搜档网
当前位置:搜档网 › 压敏电阻作用参数及选型

压敏电阻作用参数及选型

压敏电阻作用参数及选型
压敏电阻作用参数及选型

压敏电阻选用的基本知识

什么是压敏电阻器及其分类与参数?

压敏电阻器简称VSR,是一种对电压敏感的非线性过电压保护半导体元件。它在电路中用文字符号“RV”或“R”表示,图1-21是其电路图形符号。

(一)压敏电阻器的种类

压敏电阻器可以按结构、制造过程、使用材料和伏安特性分类。

1.按结构分类压敏电阻器按其结构可分为结型压敏电阻器、体型压敏电阻器、单颗粒层压敏电阻器和薄膜压敏电阻器等。

结型压敏电阻器是因为电阻体与金属电极之间的特殊接触,才具有了非线性特性,而体型压敏电阻器的非线性是由电阻体本身的半导体性质决定的。

2.按使用材料分类压敏电阻器按其使用材料的不同可分为氧化锌压敏电阻器、碳化硅压敏电阻器、金属氧化物压敏电阻器、锗(硅)压敏电阻器、钛酸钡压敏电阻器等多种。

3.按其伏安特性分类压敏电阻器按其伏安特性可分为对称型压敏电阻器(无极性)和非对称型压敏电阻器(有极性)。

(二)压敏电阻器的结构特性与作用

1.压敏电阻器的结构特性压敏电阻器与普通电阻器不同,它是根据半导体材料的非线性特性制成的。

图1-22是压敏电阻器外形,其内部结构如图1-23所示。

普通电阻器遵守欧姆定律,而压敏电阻器的电压与电流则呈特殊的非线性关系。当压敏电阻器

两端所加电压低于标称额定电压值时,压敏电阻器的电阻值接近无穷大,内部几乎无电流流过。当压敏电阻器两端电压略高于标称额定电压时,压敏电阻器将迅速击穿导通,并由高阻状态变为低阻状态,工作电流也急剧增大。当其两端电压低于标称额定电压时,压敏电阻器又能恢复为高阻状态。当压敏电阻器两端电压超过其最大限制电压时,压敏电阻器将完全击穿损坏,无法再自行恢复。

2.压敏电阻器的作用与应用压敏电阻器广泛地应用在家用电器及其它电子产品中,起过电压保护、防雷、抑制浪涌电流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等作用。

图1-24是压敏电阻器的典型应用电路。

(三)压敏电阻器的主要参数

压敏电阻器的主要参数有标称电压、电压比、最大控制电压、残压比、通流容量、漏电流、电压温度系数、电流温度系数、电压非线性系数、绝缘电阻、静态电容等。

1.压敏电压: MYG05K规定通过的电流为0.1mA,MYG07K、MYG10K、MYG14K、MYG20K 标称电压是指通过1mA直流电流时,压敏电阻器两端的电压值。

2.最大允许电压(最大限制电压):此电压分交流和直流两种情况,如为交流,则指的是该压敏电阻所允许加的交流电压的有效值,以ACrms表示,所以在该交流电压有效值作用下应该选

用具有该最大允许电压的压敏电阻,实际上V1mA与ACrms间彼此是相互关联的,知道了前者也就知道了后者,不过ACrms对使用者更直接,使用者可根据电路工作电压,可以直接按ACrms 来选取合适的压敏电阻。在交流回路中,应当有:min(U1mA) ≥(2.2~2.5)Uac,式中Uac为回路中的交流工作电压的有效值。上述取值原则主要是为了保证压敏电阻在电源电路中应用时,有适当的安全裕度。对直流而言在直流回路中,应当有:min(U1mA) ≥(1.6~2)Udc,式中Udc为回路中的直流额定工作电压。在交流回路中,应当有:min(U1mA) ≥(2.2~2.5)Uac,式中Uac为回路中的交流工作电压的有效值。上述取值原则主要是为了保证压敏电阻在电源电路中应用时,有适当的安全裕度。在信号回路中时,应当有:min(U1mA)≥(1.2~1.5)Umax,式中Umax为信号回路的峰值电压。压敏电阻的通流容量应根据防雷电路的设计指标来定。一般而言,压敏电阻的通流容量要大于等于防雷电路设计的通流容量。

3.通流容量:通流容量也称通流量,是指在规定的条件(以规定的时间间隔和次数,施加标准的冲击电流)下,允许通过压敏电阻器上的最大脉冲(峰值)电流值。一般过压是一个或一系列的脉冲波。实验压敏电阻所用的冲击波有两种,一种是为8/20μs波,即通常所说的波头为8μs 波尾时间为20μs的脉冲波,另外一种为2ms 的方波,如下图所示:

4.最大限制电压:最大限制电压是指压敏电阻器两端所能承受的最高电压值,它表示在规定的冲击电流Ip通过压敏电阻时次两端所产生的电压此电压又称为残压,所以选用的压敏电阻的残压一定要小于被保护物的耐压水平V o,否则便达不到可靠的保护目的,通常冲击电流Ip值较大,例如2.5A或者10A,因而压敏电阻对应的最大限制电压Vc相当大,例如MYG7K471其Vc=775(Ip=10A时)。

5.最大能量(能量耐量):压敏电阻所吸收的能量通常按下式计算W=kIVT(J)

其中I——流过压敏电阻的峰值

V——在电流I流过压敏电阻时压敏电阻两端的电压

T——电流持续时间

k——电流I的波形系数

对:

2ms的方波 k=1

8/20μs波 k=1.4

10/1000μs k=1.4

压敏电阻对2ms方波,吸收能量可达330J每平方厘米;对8/20μs波,电流密度可达2000A每立方厘米,这表明他的通流能力及能量耐量都是很大的

一般来说压敏电阻的片径越大,它的能量耐量越大,耐冲击电流也越大,选用压敏电阻时还应当考虑经常遇到能量较小、但出现频率次数较高的过电压,如几十秒、一两分钟出现一次或多次的过电压,这时就应该考虑压敏电阻所能吸收的平均功率。

6.电压比:电压比是指压敏电阻器的电流为1mA时产生的电压值与压敏电阻器的电流为0.1mA 时产生的电压值之比。

7.额定功率:在规定的环境温度下所能消耗的最大功率。

8.最大峰值电流一次:以8/20μs标准波形的电流作一次冲击的最大电流值,此时压敏电压变化率仍在±10%以内。2次:以8/20μs标准波形的电流作两次冲击的最大电流值,两次冲击时间间隔为5分钟,此时压敏电压变化率仍在±10%以内。

9.残压比:流过压敏电阻器的电流为某一值时,在它两端所产生的电压称为这一电流值为残压。残压比则的残压与标称电压之比。

10.漏电流:漏电流又称等待电流,是指压敏电阻器在规定的温度和最大直流电压下,流过压敏电阻器的电流。

11.电压温度系数:电压温度系数是指在规定的温度范围(温度为20~70℃)内,压敏电阻器标称电压的变化率,即在通过压敏电阻器的电流保持恒定时,温度改变1℃时压敏电阻两端的相对变化。

12.电流温度系数:电流温度系数是指在压敏电阻器的两端电压保持恒定时,温度改变1℃时,流过压敏电阻器电流的相对变化。

13.电压非线性系数:电压非线性系数是指压敏电阻器在给定的外加电压作用下,其静态电阻值与动态电阻值之比。

14.绝缘电阻:绝缘电阻是指压敏电阻器的引出线(引脚)与电阻体绝缘表面之间的电阻值。

15.静态电容:静态电容是指压敏电阻器本身固有的电容容量。

压敏电阻标称参数 n~Un(7U/(

压敏电阻用字母“MY”表示,如加J为家用,后面的字母W、G、P、L、H、Z、B、C、N、K

分别用于稳压、过压保护、高频电路、防雷、灭弧、消噪、补偿、消磁、高能或高可靠等方面。压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护

时必须考虑到这一点。压敏电阻的选用,一般选择标称压敏电压V1mA和通流容量两个参数。

W7kLC| Fp

_WtTGma4

1、所谓压敏电压,即击穿电压或阈值电压。指在规定电流下的电压值,大多数情况下用

1mA直流电流通入压敏电阻器时测得的电压值,其产品的压敏电压范围可以从10-9000V不等。可根据具体需要正确选用。一般V1mA=1.5Vp=2.2VAC,式中,Vp为电路额定电压的峰值。VAC为额定交流电压的有效值。ZnO压敏电阻的电压值选择是至关重要的,它关系到保护效果

与使用寿命。如一台用电器的额定电源电压为220V,则压敏电阻电压值V1mA= 1.5Vp=1.5×1.414×220V=476V,V1mA=2.2VAC=2.2×220V=484V,因此压敏电阻的击穿电压可选在470

- 480V之间。 h\DnOs_

kqLf ?W

2、所谓通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电

流波形和规定的冲击电流次数而言,压敏电压的变化不超过± 10%时的最大脉冲电流值。为了

延长器件的使用寿命,ZnO压敏电阻所吸收的浪涌电流幅值应小于手册中给出的产品最大通流量。然而从保护效果出发,要求所选用的通流量大一些好。在许多情况下,实际发生的通流量

