搜档网
当前位置:搜档网 › 定积分在生活中的应用

定积分在生活中的应用

定积分在生活中的应用
定积分在生活中的应用

PINGDINGSHAN UNIVERSITY

院系 : 经济与管理学院

题目 : 定积分在生活中的应用

年级专业: 11级市场营销班

学生姓名 : 孙天鹏

定积分在生活中的应用

定积分作为大学里很重要的一部分,在生活有广泛的应用。微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。 一、定积分的概述

1、定积分的定义:

设函数()f x 在区间[],a b 上有界. ①在[],a b 中任意插入若干个分点011n n a x x x x b -=

<<<<= ,把区间[],a b 分成

n 个小区间[][][]01121,,,,,,,n n x x x x x x - 且各个小区间的长度依次为110x x x ?=-,

221x x x ?=-,…,1n n n x x x -?=-。

②在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ?的乘积

()i i f x ξ?(1,2,,i n = ),

③作出和 ()1

n

i i i S f x ξ==?∑。记{}12max ,,,n P

x x x =??? 作极限()0

1

lim

n

i

i

P i f x ξ→=?∑

如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当

0P →时,和S

总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在

区间[],a b 上的定积分(简称积分),记作()b

a f x dx ?,即

()b a

f x dx ?

=I

=()0

1

lim n

i i P i f x ξ→=?∑, 其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ??叫做积分区间。

2.定积分的性质

设函数()f x 和()g x 在[],a b 上都可积,k 是常数,则()kf x 和()f x +()g x 都可积,并且

性质1 ()b

a kf x dx ?=()b

a k f x dx ?;

性质2 ()()b

a f x g x dx +?????=()b

a f x dx ?+()b

a g x dx ?

()()b a

f x

g x dx -?????

=()b a f x dx ?-()b

a g x dx ?.

性质3 定积分对于积分区间的可加性

设()f x 在区间上可积,且a ,b 和c 都是区间内的点,则不论a ,b 和c 的相对位置如何,都有()c

a f x dx ?=()b

a f x dx ?+()c

b f x dx ?。

性质 4 如果在区间[],a b 上()f x ≡1,则1b

a dx ?=b

a dx ?=

b a -。 性质 5 如果在区间[],a b 上()f x ≥0,则()b

a f x dx

?≥0()a b <。

性质 6 如果在],[b a 上,M

x f m ≤≤

)(,则?

-≤≤-b

a

a b M dx x f a b m )

()()(

性质 7(定积分中值定理)如果)(x f 在],[b a 上连续,则在],[b a 上至少

存一点ξ使得 ?

-=b

a

a b f dx x f ))(()(ξ

3.定理

定理1 微积分基本定理 如果函数

()f x 在区间[],a b 上连续,则积分上限函数()x φ=()x

a f t dt

?在[],a b 上

可导,并且它的导数是 ()'x φ=

()x

a

d f t dt

dx

?=()f x ()a x b ≤≤.

定理 2 原函数存在定理

如果函数()f x 在区间[],a b 上连续,则函数()x φ=()x

a f t dt ?就是()f x 在

[],a b 上的一个原函数.

定理3 如果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数, 则 ()b

a f x dx ?=()()F

b F a -

称上面的公式为牛顿-莱布尼茨公式. 二 、定积分的应用

1、定积分在几何中的应用

(1)设连续函数)(x f 和)(x g 满足条件)(x g ≤)(x f ,∈x ],[b a .求曲线

=y )(x f ,=y )(x g 及直线b x a x ==,所围成的平面图形的面积S .

(如图1) 解法步骤:

第一步:在区间],[b a 上任取一小区间],[dx x x +,并考虑它上面的图形的面积,这块面积可用以)]()([x g x f -为高,以dx 为底的矩形面积近似,于是dx x g x f dS )]()([-=.

第二步:在区间],[b a 上将dS 无限求和,得到?-=

b

a

dx x g x f S

)]()([. (2)上面所诉方法是以x 为积分变量进行微元,再求得所围成图形的面积;我们还可以将y 作为积分变量进行微元,再求围成的面积。由连续曲线)(y x ?=、)(y x ψ=其中)()(y y ψ?≥与直线c y =、

d y =所围成的平面图形(图2)

的面积为:

?-=d c

dy y y S )]()([ψ?

例1 求由曲线x y sin =,x y cos =及直线0=x ,π=x 所围成图形的面积A .

解 (1)作出图形,如图所示.

易知,在],0[π上,曲线x y sin =与x y cos =的交点为)

22,

4(

π

图2

(2)取x 为积分变量,积分区间为],0[π.从图中可以看出,所围成的图形可以分成两部分;

(3)区间]4

,0[π

上这一部分的面积1A 和区间],4

[

ππ

上这一部分的面积2

A 分别为

?

-=

4

1)sin (cos π

dx

x x A , ?-=

π

π4

2

)cos (sin

dx

x x A ,

所以,所求图形的面积为

21A A A +==?-40)sin (cos π

dx

x x +?-π

π4

)cos (sin

dx

x x

[][]2

2sin cos cos sin 4

40=--++=π

ππ

x x x x .

例2 求椭圆

222

2

1x y a

b

+

=的面积.

解 椭圆关于x 轴,y 轴均对称,故所求面积为第一象限部分的面积的4倍,即

10

44a

S

S ydx ==? 利用椭圆的参数方程 cos sin x a t

y b t

=??

=? 应用定积分的换元法,sin dx a tdt =-,且当0x =时,,2t x a

π

==时,0t =,于

2

2

20

20

4sin (cos )4sin 1cos 242

14sin 22240

S b t a t dt

ab tdt

t

ab dt

t ab t ab

ππ

π

π

π=-=-=??

=-= ???

???

2.求旋转体体积

用类似求平面图形面积的思想我们也可以求一个立体图形的体积,例如一个木块的体积,我们可以将此木块作分割b x x x a T

n =<<<= 10:划分

成许多基本的小块,每一块的厚度为),,2,1(n i x i =?,假设每一个基本的小块横切面积为),,2,1)((n i x A i =,)(x A 为[]b a ,上连续函数,则此小块的体积大约是i i x x A ?)(

,将所有的小块加起来,令0→T

,我们可以得到其体积:

?

