搜档网
当前位置:搜档网 › 颗粒饲料霉变的原因分析和相应措施精品文档5页

颗粒饲料霉变的原因分析和相应措施精品文档5页

颗粒饲料霉变的原因分析和相应措施精品文档5页
颗粒饲料霉变的原因分析和相应措施精品文档5页

颗粒饲料霉变的原因分析和相应措施

饲料行业竞争日益激烈,使饲料储存周期延长,饲料霉变问题成为夏季困绕饲料生产的主要问题之一。霉变降低了饲料的营养价值,影响了适口性更为严重的是造成饲料产品霉菌毒素超标,危害动物健康从而危害人类食品安全。为了防止饲料霉变,各厂家采取了很多措施,收到了一定的效果。但是由于霉变原因受很多方面因素的影响;从原料验收入库到饲料成品到达养殖现场整个物流过程中只要任何一个环节防霉措施不力都有可能发生霉变。下面就每一个环节可能引起霉变的因素和需要采取的措施分别加以分析:

一、原料的验收入库和仓储:

原料是产品质量的基础,严重的饲料质量问题几乎都与原料有关。饲料原料中允许一定量的水分、霉菌和仓虫存在,但是数量超过国家标准规定的允许数量后,原料的价值迅速下降,更为严重的是会造成原料霉变。变质的原料被生产成饲料后容易诱发霉变,即使饲料不发生霉变也会影响饲料的卫生指标和适口性。因此在原料的验收入库和仓储环节需要作好以下工作:

1、原料在采购前,除检测其营养指标之外,还应控制原料的水分、微生物指标和仓虫的种类数量。

水分是霉菌生长繁殖最重要的影响因素之一。一般玉米、稻谷、麦类等原生态谷物的水分应不高于14%;大豆、次粉、糠麸类、豆粕等的水分应低于13%;棉粕、菜粕、花生粕、鱼粉、肉骨粉、骨粉等的水分应小于12%。水分超标的原料不耐储存,容易发霉。对于棉粕、菜粕等经加工过的原料还需要关注局部水分有无超标,因为即使平均水分很低但由于生产厂家的工艺缺陷等原因常造成局部水分超标产生结块进而霉变。

可以通过霉菌检测了解原料中的霉菌总数是否超标。对于没有条件进行霉菌检测的企业,可通过了解原料的生产日期、生产工艺、贮存条件;观察原料的颜色外观是否正常,是否有结团现象;用嗅觉判断原料的气味是否正常,有无异味;用手或温度计测定原料是否有发热现象等措施来判断原料是否发生霉变。

在夏季仓虫不仅是某些储存原料损耗加大的直接原因,而且它们在生长发育、繁殖和迁移过程中所产生的代谢物会严重污染粮食。更为严重的是,仓虫的活动会导致原料发热,招致微生物的滋生与发展,引发或加速霉变。在仓虫中以螨虫对霉变的影响最大。螨虫属蜱螨目,粉螨科;不完全变态类型,体躯微小人们肉眼难以发现。在潮湿温暖的环境下,螨虫通常在谷物、饲料中以及在运输、加工设备中大量繁殖,极易引发霉变。饲料中生长螨虫也已成为客户对加工厂饲料投诉的理由之一,所以要监测和控制仓虫的数量特别是螨虫的情况。拒收被螨虫污染的原料。

2. 加强原料入库后的储存管理

水分、温度和空气相对湿度是影响霉菌和仓虫繁殖的主要因素。原料入库时,应按不同品种、批次分开码堆,粮垛码堆不宜过高过大,堆与墙、堆与堆之间留有20~50cm左右的距离,以利通风散热。长期储存的季节性原料或吸湿性强的原料最好垫一层,高8~10cm的木架。夏季可根据天气情况,对仓库进行抽排风,散热散湿。及时修补仓库出现的破损,防止仓库出现漏雨、渗水现象。

原料的使用原则上“先进先出”也可根据原料的水分、霉菌污染程度等情况,优先使用不耐储存的原料批次。如果仓库条件较差,不应储备过多原料,而应以“快进快出”的原则采购、使用原料。

加强仓库的清洁卫生管理,对装卸过程散落的原料和产生的浮尘及时清扫、处理,防止久置地面,吸潮霉变或滋生仓虫;对已经霉变的原料,应尽快转移,避免成为霉菌污染源,感染其它原料。

二、生产环节:

生产环节可能引发霉变主要是成品水分超标。水分超标分为平均水分超标和局部水分。造成成品水分超标的原因比较复杂,归纳起来有以下几种情况:

1、成品平均水分超标:

饲料在生产过程中由于原料自身水分过高、烘干或冷却系统的故障造成成品平均水分超标从而引发饲料早期霉变的现象一般比较少,因为成品的平均水分通过检测后如果超标会作

处理,不会流入市场。(如果生产、品管部门控制得不好也会出现这样的问题。)但是在小批量生产过程中,由于制粒调质温度还没有调整到正常就已制粒完毕;颗粒离开环模时温度低,冷却器内的温度也低,饲料中水分子的活性弱,不容易散发。再加上冷却器中料层薄,空气流动的阻力小流量大,饲料在冷却时温度很快降到室温,但水分没有散发出来,造成水分超标。这种现象在冬季或早春、暮秋的阴雨天气容易出现。返工处理这种料(在气温低相对湿度高的条件下)如果不搭配低水分的原料或加大批量,是很难将水分降到合格水平。遇到这种情况有的厂只好让步接收,这样的料库存时间长了以后易发霉变质。解决的途径可以从几个方面入手:(1)、控制原料水分(混合后的原料水分夏季12%-14%,冬季10%-11.5%);(2)、放大生产批量,要根据不同规格的制粒机和冷却器确定最小的安全生产批量,就制粒机来说最小的安全生产批量是调质温度达到正常后,已制粒的量要小于该批料总量的25%(并且在调质温度没有达到50℃前制的颗粒要接出来);对于冷却器来说最小的安全生产批量是整批料在冷却器中要达到其容量的60%以上。(3)、制粒机启动前先排干净蒸汽管道内凝结的水;并且要经常检查管路的输水阀是否正常。(4)、通过调节设备和工艺参数如调质器保温、提高蒸汽的饱和度、提高调质温度、控制制粒机喂料量延长颗粒在环模孔内的时间(以提高颗粒离开环模的温度)、调高冷却器的料位高度、选择合理风门开度等措施在一定范围内可以控制成品水分。

2、成品局部水分超标。

局部水分超标有一定的隐蔽性,难发现难控制。它是大多数因水分超标而引发霉变的主要原因。根据长期观测有下列情况会造成饲料局部水分超标。

(1)、设备技术状态和生产操作都没有问题,原料初始水分也符合要求但是每一批料在刚开始生产时由于调质温度低,蒸汽管路沉积了一定数量的冷凝水所以制出的颗粒水分较高,温度较低,加上冷却器温度也较低水分子的活性差,不易散发。冷却后这部分颗粒水分往往会超标。解决的方法:生产前先要排干净蒸汽系统的冷凝水,制粒机刚出来的料必须接出来,不得放入冷却器直到调质温度达到50℃ 左右时才能将料导入冷却器。接料时要将每批开头的2-4包料,接出作回机料处理。