是很难精确计算的,则选用2-20KA的产品。如手头产品的通流量不能满足使用要求时,可将

几只单个的压敏电阻并联使用,并联后的压敏电不变,其通流量为各单只压敏电阻数值之和。要求并联的压敏电阻伏安特性尽量相同,否则易引起分流不均匀而损坏压敏电阻。 ow7% P" 9

1 氧化锌压敏电阻的发展 h Air7\

1967 年7月,****松下电器公司无线电实验室的松冈道雄在研究金属电极—氧化锌陶瓷界面时,无意中发现氧化锌(ZnO)加氧化铋(Bi2O3)复合陶瓷具有非线性的伏安特性。进一步实验

又发现,如果在以上二元系陶瓷中再加微量的三氧化二锑(Sb2O3)、三氧化二钴(Co2O3)、

二氧化锰(MnO2)、三氧化二铬(Cr2O3)等多种氧化物,这种复合陶瓷的非线性系数可以达到50左右,伏安特性类似两只反并联的齐纳二极管,通流能力不亚于碳化硅(SiC)材料,临界

击穿电压可以通过改变元件尺寸方便地加以调节,而且这种性能优异的压敏元件通过简单的陶

瓷工艺就能制造出来,其性能价格比极高。 k+No b

1.1 理论研究 X$XP\ i/

1972 年美国通用电气公司(GE)购买了****松下电器公司有关氧化锌压敏材料的大部分专利

和技术决窍。自从美国掌握了氧化锌压敏陶瓷的制造技术以后,大规模地进行了这种陶瓷材料

的基础研究工作。自80年代起,对氧化锌压敏陶瓷材料的研究逐渐走进了企业。迄今为止,主

要的理论研究工作都是在美国完成的。主要的研究课题有: \e n\-y

(1) 以解释宏观电性为目的的导电模型的微观结构的研究(70~80年代); qkq-ByATh

(2) 以材料与产品开发为目的的配方机理和烧结工艺的研究(70~80年代); .{E=; *

(3) 氧化锌压敏陶瓷材料非线性网络拓扑模型的研究(80~90年代); YQFIHq5)*

(4) 氧化锌压敏陶瓷复合粉体的制备研究(80~90年代); /(&{j2`

(5) 纳米材料在氧化锌压敏陶瓷中的应用研究(90年代)。 }5j>Ne

1.2 研制开发>* ck)'

70 年代末到80年代,基础理论研究取得了重大进展。据不完全统计,截止到1998年,公开发表的论文和专利说明书等累计达700多篇,其中有关基础研究的约占一半。在基础研究的推动下,80~90年代,压敏陶瓷的材料开发速度大大加快,目前已取得的成果有: cGg$Eqh& (1) 氧化锌压敏陶瓷的电压梯度已从最初的150V/mm扩散到(20~250)V/mm几十个系列,从集成电路到高压、超高压输电系统都可以使用; 04,=TLC5 r

(2) 开发出大尺寸元件,直径达120mm,2ms方波,冲击电流达到1200A,能量容量平均可达300J/cm3左右; |V>!7MRD

(3) 汽车用(85~120)℃工作温度下的高能元件; PQIS0$+

(4) 视在介电常数小于500的高频元件; s/nr/Hh

(5) 压敏—电容双功能电磁兼容(EMC)元件; CE5^j 5wA

(6) 毫秒级三角波、能量密度750J/cm3以上的低压高能元件; =5}pC1wNtS

(7) 老化特性好、电容量大、陡波响应快的无铋(Bi)系氧化锌压敏元件; b~d_49S[;

(8) 化学共沉淀法和热喷雾分解法压敏电阻复合粉体制备技术;z]{JjY

(9) 压敏电阻的微波烧结技术; [.92uuD

(10) 无势垒氧化锌大功率线性电阻。UCqs @!

h PuT K#

-(0k 3$9eU

2 压敏电阻器的应用原理 B5_><|(

压敏电阻器是一种具有瞬态电压抑制功能的元件,可以用来代替瞬态抑制二极管、齐纳二极管和电容器的组合。压敏电阻器可以对IC及其它设备的电路进行保护,防止因静电放电、浪涌及其它瞬态电流(如雷击等)而造成对它们的损坏。使用时只需将压敏电阻器并接于被保护的IC 或设备电路上,当电压瞬间高于某一数值时,压敏电阻器阻值迅速下降,导通大电流,从而保护IC或电器设备;当电压低于压敏电阻器工作电压值时,压敏电阻器阻值极高,近乎开路,因而不会影响器件或电器设备的正常工作。 een'WWl

压敏电阻器的应用广泛,压敏电阻主要可用于直流电源、交流电源、低频信号线路、带馈电的天馈线路。从手持式电子产品到工业设备,其规格与尺寸多种多样。随着手持式电子产品的广泛使用,尤其是手机、手提电脑、PDA、数字相机、医疗仪器等,其电路系统的速度要求更高,并且要求工作电压更低,这就对压敏电阻器提出了体积更小、性能更高的要求。因此,表面组装的压敏电阻器元件也就开始大量涌现,而其销售年增长率要高于有引线的压敏电阻器一倍多。+bKzzB'

预计2002年压敏电阻器的市场增长率为13%,其中,多层片式压敏电阻器市场增长率为20%~30%,径向引线产品增长率为5%~10%。需求主要来自于电源设备,包括DC电源设备、不间断电源,以及新的消费类电子产品,如数字音频/视频设备、视频游戏,数字相机等。片式压敏电阻器已占美国市场销售总额的 40%~45%。(0402)尺寸的片式压敏电阻器最受欢迎。0201尺寸的产品尚未上市。AVX公司的0402片式压敏电阻器有5.6V、9V、14V 和18V等几种电压范围的产品,它们的额定功率为50mJ,典型电容值范围从90pF(18V的产品)~360pF(5.6V的产品)。MaidaDevelopment公司也生产片式系列的压敏电阻器,但目前只推出了非标准尺寸的产品,

1210、1206、0805、0603和0402 的产品正在试产。eBfyQu

Littelfuse 公司在2000年底前推出0201的产品。AVX和Littelfuse公司已推出电压抑制器阵列,如AVX推出的Multiguard系列四联多层陶瓷瞬态电压抑制器阵列(即压敏电阻器阵列)已经被市场接纳。可节省50%的板上空间,75%的生产装配成本。Multiguad系列采用1206型规格。其中有一种双联元件采用0805规格,工作电压有5.6V、9V、14V和18V等几种,额定功率为0.1J。AVX公司推出Transfeed多层陶瓷瞬态电压抑制器。该产品综合了公司Transguard系列压敏电阻器和Feedthru系列电容器/滤波器的功能。采用0805规格。该组件具有性能优势,更快的导通时间(或称响应时间,在200ps~250ps之间)和更小的并行系数。 6z^X']0

Littelfuse 制造的MLN浪涌阵列组件1206规格,内装4只多层压敏电阻器。该产品的ESD达到IEC671000-4-2第四级水平。其主要特性包括:感抗 (1nH),相邻通道串扰典型值50dB(频率1MHz时),在额定电压工作状态下,漏电流为5A,工作电压高达18V,电容值可由用户指定。这种MLN 贴片组件可用于板级ESD保护,应用领域包括手持式产品、电脑产品、工业及医疗仪器等。lZ prD=

EPCOS公司推出了T4N-A230XFV集成浪涌抑制器,内含两只压敏电阻器和一种短路装置。该产品用于电信中心局和用户线一侧的通信设备保护。 PS;6g$NM

= 9q(%s\

3.压敏电阻的选用

压敏电阻是一种限压型保护器件。利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。压敏电阻的主要参数有:压敏电压、通流容量、结电容、响应时间等。

压敏电阻的响应时间为ns级,比空气放电管快,比TVS管稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。压敏电阻的结电容一般在几百到几千pF的数量级范围,很多情况下不宜直接应用在高频信号线路的保护中,应用在交流电路的保护中时,因为其结电容较大会增加漏电流,在设计防护电路时需要充分考虑。压敏电阻的通流容量较大,但比气体放电管小。

压敏电阻的压敏电压(min(U1mA))、通流容量是电路设计时应重点考虑的。在直流回路中,应当有:min(U1mA) ≥(1.6~2)Udc,式中Udc为回路中的直流额定工作电压。在交流回路中,应当有:min(U1mA) ≥(2.2~2.5)Uac,式中Uac为回路中的交流工作电压的有效值。上述取值原则主要是为了保证压敏电阻在电源电路中应用时,有适当的安全裕度。在信号回路中时,应当有:min(U1mA)≥(1.2~1.5)Umax,式中Umax为信号回路的峰值电压。压敏电阻的通流容量应根据防雷电路的设计指标来定。一般而言,压敏电阻的通流容量要大于等于防雷电路设计的通流容量。

选用压敏电阻器前,应先了解以下相关技术参数:

●标称电压(即压敏电压)是指在规定的温度和直流电流下,压敏电阻器两端的电压值。

●漏电流:指在25℃条件下,当施加最大连续直流电压时,压敏电阻器中流过的电流值。

●等级电压是指压敏电阻中通过8/20等级电流脉冲时在其两端呈现的电压峰值。

●通流量是表示施加规定的脉冲电流(8/20μs)波形时的峰值电流。

●浪涌环境参数包括最大浪涌电流Ipm(或最大浪涌电压Vpm和浪涌源阻抗Zo)、浪涌脉冲宽度Tt、相邻两次浪涌的最小时间间隔Tm以及在压敏电阻器的预定工作寿命期内,浪涌脉冲的总次数N等。

a.压敏电压的选取

一般地说,压敏电阻器常常与被保护器件或装置并联使用,在正常情况下,压敏电阻器两端的直流或交流电压应低于标称电压,即使在电源波动情况最坏时,也不应 高于额定值中选择的最大连续工作电压,该最大连续工作电压值所对应的标称电压值即为选用值。对于过压保护方面的应用,压敏电压值应大于实际电路的电压值, 一般应使用下式进行选择:

V

=av/bc

mA

式中:a为电路电压波动系数,一般取1.2;v为电路直流工作电压(交流时为有效值);b 为压敏电压误差,一般取0.85;c为元件的老化系数,一般取0.9;

实际数值是直流工作电压的1.5倍,在交流状态下还要考虑峰值,因此 这样计算得到的V

mA

计算结果应扩大1.414倍。另外,选用时还必须注意:

(1)必须保证在电压波动最大时,连续工作电压也不会超过最大允许值,否则将缩短压敏电阻的使用寿命;

(2)在电源线与大地间使用压敏电阻时,有时由于接地不良而使线与地之间电压上升,所以通常采用比线与线间使用场合更高标称电压的压敏电阻器。

b.通流量的选取

通 常产品给出的通流量是按产品标准给定的波形、冲击次数和间隙时间进行脉冲试验时产品所能承受的最大电流值。而产品所能承受的冲击数是波形、幅值和间隙时间 的函数,当电流波形幅值降低50%时冲击次数可增加一倍,所以在实际应用中,压敏电阻所吸收的浪涌电流应小于产品的最大通流量。

c.应用

图1所示是采用压敏电压器进行电路浪涌和瞬变防护时的电路连接图。对于压敏电阻的应用连接,大致可分为四种类型:

第一种类型是电源线之间或电源线和大地之间的连接,如图1(a)所示。作为压敏电阻器,最具有代表性的使用场合是在电源线及长距离传输的信号线遇到雷击而 使导线存在浪涌脉冲等情况下对电子产品起保护作用。一般在线间接入压敏电阻器可对线间的感应脉冲有效,而在线与地间接入压敏电阻则对传输线和大地间的感应 脉冲有效。若进一步将线间连接与线地连接两种形式组合起来,则可对浪涌脉冲有更好的吸收作用。

第二种类型为负荷中的连接,见图1(b)。它主要用于对感性负载突然开闭引起的感应脉冲进行吸收,以防止元件受到破坏。一般来说,只要并联在感性负载上就可以了,但根据电流种类和能量大小的不同,可以考虑与R-C串联吸收电路合用。

第三种类型是接点间的连接,见图1(c)。这种连接主要是为了防止感应电荷开关接点被电弧烧坏的情况发生,一般与接点并联接入压敏电阻器即可。

第四种类型主要用于半导体器件的保护连接,见图1(d)。这种连接方式主要用于可控硅、大功率三极管等半导体器件,一般采用与保护器件并联的方式,以限制电压低于被保护器件的耐压等级,这对半导体器件是一种有效的保护。

在电子镇流器和节能灯过压保护的压敏电阻,一般小于20W选用MYG07K系列,30W-40W一般选用MYG10系列的压敏电阻做过压保护

4 氧化锌压敏电阻存在的问题

现有压敏电阻在配方和性能上分为相互不能替代的两大类:

4.1 高压型压敏电阻

高压型压敏电阻,其优点是电压梯度高(100~250V/mm)、大电流特性好(V10kA/V1mA≤1.4)但仅对窄脉宽(2≤ms)的过压和浪涌有理想的防护能力,能量密度较小,(50~300)J/cm3。4.2 高能型压敏电阻

高能型压敏电阻,其优点是能量密度较大(300J/cm3~750J/cm3),承受长脉宽浪涌能力强,但电压梯度较低(20V/mm~500V/mm),大电流特性差(V10kA/V1mA>2.0)。

这两种配方的性能差别造成了许多应用上的“死区”,例如:在10kV电压等级的输配电系统中已经广泛采用了真空开关,由于它动作速度快、拉弧小,会在操作瞬间造成极高过压和浪涌能量,如果选用高压型压敏电阻加以保护(如氧化锌避雷器),虽然它电压梯度高、成本较低,但能量容量小,容易损坏;如果选用高能型压敏电阻,虽然它能量容量大,寿命较长,但电压梯度低,成本太高,是前者的5~13倍。

在中小功率变频电源中,过压保护的对象是功率半导体器件,它对压敏电阻的大电流特性和能量容量的要求都很严格,而且要同时做到元件的小型化。高能型压敏电阻在能量容量上可以满足要求,但大电流性能不够理想,小直径元件的残压比较高,往往达不到限压要求;高压型压敏电阻的大电流特性较好,易于小型化,但能量容量不够,达不到吸能要求。目前中小功率变频电源在国内外发展非常迅速,国内销售量已近100亿元/年,但压敏电阻在这一领域的应用几乎还是空白。

压敏电阻的失效模式主要是短路,当通过的过电流太大时,也可能造成阀片被炸裂而开路。压敏电阻使用寿命较短,多次冲击后性能会下降。因此由压敏电阻构成的防雷器长时间使用后存在维护及更换的问题。

解决上述问题的有效方法是提高高压型压敏电阻的能量密度,或提高高能型压敏电阻的电压梯度和非线性系数(降低残压比),即开发高压高能型压敏电阻。

5 应用纳米材料改性压敏电阻

氧化锌压敏陶瓷属体型压敏材料,电压、电流特性对称,压敏电压和通流能力可以控制,具有很高的非线性系数,成为当今压敏材料中的一个重要分支。为了解决高压型压敏电阻与高能型压敏电阻应用上的“死区”,提出添加纳米材料进行压敏电阻改性实验研究,制得高压高能型压敏电阻,将能大幅度提高电压梯度、非线性系数和能量密度。

到目前为止,在亚微米级前驱粉体基础上进行的各种传统改性研究(粉体制备方法的改进、配方和烧结工艺调整等),均无法解决高压高能问题,实现高压高能压敏电阻是公认的难题。压敏行业的专家普遍认为:发展多学科交*研究,利用新技术、新材料对压敏电阻进行改性是解决

问题的关键。在各种新技术、新材料的应用方面,纳米材料已得到广泛重视,也正在形成一种新的发展趋势。目前国内外有相当一批学者正在着手这方面的研究,初步研究结果已经显示出采用纳米材料是实现高压高能的有效途径。

在国外由前南斯拉夫塞尔维亚科学院Milosevic1994年使用高能球磨法,制成平均粒径100nm以下的复合ZnO压敏电阻粉末,经高温烧结而成的压敏电阻,非线性系数达到45,烧成密度达到理论密度的99%,而且漏电流比较小。

由此可见,纳米材料可以大幅度提高电压梯度、非线性系数(即降低残压比,改善大电流特性)和能量密度,对实现压敏电阻和高压高能具有重要意义。

但是,当前文献报道所涉及的研究方法仅限于全部使用纳米材料,这种方法工艺复杂、成本高,不便于生产应用。而在采用纳米添加法领域内(使用少量或微量的纳米粉与亚微米粉相结合的方法),对压敏电阻进行改性研究,这种方法的优点在于:

纳米添加法具有选择性,可根据不同的应用需要,有目的地进行单组份纳米添加实验,寻求改性效果最佳的纳米材料和添加比例,因而原料成本不会大幅度增加。

制备方法简单,基本上改变压敏电阻的现有生产方法,研究成果便于直接应用到生产实际中去。

6 结论

综上所述,压敏电阻器应用趋向为:有引线的压敏电阻器近两年来仍有一定幅度的增长,目前为总需求的55%~60%;由于手持式电子产品的广泛使用,片式无引线压敏电阻器市场增长率将不断提高,将逐步超过有引线的压敏电阻器产量,成为今后的主流产品。在研究和产品开发方面,采用纳米添加改性压敏电阻,研究开发一种全新概念的氧化锌压敏电阻,实现压敏电阻的高压高能化,将具有很好的市场前景和实际应用价值。

一、压敏电阻的安全性问题:

压敏电阻起火燃烧的表观现象,大体上可分为老化失效和暂态过电压破坏两种类型在以往的应用中,跨接在电源线上的压敏电阻器出现过起火燃烧,危机临近其它元器件的事故。对此,制造者和使用者共同进行了大量研究和分析工作,采取了相应的对策,极大地降低了这类事故的概率,但尚未杜绝,因此,压敏电阻的使用安全性仍是个值得重视、需要继续研究解决的课题。

