搜档网
当前位置:搜档网 › 高考数学椭圆与双曲线抛物线的经典性质(绝对的全,超级好)

高考数学椭圆与双曲线抛物线的经典性质(绝对的全,超级好)

高考数学椭圆与双曲线抛物线的经典性质(绝对的全,超级好)
高考数学椭圆与双曲线抛物线的经典性质(绝对的全,超级好)

124=3. 2

12y y p =-;

4. '90AC B ∠=;

5. ''90A FB ∠=;

6. 123222()2sin p p

AB x x p x α

=++=+=

; 7.

112

AF BF P

+=; 8. A 、O 、'

B 三点共线; 9. B 、O 、'

A 三点共线;

10. 2

2sin AOB P S α

=;

11. 23()2

AOB S P

AB =(定值); 12. 1cos P AF α=

-;1cos P

BF α=+;

13. 'BC 垂直平分'

B F ;

14. 'AC 垂直平分'

A F ;

15. '

C F AB ⊥;

16. 2AB P ≥; 17. 11

'('')22

CC AB AA BB =

=+; 18. AB 3

P K =

y ; 19. 2p 22

y

tan =x -α;

20. 2

A'B'4AF BF =?; 21. 1

C'F A'B'2

=

. 22. 切线方程 ()x x m y y +=00

性质深究

一)焦点弦与切线

1、 过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有

何特殊之处?

结论1:交点在准线上

先猜后证:当弦x AB ⊥轴时,则点P 的坐标为??

?

??-

0,2p 在准线上. 证明: 从略

结论2 切线交点与弦中点连线平行于对称轴

结论3 弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.

2、上述命题的逆命题是否成立?

结论4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点

先猜后证:过准线与x 轴的交点作抛物线的切线,则过两切点AB 的弦必过焦点. 结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.

3、AB 是抛物线px y 22

=(p >0)焦点弦,Q 是AB 的中点,l 是抛物线的准线,l AA ⊥1,l BB ⊥1,过A ,B 的切线相交于P ,PQ 与抛物线交于点M

.则有

结论

6P A ⊥PB . 结论7PF ⊥AB . 结论8 M 平分PQ .

结论9 P A 平分∠A 1AB ,PB 平分∠B 1BA .

结论2

PF = 结论11PAB

S ?2min

p =

二)非焦点弦与切线

思考:当弦AB 不过焦点,切线交于P 点时, 也有与上述结论类似结果: 结论12 ①p y y x p 221=

,2

2

1y y y p += 结论13 P A 平分∠A 1AB ,同理PB 平分∠B 1BA .

结论14 PFB PFA ∠=∠ 结论15 点M 平分PQ 结论16

2

=

相关考题

1、已知抛物线y x 42

=的焦点为F ,A ,B 是抛物线上的两动点,且λ=(λ>0),过A ,B 两点分别作抛物线的切线,设其交点为M , (1)证明:AB FM ?的值;

(2)设ABM ?的面积为S ,写出()λf S =的表达式,并求S 的最小值.

2、已知抛物线C 的方程为y x 42

=,焦点为F ,准线为l ,直线m 交抛物线于两点A ,B ; (1)过点A 的抛物线C 的切线与y 轴交于点D ,求证:DF AF =;

(2)若直线m 过焦点F ,分别过点A ,B 的两条切线相交于点M ,求证:AM ⊥BM ,且点M 在直线l 上. 3、对每个正整数n ,()n n n y x A ,是抛物线y x 42

=上的点,过焦点F 的直线F A n 交抛物线于另一点()n n n t s B ,,

(1)试证:4-=?n n s x (n ≥1)

(2)取n

n x 2=,并C n 为抛物线上分别以A n 与B n 为切点的两条切线的交点,求证:

122121+-=++++-n n n FC FC FC (n ≥1)

椭圆与双曲线的对偶性质--(必背的经典结论)

高三数学备课组

椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的

两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22

221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.

6. 若000(,)P x y 在椭圆22

221x y a b

+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程

是00221x x y y a b +=. 7. 椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点

角形的面积为122

tan

2

F PF S b γ

?=.

8. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦

点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P

和A 1Q 交于点N ,则MF ⊥NF.

11. AB 是椭圆22

221x y a b

+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ?=-,

即020

2y a x b K AB -=。

12. 若000(,)P x y 在椭圆22

221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.

