动轴承油膜力的新算法

油膜+滚动轴承

油膜轴承的基础知识 一、什么是油膜轴承? 油膜轴承是液体摩擦轴承的一种形式;按润滑系统供油压力的高低可分为静压轴承、静—动压轴承、动压轴承,通常习惯称动压轴承为油膜轴承。油膜轴承由锥套、衬套、滚动止推轴承、回转密封、轴端锁紧装置等部分组成;或者说是轧辊一端所安装的全 部零、部件的统称。 油膜轴承(动压轴承)是一种流体动力润滑的闭式滑动轴承。在轴承工作时,带锥形 内孔的锥套(锥度约1:5的锥形内孔与轧辊相联接)与轴承衬套(固定在轴承座内)工作面之间形成油楔(即收敛的楔形间隙);当轧辊旋转时,锥套的工作面将具有一 定粘度的润滑油带入油楔,润滑油产生动压力;当沿接触区域的动压力之和与轴承上 的径向载荷相平衡时,锥形轴套与轴承衬套被一层极薄的动压油膜隔开,轴承在液体 摩擦状态下工作。动压轴承的压力分布是不均匀的,而且,由于相对间隙、滑动速度、润滑油粘度及锥、衬套的表面变形等不同而不同,其峰值压力区越小(即压力分布尖锐)承载能力就越低。美国的摩根工程公司研制的Morgoil油膜轴承是其技术发展的典型代表,太原重工则是国内制造大型油膜轴承的唯一生产厂家。 二、油膜轴承形成的机理 动压轴承油膜的形成与轴套表面的线速度、油的粘度、间隙、径向载荷等外界条件有 密切关系。可用雷诺方程描述: —油的绝对粘度 —轴套表面的线速度 ★动压轴承(油膜轴承)保持液体摩擦的条件: 1、楔形间隙、即h-hmin≠常数 2、足够的旋转速度v 3、合适的间隙

4、足够的粘度、适当的纯净润滑油 5、轴套外表面和轴承衬的内表面应有足够的精度和光洁度 在可逆式中厚板轧机上能否使用油膜轴承,在最大载荷的前提下取决于最低的咬入速 度和轧制节奏;中厚板轧机的油膜轴承使用的均为高粘度的润滑油,油膜的消失滞后 于轧机的制动,只要轧机可逆运转的间隔时间小于油膜消失的时间,油膜轴承就能满 足使用。 三、油膜轴承的发展 二十世纪三十年代美国摩根工程公司首先把油膜轴承应用于轧机上至今,油膜轴承的 技术已发生了巨大的进步。 1、结构上的改变 A、油膜轴承锥套与轧辊的联接,从最初的承载区的键联接发展到今天的承载区无键联接,消除了锥套在键联接处受力的作用产生变形而导致的板厚呈周期性的波动; B、油膜轴承的轴向锁紧装置由机械锁紧发展到液压锁紧,极大的方便了油膜轴承的拆装,减轻了装配的劳动强度; C、油膜轴承的轴向定位方式,由止推法兰演变到单端止推轴承加轴向拉杆的方式,再发展到目前的双端止推轴承的结构形式,有效地控制了辊的轴向窜动,改善了密封效果。 注:采用滚动轴承止推的注意事项:滚动轴承的外座圈与轴承箱之间要有足够的间隙,保证在油膜厚度(或者说偏心率)变化的任何时刻,在径向自由移动不承受径向力; 单独的供油系统,根据轧制速度供给充足的润滑油。 D、环保型的巴氏合金的开发、使用极大地改善了材料的蠕变性能,使衬套的寿命更长。 E、锥套结构尺寸的改变提高了油膜轴承的承载能力(即承载区的有键连接发展到无键连接)。 2、密封结构型式的进步 油膜轴承密封的作用,其一,防止油膜轴承的润滑油外泄,其二是避免轧辊冷却水、 润滑乳化液及氧化铁皮等进入到润滑系统中,污染润滑油导致润滑失效;任何形式的 接触密封随着服役期的延长,其密封效果都将下降,直至失效;油膜轴承的密封式消 耗件。当今油膜轴承普遍使用的密封是DF密封,摩根油膜轴承在DF密封的基础上又开发出新一代的HD密封加挡水板的组合结构。

油膜轴承

油膜轴承是一种主要表面加工精度、表面粗糙度以及相关参数匹配非常理想的滑动轴承,它的主要特点有: 1、承载能力大,轴承的外径相同油膜轴承的承载能力要远大于滚动轴承。 2、使用寿命长:从原理上讲,油膜轴承是不会发生磨损的。但是实际上,即使正确的使用和妥善地维护,也是要发生磨损的,只是很轻微而已。其理论上寿命可达15年左右,一般实际由于润滑和轧机设备等原因,寿命在5-10年左右。 3、速度范围宽:轧机油膜轴承可以在很低的速度下工作,也可以在很高的速度下运行,还可以使用可逆轧机:有正转速到零,再由零到负转速的状态下工作,速度范围十分之宽。 4、结构尺寸小:在相同的承载能力下,油膜轴承轮廓尺寸要比滚动轴承小。 5、摩擦系数低:油膜轴承轴承的摩擦系数一般在0.001-0.005之间,摩擦系数低,从而摩擦损耗低。 6、抗冲击能力强:油膜轴承中的油膜的挤压效应对于冲击载荷的承受能力,使得油膜轴承能很好地承受冲击载荷。 16系列轴承 16系列轴承 使用部位摩根图号轴承类型制造型号备注 二齿轮增速机A 162250 成对球轴承MRC 7334D1B 二齿轮及三轴高速增速机B 162250 滚子轴承MCS-140-160 三轴增速机及锥箱长轴C 162250 成对球轴承MRC 7226D10E CA 162250 球轴承MRC 7226D11S 三轴增速机D 162250 滚子轴承MRC-128-107 DA 162250 滚子轴承MRC-128-108 锥箱长轴E 162250 成对球轴承MRC 7224D10E F 162250 滚子轴承U-1024-EMR-305 从动轴及锥箱长轴G 162250 滚子轴承MRC MR126KC10 滚子轴承U-1026-EMR-103 从动轴GA 162250 滚子轴承MRC MR126KC11 GB 162250 滚子轴承MRC MR126KC9 GO 162250 滚子轴承MRC R126KC9 GD 162250 滚子轴承MRC R126KC7 GE 162250 滚子轴承MRC R126KC8 从动轴及惰轴H 162250 滚子轴承MRC MR312C4 HA 162250 滚子轴承MRC MR312C4 HB 162250 滚子轴承MRC R3122011 HC 162250 滚子轴承U-1211-EMR-107 HD 162250 滚子轴承MRC MR215C5 HE 162250 滚子轴承MRC MR210KC1 HF 162250 滚子轴承MRC MR211C3 HG 162250 滚子轴承MRC MR319C2 HH 162250 滚子轴承MRC R312C12 HJ 162250 滚子轴承MRC MR212C6

