搜档网
当前位置:搜档网 › 数学竞赛教材系列

数学竞赛教材系列

数学竞赛教材系列
数学竞赛教材系列

初一数学竞赛讲座

第2讲 数论的方法技巧(下)

四、反证法

反证法即首先对命题的结论作出相反的假设,并从此假设出发,经过正确的推理,导出矛盾的结果,这就否定了作为推理出发点的假设,从而肯定了原结论是正确的。

反证法的过程可简述为以下三个步骤:

1.反设:假设所要证明的结论不成立,而其反面成立;

2.归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、公理、定义、定理、反设及明显的事实矛盾或自相矛盾;

3.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立。

运用反证法的关键在于导致矛盾。在数论中,不少问题是通过奇偶分析或同余等方法引出矛盾的。

解:如果存在这样的三位数,那么就有

100a+10b+c=(10a+b)+(10b+c)+(10a+c)。上式可化简为

80a=b+c,而这显然是不可能的,因为a≥1,b≤9,c≤9。这表明所找的数是不存在的。

说明:在证明不存在性的问题时,常用反证法:先假设存在,即至少有一个元素,它符合命题中所述的一切要求,然后从这个存在的元素出发,进行推理,直到产生矛盾。

例2 将某个17位数的数字的排列顺序颠倒,再将得到的数与原来的数相加。试说明,得到的和中至少有一个数字是偶数。

解:假设得到的和中没有一个数字是偶数,即全是奇数。在如下式所示的加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此

第二列数字的和b+c≤9。将已知数的前两位数字a,b与末两位数

字c,d去掉,所得的13位数仍具有“将它的数字颠倒,得到的数

与它相加,和的数字都是奇数”这一性质。照此进行,每次去掉首

末各两位数字,最后得到一位数,它与自身相加是偶数,矛盾。故和的数字中必有偶数。

说明:显然结论对(4k+1)位数也成立。但对其他位数的数不一定成立。如12+21,506+605等。

例3 有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币。小红由1枚1分硬币和1枚5分硬币开始,反复将硬币塞入机器,能否在某一时刻,小红手中1分的硬币刚好比1角的硬币少10枚?

解:开始只有1枚1分硬币,没有1角的,所以开始时1角的和1分的总枚数为 0+1=1,这是奇数。每使用一次该机器,1分与1角的总枚数记为Q。下面考查Q的奇偶性。

如果塞入1枚1分的硬币,那么Q暂时减少1,但我们取回了1枚1角的硬币(和1枚5分的硬币),所以总数Q没有变化;如果再塞入1枚5分的硬币(得到4枚1角硬币),那么Q增加4,而其奇偶性不变;如果塞入1枚1角硬币,那么Q增加2,其奇偶性也不变。所以每使用一次机器,Q的奇偶性不变,因为开始时Q为奇数,它将一直保持为奇数。

这样,我们就不可能得到1分硬币的枚数刚好比1角硬币数少 10的情况,因为如果我们有P枚1分硬币和(P+10)枚1角硬币,那么1分和1角硬币的总枚数为(2P+10),这是一个偶数。矛盾。

例 4在3×3的方格表中已如右图填入了9个质数。将表中

同一行或同一列的3个数加上相同的自然数称为一次操作。问:

你能通过若干次操作使得表中9个数都变为相同的数吗?为什么?

解:因为表中9个质数之和恰为100,被3除余1,经过每一

次操作,总和增加3的倍数,所以表中9个数之和除以3总是余1。如果表中9个数变为相等,那么9个数的总和应能被3整除,这就得出矛盾!

所以,无论经过多少次操作,表中的数都不会变为9个相同的数。

五、构造法

构造法是一种重要的数学方法,它灵活多样,数论中的许多问题都可以通过构造某些特殊结构、特殊性质的整数或整数的组合来解决。

例5 9999和99!能否表示成为99个连续的奇自然数之和?

解:9999能。因为9999等于99个9998之和,所以可以直接构造如下: 9999=(9998-98)+(9998-96)+…=(9998-2)+9998+(9998+2)+…=(9998+96)+(9998+98)。

99!不能。因为99!为偶数,而99个奇数之和为奇数,所以99!不能表示为99个连续奇数之和。

说明:利用构造法证明存在性问题,只要把满足题设要求的数学对象构造出来就行。

例6 从1,2,3,…,999这999个数中,要求划去尽量少的数,使得余下的数中每一个数都不等于另外两个数的乘积。应划去哪些数?