13. 若000(,)P x y 在椭圆22

221x y a b

+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+.

双曲线

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.

2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长

轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相交.

4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

5. 若000(,)P x y 在双曲线22

221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=.

6. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则

切点弦P 1P 2的直线方程是00221x x y y

a b

-=.

7. 双曲线22

221x y a b

-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,

则双曲线的焦点角形的面积为122

t

2

F PF S b co γ

?=.

8. 双曲线22

221x y a b

-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c

当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.

当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--

9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别

交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.

10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于

点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

11. AB 是双曲线22

221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则

0202y a x b K K AB OM =?,即020

2y a x b K AB =。

12. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是

22

00002222x x y y x y a b a b

-=-. 13. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是

22002222x x y y x y a b a b

-=-.

椭圆与双曲线的对偶性质--(会推导的经典结论)

高三数学备课组

椭 圆

1. 椭圆22

221x y a b

+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时

A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

-=.

2. 过椭圆22

221x y a b

+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,

则直线BC 有定向且20

20BC b x k a y =(常数).

3. 若P 为椭圆22

221x y a b

+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=,

21PF F β∠=,则

tan t 22

a c co a c αβ

-=+. 4. 设椭圆22

221x y a b

+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2

中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有

sin sin sin c

e a

αβγ==+.

5. 若椭圆22

221x y a b

+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e

1时,可在

椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.

6. P 为椭圆22

221x y a b

+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则

2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.

7. 椭圆

22

0022

()()

1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.

8. 已知椭圆22

221x y a b

+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)

22

221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2

的最大值为22224a b a b +;(3)OPQ S ?的最小值是2222a b a b +. 9. 过椭圆22

221x y a b

+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x

轴于P ,则

||||2PF e

MN =. 10. 已知椭圆22

221x y a b

+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点

0(,0)P x , 则2222

0a b a b x a a ---<<.

11. 设P 点是椭圆22

221x y a b

+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则

(1)2122||||1cos b PF PF θ=+.(2) 122

tan 2

PF F S b γ?=.

12. 设A 、B 是椭圆22

221x y a b

+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,

PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)222

2

2|cos |

||s ab PA a c co αγ

=-.(2) 2

tan tan 1e αβ=-.(3) 22222cot PAB

a b S b a

γ?=-. 13. 已知椭圆22

221x y a b

+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交

于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.

14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线

垂直.

15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.

16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.

椭圆与双曲线的对偶性质--(会推导的经典结论)

高三数学备课组

双曲线

1. 双曲线22

221x y a b

-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于

P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

+=.

2. 过双曲线22

221x y a b

-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于

B,C 两点,则直线BC 有定向且20

20BC b x k a y =-(常数).

3. 若P 为双曲线22

221x y a b

-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点, 12PF F α∠=,

21PF F β∠=,则

tan t 22c a co c a αβ-=+(或tan t 22

c a co c a βα

-=+). 4. 设双曲线22

221x y a b

-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,

在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有

sin (sin sin )c

e a

αγβ==±-. 5. 若双曲线22

221x y a b

-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e

1

时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.

6. P 为双曲线22

221x y a b

-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则

21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.

7. 双曲线

22

221x y a b

-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A a B b C -≤.

8. 已知双曲线22

221x y a b

-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.

(1)22

221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2

的最小值为22224a b b a -;(3)OPQ S ?的最小值是2222a b b a -. 9. 过双曲线22

221x y a b

-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂

直平分线交x 轴于P ,则

||||2PF e

MN =. 10. 已知双曲线22

221x y a b

-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相

交于点0(,0)P x , 则22

0a b x a

+≥或220a b x a +≤-.

11. 设P 点是双曲线22

221x y a b

-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,

则(1)2122||||1cos b PF PF θ=-.(2) 122

cot 2PF F S b γ?=.

12. 设A 、B 是双曲线22

221x y a b

-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=,

PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)222

22|cos |

|||s |

ab PA a c co αγ=-. (2) 2

tan tan 1e αβ=-.(3) 22

22

2cot PAB

a b S b a γ?=+. 13. 已知双曲线22

221x y a b

-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与

双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点. 14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线

必与切线垂直.

15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂

直.

16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点). 17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.