滑动轴承计算

滑动轴承计算

第十七章滑动轴承 基本要求及重点、难点 滑动轴承的结构、类型、特点及轴瓦材料与结构。非液体摩擦轴承的计算。液体动压形成原理及基本方程,液体动压径向滑动轴承的计算要点。多油楔动压轴承简介。润滑剂与润滑装置。 基本要求: 1) 了解滑动轴承的类型、特点及其应用。 2) 掌握各类滑动轴承的结构特点。 3) 了解对轴瓦材料的基本要求和常用轴瓦材料,了解轴瓦结构。 4) 掌握非液体摩擦轴承的设计计算准则及其物理意义。 5) 掌握液体动压润滑的基本概念、基本方程和油楔承载机理。 6) 了解液体摩擦动压径向润滑轴承的计算要点(工作过程、压力曲线及需要进行哪些计算)。 7) 了解多油楔轴承等其他动压轴承的工作原理、特点及应用。 8) 了解滑动轴承采用的润滑剂与润滑装置。 重点: 1) 轴瓦材料及其应用。 2) 非液体摩擦滑动轴承的设计准则与方法。

3) 液体动压润滑的基本方程及形成液体动压润滑的必要条件。 难点: 液体动压润滑的基本方程及形成液体动压润滑 的必要条件。 主要内容: 一:非液体润滑轴承的设计计算。 二:形成动压油膜的必要条件。 三:流体动压向心滑动轴承的设计计算方法,参数选择 §17-1概述: 滑动轴承是支撑轴承的零件或部件,轴颈与轴瓦面接触,属滑动摩擦。 一 分类: 1. 按承载方向 径向轴承(向心轴承。普通轴承)只受. 推力轴承: 只受 组合轴承: ,. 2. 按润滑状态 液体润滑: 摩擦表面被一流 体膜分开(1.5—2.0以上)表面间 摩擦为液体分子间的摩擦 。例如汽轮机的主轴。 r F a F a F r F m

非液体润滑:处于边界摩擦及混 合摩擦状态下工 作的轴承为非液 体润滑轴承。 关于摩擦干:不加任何润滑剂。 边界:表面被吸附的边界膜隔开,摩 擦性质不取决于流体粘度,与 边界膜的表面的吸附性质有 关。 液体:表面被液体隔开,摩擦性质取 决于流体内分子间粘性阻力。 混合:处于上述的混合状态. 相应的润滑状态称边界、液 体、混合、润滑。 3.液体润滑按流体膜形成原理分:

油膜轴承故障机理与诊断

油膜轴承的故障机理与诊断 油膜轴承因其承载性能好,工作稳定可靠、工作寿命长等优点,在各种机械、各个行业中都得到了广泛的应用,对油膜轴承故障机理的研究工作也比较广泛和深入。 一、油膜轴承的工作原理 油膜轴承按其工作原理可分为静压轴承与动压轴承两类。 静压轴承是依靠润滑油在转子轴颈周围形成的静压力差与外载荷相平衡的原理进行工作的。不论轴是否旋转,轴颈始终浮在压力油中,工作时可以保证轴颈与轴承之间处于纯液体摩擦状态。因此,这类轴承具有旋转精度高、摩擦阻力小、承载能力强的特点,并且对转速的适应性和抗振性非常好。但是,静压轴承的制造工艺要求较高,还需要一套复杂的供油装置,因此,除了在一些高精度机床上应用外,其他场合使用尚少。 动压轴承油膜压力是靠轴本身旋转产生的,因此供油系统简单,设计良好的动压轴承具有很长的使用寿命,因此,很多旋转机器(例如膨胀机、压缩机、泵、电动机、发电机等)均广泛采用各类动压轴承。 在旋转机械上使用的液体动压轴承有承受径向力的径向轴承和承受轴向力的止推轴承两类,本节主要讨论径向轴承的故障机理与诊断。 在动压轴承中,轴颈与轴承孔之间有一定的间隙(一般为轴颈直径的千分之几),间隙内充满润滑油。轴颈静止时,沉在轴承的底部,如图1-1 (a )所示。当转轴开始旋转时,轴颈依靠摩擦力的作用,沿轴承内表面往上爬行,达到一定位置后,摩擦力不能支持转子重量就开始打滑,此时为半液体摩擦,如图1-1(b)所示。随着转速的继续升高,轴颈把具有黏性的润滑油带入与轴承之间的楔形间隙(油楔)中,因为楔形间隙是收敛形的,它的入口断面大于出口断面,因此在油楔中会产生一定油压,轴颈被油的压力挤向另外一侧,如图1-1(c)所示。如果带入楔形间隙内的润滑油流量是连续的,这样油液中的油压就会升高,使入口处的平均流速减小,而出口处的平均流速增大。由于油液在楔形间隙内升高的压力就是流体动压力,所以称这种轴承为动压轴承。在间隙内积聚的油层称为油膜,油膜压力可以把转子轴颈抬起,如图1-1(d)所示。当油膜压力与外载荷平衡时,轴颈就在与轴承内表面不发生接触的情况下稳定地运转,此时的轴心位置略有偏移,这就是流体动压轴承的工作原理。