压敏电阻起火燃烧的表观现象,大体上可分为老化失效和暂态过电压破坏两种类型。

①老化失效,这是指电阻体的低阻线性化逐步加剧,漏电流恶性增加且集中流入薄弱点,薄弱点材料融化,形成1kΩ左右的短路孔后,电源继续推动一个较大的电流灌入短路点,形成高热而起火。这种事故通常可以通过一个与压敏电阻串联的热熔接点来避免。热熔接点应与电阻体有良好的热耦合,当最大冲击电流流过时不会断开,但当温度超过电阻体上限工作温度时即断开。研究结果表明,若压敏电阻存在着制造缺陷,易发生早期失效,强度不大的电冲击的多次作用,也会加速老化过程,使老化失效提早出现。

②暂态过电压破坏,这是指较强的暂态过电压使电阻体穿孔,导致更大的电流而高热起火。

整个过程在较短时间内发生,以至电阻体上设置的热熔接点来不及熔断。在三相电源保护中,N-PE线之间的压敏电阻器烧坏起火的事故概率较高,多数是属于这一种情况。相应的对策集中在压敏电阻损坏后不起火。一些压敏电阻的应用技术资料中,推荐与压敏电阻串联电流熔丝(保险丝)进行保护。

二、压敏电阻的连接线问题

将压敏电阻

≤600A (600~2500)A (2500~4000)A (4000~20K)A

接入电路的连接

线要足够粗,推

荐的连接线的尺

寸注:接地线为

5.5 mm2以上连

接线要尽可能

短,且走直线,

因为冲击电流会

在连接线电感上

产生附加电压,

使被保护设备两

端的限制电压升

高。压敏电阻通

流量

导线截面积≥ 0.3 mm2 ≥ 0.5 mm2 ≥ 0.8 mm2 ≥ 2 mm2 例如:若压敏电阻MY两端各有3 cm长的接线,它的电感量L大体为18 nH,若有10 KA的8/20冲击电流流入压敏电阻,把电流的升速看作10KA / 8Μs,则引线电感上的附加电压UL1、UL2大体为

UL1= UL2=L(di/dt)=18×10-9( 10×103 / 8×10-6 )=22.5 V

这就使限制电压增高了45V。

三、压敏电阻的串联和配对

压敏电阻可以很简单地串联使用。将两只电阻体直径相同(通流量相同)的压敏电阻串联后,漆压敏电压、持续工作电压和限制电压相加,而通流量指标不变。例如在高压电力避雷器中,要求持续工作电压高达数千伏,数万伏,就是将多个ZnO压敏电阻阀片迭和起来(串联)而得到的。

压敏电阻可以并联,目的是获得更大的通流量,或者在冲击电流峰值一定的条件下减小电阻体中的电流密度,以降低限制电压。

当要求获得极大的通流量[例如8/20,(50~200)KA ],且压敏电压又比较低(例如低于200V)时,电阻体的直径 / 厚度比太大,在制造技术上有困难,且随着电阻体直径的加大,电阻体的微观均匀性变差,因此通流量不可能随电阻体面积成比例地增大。这时用较小直径的电阻片并联可能是个更合理的方法。

由于高非线性,压敏电阻片的并联需要特别小心谨慎,只有经过仔细配对,参数相同的电阻片相并联,才能保证电流在各电阻片之间均匀分配。针对这种需求,本公司专门为用户提供配对

的电阻片。

此外,纵向连结的几个压敏电阻器,使用经过配对的参数一致的压敏电阻器后,当冲击侵入时,出现在横向的电压差可以很小。在这种情况下,配对也是有意义的。

四、压敏电阻与气体放电器件的串联和并联

压敏电阻可以与气体放电管、空气隙、微放电间隙等气体放电器件相串联(图10.5a),这个串联组合的正常工作要满足两个基本条件:①、系统电压上限值应低于气体放电器件G的直流击穿电压;②、G点火后在系统电压上限值下,压敏电阻MY中的电流应小于G的电弧维持电流,以保证G的熄弧。

这种串联组合具有电容量小,工作频率高;漏电流极小安全性好;以及不存在压敏电阻MY在系统电压下老化的问题,因而可靠性高等优点,但同时也有气体放电器件相应慢所引起的"让通电压"问题。

压敏电阻也可与气体放电管并联,以降低气体放电管的冲击点火电压。

压敏电阻的型号及参数选用

压敏电阻的型号及参数选用 SJ1152-82部颁标准中压敏电阻器的型号命名分为四部分,各部分的含义见表1。 表1 压敏电阻器的型号命名及含义 第一部分用字母“M” 表示主称为敏感电阻器。 第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。 第三部分用字母表示压敏电阻器的用途的特征。 第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。 例如: MYL1-1(防雷用压敏电阻器) MY31-270/3(270V/3kA普通压敏电阻器) >M——敏感电阻器 M——敏感电阻器 Y——压敏电阻器 Y——压敏电阻器 L——防雷用 31——序号 1-1——序号

270——标称电压为270V 3——通流容量为3kA 压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。被广泛应用于电子设备防雷。 主要参数 1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。 2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。 3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。 4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。而压敏电阻在吸收暂态过电压能量后自身温度升高,在此电压下能正常冷却,不会发热损坏。 压敏电阻的不足:(1)寄生电容大压敏电阻具有较大的寄生电容,一般在几百至几千微微法的范围。在高频信号系统中会引起高频信号传输畸变,从而引起系统正常运行。(2)泄漏电流的存在压敏电阻的泄漏电流指标既关系到被保护电子系统的正常运行,又关系到压敏电阻自身的老化和使用寿命。 压敏电阻的损坏形式:(1)当压敏电阻在抑制暂态过电压时能量 涠疃ㄈ萘渴保 姑舻缱杌嵋蚬 榷 鸹担 饕 硐治 搪贰⒖ 贰?br /> MYL表示防雷型压敏电阻 MYE表示高负荷型压敏电阻,也有厂家用MYT表示通用型,MYL表示防雷型. 选用方法(一般情况) 1、压敏电压值应大于实际电路的电压峰值,一般为: U1mA =K1×/K2×K3× UC U1mA ---- 压敏电压 UC ---- 电路直流工作电压(交流时为有效值) K1 ---- 电源电压波动系数,一般取1.2 K2 ---- 压敏电压误差,一般取0.85 K3 ---- 老化系数,一般取0.9 交流状态下,应将有效值变为峰值,即扩大√2倍,实际应用中可参考此公式通过实验来确定压敏电压值。 2、通流量 实际应用中,压敏电阻器所吸收的浪涌电流应小于压敏电阻的最大峰值电流,以延长产品的使用寿命。

压敏电阻14D

压敏电阻14D 优恩半导体(UN) 1、压敏电阻14D型号: 14D180K、14D180KJ、14D220K、14D220KJ、14D270K、14D270KJ、14D330K、14D330KJ、14D390K、14D390KJ、14D470K、14D470KJ、14D560K、14D560KJ、14D680K、14D680KJ、14D820K、14D820KJ、14D101K、14D101KJ、14D121K、14D121KJ、14D151K、14D151KJ、14D181K、14D181KJ、14D201K、14D201KJ、14D221K、14D221KJ、14D241K、14D241KJ、14D271K、14D271KJ、14D301K、14D301KJ、14D331K、14D331KJ、14D361K、14D361KJ、14D391K、14D391KJ、14D431K、14D431KJ、14D471K、14D471KJ、14D511K、14D511KJ、14D561K、14D561KJ、14D621K、14D621KJ、14D681K、14D681KJ、14D751K、14D751KJ、14D781K、14D781KJ、14D821K、14D821KJ、14D911K、14D911KJ、14D102K、14D102KJ、14D112K、14D112KJ、14D122K、14D122KJ、14D182K、14D182KJ。 2、压敏电阻14D产品图片及描述:

压敏电阻14D系列,在14D系列的插件压敏电阻最大峰值电流可达6KA(8/20μs脉冲),可作为间接雷击干扰保护应用方案中的器件,防止高浪涌峰值对设备的影响。 3、压敏电阻14D产品特性: *电压范围宽(8V~1800V) *通流容量大 *响应时间快 *漏电流低 4、压敏电阻14D应用领域: *三极管,二极管,集成电路,可控硅或可控硅半导器件保护*在消费类电子产品浪涌保护 *在工业电子产品浪涌保护 *在家电,燃气等浪涌保护 *继电器和电磁阀浪涌保护 5、压敏电阻14D规格及特性参数:

压敏电阻型号及选用

压敏电阻的型号及选用方法 SJ1152-82部颁标准中压敏电阻器的型号命名分为四部分,各部分的含义见表1。 表1 压敏电阻器的型号命名及含义 第一部分用字母“M” 表示主称为敏感电阻器。 第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。 第三部分用字母表示压敏电阻器的用途的特征。 第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。 例如: MYL1-1(防雷用压敏电阻器) MY31-270/3(270V/3kA普通压敏电阻器) M——敏感电阻器 M——敏感电阻器 Y——压敏电阻器 Y——压敏电阻器 L——防雷用 31——序号 1-1——序号