高考数学椭圆与双曲线的经典性质50条技巧归纳总结

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2O M A B b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是22 00002222x x y y x y a b a b +=+.

高考数学 双曲线

第51讲 双曲线 1.双曲线的定义 平面内与两个定点F 1,F 2的__距离的差的绝对值__等于常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做__双曲线的焦点__,两焦点间的距离叫做__双曲线的焦距__. 集合P ={}M ||| ||MF 1-||MF 2=2a ,||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0. (1)当__a <c __时,点P 的轨迹是双曲线; (2)当__a =c __时,点P 的轨迹是两条射线; (3)当__a >c __时,点P 不存在. 2.双曲线的标准方程和几何性质 x ≥a 或x ≤-a ,y ∈R y ≤-a 或y ≥a ,x ∈R

3.常用结论(1)双曲线的焦点到渐近线x a 2-y b 2=0(a >0,b >0)的距离为b .如右图△OFH 是分别以边a ,b ,c 为边长的直角三角形. (2)如下图: x 2a 2+y 2b 2=1(a >b >0) x 2a 2-y 2 b 2=1(a >0,b >0) 则有:P 1,P 2两点坐标都为????c ,b 2 a ,即||FP 1=||FP 2=b 2 a . 1.思维辨析(在括号内打“√”或“×”). (1)平面内到点F 1 (0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.( × ) (2)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (3)方程x 2m -y 2 n = 1(mn >0)表示焦点在x 轴上的双曲线.( × ) (4)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±y n = 0.( √ ) 解析 (1)错误.由双曲线的定义知,应为双曲线的一支,而非双曲线的全部. (2)错误.因为||||MF 1-||MF 2=8=||F 1F 2,表示的轨迹为两条射线. (3)错误.当m >0,n >0时表示焦点在x 轴上的双曲线,而m <0,n <0时则表示焦点在y 轴上的双曲线.

高中数学有关圆-椭圆-双曲线-抛物线的详细知识点

<一>圆的方程 (x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。 (1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0 此方程可用于解决两圆的位置关系: 配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4 其圆心坐标:(-D/2,-E/2) 半径为r=√[(D^2+E^2-4F)]/2 此方程满足为圆的方程的条件是: D^2+E^2-4F>0 若不满足,则不可表示为圆的方程 (2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系: ⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。 ⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。 ⑶当(x1-a)^2+(y1-b) ^20,则圆与直线有2交点,即圆与直线相交。 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。 如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1x2时,直线与圆相离; 当x1 (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4 => 圆心坐标为(-D/2,-E/2) 其实只要保证X方Y方前系数都是1 就可以直接判断出圆心坐标为(-D/2,-E/2) 这可以作为一个结论运用的 且r=根号(圆心坐标的平方和-F) <二>椭圆的标准方程 椭圆的标准方程分两种情况: 当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0); 当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0); 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长、短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c ,c为椭圆的半焦距。 又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。即

高考数学椭圆与双曲线的经典性质50条经典法则

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积 为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆 准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于 点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2 的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦 点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF.

高考数学双曲线

2021年新高考数学总复习第九章《平面解析几何》 双曲线 1.双曲线定义 平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0. (1)当2a<|F1F2|时,P点的轨迹是双曲线; (2)当2a=|F1F2|时,P点的轨迹是两条射线; (3)当2a>|F1F2|时,P点不存在. 2.双曲线的标准方程和几何性质 标准方程 x2 a2- y2 b2=1 (a>0,b>0) y2 a2- x2 b2=1 (a>0,b>0) 图形 性质 范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点 顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a) 渐近线y=± b a x y=± a b x 离心率e= c a,e∈(1,+∞),其中c=a 2+b2 实虚轴 线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a,线段B1B2叫做双 曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做 双曲线的虚半轴长 a,b,c 的关系 c2=a2+b2 (c>a>0,c>b>0) 概念方法微思考