解:我们可划去2,3,…,30,31这30个数,因为划去了上述这30个数之后,余下的数中,除1以外的任何两个数之积将大于322=1024>999。

另一方面,可以通过构造三元数组来证明30是最少的个数。

(2,61,2×61),(3,60,3×60),(4,59,4×59),…, (30,33,30×33),(31,32,31×32)。

上面写出的这些数都是互不相同的,并且这些数中的最大数为

31×32=992。如果划去的数少于30个,那么上述三元数组至少剩下一个,这样就不满足题设条件。所以,30是最少的个数。

六、配对法

配对的形式是多样的,有数字的凑整配对,也有集合间元素与元素的配对(可用于计数)。传说高斯8岁时求和(1+2+…+100)首创了配对。像高斯那样,善于使用配对技巧,常常能使一些表面上看来很麻烦,甚至很棘手的问题迎刃而解。

例7 求1,2,3,…,9999998,9999999这9999999个数中所有数码的和。

解:在这些数前面添一个数0,并不影响所有数码的和。将这1000万个数两两配对,因为0与9999999,1与9999998, (4999999)

5000000各对的数码和都是9×7=63。这里共有5000000对,故所有数码的和是63×5000000=315000000。

例8 某商场向顾客发放9999张购物券,每张购物券上印有一个四位数的号码,从0001到9999号。若号码的前两位数字之和等于后两位数字之和,则称这张购物券为“幸运券”。例如号码 0734,因 0+7=3+4,所以这个号码的购物券是幸运券。试说明,这个商场所发的购物券中,所有幸运券的号码之和能被101整除。

解:显然,号码为9999的是幸运券,除这张幸运券外,如果某个号码n是幸运券,那么号码为m=9999-n的购物券也是幸运券。由于9999是奇数,所以m≠n。

由于m+n=9999,相加时不出现进位,所以除去号码是9999这张幸运券之外,其余所有幸运券可全部两两配对,而每一对两个号码之和均为9999,即所有幸运券号码之和是9999的倍数。

因为9999=99×101,所以所有幸运券号码之和能被101整除。

例9已知最简分数可以表示成: 。试说明分子m是质数89的倍数。 解法一:仿照高斯求和(1+2+3+…+n)的办法,将和

①②两式相加,得

从而2m×88!=89×k(k是正整数)。

因为89为奇质数,所以89不能整除 88!,从而89|m。

解法二:作配对处理

将括号内的分数进行通分,其公分母为1×88×2×87×3×86×…×44×45=88!,

从而m×88!=89×k(k=n×q)。

因为89为奇质数,所以89不能整除88!,从而89|m。

七、估计法

估计法是用不等式放大或缩小的方法来确定某个数或整个算式的取值范围,以获取有关量的本质特征,达到解题的目的。

在数论问题中,一个有限范围内的整数至多有有限个,过渡到整数,就能够对可能的情况逐一检验,以确定问题的解。

例10已知一个整数等于4个不同的形如(是整数)的真分数之和,求这个数,并求出满足题意的5组不同的真分数。

解:因每一真分数满足,而所求的数整S是四个不同的真分数之和,因此2<S<4,推知S=3。于是可得如下5组不同的真分数:

例11 已知在乘积1×2×3×…×n的尾部恰好有106个连续的零,求

自然数n的最大值。

分析:若已知n的具体数值,求1×2×…×n的尾部零的个数,则比较容易解决,现在反过来知道尾部零的个数,求n的值,不大好处理,我们可以先估计n大约是多少,然后再仔细确定n的值。

解:当=400时,数1,2,3,…,400中共有个数是5的倍数,其中有个数是52的倍数,有个数是53的倍数。

因此,乘积1×2×3×…×400中含质因数5的个数为

80+16+3=99(个)。又乘积中质因数2的个数多于5的个数,故n=400时,1×2×…×n的尾部有99个零,还需 7个零,注意到425中含有2个质因数5,所以

当n=430时,1×2×…×n的尾部有106个零;

当n=435时,1×2×…×n的尾部有107个零。

因此,n的最大值为434。

练习2

1.将两个自然数的差乘上它们的积,能否得到数45045?

2.如下图,给定两张3×3方格纸,并且在每

一方格内填上“+”或“-”号。现在对方格纸中任

何一行或一列进行全部变号的操作。问:可否经过

若干次操作,使图(1)变成图(2)?