液体动力润滑径向滑动轴承设计计算

液体动力润滑径向滑动轴承设计计算 流体动力润滑的楔效应承载机理已在第四章作过简要说明,本章将讨论流体动力润滑理论的基本方程(即雷诺方程)及其在液体动力润滑径向滑动轴承设计计算中的应用。 (一)流体动力润滑的基本方程 流体动力润滑理论的基本方程是流体膜压力分布的微分方程。它是从粘性流体动力学的基本方程出发,作了一些假设条件后得出的。 假设条件:流体为牛顿流体;流体膜中流体的流动是层流;忽略压力对流体粘度的影响;略去惯性力及重力的影响;认为流体不可压缩;流体膜中的压力沿膜厚方向不变。 图12-12中,两平板被润滑油隔开,设板A 沿x 轴方向以速度v 移动;另一板B 为静止。再假定油在两平板间沿 z 轴方向没有流动(可视此运动副在z 轴方向的尺寸为无限大)。现从层流运动的油膜中取一微单元体进行分析。 作用在此微单元体右面和左面的压力分别为p 及p p dx x ??? +???? ?, 作用在单元体上、下两面的切应力分别为τ及dy y τ τ???+????? 。根据x 方向的平衡条件,得: 整理后得 根据牛顿流体摩擦定律,得 ,代入上式得 该式表示了压力沿x 轴方向的变化与速度沿y 轴方向的变化关系。 下面进一步介绍流体动力润滑理论的基本方程。 1.油层的速度分布 将上式改写成 (a)

对y 积分后得 (c) 根据边界条件决定积分常数C1及C2: 当y=0时,v= V;y=h(h为相应于所取单元体处的油膜厚度)时,v=0,则得: 代入(c)式后,即得 (d) 由上可见,v由两部分组成:式中前一项表示速度呈线性分布,这是直接由剪切流引起的;后一项表示速度呈抛物线分布,这是由油流沿x方向的变化所产生的压力流所引起的。 2、润滑油流量 当无侧漏时,润滑油在单位时间内流经任意截面上单位宽度面积的流量为: 将式(d)代入式(e)并积分后,得 (f) 设在 p=p max处的油膜厚度为h0(即时 当润滑油连续流动时,各截面的流量相等,由此得 : 整理后得 该式为一维雷诺方程。它是计算流体动力润滑滑动轴承(简称流体动压轴承)的基本方程。可以看出,油膜压力的变化与润滑油的粘度、表面滑动速度和油膜厚度及其变化有关。经积分后可求出油膜的承载能力。由雷诺方程及图示的压力分布也可以看出,在h>h0段,速 度分布曲线呈凹形,,即压力沿x方向逐渐增大;而在h

油膜轴承变形和压力分析

第44卷 第3期 2009年3月 钢铁 Iron and Steel  Vol.44,No.3 March 2009 油膜轴承变形和压力分析 Thomas E Simmons , Andrea Contarini , Nonino G ianni (达涅利油膜轴承公司) 摘 要:轧机油膜轴承最新试验结果表明,实测油膜厚度比计算机模型预测值大3~5倍。这意味着,油膜厚度增加是由于锥套和衬套变形的结果,这种变形会导致锥套和衬套压力场扩大,进而导致油膜厚度增加。如果油膜厚度真的比预想的高3~5倍,则不但可以充分利用轴承固有的安全系数,而且还可以提高轴承的最大运行负荷。为确认试验结果,DanOil 油膜轴承工程师构建了因液体动压场变化而导致的锥套变形模型,然后将这种变形用于复杂的计算机轴承模拟程序,来计算新的压力场。对压力场和锥套变形进行重复迭代计算,直到计算结果收敛为止。介绍了这一分析方法和计算结果。 关键词:油膜轴承;油膜厚度;压力场;变形 中图分类号:T H13313 文献标识码:A 文章编号:04492749X (2009)0320093204 Deflection and Pressure Analysis of Oil Film B earings Thomas E Simmons , Andrea Contarini , Nonino G ianni (Danieli DanOil ) Abstract :Recent tests on rolling mill oil film bearings have indicated that the oil film thickness is three to five times greater than predicted by computer models.It has been implied that the increase in oil film thickness is due to the deflection of the sleeve and bushing ,which would spread out the pressure field increasing the oil film thickness.I f the oil film thickness is three to five times greater than expected ,the maximum operating load can be increased tak 2ing advantage of the inherent safety factor in the bearing.To confirm the test results ,DanOil engineers modeled the sleeve deflection produced by the hydrodynamic pressure field and then used this deflection in a sophisticated bearing computer program to calculate the new pressure field.The iteration of the pressure field and deflection was contin 2ued until the model converged.The paper presents the method of analysis and the results.K ey w ords :oil film bearing ;oil film thickness ;pressure field ;deformation 联系人:苏宏蕾,女; E 2m ail :h 1su @china 1danieli 1com ; 修订日期:2008209219 油膜轴承广泛用于世界各地数以百计的板带轧机上。这种轴承可用在中板轧机、热轧机、冷轧机、平整机上等,使用寿命长,可实现无故障运行。轴承工作时,其表面覆盖一层薄薄的油膜,具有很小的摩擦力。这是轴承使用寿命长的原因。由于没有金属之间的直接接触,因此轴承几乎没有磨损。轧机上使用的油膜轴承由一个锥套(辊颈)和一个衬套(轴承)组成,如图1所示。 辊颈和轴承表面之间由一层油膜将其分隔开来,形成一小间隙,在载荷作用下,辊颈中心线和轴承中心线不会重合,但它们之间会存在一定的距离,这一距离称为偏心距e 。偏心距和滑动表面之间的相对运动,将建立起一个会聚楔;由于油膜内的粘性作用而形成一个压力场。正是这个压力场支撑着轴承的载荷,如图2所示。图中表示的是一个标准圆柱形滑动表面。 其中,x =R θ,u =R ω;R 为辊颈半径;C 为半径图1 支撑辊轴承 Fig 11 B ackup roll bearing