270——标称电压为270V 3——通流容量为3kA 压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。被广泛应用于电子设备防雷。 主要参数: 1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。 2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。 3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。 4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。而压敏电阻在吸收暂态过电压能量后自身温度升高,在此电压下能正常冷却,不会发热损坏。 压敏电阻的不足:(1)寄生电容大压敏电阻具有较大的寄生电容,一般在几百至几千微微法的范围。在高频信号系统中会引起高频信号传输畸变,从而引起系统正常运行。 (2)泄漏电流的存在压敏电阻的泄漏电流指标既关系到被保护电子系统的正常运行,又关系到压敏电阻自身的老化和使用寿命。 压敏电阻的损坏形式:(1)当压敏电阻在抑制暂态过电压时能量超过其额定容量时,压敏电阻会因过热而损坏,主要表现为短路、开路。 MYL表示防雷型压敏电阻 MYE表示高负荷型压敏电阻,也有厂家用MYT表示通用型,MYL表示防雷型. 选用方法(一般情况): 1、压敏电压值应大于实际电路的电压峰值,一般为: U1mA =K1×/K2×K3×UC U1mA ---- 压敏电压 UC ---- 电路直流工作电压(交流时为有效值) K1 ---- 电源电压波动系数,一般取1.2 K2 ---- 压敏电压误差,一般取0.85 K3 ---- 老化系数,一般取0.9 交流状态下,应将有效值变为峰值,即扩大√2倍,实际应用中可参考此公式通过实验来确定压敏电压值。 2、通流量 实际应用中,压敏电阻器所吸收的浪涌电流应小于压敏电阻的最大峰值电流,以延长产品的使用寿命。 压敏电阻的检测。用指针式万用表的R×1k挡测量压敏电阻两引脚之间的正、反向绝缘电阻,均为无穷大,否则,说明漏电流大。若所测电阻很小,说明压敏电阻已损坏,不能使用。 压敏电阻的先择与使用2007-03-12 10:42:18

压敏电阻型号及选用方法

2019-01-18压敏电阻的型号及选用方法 根据标准SJ1152-82《敏感元件型号命名方法》的规定,敏感电阻器的产品型号由下列四部分组成: 第一部分:主称(用字母表示); 第二部分:类别(用字母表示); 第三部分:用途或特征(用字母或数字表示); 第四部分:序号(用数字表示)。 (1)主称、类别部分的符号及意义如表1-5所示。 (2)用途或特征部分用数字表示时,应符合表1-6的规定;用字母表示时,应符合的规定。 (3)序号部分用数字表示。 表1-5 敏感电阻器型号中主称、类别部分的符号所表示的意义 表1-6敏感电阻器型号中用途或特征部分的数字所表示的意义 表1-7 敏感电阻器型号中用途或特征部分的数字所表示的意义

SJ1152-82部颁标准中压敏电阻器的型号命名分为四部分,各部分的含义见表1。 表1 压敏电阻器的型号命名及含义 第一部分用字母“M” 表示主称为敏感电阻器。 第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。 第三部分用字母表示压敏电阻器的用途的特征。 第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。

例如: MYL1-1(防雷用压敏电阻器) MY31-270/3(270V/3kA普通压敏电阻器) M——敏感电阻器 M——敏感电阻器 Y——压敏电阻器 Y——压敏电阻器 L——防雷用 31——序号 1-1——序号 270——标称电压为270V 3——通流容量为3kA 压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。被广泛应用于电子设备防雷。 主要参数: 1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。 2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。 3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。 4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。而压敏电阻在吸收暂态过电压能量后自身温度升高,在此电压下能正常冷却,不会发热损坏。 压敏电阻的不足:(1)寄生电容大压敏电阻具有较大的寄生电容,一般在几百至几千微微法的范围。在高频信号系统中会引起高频信号传输畸变,从而引起系统正常运行。 (2)泄漏电流的存在压敏电阻的泄漏电流指标既关系到被保护电子系统的正常运行,又关系到压敏电阻自身的老化和使用寿命。 压敏电阻的损坏形式:(1)当压敏电阻在抑制暂态过电压时能量超过其额定容量时,压敏电阻会因过热而损坏,主要表现为短路、开路。 MYL表示防雷型压敏电阻 MYE表示高负荷型压敏电阻,也有厂家用MYT表示通用型,MYL表示防雷型. 选用方法(一般情况): 1、压敏电压值应大于实际电路的电压峰值,一般为: U1mA =K1×/K2×K3×UC U1mA ---- 压敏电压

常用压敏电阻主要参数_图文(精)

型号电压 (V 用电压(V AC DC 电压 V C (V 电流 I P (A 电容 P F 型号 电压 (V 用电压(V AC DC 电压 V C (V 电流 I P (A电容 P F

MYD-05K180 MYD-07K180 MYD-10K180 MYD-14K180 MYD-20K180 18 11 14 40 36 36 36 36 MYD-05K820 MYD-07K820 MYD-10K820 MYD-14K820 MYD-20K820 82 50 65 145 135 135 135 135 MYD-07K220 MYD-10K220 MYD-14K220 MYD-20K220 22 14 18 43 43 43

43 MYD-07K101 MYD-10K101 MYD-14K101 MYD-20K101 100 60 85 165 165 165 165 MYD-05K270 MYD-07K270 MYD-10K270 MYD-14K270 MYD-20K270 27 17 22 60 53 53 53 53 MYD-05K121 MYD-07K121 MYD-10K121 MYD-14K121 MYD-20K121

120 75 100 210 200 200 200 200 MYD-05K330 MYD-07K330 MYD-10K330 MYD-14K330 MYD-20K330 33 20 26 73 65 65 65 65 MYD-05K151 MYD-07K151 MYD-10K151 MYD-14K151 MYD-20K151 150 95 125 260 250 250 250 250 MYD-05K390 MYD-07K390 MYD-10K390 MYD-14K390 MYD-20K390 39 25 31 86

压敏电阻选型指南

第一步1:确定电路的工作参数。 (尽可能将下列信息填写完全)。 1-a. 瞬变电流的来源和路径 ________ 来源________路径 1-b.受保护设备的正常工作电压 ________ (V AC),或________ (V)RMS DC 1-c. 正常工作电压公差(1-b) ________ (V)或________未知 1-d.受保护设备的最大允许电压 ________ (V AC)或________ (V)RMS DC 1-e. 最大允许浪涌电流及冲击次数 (请说明浪涌电流的8x20μs波形等效) ________ (A)________(冲击数量) 1-f. 浪涌发生时设备可经受的最大电能 ________ (焦)(E=1.4xVxIxT) 1-g. 浪涌发生时设备可经受的最大功率 ________ (W)(P=VxI) 1-h.压敏电阻最大允许电容(@1kHz;偏压0V DC)(不影响电路功能的压敏电阻设备最大允许电容)________ (pF) 1-i. 所需安全标准 (所需标准名称,如UL、CSA、VDE等等) 第2步:计算电压值。 2-a.所需压敏电阻电压值应等于:

受保护设备或器件的工作电压* + 工作电压公差。 如公差未知,则将受保护设备或器件的工作电压乘以 1.10到1.25(即将工作电压增加10—25% )。 如果工作电压是直流电压(V RMS),请转换为交流电压(V DC)。 ____ 交流工作电压(V)x 1.414 =______________________ 直流工作电压(V)RMS DC ________设备或器件的工作电压(V DC) + _________公差(V)=_____________________ 要求的压敏电阻电压(V) - 或者,- ____设备或器件的工作电压(V DC) x (1.10到1.25)= _____________ 要求的压敏电阻电压(V) 第3步:选择压敏电阻的准则 如果对下列任一问题的回答是“否”,请转至列表底部的矫正操作注释(A-F): 3-a.压敏电阻电压值—压敏电阻电压公差≥ 要求的压敏电阻电压值(2-a)______是______否(A) 3-b.压敏电阻最大箝位电压值:受保护设备或器件的最大允许电压(1-d)(最大电流应小于或等于测得最大箝位电压时的电流)。 ______是______否 (B)

压敏电阻的特性与参数以及如何选用

压敏电阻的特性与参数以及如何选用 压敏电阻的特性与参数以及如何选用 如果电机是AC24V的,在电机方向线对地接一个470K压敏电阻;如果电机是AC220V,则加471K压敏电阻。意义重要是消除电机换相产生的尖峰高压。 压敏电阻的测量:压敏电阻一般并联在电路中使用,当电阻两端的电压发生急剧变化时,电阻短路将电流保险丝熔断,起到保护作用。压敏电阻在电路中,常用于电源过压保护和稳压。测量时将万用表置10k档,表笔接于电阻两端,万用表上应显示出压敏电阻上标示的阻值,如果超出这个数值很大,则说明压敏电阻已损 压敏电阻标称参数 压敏电阻用字母“MY”表示,如加J为家用,后面的字母W、G、P、L、H、Z、B、C、N、K分别用于稳压、过压保护、高频电路、防雷、灭弧、消噪、补偿、消磁、高能或高可靠等方面。压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。压敏电阻的选用,一般选择标称压敏电压V1mA 和通流容量两个参数。 1、所谓压敏电压,即击穿电压或阈值电压。指在规定