=

?==→b

a

n

i i i T dx

x A x x A V )()(lim

1

例2 求由曲线4=xy , 直线 1=x ,4=x ,0=y 绕x 轴旋转一周而形成的

立体体积.

解 先画图形,因为图形绕x 轴旋转,所以取x 为积分变量,x 的变化区间为[1,4],相应于[1,4]上任取一子区间[x ,x +x d ]的小窄条,绕x 轴旋转而形成的小旋转体体积,可用高为x d ,底面积为2πy 的小圆柱体体积近似代替,

即体积微元为

V

d =2πy x d =π

2

)4(x

x d ,

于是,体积

V

=π?

41

2

d )4(x x

=16π?4

1

2

d 1x

x

-=16π

41

1x

=12π.

3.求曲线的弧长 (1)设曲线)(x f y =

在[]b a ,上有一阶连续导数(如下图),利用微元法,

取x 为积分变量,在[]b a ,上任取小区间[]x x x d ,+,切线上相应小区间的小段

MT

的长度近似代替一段小弧MN 的长度,即ds

l MN

≈.得弧长微元为:

dx

y y x MT s 2

2

2

)(1)

d ()d (d '+=

+=

=,再对其积分,

则曲线的弧长为:dx

x f dx y ds

s b

a

b

a

b

a ?

?

?'+=

'+=

=2

2

)]([1)(1

(2)参数方程表示的函数的弧长计

算,设曲线??

?==)

()(t y t x ψ?上[],t αβ∈一段的弧

长.这时弧长微元为:

ds =

=

ds =

则曲线的弧长为

dt

t t ds s ??'+'=

=

β

α

β

α

ψ?2

2)]([)]([

例3 (1)求曲线 2

3

3

2x y =上从0到3一段弧的长度

解 由公式 s =x y b a

d 12

?

'+ ( b a <)知,弧长为

s =x

y d 130

2

?

'+=x

x ?+3

d 1=

3

230

2

3

)1(x +=

3

163

2-

=

3

14.

(2)求摆线 (sin ),

(1cos )

x a t t y a t =-??

=-? 在π20≤≤t 上的一段弧的长度(0

>a ).

解 取t 为积分变量,积分区间为]2,0[π.由摆线的参数方程,得

)cos 1(t a x -=',t a y sin =',

t

a t a y x 2

2

2

22

2

sin

)cos 1(+-='

+' |2

sin

|2)cos 1(2t a t a

=-=.

于是,由公式(16-13),在π20≤≤t 上的一段弧的长度为

220

2|sin

|2sin 2

2t t

s a dt a dt ππ=

=

?

?

204co s 82t a a

π

?

?=-=???

?

2、定积分在经济中的应用

(1)、由经济函数的边际,求经济函数在区间上的增量

根据边际成本,边际收入,边际利润以及产量x 的变动区间[,]a b 上的改变量(增量)就等于它们各自边际在区间[,]a b 上的定积分:

()()()b a R b R a R x dx

'-=?

(1)

()()()b a

C b C a C x dx '-=?

(2)

()()()b a

L b L a L x dx

'-=

?

(3)

例1 已知某商品边际收入为0.0825x -+(万元/t ),边际成本为5(万元/t ),求产量x 从250t 增加到300t 时销售收入()R x ,总成本C ()x ,利润()I x 的改变量(增量)。

解 首先求边际利润

()()()0.082550.0820L x R x C x x x '''=-=-+-=-+

所以根据式(1)、式(2)、式(3),依次求出:

300250(300)(250)()R R R x dx '-=?

300250(0.0825)x dx =-+?=150万元

300300

250

250

(300)(250)()C C C x dx dx '-==??=250

万元

300300250

250

(300)(250)()(0.0820)L L L x dx x dx

'-=

=

-+?

?

=-100万元

(2)、由经济函数的变化率,求经济函数在区间上的平均变化率

设某经济函数的变化率为()f t ,则称

21

21

()t t f t dt

t t -?

为该经济函数在时间间隔

21[,]t t 内的平均变化率。

例2 某银行的利息连续计算,利息率是时间t (单位:年)的函数:

()0.08r t =+求它在开始2年,即时间间隔[0,2]内的平均利息率。

解 由于

2

2

()(0.08r t dt dt =

+?

?

0.160.010.16=+=+所以开始2年的平均利息率为

20

()0.0820

r t dt

r =

=+-?

0.094≈

例3 某公司运行t (年)所获利润为()L t (元)利润的年变化率为

()310

L t '=?/年)求利润从第4年初到第8年末,即时间间隔[3,

8]内年平均变化率

解 由于

3

885

85

2

3

3

3

()310

210(1)3810

L t dt t '=

?=??+=??

?

所以从第4年初到第8年末,利润的年平均变化率为

85

3

()7.610

83

L t dt '=?-?

(元/年)

即在这5年内公司平均每年平均获利57.610?元。 (3)、由贴现率求总贴现值在时间区间上的增量

设某个项目在t (年)时的收入为()f t (万元),年利率为r ,即贴现率是()rt f t e -,则应用定积分计算,该项目在时间区间[,]a b 上总贴现值的增量为()b

rt

a

f t e

ndt

-?。

设某工程总投资在竣工时的贴现值为A (万元),竣工后的年收入预计为a (万元)年利率为r ,银行利息连续计算。在进行动态经济分析时,把竣工后收入的总贴现值达到A ,即使关系式

T

rt

ae

dt A -=?

成立的时间T (年)称为该项工程的投资回收期。

例4 某工程总投资在竣工时的贴现值为1000万元,竣工后的年收入预计为200万元,年利息率为0.08,求该工程的投资回收期。

解 这里1000A =,200a =,0.08r =,则该工程竣工后T 年内收入的总贴现值为 0.080.080.080

2002002500(1)

0.08

T t

t

T

T

e

dt e

e

---=

=--?