1.平面内与两定点F 1,F 2的距离之差的绝对值等于常数2a 的动点的轨迹一定为双曲线吗?为什么? 提示 不一定.当2a =|F 1F 2|时,动点的轨迹是两条射线; 当2a >|F 1F 2|时,动点的轨迹不存在; 当2a =0时,动点的轨迹是线段F 1F 2的中垂线. 2.方程Ax 2+By 2=1表示双曲线的充要条件是什么? 提示 若A >0,B <0,表示焦点在x 轴上的双曲线;若A <0,B >0,表示焦点在y 轴上的双曲线.所以Ax 2+By 2=1表示双曲线的充要条件是AB <0. 3.与椭圆标准方程相比较,双曲线标准方程中,a ,b 只限制a >0,b >0,二者没有大小要求,若a >b >0,a =b >0,0b >0时,10时, e =2(亦称等轴双曲线),当0 2. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( × ) (3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±y n =0.( √ ) (4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ ) (5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22 =1(此条件中两条双曲线称为共轭双曲线).( √ ) 题组二 教材改编 2.若双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2 答案 A 解析 由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为x a ±y b =0,即bx ±ay =0,

椭圆双曲线抛物线专题训练

椭圆、双曲线、抛物线 专题训练 一、选择题(本大题共6个小题,每小题6分,共36分) 1.(精选考题·陕西高考)已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A.1 2 B .1 C .2 D .4 2.(2009·全国卷Ⅰ)已知椭圆C :x 22+y 2 =1的右焦点为F ,右准线为l ,点A ∈l ,线 段AF 交C 于点B .若FA =3FB ,则|AF |= ( ) A. 2 B .2 C.3 D .3 3.已知抛物线y 2=4x 的焦点为F ,准线与x 轴的交点为M ,N 为抛物线上的一点,且|NF |= 3 2 |MN |,则∠NMF =( ) A.π6 B.π4 C.π3 D.5π12 4.过椭圆x 2a 2+y 2 b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠ F 1PF 2=60°,则椭圆的离心率为( ) A. 22 B.3 3 C.12 D.13 5.双曲线x 24-y 2 5=1的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,若线段PF 1的 中点在y 轴上,那么点P 到双曲线左准线的距离是( ) A.133 B.53 C.154 D.94 6.(精选考题·皖南八校模拟)已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,点A (7 2 ,4),则|PA |+d 的最小值是( ) A.7 2 B .4 C.9 2 D .5

二、填空题(本大题共3个小题,每小题6分,共18分) 7.经过点M (10,83),渐近线方程为y =±1 3 x 的双曲线的方程为________. 8.抛物线C 的顶点在坐标原点,对称轴为y 轴,若过点M (0,1)任作一条直线交抛物线C 于A (x 1,y 1),B (x 2,y 2)两点,且x 1·x 2=-2,则抛物线C 的方程为________. 9.已知以坐标原点为顶点的抛物线C ,焦点在x 轴上,直线x -y =0与抛物线C 交于A 、B 两点.若P (2,2)为AB 的中点,则抛物线C 的方程为________. 三、解答题(本大题共3个小题,共46分) 10.(本小题满分15分)(精选考题·济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =1 2, 且椭圆经过点N (2,-3). (1)求椭圆C 的方程; (2)求椭圆以M (-1,2)为中点的弦所在直线的方程. 11.(本小题满分15分)(2009·全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为3 3,过右 焦点F 的直线l 与C 相交于A 、B 两点,当l 的斜率为1时,坐标原点O 到l 的距离为 22 . (1)求a ,b 的值; (2)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OP =OA +OB 成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由. 12.(本小题满分16分)如图,直线l :y =3(x -2)和双曲线C :x 2 a 2- y 2 b 2 =1(a >0,b >0)交于A 、B 两点,且|AB |=3,又l 关于直线l 1:y =b a x 对称的直线l 2与x 轴平行. (1)求双曲线C 的离心率; (2)求双曲线C 的方程.