(2)、设备调节不合理或设备故障:大多数的饲料厂冷却工艺设计上是:旋风除尘器分离回收的料,没有通过专门的提升机回到待制粒仓,而是直接进入成品提升机。除尘器分离

处理霉变饲料的方法

在我国饲料原料来源复杂广泛,越来越多的作物、泔水等可以发酵成牲畜饲料。在潮湿的环境中,饲料容易发霉变质,饲料霉变的因素有很多,像原料的种植和采集时已经霉变;其次是在初级加工时未处理好饲料水分;3、储存条件差、运输环节出了问题。既然已经发生,那么我们如何处理霉变问题呢?肯定会有人说使用脱霉剂或者防霉剂不就行了,而一味地依靠它们是否正确呢?这里有些资料供大家参考,不妥请指正。 (一) 科学使用脱霉剂,适度使用防霉剂 主要针对轻微霉变的原料,采用原料与脱霉剂逐级混匀的办法,使脱霉剂与原料充分混匀,然后作为原料使用。脱霉剂在脱霉的同时也有吸附部分营养物质的作用,不要与维生素等微量成分直接混用,因此,科学使用和掌握一定的技巧十分重要,一味地加大剂量只会适得其反。对于有一定储存期的饲料则需要适度使用防霉剂,推荐使用双乙酸钠、乳酸、丙酸等防霉剂。 (二) 通风晾晒,去表霉 霉菌有很多种,在表皮的霉变量不大的情况下可以采用通风晾晒法,以去掉表皮附着的霉菌体。最典型的是玉米黄曲霉,在晒场进行晾晒后初筛,使表皮霉菌脱落,然后再依据霉变的情况决定使用方法,轻微者可采用第一种方法,中度或严重霉变者则推荐使用下一种方法。

(三)稀释法 中高度霉变原料不应再用作动物饲料,但我国不合格的霉变饲料比重较大,且价值不菲,丢弃不太现实,此时建议稀释法,即用好的原料与其混合使用,比例依情况而定,喜事前必须用第一种和第二种方法进行处理。 (四)水洗法 对于玉米而言可采用此法,玉米粉碎后,采用水洗的方法,洗去霉菌及其毒素,同时去掉浮在表面的胚芽,可以较好地去除霉菌毒素。但此法操作难度较大,量少可以用,处理后的玉米要及时使用,不便存储。 (五)改变用途 在批量大时可用,一是完全改变,用于工业发酵等,收回大部分成本;二是改变饲喂对象,这是退而求其次的做法,比如由猪改成普通水产,但要先进行第1-3种方法处理,否则效果很差。 (六)微生态缓解法 霉变饲料对于有一定储存期的用户来说有继续霉变恶化的风险,会引起拉稀、中毒等等问题,因此推荐大家可使用微生态制剂来缓解损害,它对霉菌具有竞争抑制性作用,其产生的复合酶还有一定的解毒功能。

铝合金 常见的质量通病和原因分析及防治措施

附件四: 铝合金模板常见的质量通病和原因分析及防治措施 1轴线位移 现象:在混凝土浇筑完成并拆除墙柱模板以后,出现了墙柱的实际位置与建筑物的轴线位置有偏移。 原因分析:由于铝模板是组装模板,可能是放线时有偏移或者模板拼装时未能按规定到位。再则是墙柱模板根部定位钢筋不牢或者漏焊,发生偏移又未及时纠正而造成累计误差。混凝土浇筑时未均匀对称下料或高度过高造成侧压力大而挤偏模板。对拉螺栓、顶撑使用不当或松动造成轴线偏位。 防治措施:对木工及定位钢筋安装工人进行技术交底。对模板轴线测放后进行技术复核验收,确认无误后才能支模。墙柱根部设可靠的限位措施并保证其位置精确。支模时拉水平、竖向通线,并设控制线。混凝土浇筑前对模板进行全面的检查并及时处理问题。 2 标高偏差 现象:在检查模板板顶标高时出现了偏差,混凝土浇筑完成以后结构层标高出现误差。 原因分析:楼层标高控制点偏少,浇筑混凝土时未按标高施工,标高控制线转测次数过多产生了累计误差。 防治措施:每层设置足够多的标高控制点,浇筑混凝土时按标高施工。剪力墙模板根部必须找平,模板板顶用1m标高控制并严格按

标高施工。建筑楼层标高由首层标高控制,严禁逐层向上引测,以防止累计误差,每一层的标高引测点控制在三个左右。 3 模板和结构变形 现象:经过多次用后模板出现了变形,拆模后发现混凝土出现变形。 原因分析:在模板加固时销钉漏用,背楞未用拉杆拉紧,模板刚度差,梁柱模板卡具间距过大或未夹紧。在上述情况下由于在浇筑混凝土时未能够承受振捣时产生的压力而导致了局部爆模。浇筑墙柱混凝土速度过快或一次浇灌过高也会发生模板的变形。 防治措施:首先要确保模板的承载能力和刚度,梁底和板底的的支撑要足够,剪力墙的背楞要车紧,销钉和销片要足够和加紧。浇筑混凝土时要均匀下料并且严格控制浇灌高度,特别是门窗洞口既要保证混凝土振捣密实,又要防止过分振捣引起模板变形。 4、接缝不严 现象:由于模板间接缝不严有间隙,混凝土浇筑时产生漏浆,混凝土表面出现蜂窝。 原因分析:模板制作时的马虎造成了拼缝过大,模板安装周期长引起的局部变形为及时修整造成裂缝,模板接缝措施不当,梁柱交接部位接头尺寸不准、错位。 防治措施:仔细做好交底,强化工人的意识。模板间嵌缝措施要控制,不能用油毡、塑料布去堵缝。梁柱交接部位支撑要牢靠,拼缝要严密,发生错位要及时校正好。

不同变质处理对铝合金组织性能的影响

不同变质处理对铝合金组织性能的影响 摘要:在铸造Al-15%Si合金熔炼过程中分别加入变质剂P盐、P盐+Al-Sr中间合金对其进行变质处理,分析不同变质剂及它们的复合形式对合金力学性能和显微组织的影响。实验结果表明,P盐和Al-Sr 中间合金都对合金组织有一定的细化作用,其中P盐主要细化初晶硅,P盐+Al-Sr中间合金的复合变质剂能同时细化初晶硅和共晶硅。实验证明加入复合变质剂后合金的显微组织细化程度最高,力学性能最为优越。 关键词:铸造Al-Si合金、变质处理、显微组织、性能 引言 铝合金是目前采用最多的轻金属合金材料,而铸造Al-Si系列合金是铝合金系中应用最早、最广泛的铝合金,它是重要的合金之一,具有优异的铸造性能,良好的力学性能与物理化学性能。它是目前研究和应用最为广泛的铸造铝合金,其产量占铸铝总产量的80%~90%,适用于各种铸造方法。因此,研究Al-Si系列合金的组织性能特点,进一步探寻在普通生产工艺中强化铝硅合金性能的方法,具有重要的理论意义和工程应用价值。 铸造Al-Si合金具有良好的力学性能、铸造性能和切削性能,广泛应用于航空航天和你汽车工业。Al-Si未变质处理时,共晶Si以粗大的针、片状存在,严重割裂了合金基体,降低了合金的强度和塑性。Sr对共晶硅起到很好的变质作用,同时却促进了粗大的柱状和树枝状