3.你能在3×3的方格表中每个格子里都填一

个自然数,使得每行、每列及两条对角线上的三数之和都等于1999吗?若能,请举出一例;若不能,请说明理由。

 

 示,求出表达式;若不能表示,请给出证明。

5.公共汽车票的号码是一个六位数,若一张车票的号码的前3个数字之和等于后3个数字之和,则称这张车票是幸运的。试说明,所有幸运车票号码的和能被13整除。

6.N是由5个不同的非零数字组成的五位数,且N等于这5个数字中取3个不同数字构成的所有三位数的和,求出所有的这种五位数N。

7.证明:没有最大的质数。

练习2 答案:

1.不可能。因为45045是奇数,所以它只能表示成3个奇数的连乘积,但是对任何两个奇数x和y(x<y)来说,y-x都是偶数,从

而45045≠xy(x-y)。而如果x和y中有偶数,则亦不可能。

2.不能。假设图(1)在第一、二、三行经过m1,m2,m3次操作,而第一、二、三列经过n1,n2,n3次操作变成图(2)。由于图(1)和图(2)左上角符号相反,而从“+”号变到“-”号要进行奇数次变号,故(m1+n1)是奇数。同理(m1+n2)是偶数,(m2+n1),(m2+n2)都是奇数。这样(m1+n1)+(m1+n2)+(m2+n1)+(m2+n2)是奇数。但这个和又等于2(m1+m2+n1+n2),是偶数,矛盾。

3.不能。若能填入九个自然数a1,a2,…,a8,a9满足题

设条件(如图所示),则有a1+a5+a9=1999,a2+a5+a8=1999,

a3+a5+a7=1999,a4+a5+a6=1999。

相加得(a1+a2+a3+a4+a5+a6+a7+a8+a9)+3a5=4×1999,

而a1+a2+a3+a4+a5+a6+a7+a8+a9=3×1999,所以3a5=1999,

a5=与a5是自然数矛盾。

4.不能。

解:因为

所以能表示成的形式,且。

将一切形如的数(其中为大于1的自然数),从大到小排列,前几项为。

显然,凡界于与1之间的分数不能表示成的形式,而却界于与1之间,所以不能表示成的形式。 

5.解:设幸运车票的号码为A,则号码为A′=999999-A的车票也是幸运的,并且A′≠A(因为999999是奇数),因而A+A

′=1001×999=13×77×999能被13整除。所以,所有幸运车票号码的和也能被13整除。

6.35964。

=(a1+a2+a3+a4+a5)(100×12+10×12+12)

=1332(a1+a2+a3+a4+a5)。

应是1332×9=11988的倍数。又

15=1+2+3+4+5≤a1+a2+a3+a4+a5≤9+8+7+6+5=35,

所以a1+a2+a3+a4+a5只能为18,27。

当a1+a2+a3+a4+a5=18时,

但2+3+9+7+6≠18,不合题意;

当a1+a2+a3+a4+a5=27时,

符合题意。

所以,所求的五位数为35964。

7.证明:假设有最大质数P。将所有小于等于P的质数相乘再加1,所得结果如果是质数,那么这个质数大于P,与假设矛盾;所得结果如果不是质数,那么它的每一个质因数都不同于小于等于P的质数,也就是说这些质因数都是大于P的质数,与假设矛盾。所以假设不成立,即没有最大的质数。

8.9504。

解:若先依次计算

的值再求和,则很繁杂。我们的解法是采用配对,这也是求和的一种有效技巧。

=199,(这里{x}=x[x])

同理可知

我们有

=198×48=9504。

高中数学竞赛讲义_复数

1 复数 一、基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=2 2b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2121z z z z =???? ??;(5)||||||2121z z z z ?=?;(6)|||||| 2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1=。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n πθπθ+++=,k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

小学数学竞赛试题

小学数学创新能力竞赛(预赛)试题 一、填空题(每空3分,共60分) 1.20500321000≈()亿37094000=()万 2.甲比乙多20%,乙比甲少()。 3.用2、0、0、6可以组成()个不同的四位数。 4.能被2、3、5、7整除的三位数中,最大的是()。 5.用2、6、8和4个零组成的7位数中,只读出一个零的最大的数是()。 6.同学们排队从学校出发去看电影,队伍全长200米,从排头出校门到排尾进入电影院共用35分钟,如果步行的平均速度是每分钟50米,学校到电影院共()米。 7.找规律填得数:2.5 1.250.625()0.15625。 8.2006年世界杯足球赛分为8个小组,每组4支球队,每组进行循环赛(即:每支球队都与其它球队进行一场比赛),循环赛后每组选2支球队进行淘汰赛(即:每支球队进行一场比赛,赢的进入下一轮,输的淘汰),最后决出冠军。这次世界杯一共举行()场足球赛。 9.在1~2006这2006个自然数中,不能同时被7和13整除的数共 有()个。 10.如图1,大圆内画一个最大的正方形,正方形内画一个最大的 圆……,如此画下去,共画了4个圆,那么最大的圆的面积是最 小圆的()倍。 11.学校门口到公路边有一条100米的路,如果在这条路的两边栽树,离校门口10米处栽一棵,然后每隔10米栽一棵,一共需要栽()棵。 12.在方框里填上适当的数:50.15×[72.05- -17.95)]=2006 13.用88个小正方体表面积之和的比是()。 14.请你用1~9这九个数字,写出五个平方数(某个数的平方),每个数字最多用一次,这五个平方数分别是()。 15.2005年12月8日是星期四,推算一下,2006年5月1日是星期()。16.一个池塘里的睡莲,每天增长一倍,到第5天已长满了整个池塘,第二天长到这个池塘的()。 17.五年级参加植树活动,人数在30与50人之间,如果分3人一组,4人一组,6人一组或8人一组,都恰好分完。五年级参加植树的学生有()人。 图1

