搜档网
当前位置:搜档网 › 固定床反应器的优缺点

固定床反应器的优缺点

固定床反应器的优缺点

固定床反应器的优缺点

固定床反应器的优缺点

?

优点

?

?

(1)流体的流动皆可看成是理想置换流动,因此化学反应速率较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。

?

?

(2)气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。

?

?

(3)催化剂不易磨损,可以较长时间连续使用。

?

?

(4)适宜于在高温高压条件下操作。

?

?

缺点

?

?

固定床流化床浆态床的优缺点

固定床反应器 定义:气体流经固定不动的催化剂床层进行催化反应的装置。 特点:结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器。 应用:主要用于气固相催化反应。 基本形式:轴向绝热式、径向绝热式、列管式。 固定床反应器缺点: 床层温度分布不均匀; 床层导热性较差; 对放热量大的反应,应增大换热面积,及时移走反应热,但这会减少有效空间。 流化床反应器(沸腾床反应器) 定义:流体(气体或液体)以较高流速通过床层,带动床内固体颗粒运动,使之悬浮在流动的主体流中进行反应,具有类似流体流动的一些特性的装置。 应用:应用广泛,催化或非催化的气—固、液—固和气—液—固反应。 原理:固体颗粒被流体吹起呈悬浮状态,可作上下左右剧烈运动和翻动,好象是液体沸腾一样,故流化床反应器又称沸腾床反应器。 结构:壳体、气体分布装置、换热装置、气—固分离装置、内构件以及催化剂加入和卸出装置等组成。 优点:传热面积大、传热系数高、传热效果好。进料、出料、废渣排放用气流输送,易于实现自动化生产。 缺点:物料返混大,粒子磨损严重;要有回收和集尘装置;内构件复杂;操作要求高等。 固定床: 一、固定床反应器的优缺点 凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛。气固相固定床反应器的优点较多,主要表现在以下几个方面: 1、在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。 2、气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。 3、催化剂不易磨损,可以较长时间连续使用。 4、适宜于高温高压条件下操作。 由于固体催化剂在床层中静止不动,相应地产生一些缺点: 1、催化剂载体往往导热性不良,气体流速受压降限制又不能太大,则造成床层中传热性能较差,也给温度控制带来困难。对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,而使

流化床反应器

流化床反应器 流化床反应器 流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床 反应器。流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克 勒炉(见煤气化炉);但现代流化反应技术的开拓,是以40年代石油催化裂化为代表的。目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。 1产品分类 按流化床反应器的应用可分为两类:一类的加工对象主要是固体,如矿石的焙烧,称为 固相加工过程;另一类的加工对象主要是流体,如石油催化裂化、酶反应过程等催化反应 过程,称为流体相加工过程。 2结构形式 流化床反应器的结构有两种形式:①有固体物料连续进料和出料装置,用于固相加工 过程或催化剂迅速失活的流体相加工过程。例如催化裂化过程,催化剂在几分钟内即显著 失活,须用上述装置不断予以分离后进行再生。②无固体物料连续进料和出料装置,用于 固体颗粒性状在相当长时间(如半年或一年)内,不发生明显变化的反应过程。 3产品优缺点 与固定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和输出;②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失活速率 高的过程的进行,石油馏分催化流化床裂化的迅速发展就是这一方面的典型例子。然而, 由于流态化技术的固有特性以及流化过程影响因素的多样性,对于反应器来说,流化床又 存在很明显的局限性:①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论 气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,阵低了目的产物的 收率;②反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;③由于固体催化剂在流动过程中的剧烈撞击和摩擦,使催化剂加速粉化,加上床层顶 部气泡的爆裂和高速运动、大量细粒催化剂的带出,造成明显的催化剂流失;④床层内的 复杂流体力学、传递现象,使过程处于非定常条件下,难以揭示其统一的规律,也难以脱 离经验放大、经验操作。近年来,细颗粒和高气速的湍流流化床及高速流化床均已有工 业应用。在气速高于颗粒夹带速度的条件下,通过固体的循环以维持床层,由于强化了气 固两相间的接触,特别有利于相际传质阻力居重要地位的情况。但另一方面由于大量的固 体颗粒被气体夹带而出,需要进行分离并再循环返回床层,因此,对气固分离的要求也就 很高了。(见流态化、流态化设备)