令 0.082500(1)T e --=1000,即得该工程回收期为

110001ln(1)ln 0.60.08

2500

0.08

T =-

-

=-

=6.39(年)

3、定积分在物理中的应用

1、求变速直线运动的路程

我们知道,作变速直线运动的物体所经过的路程s ,等于其速度函数v=v (t) ( v(t) ≥0) 在时间区间[a,b]上的定积分,即 ()b

a s v t dt =?

例 1、一辆汽车的速度一时间曲线如图

所示.求汽车在这1 min 行驶的路程.

解:由速度一时间曲线可知:

3,010,()30,10401.590,4060.t t v t t t t ≤≤??

=≤≤??-+≤≤?

因此汽车在这 1 min 行驶的路程是:

10

4060

10

40

3[30( 1.590)s tdt dt t dt

=

++-+?

??

210

40

2

60

0104033|30|(90)|1350()2

4

t t t t m =++-

+=

答:汽车在这 1 min 行驶的路程是 1350m .

总结:从上面的论述中可以看出,定积分的应用十分的广泛,利用定积分来解决其他学科中的一些问题,是十分的简洁、方便,由此可对见向学习、思维的妙处.因此我们要学会横向学习,各个学科之间都是有联系的,若我们能够在学习中把这些联系找出来并加以分析、总结并应用,则不仅能加深对知识的理解,贯通了新旧知识,还能拓宽知识的应用范围、活跃思维,无论从深度上还是广度上都是质的飞跃.

微积分在生活中的应用

龙源期刊网 https://www.sodocs.net/doc/5915641813.html, 微积分在生活中的应用 作者:曹红亚 来源:《数学大世界·中旬刊》2020年第01期 【摘要】微积分产生于十七世纪后期,完善于十九世纪。在现代社会中,微积分是高等数学中至关重要的组成部分,在数学领域中扮演着不可替代的角色,与此同时,微积分在现实生活中的应用也越来越广泛。本文将就微积分在生活中的应用进行深入的分析与探究。 【关键词】微积分;现实生活;实际应用 众所周知,微积分建立的基础是实数、函数以及极限。关于微积分的定义,其指的是微分学和积分学二者的总称,其更代表着一种数学思想。微积分的发展与现实生活的发展是密切相关的,现在的微积分已经广泛存在于诸多自然科学当中,如天文学、生物学、工程学以及经济学等等,在现实生活着发挥着越来越重要的作用。以下笔者结合自己多年的相关实践经验,就此议题提出自己的几点看法和建议。 一、微积分在日常工作中的应用 微积分不仅仅应用在科研领域,其更实实在在地存在于我们的生活当中。例如日常生活中,我们需要装修或者从事装修工作,都需要进行工程预算,这时我们便会不自觉地应用微积分原理,首先将整个装修工程科学划分成为多个小单元,然后对应用到的材料和工时进行计算,最终得出总的造价。再比如,现在很多人特别是年轻人都希望创造一份属于自己的事业,那么其在创业时可能会应用到微积分。如对所选地址处的车流量以及人流量进行了解,在一天的几个时间段,做一分钟的调查,测出经过的人数或车数,再通过计算得出每天或每月的人流量或车流量,这将是我们创业的一个重要参考面。 二、微积分在曲线领域中的应用 在微积分的现实应用中,最具代表性的便是求曲线的长度、切线以及不规则图形的面积。 如在当前社会中,相关数字音像制品或者正流行的数字油画,其都需要将图像和声音分解成为一个个像素或者音频,利用数字的方式来进行记录、完成保存。在重放的时候,再由设备用数字方式来解读还原,使我们听到或看到几乎和原作一模一样的音像。再比如,中央电视台新闻频道的时事报道中常看到地球转向某一点,放大,现出地名,播送最新动态的新闻画面。它的整体概貌是拼装的,是由卫星将地球分成一个个小区域进行拍照,最后拼接成地球的形状,才让我们形象地、跨时空地欣赏新闻报道的同步魅力。 三、微积分在买卖中的应用

定积分在经济学中的应用

定积分在经济学中的应用 摘要:定积分是微积分中重要内容,它是解决许多实际问题的重要工具,在经济学中有着广泛的应用,而且内容十分丰富。文中通过具体事例研究了定积分在经济学中的应用,如求总量生产函数、投资决策、消费者剩余和生产者剩余等方面的应用。 关键词:定积分;原函数;边际函数;最大值最小值;总量生产函数;投资;剩余 引言 积分学是微分学和积分学的总称。由于函数概念的产生和应用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的。可以说是继欧氏几何后,全部数学中最大的一个创造。微积分是与应用联系着并发展起来的。定积分推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展。本文将重点介绍定积分在经济学中的应用。

1 利用定积分求原经济函数问题 在经济管理中, 由边际函数求总函数( 即原函数) , 一般采用不定积分来解决,或求一个变上限的定积分。可以求总需求函数,总成本函数, 总收入函数以及总利润函数。 设经济应用函数u( x ) 的边际函数为)(x u ' ,则有 dx x u u x u x )()0()(0?'+= 例1 生产某产品的边际成本函数为100143)(2+-='x x x c , 固定成本 C (0) =10000, 求出生产x 个产品的总成本函数。 解 总成本函数 dx x c c x c x ?'+='0)()0()( =dx x x x )100143(1000002+-+? =x x x x 02_3|]1007[10000++ =x x x 10071000023+-+ 2 利用定积分由变化率求总量问题 如果求总函数在某个范围的改变量, 则直接采用定积分来解决。 例2 已知某产品总产量的变化率为t t Q 1240)(+=' ( 件/天) , 求从第5 天到第10 天产品的总产量。 解 所求的总产量为 dt t Q Q ?'=0 5)( 650)150200()600400(|)640()1220(10 5210 5=+-+=+=+=?t t dt t (件) 3 利用定积分求经济函数的最大值和最小值 例3 设生产x 个产品的边际成本C = 100+ 2x , 其固定成本为