高中数学竞赛校本课程

高中数学竞赛校本课程 一、课程目标 数学是研究空间形式和数量关系的学科,也是研究模式与秩序的一门学科。数学本身的特点决定了它作为科学基础的地位,中学数学的内容与其中蕴含的数学思想方法,尤其是通过数学学习培养的思考问题、解决问题的数学能力将在更深一层次的科学研究中大有作为。 1、夯实学生数学基础,使学生熟练掌握各种数学基本技能;全面提高学生演绎推理、直觉猜想、归纳抽象、体系构建、算法设计等诸多方面的能力,并在此基础上培养学生学习新的数学知识的能力,数学地提出、分析、解决问题的能力,数学表达与交流的能力;发展学生数学应用意识与数学创新意识。 2、努力扩展学生的数学视野,全面渗透研究性学习,激发学生学习数学的兴趣,使学生能欣赏数学的美学魅力,认识数学的价值,崇尚数学的思考,培养从事科学研究的精神与方法。 3、多角度衔接高等教育,大胆引入现代数学基本理念,为学生继续从事高深科学领域的学习奠定所必需的数学基础。 二、课程设计理念与课程内容特色 本课程始终围绕学生群体设计,从他们的学习与发展的实际学情为基本出发点。课程的内容的选择是严格的,它具有鲜明的针对性,能体现数学教学的特点。本课程设计向要突现以下几点: 1、注重发展学生的数学综合能力 “学以致用”,数学知识的学习必须进入运用的层次,接受实践的考验。20世纪下半叶以来,数学的最大发展是应用,这也对数学教学产生了深刻的影响。本课程在数学知识的理论应用与实践运用上大大加强,数学的融会贯通与“数学建模”成为主体;加强了数学各分支间的结合,以重要的数学思想方法来贯穿数学学习。 2、重视数学思想与数学方法养成的创新学习理念 传授数学知识不是数学教学的重点,‘授人以鱼,不若授之以渔’。引导学生掌握解决问题的科学的数学思想与数学方法是本课程的核心。课程不完全以知识系统为主线,很多例题与练习是为了凸现其中的蕴含的数学思想方法而设计。本课程试图通过数学思想方法的养成为学生形成正确的,积极主动的学习方式创造有利条件,为学生提供“提出问题,探索研究,实践应用”的空间,帮助学生形成独立思考、自主钻研的习惯,培养学生的自主能力,提高理性的数学思维,养成勇于创新的科学理念。 3、拓展数学视野,形成开放体系,努力增强时代感 由于本课程的学习对象为具备教好的数学基础与学习能力的学生,因此在内容上必须有一定的深度与广度,要能够印发学生的思考,要有新的知识内容与视角,传统的 数学课程内容长期以来已经模式化,可选择性不强,本课程大胆突破高考限制,引入“向量几何”、“矩阵理论”、“概率统计”、“线性规划”、“微积分初步”等现代数学内容,摆脱以往数学课程内容的被动与滞后,是本课程力图突破的一点。此外,本课程通过每个章节设置的“本章阅读”介绍著名数学家、数学趣题、数学发展史以及最新数学进展来拓展学生的视野,提高学习数学兴趣。 三、课程内容与数学计划 高一上学期 第一章.集合与命题 第二章.函数 第三章.不等式 第四章.三角函数