固定床流化床设计计算讲义

炔烃液相选择加氢固定床床反应器设计计算 由于固定床反应器具有结构简单、操作方便、 操作弹性大、建设投资低等优点,而广泛应用于各类油品催化加氢裂化及精制、低碳烃类选择加氢精制等领域。将碳四馏分液相加氢新工艺就是采用单台固定床绝热反应器进行催化选择加氢脱除碳四馏分中的乙基乙炔和乙烯基乙炔等。在工业装置中,由于实际所采用的流速足够高,流体与催化剂颗粒间的温差和浓差,除少数强放热反应外,都可忽略。对于固定床反应器来讲最重要的是处理好床层中的传热和催化剂粒子内扩散传质的影响。 一、固定床反应器设计 碳四馏分选择性加氢反应器一般采用绝热固定床反应器。在工程上要确定反应 器的几何尺寸,首先得确定出一定生产能力下所需的催化剂容积,再根据高径比确定反 应器几何尺寸。 反应器的设计主要依据试验结果和技术要求确定的参数,对反应器的大小及高径比、催化剂床层和液体分布板等进行计算和设计。 1. 设计参数 反应器进口温度: 20℃ 进口压力:0.1MPa 进料量(含氢气进料组分) 体积流量:197.8m 3/h 质量流量:3951kg/h 液相体积空速:400h -1 2. 催化剂床层设计计算 正常状态下反应器总进料量为2040m 3/h 液体体积空速400h -1 则催化剂用量3R V V V /S 2040/400 5.1m ===总 催化剂堆密度3850/B kg m ρ= 催化剂质量850 5.14335B B R m V kg kg ρ=?=?= 求取最适宜的反应器直径D: 设不同D 时,其中高径比一般取2-10,设计反应器时,为了尽可能避免径向的影响, 取反应器的长径比5,则算出反应器的直径和高度为:按正常进料量3 2040m h /及液体 空速400h -1,计算反应器的诸参数: 取床层高度L=5m ,则截面积2R S V /L 5.1/51.02m === 床层直径 1.140D m == 因此,圆整可得反应器内径可以选择1200mm

固定床-流化床-浆态床的优缺点

固定床-流化床-浆态床的优缺点

固定床反应器 定义:气体流经固定不动的催化剂床层进行催化反应的装置。 特点:结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器。 应用:主要用于气固相催化反应。 基本形式:轴向绝热式、径向绝热式、列管式。 固定床反应器缺点: 床层温度分布不均匀; 床层导热性较差; 对放热量大的反应,应增大换热面积,及时移走反应热,但这会减少有效空间。 流化床反应器(沸腾床反应器) 定义:流体(气体或液体)以较高流速通过床层,带动床内固体颗粒运动,使之悬浮在流动的主体流中进行反应,具有类似流体流动的一些特性的装置。 应用:应用广泛,催化或非催化的气—固、液—固和气—液—固反应。 原理:固体颗粒被流体吹起呈悬浮状态,可作上下左右剧烈运动和翻动,好象是液体沸腾一样,故流化床反应器又称沸腾床反应器。 结构:壳体、气体分布装置、换热装置、气—固分离装置、内构件以及催化剂加入和卸出装置等组成。 优点:传热面积大、传热系数高、传热效果好。进料、出料、废渣排放用气流输送,易于实现自动化生产。 缺点:物料返混大,粒子磨损严重;要有回收和集尘装置;内构件复杂;操作要求高等。 固定床: 一、固定床反应器的优缺点 凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛。气固相固定床反应器的优点较多,主要表现在以下几个方面: 1、在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。 2、气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。 3、催化剂不易磨损,可以较长时间连续使用。 4、适宜于高温高压条件下操作。 由于固体催化剂在床层中静止不动,相应地产生一些缺点: 1、催化剂载体往往导热性不良,气体流速受压降限制又不能太大,则造成床层中传热性能较差,也给温度控制带来困难。对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,