浅谈定积分的应用

浅谈定积分的应用 **** **** (天津商业大学经济学院,中国天津 300134) 摘要:定积分在我们日常生活和学习中有很多的用处,本文阐述了定积分的定义和几何意义,并通过举例分析了定积分在高等数学、物理学、经济学等领域的应用条件及其应用场合,通过分析可以看出利用定积分求解一些实际问题是非常方便及其准确的。 关键词 定积分 定积分的应用 求旋转体体积 变力做功 The Application of Definite Integral **** **** (Tianjin University of Commerce ,Tianjin ,300134,China) Abstract:Definite integral in our daily life and learning have a lot of use, this paper expounds the definitio n of definite integral and geometric meaning, and through the example analysis of the definite integral in t he higher mathematics, physics, economics, and other fields of application condition and its applications, t hrough the analysis can be seen that the use of definite integral to solve some practical problems is very co nvenient and accurate. Keywords: definite integral, the application of definite integral, strives for the body of revolution, volume change forces work 0、前言 众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数,所以,微分与积分互为逆运算。在我们日常生活当中,定积分的应用是十分广泛的。定积分作为人类智慧最伟大的成就之一,既可以作为基础学科来研究,也可以作为一个解决问题的方法来使用。 微积分是与应用联系着并发展起来的。定积分渗透到我们生活中的方方面面,推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展[1-5]。本文将举例介绍定积分在的我们日常学习和生活当中的应用。 1定积分的基本定理和几何意义 1.1、定积分的定义 定积分就是求函数)(x f 在区间[]b a ,中图线下包围的面积。即由0=y ,a x =, b x =,()x f y =所围成图形的面积。 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的容是: 如果)(x f 是[]b a ,上的连续函数,并且有())(' x f X F =,那么

(完整版)定积分在经济中的应用

定积分在经济中的应用 一、由经济函数的边际,求经济函数在区间上的增量 根据边际成本,边际收入,边际利润以及产量x 的变动区间[,]a b 上的改变量(增量)就等于它们各自边际在区间[,]a b 上的定积分: ()()()b a R b R a R x dx '-=? (1) ()()()b a C b C a C x dx '-=? (2) ()()()b a L b L a L x dx '-=? (3) 例1 已知某商品边际收入为0.0825x -+(万元/t ),边际成本为5(万元/t ),求产量x 从250t 增加到300t 时销售收入()R x ,总成本C ()x ,利润 ()I x 的改变量(增量) 。 解 首先求边际利润 ()()()0.082550.0820L x R x C x x x '''=-=-+-=-+ 所以根据式(1)、式(2)、式(3),依次求出: 300 250 (300)(250)()R R R x dx '-=?300250(0.0825)x dx =-+?=150万元 300300250250(300)(250)()C C C x dx dx '-==? ?=250万元 300 300250250(300)(250)()(0.0820)L L L x dx x dx '-==-+??=-100万元 二、由经济函数的变化率,求经济函数在区间上的平均变化率 设某经济函数的变化率为()f t ,则称 2 121 ()t t f t dt t t -? 为该经济函数在时间间隔21[,]t t 内的平均变化率。 例2 某银行的利息连续计算,利息率是时间t (单位:年)的函数:

定积分的应用

定积分的应用

————————————————————————————————作者:————————————————————————————————日期:

浅谈定积分的应用 **** **** (天津商业大学经济学院,中国天津 300134) 摘要:定积分在我们日常生活和学习中有很多的用处,本文阐述了定积分的定义和几何意义,并通过举例分析了定积分在高等数学、物理学、经济学等领域的应用条件及其应用场合,通过分析可以看出利用定积分求解一些实际问题是非常方便及其准确的。 关键词 定积分 定积分的应用 求旋转体体积 变力做功 The Application of Definite Integral **** **** (Tianjin University of Commerce ,Tianjin ,300134,China) Abstract:Definite integral in our daily life and learning have a lot of use, this paper expounds the definition of defi nite integral and geometric meaning, and through the example analysis of the definite integral in the higher mathe matics, physics, economics, and other fields of application condition and its applications, through the analysis can be seen that the use of definite integral to solve some practical problems is very convenient and accurate. Keywords: definite integral, the application of definite integral, strives for the body of revolution, volume change forces work 0、前言 众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数,所以,微分与积分互为逆运算。在我们日常生活当中,定积分的应用是十分广泛的。定积分作为人类智慧最伟大的成就之一,既可以作为基础学科来研究,也可以作为一个解决问题的方法来使用。 微积分是与应用联系着并发展起来的。定积分渗透到我们生活中的方方面面,推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展[1-5] 。本文将举例介绍定积分在 的我们日常学习和生活当中的应用。 1定积分的基本定理和几何意义 1.1、定积分的定义 定积分就是求函数)(x f 在区间[]b a ,中图线下包围的面积。即由0=y ,a x =, b x =,()x f y =所围成图形的面积。 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是: 如果)(x f 是[]b a ,上的连续函数,并且有())(' x f X F =,那么 ()()()1)(Λa F b F dx x f b a -=?

定积分在生活中的应用

PINGDINGSHAN UNIVERSITY 院系 : 经济与管理学院 题目 : 定积分在生活中的应用 年级专业: 11级市场营销班 学生姓名 : 孙天鹏

定积分在生活中的应用 定积分作为大学里很重要的一部分,在生活有广泛的应用。微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。 一、定积分的概述 1、定积分的定义: 设函数()f x 在区间[],a b 上有界. ①在[],a b 中任意插入若干个分点011n n a x x x x b -=<< <<=,把区间[],a b 分成 n 个小区间[][][]01121,,,, ,,,n n x x x x x x -且各个小区间的长度依次为110x x x ?=-, 221x x x ?=-,…,1n n n x x x -?=-。 ②在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ?的乘积 ()i i f x ξ?(1,2, ,i n =) , ③作出和 ()1 n i i i S f x ξ==?∑。记{}12max ,,,n P x x x =???作极限()0 1 lim n i i P i f x ξ→=?∑ 如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当 0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在 区间[],a b 上的定积分(简称积分),记作()b a f x dx ?,即 ()b a f x dx ?=I =()0 1 lim n i i P i f x ξ→=?∑, 其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ??叫做积分区间。