Al晶粒的形核生长,这说明对铸造Al-Si合金仅变质处理是不够的,还有必要对枝晶进行等轴化和细化,消除这种组织对合金力学性能的不利影响。 本文采用了不同的变质剂对Al-15%Si合金进行变质处理,研究了变质处理对合金组织的影响规律,同时初步探讨变质剂对Al-Si合金的细化变质机理。 1、实验方案设计 1.1材料的选择 本实验的目的在于研究不同变质剂对于铝合金组织及其性能的影响,为了实验的顺利进行以及实验过程之中出现较少的干扰因素,选择二元Al-Si合金作为本次实验的研究对象,由于变质处理作用的主要机制在于改变铸态下的Si的形态、数量及其分布,再加之合金液体要具有相对较好的流动性,最终确定Al-15Si作为实验材料。 1.2实验设备 1)锭模的选择 由于实验的需要和操作过程的顺利进行,选择金属型模具。 2)熔炼设备 坩埚电阻炉、温度控制器、其它工具、石墨坩埚、石墨搅拌棒、配套的热电偶、天平、钟罩、撇渣勺、浇勺、夹钳等。 3)金像显微设备 金相显微镜,型号:ZEISS-Imager

饲料霉变的主要原因以及防霉措施

江苏农牧科技职业学院毕业设计(论文) 题目:饲料霉变的主要原因以及防霉措施 姓名:宋达 学号:201211060 二级院系部:动物科技学院 班级: 牧医125 专业:畜牧兽医 指导教师:尤明珍职称:教授 指导教师:彭继伟职称:讲师 二〇一五年六月

江苏农牧科技职业学院毕业论文(设计)饲料霉变的主要原因以及防霉措施 宋达 【摘要】饲料霉变已经成为当今养殖业一大忧患,霉变饲料不能继续使用造成浪费和经济损失,如果继续给畜禽食用,会导致畜禽采食量下降,饲料利用率低,畜禽生长发育缓慢。另外霉变饲料产生的霉菌毒素还会侵害畜禽的肝脏和免疫系统,导致肝硬化坏死和畜禽免疫力下降,继而诱发多种疾病,对养殖业和人类健康带来严重危害。因此饲料霉变饲料防霉已成为养殖业必须重视和关注的问题。所以就饲料霉变的原因、危害、措施进行探讨。 【关键词】饲料;霉菌毒素;霉变;防霉

饲料霉变的主要原因以及防霉措施 The Main Reason of Moldy Feed and the Measures of Mold Proof 【Abstract】Moldy feed has become a major worry in today's aquaculture industry, moldy feed can not be used will result in waste and economic loss, and If you continue to offer the moldy feed to livestock, it will reduce their feed intake and the feed’s utilization rate, the most important, it will slow down the growth and the development of livestock. In addition, the moldy toxin produced by the moldy feed will hurt animal’s liver and immune system, lead to cirrhosis, liver necrosis and the reduction of animal’s immune function, thus induce a variety of diseases which bring serious harm to aquaculture industry and human health. Therefore, moldy feed and mold proof has become a serious problem to which aquaculture industry must pay more attention. So I want to discuss this problem, that is, moldy feed’s reasons, harms and solutions. 【Key words】Feed, Moldy toxin, Mildew, Mold proof

饲料中常见霉菌毒素的中毒症及危害

饲料中常见霉菌毒素的中毒症及危害(综述) 易中华1 吴兴利2 (1 江西农业大学动物科技学院江西南昌330045 ;2 中国农业大学动物科技学院北京100094 ) 饲料霉变的典型特征是产生霉菌毒素,可造成高达10%的经济损失,是饲料工业和畜牧业 生产中不可忽视的问题。霉菌毒素不但对动物产生毒害作用,而且可通过食物链危及人类健康。动物对霉菌毒素的临床反应与其它化学毒物的反应相似,表现为急性、亚急性或慢性病症,并具 有剂量和时间依赖关系。急性中毒可产生毁灭性影响,而且由于可疑饲料在检测前就被采食,中毒难以诊断和治疗。由于大量化学结构不相关的霉菌毒素产自不同真菌,很难准确指出某特定疾病发作是何种毒素造成的。动物慢性中毒症可降低生产性能、降低体重和饲料转化效率、降低肉和蛋的产量、抑制免疫并增加疾病发生率、损害重要组织器官、扰乱繁殖性能,引起的经济负面影响是急性发病和死亡的几倍。饲料和食品中的霉菌毒素有致癌的潜在危险,还有一些微妙的未知毒性作用,这与全球关注的健康危机紧密相关。现将饲料中几种常见霉菌毒素的中毒症及危害介绍如下: 1 黄曲霉毒素(Aflatoxins ) Aspergillus flavus )的一种代谢产物,目前已发现黄黄曲霉毒素是黄曲霉( 曲霉毒素及其衍生物有20种,以毒素B1、B2、G1和G2的毒力最强,在紫外线照射下,B1、B2呈蓝紫色荧光,G1、G 2呈黄绿色荧光,它们都具有致癌作用,导致动物和人类肝损害和肝癌, 其中又以B1 的致癌性最强。当B1 进入机体后,在肝细胞内质网中的混合功能氧化酶的催化下,转变为环氧化黄曲霉毒素B1,再与DNA及RNA吉合,并发生变异,使正常肝细胞转化为癌细胞。 可见,黄曲霉毒素是一种肝毒性很强的毒素。黄曲霉毒素作用机理是影响细胞膜,抑制RNA合成并干扰某些酶的感应方式,中毒症状无特异表现,按症状的严重程度不同,临床可表现为发育迟缓、腹泻、肝肿大、肝出血、肝硬化、肝坏死、脂肪渗透、胆道增生等。其毒性因剂量、中毒持续时间、动物种类、品种、饲粮或营养状况等因素不同而不同(见图 1 )。家畜对黄曲霉毒素的 易感性其顺序是:小鸭>小猪>犊牛>肥育猪>成年牛>绵羊。 图 1 黄曲霉毒素攻毒递增剂量与豚鼠肝脏变化。上排最左边豚鼠未接毒,下排最右边豚鼠接毒剂量最大。注意到,豚鼠肝的苍白色随黄曲霉毒素剂量的增加而增加。 黄曲霉毒素摄入剂量过大时可致死,亚致死量可产生慢性毒性,长期摄入低剂量黄曲霉毒素可致癌(Sin nhuber 等,1977;Wogan和Newberne,1967)。一般情况下,动物年龄越小,其敏感性越高;雌性动物比雄性动物具有更强的耐受性;营养状况越差越容易发病;怀孕母畜比未怀孕母畜更容易产生反应。黄曲霉毒素已引起人们对公共卫生问题的强烈关注,因为黄曲霉毒素广 泛存在于被污染的花生、玉米、大豆、油类等食物中,是人类致癌的潜在因子。虹鳟鱼是早期研究黄曲霉毒素的试验动物,它们对黄曲霉毒素很敏感,其半数致死量按等比例混合黄曲霉毒素B1和G1计算为0.5?1.0 mg/kg(Lee等,1991)。饲粮中黄曲霉毒素的肝细胞恶性瘤致病几率高达8.0 x 10-8。虹鳟鱼在早期发育阶段对性疾病很敏感。将鱼苗或胚胎浸在黄曲霉毒素含量为0.5 mg/kg 的水中半小时,9 个月后30%?40%的鱼患有肝细胞癌(Sinnhuber 等,1977)。根据Lee 等(1991)综述黄曲霉毒素在对鱼的毒性,黄曲霉毒素导致加利福尼亚州鱼苗孵化场黄曲霉毒素中毒症流行,并很可能是鱼肝癌流行的原因。据调查,受黄曲霉毒素污染的棉籽粕是发病的原因。虹鳟鱼采食含黄曲霉毒素的饲料后,逐渐发展为肝癌(Sin nhuber 等,1977)黄曲霉毒素的中毒症在哺乳仔猪、生长猪、育肥猪和种猪上有报道。临床和病理症状包括:体增重减速,饲料转换效率下降,中毒性肝炎,肾病变,全身出血(Hoerr 和Andrea ,1983 ;Miller 等,1981 ,1982)。黄曲霉毒素对猪的毒性作用因年龄、饲粮、含量和中毒持续时间等的变化而 变化。猪从断奶至上市,饲粮黄曲霉毒素耐受量为0.3 mg/kg(Monegue 等,1977)。猪饲喂了毒素含量