油膜轴承维护知识

摩根油膜轴承使用维护培训教材 发布日期:[2006-6-29] 共阅[2505]次目录 第一章概述 第二章油膜轴承的组装与使用 第三章油膜轴承的维护 第四章油膜轴承的润滑 第五章参考图以及资料

说明:本教材仅供参考和掌握基本知识使用,部分内容并不全面,如有疑问,请致电摩根油膜轴承(上海)有限公司,摩根油膜轴承(上海)有限公司拥有对于本教材内容的全部解释权利。 第一章概述 一、油膜轴承原理及摩根油膜轴承的历史

二、摩根油膜轴承的构造 三、摩根油膜轴承的型号含义 四、摩根油膜轴承的特性 一、油膜轴承原理及摩根油膜轴承的历史 、油膜轴承工作原理 油膜轴承又称液体摩擦轴承,它是利用液体润滑在锥套与衬套间形成一个完整的压力油膜,分离两个工作表面,而不发生直接的金属接触,达到液体摩擦状态。它被广泛地应用与轧机轴承中,按其油膜形成的条件,可分为动压油膜轴承,静压油膜轴承和动静压油膜轴承。 目前多数轧机使用的为动压或动静压油膜轴承,它是基于粘滞流体动压效应(也称为楔形效应):当把油从楔形的大间隙带入小间隙时,油液受到挤压,而液体本身是不可压缩的,于是就产生抗力实现承载。而应用于轴承中,由于轴比轴承小,只要轴与轴承不同心,就存在不相等的间隙,只要轴转动,就能带动轴颈附近的油顺转动方向运动,从而把油带入收敛的楔形间隙内,实现油膜轴承的正常工作。而静压油膜轴承的工作原理是基于液体的静压效应,在轴承的工作区开设油腔,并通入压力油,将轴抬起。动静压油膜轴承是在动压轴承的承载区域内开设很小的压力油腔,并通入高压油,即具备静压和动压双重效应,具备两者的特点。 1.2、油膜形成的条件

滑动轴承习题与参考答案

习题与参考答案 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 A 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 B 、E 。 3 巴氏合金是用来制造 B 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, B 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 B 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算][pv pv ≤是为了防止轴承 B 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 A 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 B 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 C 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 D 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动

轧机油膜轴承技术的说明范本

工作行为规范系列 轧机油膜轴承技术的说明(标准、完整、实用、可修改)

编号:FS-QG-51338轧机油膜轴承技术的说明 Description of rolling mill oil film bearing technology 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 中国轧机油膜轴承技术摘要:渗碳淬火件磨削裂纹形成的原因和防止措施精密加工和超精密加工的发展趋势和技术前沿激光焊接的防侧撞横梁提高安全性能什么是数据库营销?数控车床操作步骤(下)PDM―企业信息化的又一利器拉簧计算公式混粉电火花加工技术在粗加工中的应用研究龙门式加工中心和镗铣床的发展新型线性电机及其在直线运动系统中应用低压电器可靠性概况及其发展21/4Cr-1Mo 厚壁乙烯裂解炉管焊接工艺金刚石砂轮攻关项目通过鉴定E2S4000-MB型机械压力机振动传播及现场实测走近孔加工的挑战鲁南机床创新产品填补国内空白ActiveX技术在刀具CAD中的应用在普通电火花成形机上加工斜齿轮模具型腔可转位普通刀片偏差规定冲模高速走丝线切割加工中夹丝的防止措施技术轴承轧机运行测量我国主要系统制造密封中

国轧机油膜轴承技术独立自主自力更生方针指导发展起来回顾总结研究中国轧机油膜轴承技术认识促进发展中国轧机油膜轴承技术是有益处轧机油膜轴承技术系统工程技术也是领域综合性工程技术发展速度形成配套能力一个侧面反映中国工业发展速度达到水平. 中国轧机油膜轴承技术,是在“独立自主,自力更生”方针指导下发展起来的。回顾总结、研究中国轧机油膜轴承技术,对于认识、促进、发展中国轧机油膜轴承技术是有益处的。 轧机油膜轴承技术,是个系统工程技术,同时,也是个多学科领域的综合性工程技术,它的发展速度和所形成的配套能力,从一个侧面反映了中国工业的发展速度与所达到的水平。兹从运行技术、制造技术、测试技术、理论研究、产品开发、成套能力等几个主要方面进行简要的论述。 1.运行技术,包括轧机油膜轴承零部件的储放、清洗、安装、调试、运转、维修、诊断、管理等一整套知识与技能。运行技术的正确运用,是轴承安全运行的可靠保证。 50年代初期,我国只有鞍钢冷轧厂的可逆轧机装备了油

01摩根油膜轴承培训教材_MS_

摩根油膜轴承使用维护培训教材 摩根油膜轴承(上海)有限公司 二OO七年五月

目录 第一章 概述 第二章 油膜轴承的组装与使用 第三章 油膜轴承的维护 第四章 油膜轴承的润滑 第五章 参考图以及资料 说明说明::本教材仅供参考和掌握基本知识使用本教材仅供参考和掌握基本知识使用,,部分内容并不全面部分内容并不全面,,如有疑问如有疑问,,请致电摩根油膜轴承请致电摩根油膜轴承((上海上海))有限公司有限公司,,摩根油膜轴承摩根油膜轴承((上海上海))有限公司拥有对于本教材内容的全部解释权利对于本教材内容的全部解释权利。。