定积分的几个简单应用

定积分的几个简单应用 一、定积分在经济生活中的应用 在经济管理中,由边际函数求总函数,一般采用不定积分来解决,或者求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决. 例1 某商场某品牌衬衫的需求函数是q p 15.065-=,如果价格定在每件50元,试计算消费者剩余. 解 由p 50=,q p 15.065-=,得10000=q ,于是 dq q )5015.065(10000 0--? 10000023 ) 1.015(q q -= 50000=, 所求消费者剩余为50000元. 例2 已知某产品总产量的变化率为t t Q 1240)(+='(件/天),求从第5天到第10天产品的总产量. 解 所求的总产量为 ??+='=10 5105)1240()(dt t dt t Q Q 1052) 640(t t +=650=(件). 二、用定积分求极限 例1 求极限 ∑=∞→n k n n k 123 lim . 解 n n n n n n n n k n k 12111123 +++=∑= )21(1n n n n n +++= . 上式是函数[]1,0)(在x x f =的特殊积分和.它是把[]1,0分成n 等分,i ξ取?? ????-n i n i ,1的右端点构成的积分和.因为函数[]1,0)(在x x f =可积,由定积分定义,有

∑=∞→n k n n k 12 3lim ??????+++=∞→)21(1lim n n n n n n 3210==?dx x . 例2 求极限 2213lim k n n k n k n -∑ =∞→. 解 212213)(11n k n k n k n n k n k n k -?=-∑∑==. 上式是函数[]1,01)(2在x x x f -=的特殊积分和.它是把区间[]1,0分成n 等分,i ξ取?? ????-n i n i ,1的右端点构成的积分和.因为函数21)(x x x f -=在[]1,0可积,由定积分定义,有 2213lim k n n k n k n -∑=∞→3 1)1(311102321 02=??????--=-=?x dx x x . 三、用定积分证明不等式 定积分在不等式的证明中有着重要的应用.在不等式的证明中,可根据函数的特点,利用定积分的性质来证明. 例1 设)(x f 是闭区间[]b a ,上的连续函数,且单调增加,求证: ?? +≥b a b a dx x f b a dx x xf )(2)(. 证明 作辅助函数 dt t f x a dt t tf x x a x a ??+-=)(2)()(?, 显然0)(=a ?,且 )(2 )(21)()(x f x a dt t f x xf x x a ?+--='? )(2 ))((21)(2x f a a x f x f x ---=ξ [])()(2 ξf x f a x --=, 其中[]x a ,∈ξ.因为)(x f 在[]b a ,上单调增加,所以0)(≥'x ?,从而)(x ?在闭区间[]b a ,上单调增加,所以 0)()(=≥a x ??,

微积分在现实中的应用

微积分的应用 微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 微积分建立之初的应用:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛

的应用,特别是计算机的出现更有助于这些应用的不断发展。 微积分作为一种实用性很强的数学方法和根据,在数学发展中的地位是十分重要的。例如,微分可以解决近似计算问题。比如:求sin29°的近似值,求不规则图形面积或几何体体积的近似值等。通过微积分求极限、利用微分中值定理,能够及时的放缩多项式,有利于不等式的化简和证明。极限求和、导数求和、积分求和也都是解决求数列前n项和的好方法。其次,数理化不分家。而且微积分在不等式中也有很大的运用,我们可以运用微积分中值定理,泰勒公式,函数的单调性,极值,最值,凸函数法等来证明不等式。在物理问题上,通过解微分方程研究物体运动问题、气体问题、电路问题也是非常普遍的。已知位移——时间函数计算速度,已知速度——时间函数计算加速度(即生活中交通管理方面的应用);运动学中的曲线轨迹求解(即生活中在篮球投篮训练中的应用);求不规则物体的重心;力学工程中计算变力和非恒力做功等等。在化学领域,用气相色谱仪和液相色谱仪做样品化学成分分析时,我们得到的并不是直观的数字结果,而是一张色谱图。色谱图是由一个一个的峰组成的,而我们进行定量计算的根据,就是这些峰的面积。而求这些峰的面积,就需要用到积分。现在的仪器里都集成了自动积分仪,只要选定某一个峰,它就能把积分计算出来。最终得到的成分含量就是基于积分原理计算出来的 微积分的应用不仅仅遍及各个学科,也渗透到了社会的各个行业,甚至深入人们日常生活和工作。利用微积分进行边际分析(经济函数的

概述定积分的发展及应用

概述定积分的发展与应用 摘要:概述了定积分发展的三个历史阶段,讨论了定积分在各个学科中的具体应用. 关键词:分割近似; 定积分; 流数法; 应用 微积分创立是数学史上一个具有划时代意义的创举,也是人类文明的一个伟大成果.正如恩格斯评价的那样:"在一切理论成就中,未必再有什么象17世纪下半叶微积分的发明那样被当作人类精神的最高胜利了." 它是科学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具; 如数学研究, 求数列极限, 证明不等式等. 而在物理方面的应用,能够说是定积分最重要的应用之一,正是因为定积分的产生和发展,才使得物理学中精确的测量计算成为可能, 如:气象,弹道的计算,运动状态的分析等都要用的到微积分. 定积分的发展大致能够分为三个阶段:古希腊数学的准备阶段,17世纪的创立阶段以及19世纪的完成阶段. 1准备阶段 主要包括17世纪中叶以前定积分思想的萌芽和先驱者们大量的探索、积累工作.这个时期随着古希腊灿烂文化的发展,数学也开始散发出它不可抵挡的魅力.整个16世纪,积分思想一直围绕着"求积问题"发展,它包括两个方面:一个是求平面图形的面积和由曲面包围的体积,一个是静力学中计算物体重心和液体压力.德国天文学家、数学家开普勒在他的名著《测量酒桶体积的新科学》一书中,认为给定的几何图形都是由无穷多个同维数的无穷小图形构成的,用某种特定的方法把这些小图形的面积或体积相加就能得到所求的面积或体积,他是第一个在求积中使用无穷小方法的数学家.17世纪中叶,法国数学家费尔玛、帕斯卡均利用了"分割求和"及无穷小的性质的观点求积.可见,利用"分割求和"及无穷小的方法,已被当时的数学家普遍采用. 2 创立阶段 主要包括17世纪下半叶牛顿、莱布尼兹的积分概念的创立和18世纪积分概念的发展.牛顿和莱布尼兹几乎同时且互相独立地进入了微积分的大门. 牛顿从1664年开始研究微积分,早期的微积分常称为"无穷小分析",其原因在于微积分建立在无穷小的概念上.当时所谓的"无穷小"并不是我们现在说的"以零为极限的变量",而是含糊不清的,从牛顿的"流数法"中可见一斑,"流数法"的主要思想是把连续变动的量称为"流量",流量的微小改变称为"瞬"即"无穷小量",将这些变量的变化率称为"流数".用小点来