高中数学椭圆、双曲线、抛物线历年真题及详解

【考点8】椭圆、双曲线、抛物线 2009年考题 1、(2009湖北高考)已知双曲线141222 2 222=+=-b y x y x 的准线经过椭圆(b >0)的焦点,则b=( ) A.3 B.5 C.3 D.2 选C.可得双曲线的准线为2 1a x c =±=±,又因为椭圆焦点为2(4,0)b ±-所以有241b -=.即b 2=3故b=3. 2、(2009陕西高考)“0m n >>”是“方程2 21mx ny +=”表示焦点在y 轴上的椭圆”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D) 既不充分也不必要条件 【解析】选C.将方程2 2 1mx ny +=转化为 22 111x y m n +=, 根据椭圆的定义,要使焦点在y 轴上必须 满足 11 0,0,m n >>且11n m >,故选C.3、(2009湖南高考)抛物线 28y x =-的焦点坐标是( ) A .(2,0) B .(- 2,0) C .(4,0) D .(- 4,0) 【解析】选B.由 28y x =-,易知焦点坐标是(,0)(2,0)2 p - =-,故选B. 4、(2009全国Ⅰ)已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B , 若3FA FB =u u u r u u u r ,则||AF uuuu r =( ) (A) 2 (B) 2 3 (D) 3 【解析】选A.过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =u u u r u u u r ,故2 ||3 BM =. 又由椭圆的第二定义,得222 ||233 BF = = ||2AF ∴=5、(2009江西高考)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的 三个顶点,则双曲线的离心率为( ) A . 32 B .2 C .5 2 D .3

高考数学椭圆与双曲线重要规律定理

椭圆与双曲线性质--(重要结论) 清华附中高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是 002 2 1x x y y a b + =. 6. 若000(,)P x y 在椭圆 222 2 1x y a b + =外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程 是 002 2 1x x y y a b + =. 7. 椭圆 222 2 1x y a b + = (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点 角形的面积为1 2 2 tan 2 F P F S b γ ?=. 8. 椭圆 2 2 22 1x y a b + =(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆 222 2 1x y a b + =的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22 O M AB b k k a ?=- , 即0 2 02 y a x b K AB - =。 12. 若000(,)P x y 在椭圆222 2 1x y a b +=内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b + = + . 13. 若000(,)P x y 在椭圆 222 2 1x y a b +=内,则过Po 的弦中点的轨迹方程是22002 2 2 2 x x y y x y a b a b + = + . 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是 002 2 1x x y y a b - =. 6. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是002 2 1x x y y a b -=. 7. 双曲线 222 2 1x y a b - =(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=, 则双曲线的焦点角形的面积为1 2 2 t 2 F P F S b co γ ?=. 8. 双曲线 2 2 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-. 当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别 交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于 点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线 222 2 1x y a b - =(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 02y a x b K K AB OM = ?,即0 2 02 y a x b K AB = 。 12. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b - = - . 13. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则过Po 的弦中点的轨迹方程是 22002 2 2 2 x x y y x y a b a b - = - .

椭圆、双曲线、抛物线的标准方程与几何性质

一、知识要点: 椭圆、双曲线、抛物线的标准方程与几何性质

第一种定义:平面内与两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准方程: (1))0(122 22>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中 c=2 2b a -. (2))0(122 22>>=+b a a y b x ,焦 点 :F 1(0,-c),F 2(0,c), 其 中 c= 2 2b a -. 3.椭圆的参数方程:? ??==θθ sin cos b y a x ,(参数θ是椭圆上任意一点的离心率). 4.椭圆的几何性质:以标准方程)0(12222>>=+b a b y a x 为例: ①范围:|x|≤a,|y|≤b; ②对称性:对称轴x=0,y=0,对称中心为O(0,0); ③顶点A(a,0),A ′(-a,0),B(0,b),B ′(0,-b);长轴|AA ′|=2a,短轴|BB ′|=2b; ④离心率:e=a c ,0

⑤准线x=±c a 2 ;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任 意一点. 二、基本训练 1.设一动点 P 到直线3x =的距离与它到点A (1,0)的距离之比为 3, 则动点P 的轨迹方程是 ( ) () A 22 132 x y += ()B 22 132 x y -= ()C 2 2 (1)132 x y ++= ()D 22 123 x y += 2.曲线 192522=+y x 与曲线)9(19252 2<=-+-k k y k x 之间具有的等量关系 ( ) ()A ()C 3且过点(3,0)A 4.底面直径为12cm 30的平面所截, , 短轴长 ,离心率5.已知椭圆22 221(x y a b +=的离心率为5,若将这个椭圆绕着它的右