第一章 概述 一、油膜轴承原理及摩根油膜轴承的历史 二、摩根油膜轴承的构造 三、摩根油膜轴承的型号含义 四、摩根油膜轴承的特性 一、油膜轴承原理及摩根油膜轴承的历史 1.1、油膜轴承工作原理 油膜轴承又称液体摩擦轴承,它是利用液体润滑在锥套与衬套间形成一个完整的压力油膜,分离两个工作表面,而不发生直接的金属接触,达到液体摩擦状态。它被广泛地应用与轧机轴承中,按其油膜形成的条件,可分为动压油膜轴承,静压油膜轴承和动静压油膜轴承。 目前多数轧机使用的为动压或动静压油膜轴承,它是基于粘滞流体动压效应(也称为楔形效应):当把油从楔形的大间隙带入小间隙时,油液受到挤压,而液体本身是不可压缩的,于是就产生抗力实现承载。而应用于轴承中,由于轴比轴承小,只要轴与轴承不同心,就存在不相等的间隙,只要轴转动,就能带动轴颈附近的油顺转动方向运动,从而把油带入收敛的楔形间隙内,实现油膜轴承的正常工作。而静压油膜轴承的工作原理是基于液体的静压效应,在轴承的工作区开设油腔,并通入压力油,将轴抬起。动静压油膜轴承是在动压轴承的承载区域内开设很小的压力油腔,并通入高压油,即具备静压和动压双重效应,具备两者的特点。 1.2、油膜形成的条件 1.2.1、两个工作面间必须形成楔形区域。 在油膜轴承中,锥套外表面直径与衬套的内径的差值即可得到这个楔形。 1.2.2、两个工作面必须存在一定的相对运动。

121-100系列油膜轴承油指标

海联润滑 HIRI 121-100系列油膜轴承油 一、产品用途 本系列产品以深度精制的矿油为基础油,添加多种多效添加剂而制得的。适用于冶金系统高速线材精轧机的油膜轴承、齿轮、调校螺杆以及其它轧钢和支承辊轴承循环系统的润滑。目前根据开发的顺序分为A、B、C三个不同的型号。 二、产品性能 1. 具有良好的粘温性能。 2. 具有良好的抗氧、防锈性能。 3. 具有良好的抗乳化性能。 4. 具有良好的极压和抗磨损性能。 5. 均能用于120米/秒的高速线材。 6. 使用寿命长。 三、产品技术指标 项目 质量指标 试验方法100(A)100(B)100(C) 运动粘度(40℃) mm2/s 90~110 90~110 90~110 GB/T265 粘度指数≥95 GB/T2541 闪点(开口) ℃≥220 GB/T3536 倾点℃≤-12 GB/T3535 铜片腐蚀(100℃×3h) 级≤1b GB/T5096 水分% ≤痕迹GB/T260 抗乳化试验(40-37-3) (54℃) min ≤30 29 27 GB/T7305 泡沫特性(24℃) 消泡时间min ≤10 9 8 GB/T12579 液相锈蚀A法合格B法合格B法合格GB/T11143 破乳试验(405mL油+45mL蒸馏水) 总分水量ml ≥36 36.5 37 GB/T8022 四球试验 烧结负荷P D N ≥ 磨斑直径 D 196N 60min mm ≤ 1470 0.50 1800 0.49 2300 0.48 GB/T3142 SH/T0189 FZG齿轮试验级≥9 10 12 GB/T306 抗氧化试验(旋转氧弹法) min ≥180 200 240 SH/T0193 四、包装:海联标志色200L铁桶

轧机油膜轴承油膜厚度的测量方法_赵春江

收稿日期:2006207208 基金项目:国家自然科学基金资助(50575155) 作者简介:赵春江(1975-),男,讲师,在读博士,研究方向:轧钢设备与轧机轴承。 第27卷 增刊太原科技大学学报Vol .272006年9月 JOURNAL OF T A I Y UAN UN I V ERSI TY OF SC I E NCE AND TECHNOLOGY Sep.2006 文章编号:167322057(2006)S0-0037-03 轧机油膜轴承油膜厚度的测量方法 赵春江 1,2 ,王建梅2,马立峰2,姚建斌2,王国强1,黄庆学 2 (11吉林大学,长春130025;21太原科技大学,太原030024) 摘 要:在对弹流膜厚测量方法总结的基础上,介绍了与轧机油膜轴承油膜厚度的测量相关的技术方法,重点的介绍了近期发展的光纤位移传感器方法和超声共振方法。通过比较分析,得出光纤位移传感器方法虽然测量精度高,外界依赖性小,但是其透光性要求极大的限制了在轧机油膜轴承上的应用,超声共振法具有对材料的穿透能力,研究其应用有较高的实用价值。 关键词:轧机油膜轴承;油膜厚度;测量中图分类号:TG333 文献标识码:A 1 测膜厚度的测量方法 1.1 电阻法 1947年英国的B rix 测量了滑动和滚动情况下接触处的 电压和电流的关系,获得了油膜电压与油膜厚度的关系曲线。1955年,Le wicki 在详细讨论了把电阻测量值与油膜厚度联系起来的可能性后指出,不能用电阻法准确的测量膜厚。原因是油膜的电阻随油膜厚度的变化量很小,所以电阻的大小来标定油膜的厚薄很难实现。放电现象常被误解为金属微观表面凸起互相接触时出现的低阻值现象,电阻值的偶然减小并不能反映油膜厚度的减小。分析结果经过了后人的实验验证。 电阻法的优点是电路简单,不需要昂贵的测试设备。但是由于其自身所固有的特点,只能在定性分析弹流润滑状态时是一种有效的测试方法。 1.2 放电电压法 Ca mer on 和Dys on 分别用放电电压法对弹流膜厚进行 了测量。结果表明润滑剂的纯洁度对放电电压影响较大,因此测量结果并不能定量的反映油膜厚度的大小。1.3 电容法 电容法测量膜厚始于1955年Le wicki 所做的实验研究。 Dys on 做了改进使该方法得到广泛的应用。国内外的相关研 究人员做了大量的测试与验证工作,表明该方法能够准确的测量出两接触表面之间的膜厚。这种方法的局限性在于对部分膜状态下失效,且要求润滑剂应该是非极性的。 1.4 电容分压器法 这种方法的原理是把润滑膜视为电阻和电容的并联,当润滑状态从部分过度到全膜时,该方法可测量润滑状态的转化过程。但是该方法需要载波和低通滤波、信号失真很大,因而测量数据的准确率不高。 1.5 阻容振荡法、时基电路法和多谐振荡法 1998年,张鹏顺和李曙光基于文氏振荡器的自激振荡 原理,提出弹流膜厚测试的阻容振荡法。在全膜状态下,通过测量振荡频率并借助于“频率-电容-膜厚”标定曲线可测出膜厚的大小。在部分膜状态下,可利用液形分析来确定非金属接触率。这种方法集中了电阻法和电容法的优点。既可用于全膜弹流测试又可用于部分膜弹流测试,现场测试实用性强。 该方法的缺点是标定曲线的制定复杂,分布电容难于