饲料霉变的原因分析

饲料行业竞争日益激烈,使饲料储存周期延长,饲料霉变问题成为夏季困绕饲料生产的主要问题之一。霉变降低了饲料的营养价值,影响了适口性更为严重的是造成饲料产品霉菌毒素超标,危害动物健康从而危害人类食品安全。为了防止饲料霉变,各厂家采取了很多措施,收到了一定的效果。但是由于霉变原因受很多方面因素的影响;从原料验收入库到饲料成品到达养殖现场整个物流过程中只要任何一个环节防霉措施不力都有可能发生霉变。下面就每一个环节可能引起霉变的因素和需要采取的措施分别加以分析: 一、原料的验收入库和仓储: 原料是产品质量的基础,严重的饲料质量问题几乎都与原料有关。饲料原料中允许一定量的水分、霉菌和仓虫存在,但是数量超过国家标准规定的允许数量后,原料的价值迅速下降,更为严重的是会造成原料霉变。变质的原料被生产成饲料后容易诱发霉变,即使饲料不发生霉变也会影响饲料的卫生指标和适口性。因此在原料的验收入库和仓储环节需要作好以下工作: 1、原料在采购前,除检测其营养指标之外,还应控制原料的水分、微生物指标和仓虫的种类数量。 水分是霉菌生长繁殖最重要的影响因素之一。一般玉米、稻谷、麦类等原生态谷物的水分应不高于14%;大豆、次粉、糠麸类、豆粕等的水分应低于13%;棉粕、菜粕、花生粕、鱼粉、肉骨粉、骨粉等的水分应小于12%。水分超标的原料不耐储存,容易发霉。对于棉粕、菜粕等经加工过的原料还需要关注局部水分有无超标,因为即使平均水分很低但由于生产厂家的工艺缺陷等原因常造成局部水分超标产生结块进而霉变。 可以通过霉菌检测了解原料中的霉菌总数是否超标。对于没有条件进行霉菌检测的企业,可通过了解原料的生产日期、生产工艺、贮存条件;观察原料的颜色外观是否正常,是否有结团现象;用嗅觉判断原料的气味是否正常,有无异味;用手或温度计测定原料是否有发热现象等措施来判断原料是否发生霉变。 在夏季仓虫不仅是某些储存原料损耗加大的直接原因,而且它们在生长发育、繁殖和迁移过程中所产生的代谢物会严重污染粮食。更为严重的是,仓虫的活动会导致原料发热,招致微生物的滋生与发展,引发或加速霉变。在仓虫中以螨虫对霉变的影响最大。螨虫属蜱螨目,粉螨科;不完全变态类型,体躯微小人们肉眼难以发现。在潮湿温暖的环境下,螨虫通常在谷物、饲料中以及在运输、加工设备中大量繁殖,极易引发霉变。饲料中生长螨虫也已成为客户对加工厂饲料投诉的理由之一,所以要监测和控制仓虫的数量特别是螨虫的情况。拒收被螨虫污染的原料。 2. 加强原料入库后的储存管理 水分、温度和空气相对湿度是影响霉菌和仓虫繁殖的主要因素。原料入库时,应按不同品种、批次分开码堆,粮垛码堆不宜过高过大,堆与墙、堆与堆之间留有20~50cm左右的距离,以利通风散热。长期储存的季节性原料或吸湿性强的

铝合金霉变的原因分析

一、铝合金压铸件,存放过程中,外观出现原先没有的斑点,主要有下面2种原因引起: 1、铸造铝合金的腐蚀 2、铸造铝合金的霉变 二、什么是铝合金的腐蚀铝合金和环境间发生化学或电化学相互作用而导致合金成分变化、性能受损的现象。铝合金的腐蚀主要分为两种:1、铝合金与酸、碱溶液产生化学反应,形成含铝离子的溶液; 2、铝合金在电解质溶液中发生“原电池腐蚀”; 三、什么是铝合金的霉变霉变是由微生物引起的,在一定的温度和湿度下(10~40℃,25~40℃为最活跃温度,湿度>65%),微生物在铝合金表面繁殖生长,造成局部呈现可以擦除的灰白色斑块。 四、铝合金霉变的原因1、铝合金产品保存的环境,温度和湿度适合霉菌生长; 2、铝合金产品表面,混有潮解物质,自动向空气吸收水分,形成"原电池腐蚀反应",营造霉菌适合生长的环境; 3、铝合金由于"原电池腐蚀反应",表面析出碱性化合物质,潮解后,湿度温度适宜,霉菌生长迅速; 4、铝合金产品表面,有油脂、植物纤维等适合霉菌生长的"土壤",一旦湿度温度适宜,霉菌生长迅速; 五、铝合金铸件霉变的防止方法1、不采用含Na盐或Mg盐的精练变质打渣剂,采用C2Cl6、Na2SiF6和NaF成分的精练变质剂,或N2气精练; 2、不使用含植物纤维的脱模剂,更换质量较好的脱模剂; 3、不使用含植物纤维机加工切削液,更换油基防锈切削液; 4、产品不能长期露天存放,防止产品表面飞尘堆积; 5、堆放在盏板上的产品包装纸箱,需要用缠绕膜6面包裹好,防水; 6、产品沾过水后,需要放置于通风处吹干。 铝合金压铸件发霉的原因分析: 其一,外部环境因素。铝是活泼金属,在一定的温度和湿度条件下极易氧化,或发霉,这是铝本身特性决定的。 其二,自身的内部因素。当然,除了外部环境因素,压铸铝件自身的内部因素也不能忽视,比如很多厂家压铸、机加工工序之后,不做任何清洁处理,或者简单的用水冲冲,无法做到彻底清洗干净,压铸铝表面残留有脱模剂、切削液、皂化液等腐蚀性物质,以及其他污渍,这些又加快铝合金压铸件长霉点; 其三,工艺设计不合理。铝合金压铸件在清洗或压检后处理不当,为铝合金压铸件发霉创造了条件,加速霉变的生成; 其四,选用清洗剂不得当。清洗具有强腐蚀性,造成压铸铝腐蚀氧化。 其五,仓储管理不到位。存放仓库不同的高度时,发霉的状况也不同。 采取对策: 从压铸铝发霉的原因分析,我们不难得出这样的结论:防氧化问题非单一因素造成的,他涉及内外部、工艺、仓储等多个方面。同时清洗、压检、存放、运输等各个过程都需要考虑防氧化,哪个环节出现问题,都会长霉点给你看。故这是一个综合问题,需制定整体解决方案。宁波安科纳润滑科技有限公司从清洗剂、防氧化剂、工艺、存放环境、存放方式等角度出发,解决了铝合金压铸件发霉的难题,并可提供压铸铝清洗、存放各个过程的防氧化解决方案。宁波安科纳润滑科技最新环保清洗剂具有以下特点: 1、综合成本低,超浓缩、稀释后使用;铝合金除霉清洗剂1:9兑水,防锈水1:100兑水