高中数学竞赛标准教材讲义函数教案

第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射. 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射. 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射. 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆 映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1 : A →B . 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数.A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y 则y 叫做x 的象,x 叫y 的原象.集合{f (x )|x ∈A }叫函数的值域.通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1 : A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域.例如:函数y = x -11的反函数是y =1-x 1 (x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称. 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数. 定义7 函数的性质. (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有 f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间. (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期. 定义8 如果实数a a }记作开区间(a , +∞集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域.通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对 称;(5)与函数y =-f (-x )的图象关于原点成中心对称;(6)与函数y =f -1 (x )的图象关于直线y =x 对称;(7)与函数y =-f (x )的图象关于x 轴对称. 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”.例如y = x -21 , u=2-x 在(-∞,2)上是减函数,y = u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数. 注:复合函数单调性的判断方法为同增异减.这里不做严格论证,求导之后是显然的. 二、方法与例题

高中数学竞赛教案讲义(7)解三角形

第七章 解三角形 一、基础知识 在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2 c b a p ++=为半周长。 1.正弦定理:C c B b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。 推论1:△ABC 的面积为S △ABC =.sin 2 1sin 21sin 21B ca A bc C ab == 推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足) sin(sin a b a a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 2 1;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理B b A a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]= 2 1-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。 2.余弦定理:a 2=b 2+c 2-2bccosA bc a c b A 2cos 2 22-+=?,下面用余弦定理证明几个常用的结论。 (1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq q p q c p b -++ (1) 【证明】 因为c 2=AB 2=AD 2+BD 2 -2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π, 所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得 qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq q p q c p b -++ 注:在(1)式中,若p=q ,则为中线长公式.2 222 22a c b AD -+=

小学数学竞赛试题

小学数学竞赛试题 1. 一个成年人平均每分钟呼吸16次,每次吸入500立方厘米空气.问:他在一昼夜里吸人多少立方米空气? 【关键词】应用题部分 归一问题 【难度系数】★☆☆☆☆ 【题型】基础题 【解】 1. 一昼夜即:60×24=1440(分) 2. 一个成年人一昼夜吸入空气量是:500×16×1440=11520000(立方厘米)=11.52(立方米) 答:他在一昼夜里吸入11.52立方米空气。 【老杜点评】考点在于单位换算。 2. 右面是一个乘法算式: 问:当乘积最大时,所填的四个数字的和是多少? 【关键词】数论部分 数字谜 最值问题 【难度系数】★☆☆☆☆ 【题型】基础题 【解】乘积是两位数并且是5的倍数,因而最大是95.95÷5=19,所以题中的算式实际上是 ∴所填四个数字之和便是1+9+9+5=24 答:当乘积最大时,所填的四个数字的和是24. 【老杜点评】倒推的思维。想到何时乘积最大。 3. 某部84集的电视连续剧在某星期日开播,从星期一到星期五以及星期日每天都要播出1集,星期六停播。问:最后一集在星期几播出? 【关键词】应用题部分 周期问题 【难度系数】★★☆☆☆ 【题型】发散题 【解】每星期播6集,84集播 84÷6=14 个星期,第一集在星期日播出,所以最后一集在星期五播出。 答:最后一集在星期五播出。 【老杜点评】一道周期问题,重点掌握周几是一个周期的开始,这点容易出错。 4. 计算:723415 85)6144545(1393)75.0324(÷÷-?+

【关键词】计算部分 资源共享型 【难度系数】★★☆☆☆ 【题型】发散题 【解】原式72401583)901549085(1348)43324(÷÷-?+=240783901348)1291284(???+=24076 113481265??= 2 132407620=??= 【老杜点评】掌握资源共享型的口诀:小数化分数、带分数化假分数、除号变乘号。 5. 用下面写有数字的四张卡片 排成四位数。问:其中最小的数与最大的数的和是多 少? 【关键词】最值问题 【难度系数】★☆☆☆☆ 【题型】基础题 【解】排成的最大的数是9951,最小的数是1566,因此,所求的和是9951+1566=11517。 【老杜点评】本题关键问题是9是否能当6用,在考试中,为了防止出错,应加以说明。分两种情况:若可以当6用,若不能当6用。 6. 甲、乙两人在河中先后从同一个地方同速同向游进。现在甲位于乙的前方,乙距起点20米;当乙游到甲现在的位置时,甲已离起点98米。问:甲现在离起点多少米? 【关键词】应用题部分 行程问题 【难度系数】★★★☆☆ 【题型】思维题 【解一】当乙游到甲现在的位置时,甲也游了同样的距离,这距离是(98-20)÷2=39(米),所以甲现在离起点39+20=59(米)。 【解二】两人速度相同,距离:(98+20)÷2=59(米) 答:甲现在离起点59米。 【老杜点评】本题一定要抓住速度相同这个条件。说明甲乙之间的距离保持不变。 7. 有面值为1分,2分,5分的硬币各4枚,用它们去支付2角3分。问:有多少种不同的支付方法? 【关键词】图形计数 【难度系数】★★★☆☆ 【题型】思维题 【解】2角3分=23分 1. 当用4个5分时:23-5×4=3(分)=2+1=1+1+1,共2种 2. 当用3个5分时:3+5=8(分)=2+2+2+2=2+2+2+1+1=2+2+1+1+1+1,共3种 3. 当用2个5分时:8+5=13(分)>(1+2)×4=12(分)(1、2分不够) 4. 共:2+3=5(种) 答:有5种不同的支付方法。 【老杜点评】本题很容易重复考虑和漏掉情况。所以必须按照一定规律来进行讨论。 8. 有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水。甲杯中沉没着一