滑动轴承作业

滑动轴承 学号 一 选择题 1. 宽径比d B /是设计滑动轴承时首先要确定的重要参数之一,通常取 d B / 。 A. 1~10 B.0.1~1 C. 0.3~1.5 D. 3~5 2. 下列材料中 不能作为滑动轴承轴瓦或轴承衬的材料。 A. ZSnSb11Cu6 B. HT200 C. GCr15 D. ZCuPb30 3. 在非液体润滑滑动轴承中,限制p 值的主要目的是 。 A. 防止出现过大的摩擦阻力矩 B. 防止轴承衬材料发生塑性变形 C. 防止轴承衬材料过度磨损 D. 防止轴承衬材料因压力过大而过度发热 4. 不是静压滑动轴承的特点。 A. 起动力矩小 B. 对轴承材料要求高 C. 供油系统复杂 D. 高、低速运转性能均好 5. 设计液体动压径向滑动轴承时,若通过热平衡计算发现轴承温升过高,下列改进措施中,有效的是 。 A. 增大轴承宽径比 B. 减小供油量 C. 增大相对间隙 D. 换用粘度较高的油 6. 含油轴承是采用 制成的。 A. 塑料 B. 石墨 C 铜合金 D. 多孔质金属 7. 液体摩擦动压径向轴承的偏心距e 随 而减小。 A. 轴颈转速n 的增加或载荷F 的增加 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增加 8. 径向滑动轴承的直径增大1倍,长径比不变,载荷不变,则轴承的压强p 变为原来的 倍。 A. 2 B. 1/2 C. 1/4 D. 4 9. 液体动压径向滑动轴承在正常工作时,轴心位置1O 、轴承孔中心位置O 及轴承中的油压分布应如图12-1的 所示。

图12-1 A. (a) B. (b) C. (c) D. (d) 10. 动压液体摩擦径向滑动轴承设计中,为了减小温升,应在保证承载能力的前提下适当 。 A. 增大相对间隙ψ,增大宽径比d B B. 减小ψ,减小d B C. 增大ψ,减小d B D. 减小ψ,增大d B 11. 动压滑动轴承能建立油压的条件中,不必要的条件是 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴径和轴承表面之间有相对滑动 D. 润滑油温度不超过50C ο 12. 在 情况下,滑动轴承润滑油的黏度不应选得较高。 A. 重载 B. 工作温度高 C. 高速 13. 与滚动轴承相比较,下述各点中, 不能作为滑动轴承的优点。 A. 径向尺寸小 B. 启动容易 C. 运转平稳,噪声低 D. 可用于高速情况下 14. 滑动轴承轴瓦上的油沟不应开在 。 A. 油膜承载区 B. 油膜非承载区 C. 轴瓦剖面上 15. 计算滑动轴承的最小油膜厚度m in h ,其目的是 。 A. 验算轴承是否获得液体摩擦 B. 汁算轴承的部摩擦力 C. 计算轴承的耗油量 D. 计算轴承的发热量 16. 设计动压径向滑动轴承时,若轴承宽径比取得较大,则 。 A. 端泄流量大,承载能力低,温升高 B. 端泄流量大,承载能力低,温升低 C. 端泄流量小,承载能力高,温升低 D. 端泄流量小,承载能力高,温升高 17. 双向运转的液体润滑推力轴承中,止推盘工作面应做成题图12-2 所示的形状。