颗粒饲料霉变的原因分析和相应措施精品文档5页

颗粒饲料霉变的原因分析和相应措施 饲料行业竞争日益激烈,使饲料储存周期延长,饲料霉变问题成为夏季困绕饲料生产的主要问题之一。霉变降低了饲料的营养价值,影响了适口性更为严重的是造成饲料产品霉菌毒素超标,危害动物健康从而危害人类食品安全。为了防止饲料霉变,各厂家采取了很多措施,收到了一定的效果。但是由于霉变原因受很多方面因素的影响;从原料验收入库到饲料成品到达养殖现场整个物流过程中只要任何一个环节防霉措施不力都有可能发生霉变。下面就每一个环节可能引起霉变的因素和需要采取的措施分别加以分析: 一、原料的验收入库和仓储: 原料是产品质量的基础,严重的饲料质量问题几乎都与原料有关。饲料原料中允许一定量的水分、霉菌和仓虫存在,但是数量超过国家标准规定的允许数量后,原料的价值迅速下降,更为严重的是会造成原料霉变。变质的原料被生产成饲料后容易诱发霉变,即使饲料不发生霉变也会影响饲料的卫生指标和适口性。因此在原料的验收入库和仓储环节需要作好以下工作: 1、原料在采购前,除检测其营养指标之外,还应控制原料的水分、微生物指标和仓虫的种类数量。 水分是霉菌生长繁殖最重要的影响因素之一。一般玉米、稻谷、麦类等原生态谷物的水分应不高于14%;大豆、次粉、糠麸类、豆粕等的水分应低于13%;棉粕、菜粕、花生粕、鱼粉、肉骨粉、骨粉等的水分应小于12%。水分超标的原料不耐储存,容易发霉。对于棉粕、菜粕等经加工过的原料还需要关注局部水分有无超标,因为即使平均水分很低但由于生产厂家的工艺缺陷等原因常造成局部水分超标产生结块进而霉变。 可以通过霉菌检测了解原料中的霉菌总数是否超标。对于没有条件进行霉菌检测的企业,可通过了解原料的生产日期、生产工艺、贮存条件;观察原料的颜色外观是否正常,是否有结团现象;用嗅觉判断原料的气味是否正常,有无异味;用手或温度计测定原料是否有发热现象等措施来判断原料是否发生霉变。

颗粒饲料霉变的原因分析和相应措施

颗粒饲料霉变的原因分析和相应措施

颗粒饲料霉变的原因分析和相应措施 饲料行业竞争日益激烈,使饲料储存周期延长,饲料霉变问题成为夏季困绕饲料生产的主要问题之一。霉变降低了饲料的营养价值,影响了适口性更为严重的是造成饲料产品霉菌毒素超标,危害动物健康从而危害人类食品安全。为了防止饲料霉变,各厂家采取了很多措施,收到了一定的效果。但是由于霉变原因受很多方面因素的影响;从原料验收入库到饲料成品到达养殖现场整个物流过程中只要任何一个环节防霉措施不力都有可能发生霉变。下面就每一个环节可能引起霉变的因素和需要采取的措施分别加以分析: 一、原料的验收入库和仓储: 原料是产品质量的基础,严重的饲料质量问题几乎都与原料有关。饲料原料中允许一定量的水分、霉菌和仓虫存在,但是数量超过国家标准规定的允许数量后,原料的价值迅速下降,更为严重的是会造成原料霉变。变质的原料被生产成

饲料后容易诱发霉变,即使饲料不发生霉变也会影响饲料的卫生指标和适口性。因此在原料的验收入库和仓储环节需要作好以下工作: 1、原料在采购前,除检测其营养指标之外,还应控制原料的水分、微生物指标和仓虫的种类数量。 水分是霉菌生长繁殖最重要的影响因素之一。一般玉米、稻谷、麦类等原生态谷物的水分应不高于14%;大豆、次粉、糠麸类、豆粕等的水分应低于13%;棉粕、菜粕、花生粕、鱼粉、肉骨粉、骨粉等的水分应小于12%。水分超标的原料不耐储存,容易发霉。对于棉粕、菜粕等经加工过的原料还需要关注局部水分有无超标,因为即使平均水分很低但由于生产厂家的工艺缺 陷等原因常造成局部水分超标产生结块进而霉变。 可以通过霉菌检测了解原料中的霉菌总数 是否超标。对于没有条件进行霉菌检测的企业,可通过了解原料的生产日期、生产工艺、贮存条件;观察原料的颜色外观是否正常,是否有结团现象;用嗅觉判断原料的气味是否正常,有无异

铝合金阳极氧化常见故障分析及预防

铝合金阳极氧化常见故障分析及预防 [摘要] 重点介绍铝合金硫酸阳极氧化工艺中经常发生的故障,分析故障产生的原因,采取有效预防措施,可以减少故障发生,保证其质量。 0 前言 铝的阳极氧化是以铝或铝合金作阳极,以铅板作阴极在硫酸、草酸、铬酸等水溶液中电解,使其表面生成氧化膜层。其中硫酸阳极氧化处理应用最为广泛。铝和铝合金硫酸阳极氧化氧化膜层有较高的吸附能力,易进行封孑L或着色处理,更加提高其抗蚀性和外观。阳极氧化膜层厚一般3~15μm,铝合金硫酸阳极氧化工艺操作简单,电解液稳定,成本也不高,是成熟的工艺方法,但在硫酸阳极化过程中往往免不了发生各种故障,影响氧化膜层质量。认真总结分析故障产生的原因并采取有效预防措施,对提高铝合金硫酸阳极氧化质量有重要 的现实意义。 1 常见故障及分析 (1)铝合金制品经硫酸阳极氧化处理后,发生局部无氧化摸,呈现肉眼可见的黑斑或条 纹,氧化膜有鼓瘤或孔穴现象。此类故障虽不多见但也有发生。 上述故障原因,一般与铝和铝合金的成分、组织及相的均匀性等有关,或者与电解液中所溶解的某些金属离子或悬浮杂质等有关。铝和铝合金的化学成分、组织和金属相的均匀性会影响氧化膜的生成和性能。纯铝或铝镁合金的氧化膜容易生成,膜的质量也较佳。而铝硅合金或含铜量较高的铝合金,氧化膜则较难生成,且生成的膜发暗、发灰,光泽性不好。如果表面产生金属相的不均匀、组织偏析、微杂质偏析或者热处理不当所造成各部分组织不均匀等,则易产生选择性氧化或选择性溶解。若铝合金中局部硅含量偏析,则往往造成局部无氧化膜或呈黑斑点条纹或局部选择性溶解产生空穴等。另外,如果电解液中有悬浮杂质、尘埃或铜铁等金属杂质离子含量过高,往往会使氧化膜出现黑斑点或黑条纹,影响氧化膜的抗 蚀防护性能。 (2) 同槽处理的阳极氧化零件,有的无氧化膜或膜层轻薄或不完整,有的在夹具和零件接触处有烧损熔蚀现象。这类故障在流酸阳极氧化工艺实践中往往较多发生,严重影响铝合 金阳极氧化质量。 由于铝氧化膜的绝缘性较好,所以铝合金制件在阳极氧化处理前必须牢固地装挂在通用或专用夹具上,以保证良好的导电性。导电棒应选用铜或铜合金材料并要保证足够接触面积。夹具与零件接触处,既要保证电流自由通过,又要尽可能减少夹具和零件间的接触印痕。接触面积过小,电流密度太大,会产生过热易烧损零件和夹具。无氧化膜或膜层不完整等现象,主要是由于夹具和制件接触不好,导电不良或者是由于夹具上氧化膜层未彻底清除所致。