应用数学论文---定积分在生活中的应用

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 定积分概述 (2) 1.1定积分的定义 (2) 1.2定积分的性质 (2) 1.3定理及方法 (3) 2定积分的应用 (4) 2.1 定积分在平面图形面积、旋转体体积、曲线弧长上的应用 (4) 2.2定积分在物理中的应用 (8) 3总结 (11) 致谢 (11) 参考文献 (11)

定积分在生活中的应用 数学与应用数学专业学生郑剑锋 指导教师徐玉梅 论文摘要:本文简要的讨论了定积分在生活中的基本应用。数学方面包括应用定积分计算平面曲线的弧长、平面图形的面积以及立体图形的体积和物理应用。 关键词:微元法定积分数列极限 The Definite Integral in Our Life of Application Student majoring in mathematics and applied mathematics Jianfeng Zheng Tutor Yumei Xu Abstract:This paper discussed the definite integral in our life of basic applications. Mathematics including application of definite integral calculation plane curve arc length, the plane figure of the area and volume of three-dimensional graph and physical applications. Key words: Micro element method definite integral sequence limit 引言 本文主要介绍了定积分在生活中的应用,定积分作为大学里很重要的一部分,在生活有广泛的应用,微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。

定积分的应用本科毕业论文开题报告

一、选题的性质 二、选题的目的和意义 选题目的:定积分作为函数的一种特定总和式的极限,是数学知识的重要基础。通过典型问 题,从不同角度,对定积分的特点进行整体把握,探讨定积分在几何学、物理学、以及经济学中 的应用,加强对定积分思想的认识,提供用定积分分析解决实际问题的方法 。 选题意义:定积分是与应用联系发展起来的,是微积分中的一个重要基本概念,是从实际问 题中抽象出来的数学概念,是解决许多实际问题的工具。 在数学方面如求解复杂图形,求数列极限,证明不等式等;而在物理方面,正是由于定积分 的产生与发展,才使得物理学中的精确计算成为可能,从而使物理学得到长足的发展,如:气象、弹道的计算,人造卫星轨迹的计算,运动状态的分析等,都要用的到积分;把定积分应用到经济 管理学中,可以使一些经济现象更明确,使管理更科学化。 三、与本课题相关的国内外研究现状,预计可能有所创新的方面 研究现状:牛顿,莱布尼茨以无穷思想为据,从不同的角度运用了定积分的思想方法创立了 微积分,在这新的领域上定积分的思想和方法展现出了勃勃生机,为定积分思想的进一步完善奠 定了坚实的基础。定积分理论的建立,使数学摆脱了许多与无穷有关的悖论和困扰,对于培养人 的思维方法,提高分析、解决问题方面有极好的促进作用。定积分作为微积分的重要组成部分, 在几何、物理、经济等方面有着广泛的应用,目前,探究定积分应用的文章非常之多,研究范围 也是相当广泛的。在几何学方面,可以用来计算平面图形面积,立体、旋转体的体积,弧长等; 在物理学方面,压力、引力,变力做工,运动轨迹的计算,运动状态分析等也都用到定积分知识; 在经济学方面可以用来解决消费过剩,收入流等实际问题。也正是因为这些应用,推动着积分学 的不断发展和完善。 预计创新方面:通过典型例题,从定积分的公式、性质及定积分中值定理出发,来介绍定积 分在几何、物理、经济等领域的应用,在前人的基础上对定积分的典型应用进行研究讨论,寻找 简单的用定积分解决实际问题的方法。 四、课题研究的可行性分析 定积分是函数的一种特定总和式的极限,是数学知识的基础,对定积分的一些公式、性质、 定积分中值定理已有深刻的理解,通过常见的定积分例题,从不同角度分析、研究定积分的特点,更容易把握和理解。再看近几年的几何、物理,经济等方面的研究,尤其是几何学,定积分在这 些研究中扮演着相当重要的角色,而事实也证明定积分的思想确实给相关研究带来很大的方便。 所以研究好定积分不单是数学界的问题,更是整个学术界共同的任务。而对其分析研究的结果也 必将给以后各方面的课题研究带来意想不到的便捷之处。

1.7定积分的简单应用

§1.7定积分的简单应用(二课时) 一:教学目标 知识与技能:初步掌握利用定积分求曲边梯形的几种常见题型及方法;让学生深刻理解定积 分的几何意义以及微积分的基本定理。 过程与方法:进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方 法 情感态度与价值观:体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功), 培养学生唯物主义思想。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程:(第一课时) 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x y x ?=?==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 20 0x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线3 6y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y = x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形 2 x y =y x A B C D O