轧机油膜轴承的使用及维护

轧机油膜轴承的使用及维护 现代轧机的主要特征是大型、高速、重载、连续、自动,现代大型轧机特别是具有板型、板厚自动控制的大型板、带材连轧机大都采用油膜轴承,应用在轧机上作为工作辊轴承或支承辊轴承的称做轧机油膜轴承,这类轴承基本上属于低速重载、中速中载或重载轴承。随着八钢板带系统冷轧、热轧、中厚板项目的陆续建设投产,板材轧机油膜轴承在八钢逐步得到应用,油膜轴承的使用维护成为影响辊系装配使用质量和保证轧线稳定顺行的一项重要环节,由于使用时间较短,现场工作人员对使用维护规范等缺乏了解。 油膜轴承主要由锥套、衬套、止推轴承部分、密封系统、锁紧系统等部分组成。油膜轴承有很多特点:承载能力大,抗冲击能力强;使用寿命长;速度范围宽;结构尺寸小;摩擦系数低。 1.油膜轴承的使用 以八钢公司板材连轧机使用的一种单止推拉杆装配、螺环机械锁紧的动-静压油膜轴承为例,介绍油膜轴承的组装及使用维护、注意事项。 (l)单止推装拉杆形式是在同一轧辊上装配的两个轴承座是不同的,一侧油膜轴承是带止推的轴承,而另一侧则是不带止推轴承的,两轴承座之间靠拉杆固定。带止推轴承的,是将轴承箱与轧辊固定,即轧辊与轴承箱在轧辊的轴向不发生移动。不带止推的轴承,即轧辊与轴承箱没有轴向约束,当轧辊受外界作用,比如受力、受冷、受热等作用而发生轴向长度变化时,锥套与衬套产生轴向相对位移。由于止推轴承的轴承箱与轧机牌坊相连,故当轧辊轴承受轴向力时,完全由止推轴承承受。 (2)油膜轴承座组装时,首先轴承座、油膜轴承锥套、衬套和辅助配件清洗,清洗时不得使用刮刀及磨料。利用翻转机将清洗后的轴承座翻转,使轴承座孔垂直,辊外侧(相对于辊身侧而言)开口向上。 (3)检查和清洁衬套,使用内径、外径千分尺检测衬套内外径尺寸,并做好记录,选择将要使用的承载区域,使用堵头将衬套非承载区域的静压油口堵塞,用洁净的压缩空气吹扫承载区域静压油路,并安装阻尼器和静压弯头,弯头应该与中心线平行。 (4)将轴承座内孔和衬套外径面涂抹润滑油,涂抹用油使用润滑系统同牌号油品。在起吊设备的辅助下,衬套的凸缘处有锥度孔与衬套吊装螺栓配合使用,进行衬套的吊装。安装过程中,须慢速、小心下降衬套使其装入轴承座,确认所选择的衬套承载区域与轴承座承载区域一致,同时在下降过程中旋转衬套,使衬套上的锁定孔与轴承座上的衬套锁定孔方相一致,装入密封及锁定销并固定到位。 (5)将静压软管、快换接头、连接接头及密封预先装配好,然后将静压软管穿过轴承座上的开孔,其一端与衬套静压弯头连接。快换接头安装后,必须低于轴承座表面1/8。 (6)检查锥套,将衬套的内表面和锥套的外表面涂抹润滑油,涂抹用油使用润滑系统同牌号油液。在锥套内安装锥套提升杆。锥套与衬套之间的间隙非常小,必须十分精细的安装。通常的安装方法是在将锥套装入衬套孔的过程中间断性地下降锥套,并测量从轴承座到锥套边部的周向四点,调整起重设备使四点测量值相同,然后将锥套缓慢落放到安装位置。当锥套装入衬套约一半时,旋转锥套使键槽在轴承座的水平中心线上方。 (7)将锥套压环涂抹润滑油并安装到锥套圆柱孔的位置,确认锥套环上的键安装到位和锥套环边部卡入锥套孔内。 (8)将止推轴承盒支撑在木垫块上并确认木垫块未接触内孔。将止推轴承盒内孔清洁和润滑涂油后,放入轴承座内。将止推轴承一外圈清洁和润滑涂油,并装入轴承盒孔内,对安装位置进行适当调整,双列圆锥滚子组清洁和润滑涂油后装入止推轴承盒内,注意使轴承外圈

滑动轴承油膜厚度计算

1 滑动轴承的工程分析 下面是径向动压滑动轴承的一组计算公式。 1.最小油膜厚度h min h min =C-e=C(1-ε)=r ψ(1-ε) (1) 式中C=R -r ——半径间隙,R 轴承孔半径;r 轴颈半径; ε=e/C ——偏心率;e 为偏心距; ψ=C/r ——相对间隙,常取ψ=(0.6-1)×10-3(v)1/4 , v 为轴颈表面的线速(m/s ) 设计时,最小油膜厚度h min 必须满足: h min /(R z1+R z2)≥2-3 [1] (2) 式中R z1、R z2为轴颈和轴承的表面粗糙度。 2.轴承的特性系数(索氏系数) S=μn /(p ψ2 )(3) 式中μ——润滑油在轴承平均工作温度下的动力粘度(Pa ·s ); n ——轴颈的转速(r/s );p ——平均压强 (N/m 2 ) 用来检验轴承能否实现液体润滑。 ε值可按下面简化式求解。 A ε2 +E ε+C=0 (4) 其中A=2.31(B/d)-2 ,E=-(2.052A +1), C=1+1.052A -6.4088S. 上式中d ——轴径的直径(m );B ——轴承的宽度(m ) 通常ε选在0.5-0.95之间,超出0-1间的值,均非ε的解[1] 。 3.轴承的温升 油的平均温度t m 必须加以控制,否则,润滑油的粘度会降低,从而破坏轴承的液体润滑。 油的温升为进出油的温度差,计算式为: ) 5()(v K vBd Q c f p T S ψπψρψ += ? 式中 f —摩擦系数;c —润滑油的比热,通常取1680-2100 J/kg ℃;ρ—润滑油的密 度,通常取850-900kg/m 3;Q —耗油量(m 3 /s),通常为承载区内流出的端泄量;K S —为轴承体 的散热系数[1,2] 上式中的(f/ψ)、(Q/ψνBd )值,如ε=0.5-0.95可按 f/ψ=0.15+1.92 (1.119-ε)[1+2.31 ( B/d )-2 (1.052-ε)] (6) Q/ψνBd=ε(0.95-0.844ε)/[(B/d)-2+2.34-2.31ε] [2] (7) 求解,上式中的B ,d 的单位均为m ,p 的单位为N/m 2 ,ν为油的运动粘度,单位为m/s. 轴承中油的平均温度应控制在 t m =t 1+△T/2≤75℃ (8) 其中t 1为进油温度;t m 为平均温度 2 径向动压滑动轴承稳健设计实例 设计过程中可供选择的参数及容差较多,在选用最佳方案时,必须考虑各种因素的影响 和交互作用。如参数B 、轴颈与轴瓦的配合公差、润滑油的粘度的变化对油膜温升及承载能