高中数学竞赛 函数【讲义】

高中数学竞赛标准教材 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

(完整版)小学一年级数学竞赛试题及答案.doc

小学一年级数学知识竞赛试题 1、找规律,填一填,画一画。 (1)17 、2 、 16 、 3 、15 、4 、()、()。 (2) ( ) ( ) 。 2 、在下面 线上 3 里填数,使每条 个数的和都是 16。 3 .数一数,下面图中共有( 个正方体。 )5 4 3 4 、你能像下面那样,写出两个数相加,得数是99 的竖式吗? 18 +8 1 99 5 、我们一队有12 个男生。老师让两个男生之间插进一个女生。一共可 以插进()个女生。 6 、至少用()个可以拼成一个大正方体。 7 、用12根一样长的小棒,最多可以拼摆出()个大小相同的正方形。 8 、用做出一个,数字“ 3”的对面是数字“()”。 9 、小红参加数学竞赛,和参加竞赛的每个人握一次手。小红一共握了40 次手。参加数学竞赛的一共有()人。

10 、用数字卡片4、 中最大的两位数是(1 、 5 可以摆出()个不同的两位数。其 ),最小的两位数是()。 11 、把 2 、3 、4 、 5 这四个数分别填入下面的里(每个数只能用一 次),使等式成立。 + - = 12 、小王看一本书,第一天看了10 页,第二天看的页数和第一天同样多。 小王第三天从第()页看起。 13 、桌上放着一本打开的书,它的左右两页页码的和是17 。这两页页码 分别是()和()。 14 、小亮说:“爸爸比妈妈大 4 岁,我比妈妈小 26 岁。”请你算一算, 小亮的爸爸比小亮大()岁。 15 、房间里的桌子上有 8 支刚刚点燃的蜡烛,风从窗户吹进来,吹灭了 1 支蜡烛,过了一会儿,又有 2 支蜡烛被吹灭,把窗户关起来以后, 再也没有蜡烛被吹灭。最后桌上还剩()支蜡烛。 16 、小红有 10 枚邮票,小明有 6 枚邮票,小红拿()枚给小明后, 两人的邮票一样多。 17 、15个小朋友排成一队,小东的前面有9 人,小东的后面有()人。 18 、在某数的右边加上一个“0 ”,就得到一个两位数,比原来的数增加 了 36 ,原来这个数是()。 19 、小亮从 1 写到 40 ,他一共写了()个数字“ 2 ”。 20 、丁丁从家走到学校要 9 分钟,他从家出发走了 4 分钟后发现语文课 本没有带来,马上回家去拿,然后再走到学校。丁丁一共走了()分钟。

江苏省高中数学竞赛校本教材[全套](共30讲,含详细答案)-苏教版

江苏省高中数学竞赛校本教材[全套] (共30讲,含详细答案)-苏教版 目录 §1数学方法选讲(1) (1) §2数学方法选讲(2) (11) §3集合 (22) §4函数的性质 (30) §5二次函数(1) (41) §6二次函数(2) (55) §7指、对数函数,幂函数 (63) §8函数方程 (73) §9三角恒等式与三角不等式 (76) §10向量与向量方法 (85) §11数列 (95) §12递推数列 (102) §13数学归纳法 (105) §14不等式的证明 (111) §15不等式的应用 (122) §16排列,组合 (130) §17二项式定理与多项式 (134) §18直线和圆,圆锥曲线 (143)

§19立体图形,空间向量 (161) §20平面几何证明 (173) §21平面几何名定理 (180) §22几何变换 (186) §23抽屉原理 (194) §24容斥原理 (205) §25奇数偶数 (214) §26整除 (222) §27同余 (230) §28高斯函数 (238) §29覆盖 (245) §29涂色问题 (256) §30组合数学选讲 (265) §1数学方法选讲(1) 同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。 例题讲解 一、从简单情况考虑 华罗庚先生曾经指出:善于―退‖,足够的―退‖,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。从简单情况考虑,就是一种以退为进的一种解题策略。 1. 两人坐在一张长方形桌子旁,相继轮流在桌子上放入同样大小的硬币。条件是硬币一定要平放在桌子上,后放的硬币不能压在先放的硬币上,直到桌子上再也放不下一枚硬币为止。谁放入了最后一枚硬币谁获胜。问:先放的人有没有必定取胜的策略?