第七章 流化床反应器

第七章 流化床反应器 1.所谓流态化就是固体粒子像_______一样进行流动的现象。(流体) 2.对于流化床反应器,当流速达到某一限值,床层刚刚能被托动时,床内粒子就开始流化起来了,这时的流体空线速称为_______。(起始流化速度) 3.对于液—固系统的流化床,流体与粒子的密度相差不大,故起始流化速度一般很小,流速进一步提高时,床层膨胀均匀且波动很小,粒子在床内的分布也比较均匀,故称作_______。(散式流化床) 4.对于气—固系统的流化床反应器,只有细颗粒床,才有明显的膨胀,待气速达到_______后才出现气泡;而对粗颗粒系统,则一旦气速超过起始流化速度后,就出现气泡,这些通称为_______。(起始鼓泡速度、鼓泡床) 5.对于气—固系统的流化床反应器的粗颗粒系统,气速超过起始流化速度后,就出现气泡,气速愈高,气泡的聚并及造成的扰动亦愈剧烈,使床层波动频繁,这种流化床称为_______。(聚式流化床) 6.对于气—固系统的流化床反应器,气泡在上升过程中聚并并增大占据整个床层,将固体粒子一节节向上推动,直到某一位置崩落为止,这种情况叫_______。(节涌) 7.对于流化床反应器,当气速增大到某一定值时,流体对粒子的曳力与粒子的重力相等,则粒子会被气流带出,这一速度称为_______。(带出速度或终端速度) 8.对于流化床反应器,当气速增大到某一定值时,流体对粒子的_______与粒子的_______相等,则粒子会被气流带出,这一速度称为带出速度。(曳力、重力) 9.流化床反应器的mf t u u /的范围大致在10~90之间,粒子愈细,比值_______,即表示从能够流化起来到被带出为止的这一范围就愈广。(愈大) 10.流化床反应器中的操作气速0U 是根据具体情况定的,一般取流化数mf U U 0在_______范围内。(1.5~10) 11.对于气—固相流化床,部分气体是以起始流化速度流经粒子之间的空隙外,多余的气体都以气泡状态通过床层,因此人们把气泡与气泡以外的密相床部分分别称为_______与_______。(泡相、乳相) 12.气—固相反应系统的流化床中的气泡,在其尾部区域,由于压力比近傍稍低,颗粒被卷了进来,形成了局部涡流,这一区域称为_______。(尾涡) 13.气—固相反应系统的流化床中的气泡在上升过程中,当气泡大到其上升速度超过乳相气速时,就有部分气体穿过气泡形成环流,在泡外形成一层所谓的_______。(气泡云) 14.气—固相反应系统的流化床反应器中的气泡,_______和_______总称为气泡晕。(尾涡、气泡云) 15.气—固相反应系统的流化床中,气泡尾涡的体积W V 约为气泡体积b V 的_______。(1/3) 16.气—固相反应系统的流化床,全部气泡所占床层的体积分率b δ可根据流化床高f L 和起 始流化床高mf L 来进行计算,计算式为=b δ_______。(f mf f L L L -) 17.在气—固相反应系统的流化床中设置分布板,其宗旨是使气体_______、_______、_______和_______为宜。(分布均匀、防止积料、结构简单、材料节省) 18.在流化床中设计筛孔分布板时,可根据空床气速0u 定出分布板单位截面的开孔数 or N =_______。(or or u d u 20 4) 19.在流化床中设计筛孔分布板时,通常分布板开孔率应取约_______,以保证一定的压降。(1%) 20.在流化床中为了传热或控制气—固相间的接触,常在床内设置内部构件,以垂直管最为常用,它同时具有_______,_______并甚至_______的作用。(传热、控制气泡聚、减少颗粒