饲料发霉的原因分析

饲料发霉的原因分析 我国的一些地区,因高温高湿而导致饲料霉变的问题非常严重,特别像今年这种恶劣的天气引起饲料发霉更多,从而导致的纠纷案件也相应较多。为了减少饲料厂家、经销商以及用户的共同利益,减少饲料发霉导致的多方损失,现将饲料发霉的原因及预防措施介绍如下: 1、饲料发生霉变的原因 (1)空气湿度和环境温度 饲料发霉实际上是霉菌大量生长和繁殖的结果,而霉菌在饲料中生长和繁殖需要一定的温度和湿度。饲料中常见的霉菌有:曲霉菌属、青霉菌属和镰刀菌属。其中大部分属于温性型微生物,最适生长温度一般为22-30℃。其中曲霉菌属最适生长温度为30℃左右,青霉菌属为25℃左右,镰刀菌属为22℃左右。上述几种霉菌对环境湿度要求较高,最适的相对湿度在80%以上。因此,霉菌的生长和繁殖与地区气候条件和季节密切相关。从全国范围来说,南方地区和华中地区大大高于北方地区。我国南方地区,5-9月份个月平均气温均在22℃以上,相对湿度在80%以上,这种高温高湿的环境条件,特别是梅雨季节,霉菌生长繁殖最为旺盛,饲料霉变大多发生在这个季节。今年5-7月份整个湖北省均为梅雨季节,长期的梅雨季节导致空气湿度在85%以上,环境温度在22-30℃,在这种条件下霉菌大量生长繁殖,导致饲料发霉的情况非常普遍,给饲料厂、经销商以及用户造成严重的经济损失。 (2)饲料水分高,饲料温度与环境温差大引起 当饲料水分高于14%时,在储存时容易发霉。饲料水分高于14%最要是生产配合饲料时没经过干燥和冷却,而现在的大型饲料加工厂冷却设备性能很好,使饲料水分控制在12%以内,一般不会直接导致饲料发霉。但是当饲料经过运输或其他地方储存时经过暴晒使饲料温度升高,当环境温度下降时,导致环境与饲料之间形成一个温差,从而使饲料包装袋边缘形成一层“汽水”(好比冬天在屋子里一样,屋内外的温差会使玻璃上会形成一层水珠)。导致饲料包装袋内边缘水分升高从而导致发霉。 (3)饲料加工不当 在生产颗粒料时,冷却器出现异常,导致饲料温度较高,因温差大而因其发霉(饲料厂打包时要求饲料与环境温差不超过3℃,因此可以避免此类情况的发生)。冷却器出现异常还会直接导致饲料水分高(饲料水分检测作为出场检验的必检指标,一般不会发生)。 其次,在饲料制粒过程中,提升料斗和管道中积存的物料可形成霉块,脱落后进入城品仓和包装袋,引起整包饲料发霉。这种情况发生的比例很少,不会导致成批饲料发霉。 (4)饲料储存与运输不当 饲料仓库潮湿,饲料包装破损(上下货、运输、鼠害等),饲料存放的位置未经清扫,地面有物料而先发霉从而传染饲料(霉菌污染有接触传染性)。饲料堆垛不合理,库存时间长,运输和存放过程中受到雨淋,暴晒等,都极易引起饲料霉变。

饲料霉变对养猪的危害及解决措施

饲料霉变对养猪的危害及解决措施 霉菌毒素普遍存在于饲料原料或含淀粉较高的饲料中,这已经是行业内公开的小秘密了,因为霉菌在潮湿的环境下,非常容易在饲料原料如玉米、谷物的生长、收获、储藏以及饲料加工、运输和销售的各个环节中代谢和产生大量的繁殖。霉菌毒素对养猪业的危害极大,尤其是夏季湿热环境,饲料极易发霉易变。因此我们必须做好防止饲料发霉及霉变了的饲料进行妥当处理,以便减少猪场的生产成本,减少不必要的损失。 一、首先我们来了解饲料霉变对猪只会造成哪些危害? 母猪:妊娠母猪表现死胎、木乃伊、流产或新生仔猪死亡率上升, 以及产后发情的不正常;后备母猪阴门红肿, 子宫体积和重量增加, 表现发情症状;哺乳期母猪表现为逐渐的拒食, 表现持续发情或发情周期延长, 影响哺乳期乳猪成活率。并且当饲料中含有大剂量霉菌毒素时, 母猪会出现直肠和阴道脱出的现象。 仔猪:新生仔猪出现阴户红肿,中毒仔猪常急性发作, 出现中枢神经症状, 头弯向一侧, 头顶墙壁, 数天内死亡。 育肥猪:病程较长, 呈慢性经过。一般表现体温正常, 初期食欲减退, 在嘴、耳、四肢内侧和腹部皮肤出现红斑, 后期食欲废绝, 腹痛, 下痢或便秘, 粪便中夹有粘液和血液。 公猪:幼龄公猪睾丸发育不良; 成年公猪表现睾丸萎缩, 精子生成减少, 活力下降。

仔猪出现神经症状新生仔猪阴户红肿 二、猪场如何做好防止猪只霉菌毒素中毒以及中毒后的保健修复,可从以下几点入手: 1、做好饲料储存工作: 根据霉菌毒素的形成条件和规律,(霉菌毒素最适宜生长条件:温度5℃—30℃、湿度:80%—90%),做好饲料防霉措施,配合饲料在运输中要防止雨淋或人为弄湿,以免营养成分溶解散失,并大量产生饲料霉菌。配合饲料在存放时要保存在干燥、通风的地方,在仓库中存放时应离地面30厘米以上,且不能靠墙。 2、做好饲料脱霉工作: 我们都知道饲料原材料在收割、晒干过程中,都会不可避免的产生少量霉变现象,饲料成本在保存不当时易产生大量霉菌,因此,我们可以将饲料原料中的玉米、糠粕等霉毒素较为所以集中的碎粒、虫蚀粒玉米粉去掉,同时在饲料中添加多位一体,彻底解决饲料霉菌毒素对猪只机体侵害的“绿叶纳蒙脱素”,有效脱除饲料霉菌毒素、解除霉菌毒素对机体的免疫抑制,保护猪只肝肾,帮助体内毒素排出。彻底饲料霉菌毒素所引发的猪只生长缓慢、采食量下降、疫苗免疫效果差、母猪不发情、屡配不孕、呕吐腹泻、神经错乱等现象。并且可有效补充一些猪只繁殖生长所需的维生素、微量元素等成分。纳蒙脱素的添加比例为:饲料霉菌毒素轻度污染时,每吨配合饲料添加1kg,饲料霉菌毒素污染较为严重时,每吨配合饲料添加2kg。 3、做好猪只霉菌毒素中毒的保健康复 霉菌毒素中毒暂时没有特效解毒剂,中毒较轻的猪只可通过加强保健护理逐步康复,重症临床上可根据临床症状,采用相应的治疗方法和对症处理。可用高锰酸钾0.1%溶液、温生理盐水或碳酸氢钠2%液进行灌肠、洗胃后,内服硫酸钠等盐类泻剂30~50 g,水1 L,1 次内服,此后,静脉注射5%葡萄糖生理盐水300~500 mL,40%乌洛托品20 mL 补液;多喂青饲料,同时猪只日粮中添加0.5%奥得曼A,有效提高机体溶菌酶水平,促进体内毒素代谢排出,缓解中毒症状,促进中毒猪快速康复。