滑动轴承油膜厚度计算

稳健设计理论在液体动压滑动轴承中的应用 滑动轴承是各种传动装置中广泛采用的支承件,特别是在高速运转机械中,为了减小摩擦,提高传动效率,要求轴承与轴颈间脱离接触并具有足够的油膜厚度,以形成液体间的摩擦状态。 在滑动轴承设计中,只有当轴承尺寸、轴承载荷、相对运动速度、润滑油的粘度、轴承间隙以及表面粗糙度之间满足一定关系时,才能实现液体摩擦。任一参数取值不当,将出现非液体摩擦状态,导致液体摩擦的失效。以上参数的优化设计对轴承的使用性能及寿命有十分重要的作用。 通常,在设计中,往往对轴承的各设计参数和使用条件提出更高要求。轴承的设计参数或误差对轴承的性能的影响是非线性的,在不同的设计方案中,同样的误差程度,所产生的性能波动不尽相同。稳健设计就是找到一种设计方案,使得液体动压轴承的性能对误差不十分敏感,同时达到较宽松的加工经济精度而降低成本的目的。 本文对某液体动压滑动轴承进行稳健设计,建立相应的数学模型,并求得优化的设计方案。 1滑动轴承的工程分析 下面是径向动压滑动轴承的一组计算公式。 1.最小油膜厚度h min h min=C-e=C(1-ε)=rψ(1-ε)(1) 式中C=R-r——半径间隙,R轴承孔半径;r轴颈半径; ε=e/C——偏心率;e为偏心距; ψ=C/r——相对间隙,常取ψ=(0.6-1)×10-3(v)1/4,

v 为轴颈表面的线速(m/s ) 设计时,最小油膜厚度h min 必须满足: h min /(R z1+R z2)≥2-3[1](2) 式中R z1、R z2为轴颈和轴承的表面粗糙度。 2.轴承的特性系数(索氏系数) S=μn /(p ψ2)(3) 式中μ——润滑油在轴承平均工作温度下的动力粘度(Pa ·s ); n ——轴颈的转速(r/s );p ——平均压强(N/m 2) 用来检验轴承能否实现液体润滑。 ε值可按下面简化式求解。 A ε2+E ε+C=0(4) 其中A=2.31(B/d)-2,E=-(2.052A +1),C=1+1.052A -6.4088S. 上式中d ——轴径的直径(m );B ——轴承的宽度(m ) 通常ε选在0.5-0.95之间,超出0-1间的值,均非ε的解[1]。 3.轴承的温升 油的平均温度t m 必须加以控制,否则,润滑油的粘度会降低,从而破坏轴承 的液体润滑。 油的温升为进出油的温度差,计算式为: )5()(v K vBd Q c f p T S ψπψρψ +=? 式中f —摩擦系数;c —润滑油的比热,通常取1680-2100J/kg ℃;ρ—润滑油的密度,通常取850-900kg/m 3;Q —耗油量(m 3/s),通常为承载区内流出的端泄量;K S —为轴承体的散热系数[1,2] 上式中的(f/ψ)、(Q/ψνBd )值,如ε=0.5-0.95可按

第十二章 滑动轴承习题解答

第十二章 滑动轴承习题及参考解答 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题5—2图所示的下列几种情况下,可能形成流体动力润滑的有 。 3 巴氏合金是用来制造 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算 ][pv pv ≤是为了防止轴承 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷

9 温度升高时,润滑油的粘度 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动 D. 润滑油温度不超过50℃ 11 运动粘度是动力粘度与同温度下润滑油 的比值。 A. 质量 B. 密度 C. 比重 D. 流速 12 润滑油的 ,又称绝对粘度。 A. 运动粘度 B. 动力粘度 C. 恩格尔粘度 D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。 A. 中、小型减速器齿轮轴 B. 电动机转子 C. 铁道机车车辆轴 D. 大型水轮机主轴 14 两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 。 A. 液体摩擦 B. 半液体摩擦 C. 混合摩擦 D. 边界摩擦 15 液体动力润滑径向滑动轴承最小油膜厚度的计算公式是 。 A. )1(min χψ-=d h B. )1(min χψ+=d h C. 2/)1(min χψ-=d h D. 2/)1(min χψ+=d h 16 在滑动轴承中,相对间隙ψ是一个重要的参数,它是 与公称直径之比。 A. 半径间隙r R -=δ B. 直径间隙d D -=? C. 最小油膜厚度h min D. 偏心率χ 17 在径向滑动轴承中,采用可倾瓦的目的在于 。 A. 便于装配 B. 使轴承具有自动调位能力 C. 提高轴承的稳定性 D. 增加润滑油流量,降低温升 18 采用三油楔或多油楔滑动轴承的目的在于 。 A. 提高承载能力 B. 增加润滑油油量 C. 提高轴承的稳定性 D. 减少摩擦发热 19 在不完全液体润滑滑动轴承中,限制 pv 值的主要目的是防止轴承 。 A. 过度发热而胶合 B. 过度磨损 C. 产生塑性变形 D. 产生咬死 20 下述材料中, 是轴承合金(巴氏合金)。 A. 20CrMnTi B. 38CrMnMo C. ZSnSb11Cu6 D. ZCuSn10P1 21 与滚动轴承相比较,下述各点中, 不能作为滑动轴承的优点。 A. 径向尺寸小 B. 间隙小,旋转精度高 C. 运转平稳,噪声低 D. 可用于高速情况下 22 径向滑动轴承的直径增大1倍,长径比不变,载荷不变,则轴承的压强 p 变为原来的 倍。 A. 2 B. 1/2 C. 1/4 D. 4 23 径向滑动轴承的直径增大1倍,长径比不变,载荷及转速不变,则轴承的pv 值为原来的 倍。 A. 2 B. 1/2 C. 4 D. 1/4

相关主题