生物流化床工艺优缺点

一、生物流化床工艺优缺点 生物流化床技术起始于20世纪70年代初,是一种新型的生物膜法工艺,生物流化床将普通的活性污泥法和生物膜法的优点有机结合在一起,并引入化工领域的流化技术处理有机废水。生物流化床是以微粒状填料如砂、活性炭、焦炭、多孔球等作为微生物载体,将空气(或氧气)、废水同时泵入反应器,使载体处于流化状态,反应器内固、液、气充分传质、混合,污水充氧和载体流化同时进行,通过载体表面上不断生长的生物膜吸附、氧化并分解废水中的有机物,颗粒之间剧烈碰撞,生物膜表面不断更新,微生物始终处于生长旺盛阶段,高效地对废水中污染物进行生物降解。 容积负荷高,占地面积小 由于BFB采用颗粒、甚至粉末填料,比表面积大,故流化床内能维持极高的微生物量(40-50g/l);由于生物膜表面不断更新,微生物始终处于高活性状态,加之良好的传质条件,废水中的基质在反应器中与均匀分散的生物膜充分接触而被快速降解去除。BFB容积负荷可高达6-10kgBOD/m3.d,是一般活性污泥法高10~20倍。 耐冲击负荷能力强,能适应各种污水 在BFB中,污水和填料之间充分循环流动、传质混合,使反应器具有极大的稀释扩散能力,废水进入反应器后被迅速地混合和稀释;BFB生物膜更新速度快,使其保持着良好的生物活性,废水中的基质在反应器中与均匀分散的生物膜充分接触而被迅速降解而被稀释,从而对负荷突然变化的影响起到缓冲作用;微生物主要以生物膜形式存在,对原水中毒性物质抵抗能力强,从而使系统具有很强的抗冲击复合能力,当出现冲击负荷时,COD去除率开始可能会下降,但很快就恢复正常,通常情况下不需要设调节池。 氧传质效率高: 氧是一种难溶性气体,其从气相向液相转移过程中,传质阻力主要来自于液膜,液膜厚度是氧向水相转移的主要限制因素,BFB通过填料对气体切割,大气泡被切割成无数的小气泡或微小气泡,增加接触比表面积,延长气体在水相停留时间,明显压缩液膜和气膜厚度,大大提高氧船只效率;和普通接触氧化生物膜相比,BFB载体表面的生物膜较薄,有利于氧气和有机物等的传质,提高氧利用率;和活性污泥法相比,载体的投加降低反应器悬浮污泥浓度和粘度,使系统氧转化效率提高。在正常的载体填充量范围内,随着载体填充量及生物浓度增加微生物耗氧速率加快,可随氧气向水中的传递系数增大得到补偿,避免由于生物浓度增加而造成好氧废水生物处理中溶解氧不足的不利影响。但如果填料投放量过大,填料在水中流化效果差,紊动程度也降低,使得氧传递速率下降,氧利用率降低,加上填料本身对水中溶解氧的有一定吸附作用,这会造成水中溶解氧减少。 生物膜厚度可控,系统更稳定: BFB可通过曝气量控制填料剪切力,而控制生物膜厚度,而接触氧化生物膜厚度不可控; BFB结合了载体的流化机理、吸附机理、生物化学机理,将传统的活性污泥法和生物膜法优势结合起来,使系统既具有接触氧化法高生物量和微生物活性、高容积负荷、强抗冲击负荷能力、占地面积小,又具有活性污泥法的高传质效率,系统稳定,同时还具有氧转化效率高,生物膜厚度可控等优点,可适应不同浓度,不同种类的污水处理。 BFB始于70年代初,推广远不如活性污泥和接触氧化,原因在于其自身的一些瓶颈问题:如能耗大,虽然氧传质效率高,但曝气不仅是要生物降解提供溶氧,还必须保持载体流化状态;流化床内部的流态化特性十分复杂,对其流体力学特征研究严重不足,给放大设计造成了困难;泥水分离靠重力作用,载体易流失,出水水质较差。

反应过程与技术 固定床反应器的计算

§2-4固定床反应器的计算 Calculation of fixed bed 计算内容:①催化剂用量;②床层高度和直径;③传热面积;④床层压力降。 计算基础:反应动力学方程;物料衡算;热量衡算。 固定床反应器的经验计算法: 利用实验室;中间试验装置;工厂现有装置最佳条件测得数据。 一.催化剂用量的计算 Calculation of catalyst use level 1.空间速度:Space velocity []1-=h V V S R ON V ~ON V 原料气体积(标)流量 ~R V 催化剂填充体积 意义:单位体积催化剂在单位时间内通过原料标准体积流量 2.接触时间:Contact time V V R ε τ= ~0V 反应条件下,反应物体积流量 ~ε床层空隙率 00,nRT V p nRT PV ON == p T Tp S p T Tp V V p T Tp V V V R ON ON 00 0000 0ε ετ===∴代入 a p p K T 300103.101273?==, 3.空时收率:Space time yield(STY) S G W W W S =