高考数学-圆锥曲线-双曲线题型总结

二、双曲线 1、(21)(本小题满分14分)08天津 已知中心在原点的双曲线C的一个焦点是()0,3 1 - F,一条渐近线的方程是0 2 5= -y x. (Ⅰ)求双曲线C的方程; (Ⅱ)若以()0≠k k为斜率的直线l与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐 标轴围成的三角形的面积为 2 81 ,求k的取值范围. (21)本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分. (Ⅰ)解:设双曲线C的方程为 22 22 1 x y a b -=(0,0 a b >>).由题设得 229 a b b a ?+= ? ? = ? ? ,解得 2 2 4 5 a b ?= ? ? = ?? ,所以双曲线方程为 22 1 45 x y -=. 的方程为y kx m =+(0 k≠).点 11 (,) M x y, 22 (,) N x y的坐标满足方程组(Ⅱ)解:设直线l 22 1 45 y kx m x y =+ ? ? ? -= ?? 将①式代入②式,得 22 () 1 45 x kx m + -=,整理得222 (54)84200 k x kmx m ----=. 此方程有两个一等实根,于是2 50 4k -≠,且222 (8)4(54)(420)0 k m k m ?=-+-+>.整理得22 540 m k +->.③ 由根与系数的关系可知线段MN的中点坐标 00 (,) x y满足 12 02 4 254 x x km x k + == - , 002 5 54 m y kx m k =+= - . 从而线段MN的垂直平分线方程为 22 514 () 5454 m km y x k k k -=-- -- . 此直线与x轴,y轴的交点坐标分别为 2 9 (,0) 54 km k - , 2 9 (0,) 54 m k - .由题设可得22 19981 |||| 254542 km m k k ?= -- .整理得 22 2 (54) || k m k - =,0 k≠. 将上式代入③式得 22 2 (54) 540 || k k k - +->,整理得22 (45)(4||5)0 k k k --->,0 k≠.

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时12222=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离: 0?

高考数学椭圆与双曲线的经典性质技巧归纳总结

椭圆的定义、性质及标准方程 高三数学备课组 刘岩老师 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数 )10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =±

椭圆、双曲线抛物线综合练习题及答案

一、选择题(每小题只有一个正确答案,每题6分共36分) 1. 椭圆22 1259 x y +=的焦距为。 ( ) A . 5 B. 3 C. 4 D 8 2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( ) A . 221412x y -= B. 221124x y -= C. 221106x y -= D 22 1610x y -= 3.双曲线22 134 x y -=的两条准线间的距离等于 ( ) A C. 185 D 165 4.椭圆22 143 x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 4 5.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。 ( ) A . 22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ? ∠=且 123AF AF =,则双曲线的离心率为 ( ) A . 2 B. 2 C. 2 7.设斜率为2的直线l 过抛物线y 2 =ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2 =±4 B .y 2 =±8x C .y 2 =4x D .y 2 =8x 8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线 l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 9.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线

高考数学专题复习:双曲线(含解析)

【学习目标】 1.理解双曲线的定义、几何图形和标准方程以及它的简单几何性质. 2.理解数形结合的思想. 3.了解双曲线的实际背景及其简单应用. 【高考模拟】 一、单选题 1.设、分别是双曲线C:的左右焦点,点在双曲线C的右支上,且,则() A. B. C. D. 【答案】B 【解析】 【分析】 根据双曲线的性质求出c的值,结合向量垂直和向量和的几何意义进行转化求解即可. 【详解】

【点睛】 本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键. 2.设是双曲线的左右焦点,为左顶点,点为双曲线右支上一点, , ,, 为坐标原点,则 A . B . C . D . 【答案】D 【解析】 【分析】 先求出双曲线的方程为,再求出点P 的坐标,最后求 . 【详解】 【点睛】 (1)本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些

知识的掌握水平和分析推理计算能力.(2) 双曲线的通径为. 3.已知直线的倾斜角为,直线与双曲线()的左、右两支分别交于、两点,且、都垂直于轴(其中、分别为双曲线的左、右焦点),则该双曲线的离心率为() A. B. C. D. 【答案】D 【解析】 【分析】 根据题意设点,,则,又由直线的倾斜角为,得,结合点在双曲线上,即可求出离心率. 【详解】 直线与双曲线的左、右两支分别交于、两点,且、都垂直于轴, 根据双曲线的对称性,设点,, 则,即,且, 又直线的倾斜角为, 直线过坐标原点,, ,整理得,即,解方程得,(舍) 故选D. 【点睛】 本题考查双曲线的几何性质、直线与双曲线的位置关系及双曲线离心率的求法,考查化简整理的运算能力和转化思想,属于中档题. 圆锥曲线离心率的计算,常采用两种方法: 1、通过已知条件构建关于的齐次方程,解出. 根据题设条件(主要用到:方程思想,余弦定理,平面几何相似,直角三角形性质等)借助之间的关系,得到关于的一元方程,从而解得离心率.