6063铝合金型材氧化缺陷原因分析及解决

6063铝合金型材氧化缺陷原因分析及解决 1问题的提出 在实际生产中,加工率大(ε>95%),壁厚较薄(δ≤1.5mm)的T5状态的6063铝合金挤压型材在经硫酸阳极氧化处理后,其表面会呈现有规律(而有时无规律)分布的白色斑点(或无光斑痕);严重时呈现深色斑痕——“白斑”。“白斑”的分布规律及特征是:它是在平行于挤压方向的平面上大致等间距的、呈线状或扁四边形状或不规则星点(片)状的、相对于基体表面有微小深度而呈凹槽形的一种表面缺陷。白斑通常分布于型材的一个或几个表面,有时会分布在型材的所有表面(对薄壁空心型材,则是分布于某一平面或曲面的内外两侧)。 2原因分析 在现场见到,“白斑”形成于“碱蚀”工序,在经随后的稀硝酸(或硫酸)“中和”之后,并未消失;经硫酸阳极氧化处理后,又更加清晰地呈现出来。 笔者专门截取了两段“白斑”点面积较大(F=30~40mm2)的碱蚀洗(槽液中,ω(Zn2+)≥5×106)型材试样。然后,采用DV-5型原子发射火花直读光谱仪分别对上述两段试样的“白斑”区的成分做了定量分析,其结果如下(表中数据均为质量分数): 由表1的分析结果可见:“白斑”处Si、Mg、Zn元素的含量明显增加:而表2的结果表明:“白斑”处Si、Zn元素的含量明显增加,而Mg元素的含量却有所下降。从金属材料腐蚀的观点看来,Mg2Si这种表面缺陷实质上是6063铝合金材料发生“剥落腐蚀”的结果。剥落腐蚀是一种浅表面的选择腐蚀,腐蚀是沿着金属表面发展的,其产物的体积往往比发生腐蚀的金属大得多,因而膨胀。一般而言,当铝与呈阴极性的异种金属相邻接时,“剥落腐蚀”程度上升。在电子显微镜下观察发现:“剥落腐蚀”通常沿不溶组成物(如Si,Mg2Si等),或沿晶界进行。 2.1铸锭质量的影响 6063铝合金的主要相组成是:α(Al)固溶体、游离Si(阳极相)和F eAl3(阳极相);当铁含量大于时,有β(F e Si Al)(阳极相);而当铁含量小于时,有α(F e Si Al)(阴极相);其他可能的杂质相是:MgZn2、CuAl2等。 生产中,由于非平衡结晶过程而获得的6063铝合金铸锭往往存在宏观偏析或晶内偏析现象。因此,铸锭中的Si、Mg、Zn、Cu等元素分布不均匀。而一些铝型材加工企业缘于经济方面的因素,一般很少对小规格(如φ100mm以下)的铸锭进行均匀化退火处理,以消除偏析现象[2],从而为“白斑”的产生创造了条件。 2.2挤压—热处理工艺的影响 为提高生产效率,在生产操作中,常采用低温高速挤压,由于挤压速度引起的“热效应”使制品在模具出口处的淬火温度大大提高,而在固定出料台上与表面温度为80~110℃(或略低)的石墨板(或轮)接触时,型材表面就会因受到“急冷换热”作用而使该部分的合金元素Mg、Si的浓度比正常部位的偏高一些。在随后的人工时效过程中,该部位就会析出粗大的β′(Mg2Si)相;未经均匀化退火处理且加热温度偏低的6063铝合金铸锭由于挤压时所引起

颗粒饲料霉变的原因分析及应对措施

NEW FEED NEW FEED 2007.07 38 品控新措施 饲料行业竞争日益激烈,使饲料储存周期延长,饲料霉变问题成为夏季困绕饲料生产的主要问题之一。霉变降低了饲料的营养价值,影响了适口性,更为严重的是造成饲料产品霉菌毒素超标,危害动物健康从而危害人类食品安全。为了防止饲料霉变,各厂家采取了很多措施,收到了一定的效果。但是由于霉变原因受很多方面因素的影响;从原料验收入库到饲料成品到达养殖现场整个物流过程中只要任何一个环节防霉措施不力都有可能发生霉变。下面就每一个环节可能引起霉变的因素和需要采取的措施分别加以分析。 1 原料的验收入库和仓储 原料是产品质量的基础,严重的饲料质量问题几乎都与原料有关。饲料原料中允许一定量的水分、霉菌和仓虫存在,但是数量超过国家标准规定的允许数量后,原料的价值迅速下降,更为严重的是会造成原料霉变。变质的原料被生产成饲料后容易诱发霉变,即使饲料不发生霉变也会影响饲料的卫生指标和适口性。因此在原料的验收入库和仓储环节需要作好以下工作: 1.1 原料在采购前,除检测其营养指标之外,还应控制原料的水分、微生物指标和仓虫的种类数量。 水分是霉菌生长繁殖最重要的影响因素之一。一般玉米、稻谷、麦类等原生态谷物的水分应不高于14%;大豆、次粉、糠麸类、豆粕等的水分应低于13%;棉粕、菜粕、花生粕、鱼粉、肉骨粉、骨粉等的水分应小于12%。水分超标的原料不耐储存,容易发霉。对于棉粕、菜粕等经加工过的原料还需要关注局部水分有无超标,因为即使平均水分很低但由于生产厂家的工艺缺陷等原因常造成局部水分超标产生结块进而霉变。 可以通过霉菌检测了解原料中的霉菌总数是否超标。对于没有条件进行霉菌检测的企业,可通过了解原料的生产日期、生产工艺、贮存条件;观察原料的颜色外观是否正常,是否有结团现象;用嗅觉判断原料的气味是否正常,有无异味;用手或温度计测定原料是否有发热现象等措施来判断原料是否发生霉变。 在夏季仓虫不仅是某些储存原料损耗加大的直接原因,而且它们在生长发育、繁殖和迁移过程中所产生的代谢物会严重污染粮食。更 为严重的是,仓虫的活动会导致原料发热,招致微生物的滋生与发展,引发或加速霉变。在仓虫中以螨虫对霉变的影响最大。螨虫属蜱螨目,粉螨科,不完全变态类型,体躯微小人们肉眼难以发现。在潮湿温暖的环境下,螨虫通常在谷物、饲料中以及在运输、加工设备中大量繁殖,极易引发霉变。饲料中孳生螨虫也已成为客户对加工厂饲料投诉的理由之一,所以要监测和控制仓虫的数量特别是螨虫的情况。拒收被螨虫污染的原料。 1.2 加强原料入库后的储存管理 水分、温度和空气相对湿度是影响霉菌和仓虫繁殖的主要因素。原料入库时,应按不同品种、批次分开码堆,粮垛码堆不宜过高过大,堆与墙、堆与堆之间留有20~50cm 左右的距离,以利通风散热。长期储存的季节性原料或吸湿性强的原料最好垫一层,高8~10cm 的木架。夏季可根据天气情况,对仓库进行抽排风,散热散湿。及时修补仓库出现的破损,防止仓库出现漏雨、渗水现象。 原料的使用原则上“先进先出”也可根据原料的水分、霉菌污染程度等情况,优先使用不耐储存的原 广安万千集团/彭毅敏 颗粒饲料霉变 的原因分析及应对措施