意义:反应物流经床层时,单位质量(或体积)催化剂在单位时间内所获得的目的产物量。 4.催化剂负荷 Catalyst load []h Kg W W /~原料 [][] 3~m Kg cat W S 或 单位质量催化剂在单位时间内通过反应所消耗的原料 5.床层线速度与空床速度 Linear velocity and superficial velocity 线速度:ε R A V u 0= 反应体积在反应下,通过催化剂床层自由截面积的速率。 空床速度:R A V u 00= 在反应条件下,反应气体通过床层截面积时的气速。 使用条件:所设计的反应器与提供数据的装置具有相同的操作条件等)、、、、原料、、(P T u cat μ 只能估算。不可能完全相同∴ 二.反应器床层高度及直径的计算 Calculation of reactor 体积一定:床层高度↑→H 床层截面积↓→A 气速 ↑↑→?P ↑动力消耗流动阻力,u ; 床层高度↓↑→A ↓→u H ,对传热不利,另:H 太小, 气体易产生短路。 根据经验:①取气体各空床速度; ②再计算床层工截面积; ③校床层阻力降; ④确定床层的结构尺寸。 S W G W W S =

固定床,流化床,浆态床的优缺点学习资料

固定床,流化床,浆态床的优缺点

固定床反应器 定义:气体流经固定不动的催化剂床层进行催化反应的装置。 特点:结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器。 应用:主要用于气固相催化反应。 基本形式:轴向绝热式、径向绝热式、列管式。 固定床反应器缺点: 床层温度分布不均匀; 床层导热性较差; 对放热量大的反应,应增大换热面积,及时移走反应热,但这会减少有效空间。 流化床反应器(沸腾床反应器) 定义:流体(气体或液体)以较高流速通过床层,带动床内固体颗粒运动,使之悬浮在流动的主体流中进行反应,具有类似流体流动的一些特性的装置。应用:应用广泛,催化或非催化的气—固、液—固和气—液—固反应。 原理:固体颗粒被流体吹起呈悬浮状态,可作上下左右剧烈运动和翻动,好象是液体沸腾一样,故流化床反应器又称沸腾床反应器。 结构:壳体、气体分布装置、换热装置、气—固分离装置、内构件以及催化剂加入和卸出装置等组成。 优点:传热面积大、传热系数高、传热效果好。进料、出料、废渣排放用气流输送,易于实现自动化生产。

缺点:物料返混大,粒子磨损严重;要有回收和集尘装置;内构件复杂;操作要求高等。 固定床: 一、固定床反应器的优缺点 凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛。气固相固定床反应器的优点较多,主要表现在以下几个方面: 1、在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。 2、气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。 3、催化剂不易磨损,可以较长时间连续使用。 4、适宜于高温高压条件下操作。 由于固体催化剂在床层中静止不动,相应地产生一些缺点: 1、催化剂载体往往导热性不良,气体流速受压降限制又不能太大,则造成床层中传热性能较差,也给温度控制带来困难。对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,而使物料温度升高,这又促使反应以更快的速度进行,放出更多的热量,物料

固定床反应器

固定床反应器.txt 固定床反应器单元仿真培训系统 操作说明书 北京东方仿真软件技术有限公司 二〇〇六年十月 目录 一、工艺流程说明 2 1、工艺说明 2 2、本单元复杂控制回路说明 2 3、设备一览 2 二、固定床反应器单元操作规程 3 1、开车操作规程 3 2、正常操作规程 4 3、停车操作规程 4 4、联锁说明 5 5、仪表及报警一览表 6 三、事故设置一览 7 四、仿真界面 8 附:思考题 10 一、工艺流程说明 1、工艺说明 本流程为利用催化加氢脱乙炔的工艺。乙炔是通过等温加氢反应器除掉的,反应器温度由壳侧 中冷剂温度控制。