高考数学(理)二轮练习【专题6】(第2讲)椭圆、双曲线、抛物线(含答案)

第2讲椭圆、双曲线、抛物线 考情解读 1.以选择、填空的形式考查,主要考查圆锥曲线的标准方程、性质(特别是离心率),以及圆锥曲线之间的关系,突出考查基础知识、基本技能,属于基础题.2.以解答题的形式考查,主要考查圆锥曲线的定义、性质及标准方程的求解,直线与圆锥曲线的位置关系,常常在知识的交汇点处命题,有时以探究的形式出现,有时以证明题的形式出现.该部分题目多数为综合性问题,考查分析问题、解决问题的能力,综合运用知识的能力等,属于中、高档题,一般难度较大. 圆锥曲线的定义、标准方程与几何性质 |x|≤a,|y|≤b |x|≥a x≥0

热点一 圆锥曲线的定义与标准方程 例1 若椭圆C :x 29+y 2 2=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 2|=4则∠F 1PF 2等于( ) A .30° B .60° C .120° D .150° (2)已知抛物线x 2=2py (p >0)的焦点与双曲线x 2-y 2=-1 2的一个焦点重合,且在抛物线上有一 动点P 到x 轴的距离为m ,P 到直线l :2x -y -4=0的距离为n ,则m +n 的最小值为________. 思维启迪 (1)△PF 1F 2中利用余弦定理求∠F 1PF 2;(2)根据抛物线定义得m =|PF |-1.再利用数形结合求最值. 答案 (1)C (2)5-1 解析 (1)由题意得a =3,c =7,所以|PF 1|=2. 在△F 2PF 1中, 由余弦定理可得cos ∠F 2PF 1=42+22-(27)22×4×2=-12. 又因为cos ∠F 2PF 1∈(0°,180°),所以∠F 2PF 1=120°. (2)易知x 2=2py (p >0)的焦点为F (0,1),故p =2, 因此抛物线方程为x 2=4y . 根据抛物线的定义可知m =|PF |-1, 设|PH |=n (H 为点P 到直线l 所作垂线的垂足), 因此m +n =|PF |-1+|PH |. 易知当F ,P ,H 三点共线时m +n 最小, 因此其最小值为|FH |-1=|-1-4| 5 -1=5-1. 思维升华 (1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与到准线的距离相等的转化. (2)注意数形结合,画出合理草图. (1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为3 2 .双曲线x 2-y 2=1的渐近线与椭 圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) A.x 28+y 2 2=1 B.x 212+y 2 6=1 C.x 216+y 2 4 =1 D.x 220+y 2 5 =1

高考数学真题专题(理数) 双曲线

专题九 解析几何 第二十七讲 双曲线 2019年 1.(2019全国III 理10)双曲线C :22 42 x y -=1的右焦点为F ,点P 在C 的一条渐进线 上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 A B C .D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2 2 21(0)y x b b -=>经过点(3,4), 则该双曲线的渐近线方程是 . 3.(2019全国I 理16)已知双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点分别为F 1,F 2, 过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ?=uuu r uuu r ,则C 的 离心率为____________. 4.(2019年全国II 理11)设F 为双曲线C :22 221(0,0)x y a b a b -=>>的右焦点,O 为坐标 原点,以OF 为直径的圆与圆222 x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率 为 A B C .2 D 5.(2019浙江2)渐近线方程为x ±y =0的双曲线的离心率是 A B .1 C D .2 6.(2019天津理5)已知抛物线2 4y x =的焦点为F ,准线为l ,若l 与双曲线 22 221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 C.2

2010-2018年 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅰ)已知双曲线C :2 213 -=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若?OMN 为直角三角形,则||MN = A . 3 2 B .3 C . D .4 3.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .=y x D .=y 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点,O 是 坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为 A B .2 C D 5.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴 的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d , 且126d d +=,则双曲线的方程为 A . 221412x y -= B .221124x y -= C .22139x y -= D .22 193 x y -=

相关主题