定积分在实际问题中的应用

第二节 定积分在实际问题中的应用 Application of Definite Integral 教学目的: 熟练掌握求解平面图形的面积方法,并能灵活、恰当地选择积分变量;会求平行截 面面积已知的立体的体积,并能求解旋转体的体积;能够解决物理应用中变力作功、液体压力方面的问题. 内 容: 定积分几何应用;定积分在物理中的应用. 教学重点: 求解平面图形的面积;求旋转体的体积. 教学难点: 运用定积分求平面图形的面积和旋转体的体积 教学方法: 精讲:定积分的几何应用;多练:用定积分求平面图形的面积和立体的体积 教学内容: 一、定积分的几何应用 1. 平面图形的面积 设函数12(),()y f x y f x ==均在区间[,]a b 上连续,且12()(),[,]f x f x x a b ≥∈,现计算由12(),(),,y f x y f x x a x b ====所围成的平面图形的面积. 分析求解如下: (1) 如图6-3所示,该图形对应变量x 的变化区间为[,]a b ,且所求平面图形的面积S 对区间[,]a b 具有可加性. (2) 在区间[,]a b 内任取一小区间[,]x x dx +,其所对应的小曲边梯形的面积,可用以dx 为底,12()()f x f x -为高的小矩形的面积(图6-3)中阴影部分的面积)近似代替.即面积微元为 12[()()]dS f x f x dx =- (3) 所求图形的面积 22[()()]b a S f x f x dx =-? 图6-3 【例1】 求曲线x y e =,直线0,1x x ==及0y =所围成的平面图形的面积. 解 对应变量x 的变化区间为[0,1],在[0,1]内任取一小区间[,]x x dx +,其所对应小窄条的面积用以dx 为底,以()()0x x f x g x e e -=-=为高的矩形的面积近似代替,即面积微元 x dS e dx = 于是所求面积 1 10 1x x S e dx e e ===-? 【例2】 求曲线2y x =及2 2y x =-所围成的平面图形的面积.

定积分在经济中的应用习题解答

定积分在经济中得应用习题解答 1.设商品的需求函数1005Q p =-(其中:Q 为需求,p 为单价)、边际成本函数 ()150.05C Q Q '=-且()012.5C = 问:当p 为什么值时?工厂的利润达到最大?试求出最大利润. 解 收益函数为 R (p ) = 100 p -5 p 2 成本函数为 0()(150.05)(0)Q C Q t dt C =-+? 21 1512.540 Q Q =-+ 由已知将Q = 100 - 5p 代入上式,得 25()501262.58C p p p = -+ 于是利润函数为 L (P )= R (p ) - C(p ) 2451501262.58 p p =- +- 令245'15004L p =-+= 12012045120,'()07727 p L ==-?<得 且 故当1207 p = 时利润达到最大,且最大利润 max L (1207)=23.12. 2. 某厂生产的某一产品的边际成本函数 ()231833C Q Q Q '=-+ 且当产量为3个单位时,成本为55个单位,求: (1) 成本函数与平均成本函数; (2) 当产量由2个单位增加到10个单位时,成本的增量是多少? 解 (1) 因为 20()(31833)Q C Q Q Q d Q =-+? 32933Q Q Q C =-++ 由已知当产量Q 为3时,成本为55,代入上式得C = 10, 于是 成本函数为

32()93310C Q Q Q Q =-++ 平均成本函数为 2()10()933C Q C Q Q Q Q Q ==-++ (2) 当产量由2个单位增至10个单位时,成本的增量是 ?C (Q ) = C (10) – C (2) = 392. 3. 已知生产某产品的固定成本为6万元,边际收益与边际成本(单位:万元/百台)分 别为 '()338R Q Q =-,2()31836C Q Q Q '=-+ (1) 求当产量由1百台增加到4百台时,总收益与总成本各增加多少? (2) 求产量为多少时, 总利润最大? (3) 求最大总利润时的总收益、总成本、总利润. 解 (1)由公式得总收益与总成本的增量为 4 1(338)39Q dQ -=?(万元) 421(31836)36Q Q dQ -+=? (万元) (2)由极值存在的必要条件: 边际收益'()R Q =边际成本()C Q ' 即 338Q -=231836Q Q -+ 解得121,33 Q Q ==,又由极值存在的充分条件: "()(338)'8R Q Q =-=-,2()"(31836)'618C Q Q Q Q =-+=- 显然,3Q =满足充分条件,即获得最大总利润的产量是3Q =百台. (3) 由公式得最大总利润总收益与总成本 3 0(338)63Q dQ -=? (万元) 320(31836)60Q Q dQ -+=? (万元) 所以

定积分的5大几何应用和4大物理应用

定积分的5大几何应用和4 大物理应用 上下(曲)原函横(绕X 轴旋转)面积(纵周长), 左右(曲)反函横周长(纵面积); 两轴轮换形(心) 除外, 平移(轴)双函识减符。 一、5大几何应用 1.1 平面图形的面积应用 称为左右曲不相交图形 []()() d c S y y dy ψ??=-?, 称为上下曲相交图形 既然是定积分应用,当然积分方向以常数区间为准。对上下曲不相交图形,被积函数为上原函数减去下原函数(远减近),对左右曲不相交图形,被积函数为右反函数减去下反函数(远减近),对于相交图形则为远减近的绝对值,画图以面积所在的位置定正负。 1.2 平面曲线的弧长 1.3 旋转体积 。如果旋转轴为平行于x 或y 的直线,比

如上下曲绕x t =,如t 在两曲线的上方,则旋转的体积,则计算如下(其余类推): 设()11y f x =为离旋转轴的近曲线,()22y f x =为离旋转轴的远曲线,则体积元及体积为: 形象记忆法:上述公式靠死记是不行的,时间长了必会混淆,但你仔细观察一下有规律: 上下曲绕x 及其平行轴和上下曲绕y 及其平行轴利用圆面积,其余情形用圆的周长。而且上下曲,定积分方向为x ,左右曲为y ,这是定积分要求的;x V 和y V 在形式上满足“导数”关系;还有个特征就是x ,y 是交替出现的,如[]212()()b y a V x f x f x dx π=-?中y V x →,而 ()()2d x c V y y y d y πψ?=-?????中 x V y →。 1.4 旋转体的侧面积(对于上下曲图形) 形象记忆法:x ,y 交替出现。 1.5 形心(重点) 质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心是重合的。 ● 曲线形心(在多元函数积分应用时,还有平面和图形和空间图形的形心问题,请对照。) 静力矩定义: 形心坐标 对质心只要在每项积分中加入线密度为()x λ即可,当()x λ=常数,即几何体均匀时, 质心与形心完全重合,上述公式通用,下同。 上述形心公式与旋转体的侧面积联系起来,便得到:

定积分在几何上的应用教案(5)

定积分在几何上的应用教案(2) 目的要求 1.了解旋转体的概念,理解旋转体体积公式的推导过程,继续了解“分割——近似代替——求和——取极限”的思想方法. 2.掌握用旋转体的体积公式求旋转体的体积,学会用定积分解决一些在几何中用初等数学方法无法解决的体积问题. 3.对几何图形的基本度量——体积的概念有较完整的认识,知道在求旋转体的体积时,定积分是一种普遍适用的方法,进一步体会学习定积分的必要性. 4.培养学生应用数学的意识和能力,进一步培养学生的逻辑思维能力、空间想象能力以及应用定积分的基本思想解决问题的能力. 内容分析 1.本节课是在学习了定积分的概念与计算的基础上,介绍定积分在几何中的又一种应用,它是微积分解决初等数学的一个生动实例,这充分体现了新教科书对培养学生应用数学的意识的重视.大家知道,微积分是十七世纪数学发展史上的里程碑,是人类思想史上的重大飞跃,微积分可以解决初等数学难以解决或无法解决的许多问题.通过这部分内容的学习,可使旋转体的体积在理论上解决得更彻底,并使学生对体积的概念有较完整的认识. 2.“旋转体的体积”这部分内容包括旋转体的定义、旋转体的体积公式的推导、旋转体体积的计算.教学中以旋转体体积的计算为重点;由于旋转体体积公式的推导比较抽象,空间想象能力要求较高,故为本节课的教学难点;突破难点的关键是数形结合,充分采用现代化的多媒体教学手段显示旋转体的形成过程,在计算机中虚拟几何体的分割过程的“真实”情景,“放大”微观世界,使抽象问题形象化、直观化. 3.考虑到本课内容比较抽象,故宜采用启发引导、讲练结合的教学方法,同时采用计算机辅助教学.在具体教学中要注意到以下几点: 关于旋转体的定义,要与以前学习过的柱、锥、球等旋转体的定义结合起来教学,使学生明确旋转体的形成有两个要素:一是被旋转的平面图形,二是旋转轴.柱、锥、球等旋转体的平面图形都是直线或圆弧,而在这里是一般的曲线. 关于旋转体体积公式的推导,其实在第二册(下)关于体积公式的推导过程中已经渗透了定积分的思想方法.教学中,可通过对球的体积公式的推导及曲边梯形面积公式的推导作一简单的回顾,采用类比的方法,遵循“有限→无限→有限、连续→离散→连续、精确→近似→精确”的原则,化曲为直,化整为零,变未知为已知. 关于旋转体体积公式的计算,课本例3显然可直接应用圆锥的体积公式求出圆锥的体积.之所以安排这道例题,是为了让学生明白用定积分求旋转体的体积是一种普遍适用的方法,教学中切勿一带而过.在讲完例3后,要注意总结求旋转体体积的解题步骤.本课的练习要紧紧围绕旋转体的体积公式展开,让学生通过一定的练习,加深对定积分概念的了解,并达到熟练掌握公式的教学效果. 4.本节课是定积分应用的一个高潮,有必要在知识和能力方面有所突破,即安排一些综合性较强的例题或课外练习题,让学有余力的学生继续探讨,以提高他们分析问题与解决实际问题的能力. 教学过程 (一)铺垫引入,创设情景 1.铺垫引入 ①数轴可表示什么样的图形? ②什么样的图形叫做圆? ③什么样的图形叫做球?(多媒体演示球的形成过程) 2.创设情景 (1)问题一下列几何体是如何形成的?(多媒体演示形成过程) ①圆柱②圆锥③花瓶 归纳: ①什么叫旋转体?(平面图形绕这个平面内的一条直线旋转一周所成的几何体) ②旋转体形成的两个要素是什么?(一是被旋转的平面图形,二是旋转轴) ③举一些日常生活中的旋转体的例子,并说明被旋转的平面图形及旋转轴分别是什么.(多媒体演示一些旋转体) (2)问题二如何求旋转体的体积?

经济数学基础——定积分在经济学中的应用

河北省高等教育自学考试 定积分在经济学中的 应用 ——定积分在经济学中的应用 地市:沧州市 专业:投资管理 姓名:郭梦帆 准考证号:1 身份证号: 联系电话:

内容摘要 经济数学基础本着基础教学为专业服务及注重应用、培养能力的原则,根据微积分、线性代数、概率统计的基本知识逻辑,以知识介绍为重点,详略得当;叙述上力求简明、通俗,又不失科学性。 关键词: 定积分微分经济学边际函数投资 经济数学基础知识点 1、一元函数极值 设函数f(x)在X0的一个邻域内有定义,若对于该邻域内异于X0的X 恒有:f(x)f(X0),则f(X0)称为函数的极小值,称X0为极小值点.函数的极大值、极小值统称为函数的极值.极大值点、极小值点统称为函数的极值点。 极值反映函数的局部性态,就是一个局部概念.极大值不一定大于极小值,极大(小)值不一定就是区间上的最大(小)值,但就极值点附近的范围来说极大(小)值就就是最大(小)值;区间上的极值点 可能有若干个。 2、二元函数极值 设函数Z=f(x, y)在点(x0,y0)的邻域内有定义,对于该邻域内异 于(x0,y0)的点,如果都有f(x, y)f(x0,y0),则称f(x, y)为函数Z=f(x, y)的极小值;极大值与极小值统称为二元函数Z=(x, y)的极值;使二元函数Z=(x, y)取得极大值的点或者极小值的点 f(x0,y0),称为极大值点或者极小值点;极大值点与极小值点统称为极值点. 求多元函数的极值,一般可以利用偏导数来解决.与一元函数类似,可以利用函数的极大值、极小值求解函数的最大值、最小值,但就是由于自变量个数的增加,应特别注意概念中的一些变化与计算.对于二元以上的函数极值问题可类似的加以解决,如可以将二元 函数极值问题的理论推广到多元函数的情形,以及利用泰勒公式 推导出判断多元函数极值存在的充分条件、极值不存在的必要条

相关主题