铝合金表面斑点原因分析

压铸铝合金件表面斑点成因分析 1. 压铸铝合金零件表面斑点 由图可见,该表面斑点有如下特点:绝大多数位于未加工表面,加工面上没有见到;呈点状大面积分布,颜色发白,比底色浅。 由于铝合金表面和内部均不存在霉菌生长所需的有机物质,可以断定这些斑点不是霉菌。铝合金压铸件在凝固以后,表面应该形成一层氧化物薄膜,这层氧化铝膜能阻止内部铝的进一步氧化,起到保护的作用。但铝合金压铸件组织疏松,含有多种金属或非金属夹杂物,表面易出现空隙。如果该氧化膜不致密,如膜中间有空隙,或膜中有其他元素的化合物导致出现破口,或外来化学物质导致膜被破坏,则腐蚀性气体或介质极易沿此空隙侵袭,造成腐蚀。腐蚀后,铝的氧化物以粉末状、纤维状形态呈现,加之铝合金中铜等元素氧化物的色泽,看起来与周围的底色有反差,就像发霉了一样,实则不是霉,应是表面氧化现象。因此,斑点的本质应该是压铸铝合金表面的氧化腐蚀。如有可能,请寄一份样品,我可以用金相显微镜下观察一下,判断是否是氧化铝。 2. 表面氧化斑点的来源分析 2.1 压铸时的脱模剂 有研究表明,脱模剂中的石墨或碳残留在压铸铝合金表面,这些碳化物会形成表面斑点。 产生原因:不合适的脱模剂;脱模剂用量过多,局部堆积;脱模剂中的石墨落入铸件表层;模温过低,金属液温度过低导致表面凝固疏松。 处理方法:更换优质脱模剂;减少涂料中的石墨含量或选用无石墨水基涂料;严格喷涂量及喷涂操作;控制模温,保持热平衡;控制金属液温度。 2.2 机加工时的切削液 有人认为如果机加工使用的切削液(油)含有对铝有腐蚀的成份,机加工结束后未能做彻底清洗。 处理方法: 更换切削液,换用具有氧化性的切削液;及时、彻底的清洗工件,包括工件表面的油污、轻微的氧化点;清洗之后,马上做防氧化处理(使用钝化剂);防氧化处理后的工件需要烘干并存放在干燥通风地方,定期检查。 2.3 与铝合金成分的关系 铝合金的化学成分较为复杂,其组织存在多种不同的相结构,各个相之间的电极电位也不同,容易形成电化学腐蚀。 一般而言,压铸铝合金的化学成分不太容易大幅度改变,或者改变其化学成分对此问题究竟有多大帮助尚无定论。从生产的角度来看,上述两种方法更易于

引起食物霉变的微生物及其防治

引起食物霉变的微生物及其防治 食物腐败在我们日常生活中随处可见, 特别是炎热潮湿的夏天, 食物更易腐败变质, 尤其是含水分较多的食物, 如鱼、肉、蛋、蔬菜等, 往往在短期内就会发臭、发酵、发霉等, 人吃了这种变质的食物会引起不适或中毒。通常引起食物腐败变质有如下几种原因: 一 是微生物的作用, 如金黄色葡萄球菌、变形杆菌等细菌的作用; 二是食物中的各种酶类; 三是空气的温度和湿度。在通常情况下, 食物变质是由微生物引起的. 在阴雨绵绵、湿度高、气温低的时候,许多食品很容易一下多出了一层毛毛的物品。这一切都是霉菌作的孽。它生长於面包、皮革、果皮和衣类,可引起水果、蔬菜、谷物及食品的腐败变质,有些种及菌株同时还可产生毒素。种类很多,约有150多种。孢子多呈青绿色,所以称青霉菌。青霉菌的孢子著於孢子梗上,呈串状排列,称分生孢子 1.青霉属(Penicillium) 青霉菌常青霉的菌丝体无色或浅色,多分枝并具横隔。由菌丝发育成为具有横隔的分生孢子梗,顶端经过1~2次分支,这些分枝称为副枝和梗基,在梗基上产生许多小梗,小梗顶端着生成串的分生孢子,这一结构称为帚状体。分生孢子可有不同颜色,如青、灰绿、黄褐色等,帚状体有单轮生、对称多轮生、非对称多轮生。青霉中只有少数种类形成闭囊壳,产生子囊孢子。 青霉分布广泛,种类很多,常见种类如岛青霉(P.islandicum)、桔青霉(P.citrinum)、黄绿青霉(P.citreo-viride)、红色青霉(P.rubrum)、扩展青霉(P.expansum)、圆弧青霉、纯绿青霉、展开青霉(P.patulum)、斜卧青霉(P.decumbens)等。 2. 曲霉属(Aspergillus) 曲霉也是重要的食品污染霉菌,可导致食品发生腐败变质,有些种还产生毒素。曲霉具有发达的菌丝体,菌丝有隔膜为多细胞。其无性繁殖产生分生孢子,分生孢梗不分枝,顶端膨大呈球形或棒槌形,称顶囊。顶囊上辐射着生一层或二层小梗,小梗顶端着生一串串分生孢子,分生孢子呈不同颜色,如黑色、褐色、黄色等。曲霉的有性世代产生闭囊壳,内含多个圆球状子囊,子囊内着生子囊孢子。曲霉在自然界分布极为广泛,对有机质分解能力很强。曲霉属中有些种如黑曲霉(A.niger)等被广泛用于食品工业。 曲霉属中可产生毒素的种有黄曲霉(A.flavus)、赫曲霉(A.ochraceus)、杂色曲霉(A.versicolor)、烟曲霉、构巢曲霉(A.nidulans)和寄生曲霉(A.parasiticus)等。3.镰刀菌属(Fusarium) 镰刀菌属包括的种很多,其中大部分是植物的病原菌,并能产生毒素。该属的气生菌丝发达或不发达,分生孢子分大小两种类型,大型分生孢子有3~7个隔,产生在菌丝的短小爪状突起上,或产生在粘孢团中,形态多样,如镰刀形、纺锤形等。小型分生孢子有1~2个隔,产生在分生孢子梗上,有卵形、椭圆形等形状。气生菌丝、粘孢团、菌核可呈各种颜色,并可将基质染成各种颜色。 如禾谷镰刀菌(F.graminearum)、三线镰刀菌(F.trincintum)、玉米赤霉、梨孢镰刀菌(F.poae)、无孢镰刀菌、雪腐镰刀菌、串珠镰刀菌、拟枝孢镰刀菌(F.sparotrichioides)、木贼镰刀菌、窃属镰刀菌、粉红镰刀菌等。 4.交链孢霉属(Alternaria) 交链孢霉广泛分布于土壤和空气中,有些是植物病原菌,可引起果蔬的腐败变质,产生毒素。 菌丝有横隔,匍匐生长,分生孢子梗较短,单生或成丛,大多不分枝。分生孢子梗顶端生长分生孢子,其形状大小不定,形态为桑椹状,也有椭圆形和卵圆形,其上有纵横隔膜、顶端延长成喙状,多细胞。孢子褐色,常数个连接成链。尚未发现有性世代。

相关主题