高中数学竞赛讲义(15)复数

高中数学竞赛讲义(十五) ──复数 一、基础知识 1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i 与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。 2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z). z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ<2π,则θ称为z的辐角主值,记作θ=Arg(z). r称为z的模,也记作|z|,由勾股定理知|z|=.如果用e iθ表示cosθ+isin θ,则z=re iθ,称为复数的指数形式。 3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);

(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8) |z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1), z2=r2(cosθ2+isinθ2), 则z1??z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θθ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2e i(θ1+θ1- 2), 5.棣莫弗定理:[r(cosθ+isinθ)]n=r n(cosnθ+isinnθ). 6.开方:若r(cosθ+isinθ),则 ,k=0,1,2,…,n-1。 7.单位根:若w n=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Z nq+r=Z r;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z1)(x-Z2)…(x-Z n-1)=(x-Z1)(x-)…(x-).

不等式高中数学竞赛标准教材

第九章不等式(高中数学竞赛标准教材) 第九章不等式 一、基础知识不等式的基本性质:(1)a>b a-b>0;(2)a>b, b>c a>c;(3)a>b a+c>b+c;(4)a>b, c>0 ac>bc;(5)a>b, c<0 acb>0, c>d>0 ac>bd; (7)a>b>0, n∈N+ an>bn; (8)a>b>0, n∈N+ ; (9)a>0, |x|a x>a或x<-a; (10)a, b∈R,则|a|-|b|≤|a+b|≤|a|+|b|; (11)a, b∈R,则(a-b)2≥0 a2+b2≥2ab; (12)x, y, z∈R+,则x+y≥2 , x+y+z 前五条是显然的,以下从第六条开始给出证明。(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd,所以ac>bd;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即a≤b,与a>b 矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立; -|a|≤a≤|a|, -|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为 |a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2 ≥0,所以x+y≥ ,当且仅当x=y时,等号成立,再证另一不等式,令,因为x3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)= (a+b+c)(a2+b2+c2-ab-bc-ca)= (a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a3+b3+c3≥3abc,即x+y+z≥ ,等号当且仅当x=y=z时成立。二、方法与例题 1.不等式证明的基本方法。(1)比较法,在证明A>B或A0)与1比较大小,最后得出结论。例1 设a, b, c∈R+,试证:对任意实数x, y, z, 有x2+y2+z2 【证明】左边-右边= x2+y2+z2 所以左边≥右边,不等式成立。例2 若alog(1-x)(1-x)=1(因为0<1-x2<1,所以 >1-x>0, 0<1-x<1). 所以 |loga(1+x)|>|loga(1-x)|. (2)分析法,即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,

小学数学竞赛题及答案

1.三个不同的三位数相加的和是2993,那么这三个加数是______. 2.小明在计算有余数的除法时,把被除数472错看成427,结果商比原来小5,但余数恰巧相同.则该题的余数是______.3.在自然数中恰有4个约数的所有两位数的个数是______.4.如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______. 5.现有2克、3克、6克砝码各一个,那么在天平秤上能称出______种不同重量的物体. 6.有一个算式: 五入的近似值,则算式□中的数依次分别是______. 7.某项工作先由甲单独做45天,再由乙单独做18天可以完成,如果甲乙两人合作可30天完成。现由甲先单独做20天,然后再由乙来单独完成,还需要______天. 8.某厂车队有3辆汽车给A、B、C、D、E五个车间组织循环运输。如图所示,标出的数是各车间所需装卸工人数.为了节省人力,让一部分装卸工跟车走,最少安排______名装卸工保证各车间的需要. 9.甲容器中有纯酒精340克,乙容器有水400克,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合;第二次将乙容器中的一部分混合液倒入甲容器,这时甲容器