电流下的电压值,大多数情况下用1mA直流电流通入压敏电阻器时测得的电压值,其产品的压敏电压范围可以从10 -9000V不等。可根据具体需要正确选用。一般 V1mA=1.5Vp=2.2V AC,式中,Vp为电路额定电压的峰值。V AC为额定交流电压的有效值。ZnO压敏电阻的电压值选择是至关重要的,它关系到保护效果与使用寿命。如一台用电器的额定电源电压为220V,则压敏电阻电压值 V1mA=1.5Vp=1.5×1.414×220V=476V,V1mA=2.2V AC=2.2×220V=484V,因此压敏电阻的击穿电压可选在470-480V 之间。 2、所谓通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超过±10%时的最大脉冲电流值。为了延长器件的使用寿命,ZnO压敏电阻所吸收的浪涌电流幅值应小于手册中给出的产品最大通流量。然而从保护效果出发,要求所选用的通流量大一些好。在许多情况下,实际发生的通流量是很难精确计算的,则选用2-20KA的产品。如手头产品的通流量不能满足使用要求时,可将几只单个的压敏电阻并联使用,并联后的压敏电不变,其通流量为各单只压敏电阻数值之和。要求并联的压敏电阻伏安特性尽量相同,否则易引起分流不均匀而损坏压敏电阻。 压敏电阻器的应用原理

压敏电阻器的型号命名及含义

压敏电阻器的型号命名及含义 一部分:主称 第二部分:类别 第三部分:用途或特征 第四部分:序号 字母 含义 字母 含义 字母 含义 M 敏感 电阻器 Y 压敏 电阻器 无 普通型 用数字表示序号,有的在序号的后面还标有标称电压通流容量或电阻体直径、标称电压、电压误差等。 D 通用 B 补偿用 C

消磁用 E 消噪用 G 过压保护用 H 灭弧用 K 高可靠用 L 防雷用 M 防静电用 N 高能型 P 高频用 S 元器件保护用 T 特殊型 W 稳压用 Y 环型 Z 组合型 第一部分用字母“M” 表示主称为敏感电阻器。 第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。 第三部分用字母表示压敏电阻器的用途的特征。 第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。 例如: MYL1-1(防雷用压敏电阻器) MY31-270/3(270V/3kA普通压敏电阻器) M——敏感电阻器 M——敏感电阻器 Y——压敏电阻器 Y——压敏电阻器 L——防雷用

31——序号 1-1——序号 270——标称电压为270V 3——通流容量为3kA 压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。被广泛应用于电子设备防雷。 主要参数: 1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。 2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。 3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。 4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。而压敏电阻在吸收暂态过电压能量后自身温度升高,在此电压下能正常冷却,不会发热损坏。 压敏电阻的不足:(1)寄生电容大压敏电阻具有较大的寄生电容,一般在几百至几千微微法的范围。在高频信号系统中会引起高频信号传输畸变,从而引起系统正常运行。 (2)泄漏电流的存在压敏电阻的泄漏电流指标既关系到被保护电子系统的正常运行,又关系到压敏电阻自身的老化和使用寿命。 压敏电阻的损坏形式:(1)当压敏电阻在抑制暂态过电压时能量超过其额定容量时,压敏电阻会因过热而损坏,主要表现为短路、开路。 MYL表示防雷型压敏电阻 MYE表示高负荷型压敏电阻,也有厂家用MYT表示通用型,MYL表示防雷型. 选用方法(一般情况): 1、压敏电压值应大于实际电路的电压峰值,一般为: U1mA =K1×/K2×K3× UC U1mA ---- 压敏电压 UC ---- 电路直流工作电压(交流时为有效值) K1 ---- 电源电压波动系数,一般取1.2 K2 ---- 压敏电压误差,一般取0.85 K3 ---- 老化系数,一般取0.9 交流状态下,应将有效值变为峰值,即扩大√2倍,实际应用中可参考此公式通过实验来确定压敏电压值。 2、通流量 实际应用中,压敏电阻器所吸收的浪涌电流应小于压敏电阻的最大峰值电流,以延长产品的使用寿命。 压敏电阻的检测。用指针式万用表的R×1k挡测量压敏电阻两引脚之间的正、反向绝缘电阻,均为无穷大,否则,说明漏电流大。若所测电阻很小,说明压敏电阻已损坏,不能使用。

压敏电阻对照表

压敏电阻对照表 主要型号:MYD-05K180 MYG2-05K11 MYD-05K220 MYG2-05K14 MYD-05K270 MYG2-05K17 MYD-05K330 MYG2-05K20 MYD-05K390 MYG2-05K25 MYD-05K470 MYG2-05K30 MYD-05K560 MYG2-05K35 MYD-05K680 MYG2-05K40 MYD-05K820 MYG3-05K50 MYD-05K101 MYG3-05K60 MYD-05K121 MYG3-05K75 MYD-05K151 MYG3-05K95 MYD-05K181 MYG3-05K115 MYD-05K201 MYG3-05K130 MYD-05K221 MYG3-05K140 MYD-05K241 MYG3-05K150 MYD-05K271 MYG3-05K175 MYD-05K301 MYG3-05K190 MYD-05K331 MYG3-05K210 MYD-05K361 MYG3-05K230 MYD-05K391 MYG3-05K250 MYD-05K431 MYG3-05K275 MYD-05K471 MYG3-05K300 MYD-07K180 MYG2-07K11 MYD-07K220 MYG2-07K14 MYD-07K270 MYG2-07K17 MYD-07K330 MYG2-07K20 MYD-07K390 MYG2-07K25 MYD-07K470 MYG2-07K30 MYD-07K560 MYG2-07K35 MYD-07K680 MYG2-07K40 MYD-07K820 MYG3-07K50 MYD-07K101 MYG3-07K60 MYD-07K121 MYG3-07K75 MYD-07K151 MYG3-07K95 MYD-07K181 MYG3-07K115 MYD-07K201 MYG3-07K130 MYD-07K221 MYG3-07K140 MYD-07K241 MYG3-07K150 MYD-07K271 MYG3-07K175 MYD-07K301 MYG3-07K190 MYD-07K331 MYG3-07K210 MYD-07K361 MYG3-07K230

压敏电阻07D系列型号参数规格书

Specifications 规格说明:□Varistor Voltage Range 压敏电阻动作电压范围 18V~1800V(dc)□Peak Current For 8/20us Current Wave 在8/20us 电流波形最大通流量 100A~1800A □Energy Range For 10/1000us Current Wave 在10/1000us 电流波形的能量范围0.4J~1092J □Storage Temperature Range 储存温度范围 -40℃~125℃□Operation Ambient Temperature Range 作业环境温度范围储存温度范围-40℃~85℃□Typical Response Time 反应时间 〈25ns □Insulation Resistance 绝缘电阻 ≧1000MΩ D K 05,07.10142025 Chip Diameter 芯片直径Φ5mm Φ7mm Φ10mm Φ14mm Φ20mm Φ25mm Chip .Shape 芯片形状Varistor Voltage 压敏电阻动作电压例如Examples:47×100=47V 47×101=470V 11×102=1100V 4704 7 1 1 1 2 Tolerance 误差K .±10%L .±15%M .±20%Or Customer Special Requirem ent 圆形 Disc HighSurge/Lead Style 高焦/脚型 □空白常规□J 高能品□S 直脚□O 外弯脚□I 内弯脚□H 高低脚 Part Number Code 7 471

国内外压敏电阻型号及参数

国内外压敏电阻型号及参数压敏电阻 220V电压的电路 国内型号:MYG14K471(对应的国外型号:US 470NR-14D) MYG05K471(对应的国外型号:US 470NR-5D) 22V左右的电路 国内型号:MYG14K470(对应的国外型号:US 470NR-14D) MYG05K470(对应的国外型号:US 470NR-5D)。

压敏电阻型号及参数 压敏电阻

百科名片 压敏电阻 “压敏电阻"是中国大陆的名词,意思是在一定电流电压范围内电阻值随电压而变,或者是说"电阻值对电压敏感"的阻器。英文名称叫“Voltage Dependent Resistor”简写为“VDR”,或者叫做“Varistor"。压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。现在大量使用的"氧化锌"(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。在中国台湾,压敏电阻器称为"突波吸收器",有时也称为“电冲击(浪涌)抑制器(吸收器)”。 目录[隐藏] 1、压敏电阻电路的“安全阀”作用 2、压敏电阻的应用类型 3、保护用压敏电阻的基本性能 4. 压敏电阻的基本参数 1、压敏电阻电路的“安全阀”作用 2、压敏电阻的应用类型 3、保护用压敏电阻的基本性能 4. 压敏电阻的基本参数 [编辑本段] 1、压敏电阻电路的“安全阀”作用 压敏电阻有什么用?压敏电阻的最大特点是当加在它上面的电压低于它的阀值" UN"时,流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过它的电流激增,相当于阀门打开。利用这一功能,可以抑制电路中经常出现的异常过电压,保护电路免受过电压的损害。 [编辑本段]