中纯酒精含量70%,乙容器中纯酒精含量为20%,则第二次从乙容器倒入甲容器的混合液是______克. 二、解答题: 1.有红黄两种玻璃球一堆,其中红球个数是黄球个数的1.5倍,如果从这堆球中每次同时取出红球5个,黄球4个,那么取了多少次后红球剩9个,黄球剩2个? 2.小明一家四口人的年龄之和是147岁,爷爷比爸爸大38岁,妈妈比小明大27岁,爷爷的年龄是小明与妈妈年龄之和的2倍,问小明一家四口人的年龄各是多少岁?3.A、B、C、D、E五人在一次满分为100分的考试中,A 得94分,B是第一名,C得分是A与D的平均分,D得分是五人的平均分,E比C多2分,是第二名,则B得了多少分? 4.甲乙两人以匀速绕圆形跑道相向跑步,出发点在圆直径的两端.如果他们同时出发,并在甲跑完60米时第一次相遇,乙跑一圈还差80米时俩人第二次相遇,求跑道的长是多少米?答案: 一、填空题: 1.648 原式=7.2×61.3+(61.3+12.5)×2.8=(7.2+2.8)×61.3+12.5×2.8

高中体育校本教材《篮球》

高中体育校本教材 (篮球) 体育组

高中篮球校本教材课程纲要 第一章高中篮球教材概述 (1) 第二章高中篮球教学的目标、内容与要求 (2) 第三章高中篮球教学内容与教法建议 (5) 第四章篮球竞赛规、裁判法及记录台 (16) 第五章篮球教与学的评价 (26)

中学篮球校本教材课程内容 第一章:高中篮球教材概述 一、篮球运动的概念 篮球是中学生最喜爱的运动项目之一,锻炼身体的综合效果好,能培养学生团结合作,积极进取的拼搏精神,是初中体育教学的内容之一。 篮球运动作为一个竞技运动项目,是以投篮为中心,以得分多少决定胜负而进行的攻守交替、集体对抗的球类项目。 二、篮球运动的起源与发展 篮球运动是1891年由美国马萨诸塞州斯普林菲尔德市基督教青年会,学校体育教师詹姆士·奈史密斯(James.Naismith) 发明的。因篮球运动本身特有的魅力,深受人们喜爱,所以很快在全世界传播开来。1895年传入我国天津,1932年成立了国际业余篮球联合会(简称国际篮联)。1936年男子篮球运动成为奥运会正式比赛项目,1976年第21届奥运会增加了女子篮球项目。1992年第25届奥运会向职业篮球球员敞开了大门。篮球运动在中国广为普及,深受广大青少年喜爱。 三、篮球运动的教学功能 对于体育教学中的篮球运动来讲,它就是一项集体对抗的球类游戏项目。它的特点是集体性、对抗性、趣味性。除了具有一般运动项目的锻炼价值外,篮球运动复杂多变的比赛过程,能提高神经系统的灵活性,进而提高大脑的分析综合能力和应变能力。竞争对抗的游戏形式,能提高学生参与的兴趣,培养学生的体育情感,以及学生的顽强拼搏精神,提高学生的自信心和心理自我调控能力。比赛中的集体配合,可以培养学生的团队精神,提高学生正确处理人际关系的能力。篮球技能的掌握可以增加人的运动经验积累,能为今后学习其它运动项目提供一定帮助。

高中数学竞赛讲义_平面向量

平面向量 一、基础知识 定义 1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理 1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λ f 定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。 定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。 定义4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作a ·b=|a|·|b|cos θ=|a|·|b|cos,也称内积,其中|b|cos θ叫做b 在a 上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c , 3.a ·b=x 1x 2+y 1y 2, cos(a, b)= 22 22 21 21 2121y x y x y y x x +?++(a, b ≠0), 4. a//b ?x 1y 2=x 2y 1, a ⊥b ?x1x2+y 1y 2=0. 定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使21PP P P λ=,λ叫P 分2 1P P 所成的比,若O 为平面内任意一点,则λ λ++= 12 1OP OP 。由此可得若P 1,P ,P 2的坐标分别为(x 1, y 1), (x, y), (x 2, y 2),则..1121212 121y y y y x x x x y y y x x x --=--=??? ????++=++=λλλλλ 定义6 设F 是坐标平面内的一个图形,将F 上所有的点按照向量a=(h, k)的方向,平移|a|=2 2k h +个单位得到图形'F ,这一过程叫做平移。设p(x, y)是F 上任意一点,平移到'F 上对应的点为)','('y x p ,则? ??+=+=k y y h x x ''称为平移公式。 定理5 对于任意向量a=(x 1, y 1), b=(x 2, y 2), |a ·b|≤|a|·|b|,并且|a+b|≤|a|+|b|. 【证明】 因为|a|2·|b|2-|a ·b|2=))((2 222212 1 y x y x ++-(x 1x 2+y 1y 2)2=(x 1y 2-x 2y 1)2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ),b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ), b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2。 2)对于任意n 个向量,a 1, a 2, …,a n ,有| a 1, a 2, …,a n |≤| a 1|+|a 2|+…+|a n |。 二、方向与例题 1.向量定义和运算法则的运用。