压敏电阻(VDR)型号汇总

压敏电阻(VDR)型号汇总 优恩半导体(UN) 1、压敏电阻(VDR)型号汇总: 05D180K、05D180KJ、05D220K、05D220KJ、05D270K、05D270KJ、05D330K、05D330KJ、05D390K、05D390KJ、05D470K、05D470KJ、05D560K、05D560KJ、05D680K、05D680KJ、05D820K、05D820KJ、05D101K、05D101KJ、05D121K、05D121KJ、05D151K、05D151KJ、05D181K、05D181KJ、05D201K、05D201KJ、05D221K、05D221KJ、05D241K、05D241KJ、05D271K、05D271KJ、05D301K、05D301KJ、05D331K、05D331KJ、05D361K、05D361KJ、05D391K、05D391KJ、05D431K、05D431KJ、05D471K、05D471KJ、05D511K、05D511KJ、05D561K、05D561KJ、05D621K、05D621KJ、05D681K、05D681KJ、05D751K、05D751KJ、07D180K、07D180KJ、07D220K、07D220KJ、07D270K、07D270KJ、07D330K、07D330KJ、07D390K、07D390KJ、07D470K、07D470KJ、07D560K、07D560KJ、07D680K、07D680KJ、07D820K、07D820KJ、07D101K、07D101KJ、07D121K、07D121KJ、07D151K、07D151KJ、07D181K、07D181KJ、07D201K、07D201KJ、07D221K、07D221KJ、07D241K、07D241KJ、07D271K、07D271KJ、07D301K、07D301KJ、07D331K、07D331KJ、07D361K、07D361KJ、07D391K、07D391KJ、07D431K、07D431KJ、07D471K、07D471KJ、07D511K、07D511KJ、07D561K、07D561KJ、07D621K、07D621KJ、07D681K、07D681KJ、07D751K、07D751KJ、07D781K、07D781KJ、

压敏电阻作用参数及选型

压敏电阻选用的基本知识 什么是压敏电阻器及其分类与参数? 压敏电阻器简称VSR,是一种对电压敏感的非线性过电压保护半导体元件。它在电路中用文字符号“RV”或“R”表示,图1-21是其电路图形符号。 (一)压敏电阻器的种类 压敏电阻器可以按结构、制造过程、使用材料和伏安特性分类。 1.按结构分类压敏电阻器按其结构可分为结型压敏电阻器、体型压敏电阻器、单颗粒层压敏电阻器和薄膜压敏电阻器等。 结型压敏电阻器是因为电阻体与金属电极之间的特殊接触,才具有了非线性特性,而体型压敏电阻器的非线性是由电阻体本身的半导体性质决定的。 2.按使用材料分类压敏电阻器按其使用材料的不同可分为氧化锌压敏电阻器、碳化硅压敏电阻器、金属氧化物压敏电阻器、锗(硅)压敏电阻器、钛酸钡压敏电阻器等多种。 3.按其伏安特性分类压敏电阻器按其伏安特性可分为对称型压敏电阻器(无极性)和非对称型压敏电阻器(有极性)。 (二)压敏电阻器的结构特性与作用 1.压敏电阻器的结构特性压敏电阻器与普通电阻器不同,它是根据半导体材料的非线性特性制成的。 图1-22是压敏电阻器外形,其内部结构如图1-23所示。 普通电阻器遵守欧姆定律,而压敏电阻器的电压与电流则呈特殊的非线性关系。当压敏电阻器

两端所加电压低于标称额定电压值时,压敏电阻器的电阻值接近无穷大,内部几乎无电流流过。当压敏电阻器两端电压略高于标称额定电压时,压敏电阻器将迅速击穿导通,并由高阻状态变为低阻状态,工作电流也急剧增大。当其两端电压低于标称额定电压时,压敏电阻器又能恢复为高阻状态。当压敏电阻器两端电压超过其最大限制电压时,压敏电阻器将完全击穿损坏,无法再自行恢复。 2.压敏电阻器的作用与应用压敏电阻器广泛地应用在家用电器及其它电子产品中,起过电压保护、防雷、抑制浪涌电流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等作用。 图1-24是压敏电阻器的典型应用电路。 (三)压敏电阻器的主要参数 压敏电阻器的主要参数有标称电压、电压比、最大控制电压、残压比、通流容量、漏电流、电压温度系数、电流温度系数、电压非线性系数、绝缘电阻、静态电容等。 1.压敏电压: MYG05K规定通过的电流为0.1mA,MYG07K、MYG10K、MYG14K、MYG20K 标称电压是指通过1mA直流电流时,压敏电阻器两端的电压值。 2.最大允许电压(最大限制电压):此电压分交流和直流两种情况,如为交流,则指的是该压敏电阻所允许加的交流电压的有效值,以ACrms表示,所以在该交流电压有效值作用下应该选

压敏电阻特性及选用分析

压敏电阻的原理、选型及设计实例分析压敏电阻的设计 与选型 2013/4/11 16:44:30 关键词:传感技术过电压压敏电阻器保护器 目前压敏电阻绝大多数为氧化锌压敏电阻,本文就不要以氧化锌压敏电阻来介绍原理、选型以及应用实例。 压敏电阻的原理 ZnO压敏电阻实际上是一种伏安特性呈非线性的敏感元件,在正常电压条件下,这相当于一只小电容器,而当电路出现过电压时,它的内阻急剧下降并迅速导通,其工作电流增加几个数量级,从而有效地保护了电路中的其它元器件不致过压而损坏。 它的伏安特性是对称的,如图(1)a 所示。这种元件是利用陶瓷工艺制成的,它的内部微观结构如图(1)b 所示。微观结构中包括氧化锌晶粒以及晶粒周围的晶界层。氧化锌晶粒的电阻率很低,而晶界层的电阻率却很高,相接触的两个晶粒之间形成了一个相当于齐纳二极管的势垒,这就是一压敏电阻单元,每个单元击穿电压大约为3.5V,如果将许多的这种单元加以串联和并联就构成了压敏电阻的基体。串联的单元越多,其击穿电压就超高,基片的横截面积越大,其通流容量也越大。压敏电阻在工作时,每个压敏电阻单元都在承受浪涌电能量,而不象齐纳二极管那样只是结区承受电功率,这就是压敏电阻为什么比齐纳二极管能承受大得多的电能量的原因。 图1 压敏电阻伏安特性 压敏电阻在电路中通常并接在被保护电器的输入端,如图(2)所示。

图2 压敏电阻在电路中通常并接在被保护电器的输入端 压敏电阻的Zv与电路总阻抗(包括浪涌源阻抗Zs)构成分压器,因此压敏电阻的限制电压为 V=VsZv/(Zs+Zv)。Zv的阻值可以从正常时的兆欧级降到几欧,甚至小于1Ω。由此可见Zv在瞬间流过很大的电流,过电压大部分降落在Zs上,而用电器的输入电压比较稳定,因而能起到的保护作用。图(3)所示特性曲线可以说明其保护原理。直线段是总阻抗Zs,曲线是压敏电阻的特性曲线,两者相交于点Q,即保护工作点,对应的限制电压为V,它是使用了压敏电阻后加在用电器上的工作电压。Vs为浪涌电压,它已超过了用电器的耐压值VL,加上压敏电阻后,用电器的工作电压V小于耐压值VL,从而有效地保护了用电器。不同的线路阻抗具有不同的保护特性,从保护效果来看,Zs越大,其保护效果就越好,若Zs=0,即电路阻抗为零,压敏电阻就不起保护作用了。图(4)所描述的曲线可以说明Zs与保护特性之间的关系。 图3 压敏电阻特性曲线

压敏电阻(VDR)10D 型号

压敏电阻(VDR)10D型号 优恩半导体(UN) 1、压敏电阻(VDR)10D型号: 10D180K、10D180KJ、10D220K、10D220KJ、10D270K、10D270KJ、10D330K、10D330KJ、10D390K、10D390KJ、10D470K、10D470KJ、10D560K、10D560KJ、10D680K、10D680KJ、10D820K、10D820KJ、10D101K、10D101KJ、10D121K、10D121KJ、10D151K、10D151KJ、10D181K、10D181KJ、10D201K、10D201KJ、10D221K、10D221KJ、10D241K、10D241KJ、10D271K、10D271KJ、10D301K、10D301KJ、10D331K、10D331KJ、10D361K、10D361KJ、10D391K、10D391KJ、10D431K、10D431KJ、10D471K、10D471KJ、10D511K、10D511KJ、10D561K、10D561KJ、10D621K、10D621KJ、10D681K、10D681KJ、10D751K、10D751KJ、10D781K、10D781KJ、10D821K、10D821KJ、10D911K、10D911KJ、10D102K、10D102KJ、10D112K、10D112KJ、10D122K、10D122KJ、10D182K、10D182KJ。 2、压敏电阻(VDR)10D产品图片及描述:

压敏电阻10D系列,在10D系列的插件压敏电阻最大峰值电流可达3.5KA(8/20μs脉冲),可作为间接雷击干扰保护应用方案中的器件,防止高浪涌峰值对设备的影响。 3、压敏电阻(VDR)10D产品特性: *电压范围宽(8V~1800V) *通流容量大 *响应时间快 *漏电流低 4、压敏电阻(VDR)10D应用领域: *三极管,二极管,集成电路,可控硅或可控硅半导器件保护*在消费类电子产品浪涌保护 *在工业电子产品浪涌保护 *在家电,燃气等浪涌保护 *继电器和电磁阀浪涌保护 5、压敏电阻(VDR)10D规格及特性参数:

压敏电阻选型

压敏电阻选用的基本知识 一、什么是压敏电阻器及其分类与参数? 压敏电阻器简称VSR,是一种对电压敏感的非线性过电压保护半导体元件。它在电路中用文字符号“RV”或“R”表示,图1-21是其电路图形符号。 (一)压敏电阻器的种类 压敏电阻器可以按结构、制造过程、使用材料和伏安特性分类。 1.按结构分类:压敏电阻器按其结构可分为结型压敏电阻器、体型压敏电阻器、单颗粒层压敏电阻器和薄膜压敏电阻器等。 结型压敏电阻器是因为电阻体与金属电极之间的特殊接触,才具有了非线性特性,而体型压敏电阻器的非线性是由电阻体本身的半导体性质决定的。 2.按使用材料分类:压敏电阻器按其使用材料的不同可分为氧化锌压敏电阻器、碳化硅压敏电阻器、金属氧化物压敏电阻器、锗(硅)压敏电阻器、钛酸钡压敏电阻器等多种。 3.按其伏安特性分类:压敏电阻器按其伏安特性可分为对称型压敏电阻器(无极性)和非对称型压敏电阻器(有极性)。 (二)压敏电阻器的结构特性与作用 1.压敏电阻器的结构特性,压敏电阻器与普通电阻器不同,它是根据半导体材料的非线性特性制成的。 图1-22是压敏电阻器外形,其内部结构如图1-23所示。

普通电阻器遵守欧姆定律,而压敏电阻器的电压与电流则呈特殊的非线性关系。当压敏电阻器两端所加电压低于标称额定电压值时,压敏电阻器的电阻值接近无穷大,内部几乎无电流流过。当压敏电阻器两端电压略高于标称额定电压时,压敏电阻器将迅速击穿导通,并由高阻状态变为低阻状态,工作电流也急剧增大。当其两端电压低于标称额定电压时,压敏电阻器又能恢复为高阻状态。当压敏电阻器两端电压超过其最大限制电压时,压敏电阻器将完全击穿损坏,无法再自行恢复。 2.压敏电阻器的作用与应用,压敏电阻器广泛地应用在家用电器及其它电子产品中,起过电压保护、防雷、抑制浪涌电流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等作用。 图1-24是压敏电阻器的典型应用电路。

压敏电阻参数知识大全

压敏电阻参数知识大全 片式压敏电阻的应用行业 压敏电阻主要是用来保护那些易受静电和高压等破坏环境的一种电阻,在一些集成化较高,应用功能复杂的环境中应用较多,其中片式压敏电阻体积小,适应于高度集成化的电子环境。据了解,手持式电子产品的广泛应用,使得手机、手提电脑、PDA、数码相机和医疗仪器等产品对电路系统的速度和工作电压提出更为严格的要求。片式压敏电阻虽因其响应速度快、无极性、成本低以及和SMT工艺兼容等优点而被推到了市场前沿。 在手机中的应用中,由于增加了多种新功能,如彩屏、可拍照、MMS,手机中的IC集成度也越来越高,与此同时,半导体器件和IC的工作电压越来越低,当芯片变得越来越薄时,遭受过电压和静电放电(ESD)危害的几率大大增加了。由于过电压和静电放电对集成电路和半导体器件会造成损坏,因而需要大量的过电压保护元件来对昂贵的半导体器件提供保护。 片式压敏电阻行情看好,但同时却面临了一个尴尬,片式压敏电阻由于价格坚挺,一般而言,同种类型的片式压敏电阻要比DIP型的价格高出3-5倍。以致扩大市场份额的过程中和贴片LED同显步履蹒跚。元件市场片式压敏电阻的实际情形是,供应市场不大,需求市场也不大。目前压敏电阻市场DIP直插产品是主流,SMT产品则是发展趋势。片式压敏电阻虽有更大的发展空间,但尚未找到合适的契机。目前,正规渠道的片式压敏电阻不少是来自台湾生产的,但现货市场却流通着不少非台湾产的不知名水货产品。由于水货的价格和正品相比有一倍之差,也有客户乐意买水货产品。 压敏电阻型号压敏电阻的选用方法上网时间 : 2010-10-13压敏电阻型号压敏电阻的选用方法 压敏电阻型号 SJ1152-82部颁标准中压敏电阻器的型号命名分为四部分,各部分的含义见表1。 表1 压敏电阻器的型号命名及含义 一部分:主称第二部分:类别第三部分:用途或特征第四部分:序号 字母含义字母含义字母含义 M敏感 电阻器Y压敏 电阻器无普通型用数字表示序号,有的在序号的后面还标有标称电压通流容量或电阻体直径、标称电压、电压误差等。 D通用 B补偿用 C消磁用 E消噪用 G过压保护用 H灭弧用 K高可靠用 L防雷用 M防静电用 N高能型 P高频用 S元器件保护用 T特殊型

压敏电阻参数详解及设计指南

关于压敏电阻的正确使用 一、压敏电阻的原理 压敏电阻意思是"在一定电流电压范围内电阻值随电压而变",或者是说"电阻值对电压敏感"的阻器。相应的英文名称叫“V oltage Dependent Resistor”简写为“VDR”。 随着加在它上面的电压不断增大,它的电阻值可以从MΩ(兆欧)级变到mΩ(毫欧)级。当电压较低时,压敏电阻工作于漏电流区,呈现很大的电阻,漏电流很小;当电压升高进入非线性区后,电流在相当大的范围内变化时,电压变化不大,呈现较好的限压特性;电压再升高,压敏电阻进入饱和区,呈现一个很小的线性电阻,由于电流很大,时间一长就会使压敏电阻过热烧毁甚至炸裂。正常使用时压敏电阻处于漏电流区,受到浪涌冲击时进入非线性区泄放浪涌电流,一般不能进入饱和区 压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。现在大量使用的"氧化锌"(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。 二、压敏电阻的作用 压敏电阻的最大特点是当加在它上面的电压低于它的阀值"UN"时,流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过它的电流激增,相当于阀门打开。利用这一功能,可以抑制电路中经常出现的异常过电压,保护电路免受过电压的损害。 压敏电阻器是一种具有瞬态电压抑制功能的元件,可以用来代替瞬态抑制二极管、齐纳二极管和电容器的组合。压敏电阻器可以对IC 及其它设备的电路进行保护,防止因静电放电、浪涌及其它瞬态电流(如雷击等)而造成对它们的损坏。使用时只需将压敏电阻器并接于被保护的IC 或设备电路上,当电压瞬间高于某一数值时,压敏电阻器阻值迅速下降,导通大电流,从而保护IC 或电器设备;当电压低于压敏电阻器工作电压值时,压敏电阻器阻值极高,近乎开路,因而不会影响器件或电器设备的正常工作。 三、压敏电阻的标称参数 压敏电阻用字母“MY”表示,如加J 为家用,后面的字母W、G、P、L、H、Z、B、C、N、K 分别用于稳压、过压保护、高频电路、防雷、灭弧、消噪、补偿、消磁、高能或高可靠等方面。压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。 四、压敏电阻的特性参数 ①压敏电压UN(U1mA):通常以在压敏电阻上通过1mA直流电流时的电压来表示其是否导通的标志电压,这个电压就称为压敏电压UN。压敏电压也常用符号U1mA表示。压敏电压的误差范围一般是±10%。在试验和实际使用中,通常把压敏电压从正常值下降10%作为压敏电阻失效的判据。 ②最大持续工作电压UC:指压敏电阻能长期承受的最大交流电压(有效值)Uac或最大直流电压Udc。一般Uac≈0.64U1mA,Udc≈0.83U1mA。 此电压分交流和直流两种情况,如为交流,则指的是该压敏电阻所允许加的交流电压的有效值,以ACrms表示,所以在该交流电压有效值作用下应该选用具有该最大允许电压的压敏电阻,实际上V1mA与ACrms间彼此是相互关联的,知道了前者也就知道了后者,不过ACrms对使用者更直接,使用者可根据电路工作电压,可以直接按ACrms来选取合适的压敏电阻。在交流回路中,应当有:min(U1mA) ≥(2.2~2.5)Uac,式中Uac为回路中的交流工作电压的有效值。上述取值原则主要是为了保证压敏电阻在电源电路中应用时,有适当的安全裕度。对直流而言在直流回路中,应当有:min(U1mA) ≥(1.6~2)Udc,式中Udc为回路中

相关主题