主反应为:nC2H2+2nH2?(C2H6)n,该反应是放热反应。每克乙炔反应后放出热量约为34000千卡。温度超过66℃时有副反应为:2nC2H4?(C4H8)n,该反应也是放热反应。 冷却介质为液态丁烷,通过丁烷蒸发带走反应器中的热量,丁烷蒸汽通过冷却水冷凝。 反应原料分两股,一股为约-15℃的以C2为主的烃原料,进料量由流量控制器FIC1425控制;另一股为H2与CH4的混合气,温度约10℃,进料量由流量控制器FIC1427控制。FIC1425与FIC1427为比值控制,两股原料按一定比例在管线中混合后经原料气/反应气换热器(EH-423)预热,再经原料预热器(EH-424)预热到38℃,进入固定床反应器(ER-424A/B)。预热温度由温度控制器TIC1466通过调节预热器EH-424加热蒸汽(S3)的流量来控制。 ER-424A/B中的反应原料在2.523MPa、44℃下反应生成C2H6。当温度过高时会发生C2H4聚合生成C4H8的副反应。反应器中的热量由反应器壳侧循环的加压C4冷剂蒸发带走。C4蒸汽在水冷器EH-429中由冷却水冷凝,而C4冷剂的压力由压力控制器PIC-1426通过调节C4蒸汽冷凝回流量来控制,从而保持C4冷剂的温度。 2、本单元复杂控制回路说明 FFI1427:为一比值调节器。根据FIC1425(以C2为主的烃原料)的流量,按一定的比例,相适应的调整FIC1427(H2)的流量。 比值调节:工业上为了保持两种或两种以上物料的比例为一定值的调节叫比值调节。对于比值调节系统,首先是要明确那种物料是主物料,而另一种物料按主物料来配比。在本单元中,FIC1425(以C2为主的烃原料)为主物料,而FIC1427(H2)的量是随主物料(C2为主的烃原料)的量的变化而改变。 3、设备一览 EH-423:原料气/反应气换热器 EH-424:原料气预热器 EH-429:C4蒸汽冷凝器 EV-429:C4闪蒸罐 ER424A/B:C2X加氢反应器 二、固定床反应器单元操作规程 1、开车操作规程 本操作规程仅供参考,详细操作以评分系统为准。 装置的开工状态为反应器和闪蒸罐都处于已进行过氮气冲压置换后,保压在0.03MPa状态。可以直接进行实气冲压置换。 1.1、EV-429闪蒸器充丁烷 (1)确认EV-429压力为0.03 MPa。 (2)打开EV-429回流阀PV1426的前后阀VV1429、VV1430。 (3)调节PV1426(PIC1426)阀开度为50%。 (4)EH-429通冷却水,打开KXV1430,开度为50%。 (5)打开EV-429的丁烷进料阀门KXV1420,开度50%。 (6)当EV-429液位到达50%时,关进料阀KXV1420。 1.2、ER-424A反应器充丁烷 (1)确认事项 ①反应器0.03 MPa保压。 ②EV-429液位到达50%。 (2)充丁烷 打开丁烷冷剂进ER-424A壳层的阀门KXV1423,有液体流过,充液结束;同时打开出ER-424A壳层的阀门KXV1425。

固定床反应器的设计计算

周波主编.反应过程与技术.高等教育出版社,2006年6月. 四、固定床反应器的设计计算 固定床反应器的设计方法主要有两种:经验法和数学模型法。 经验法的设计依据主要来自于实验室、中间试验装置或工厂实际生产装置的数据。对中间试验和实验室研究阶段提供的主要工艺参数如温度、压力、转化率、选择性、催化剂空时收率、催化剂负荷和催化剂用量等进行分析,找出其变化规律,从而可预测出工业化生产装置工艺参数和催化剂用量等。 固定床反应器的主要计算任务包括催化剂用量、床层高度和直径、床层压降和传热面积等。(一)催化剂用量的计算 经验法比较简单,常取实验或实际生产中催化剂或床层的重要操作参数作为设计依据直接计算得到。1.空间速度 空间速度Sv指单位时间内通过单位体积催化剂的原料处理量,单位为s-1。它是衡量固定床反应器生产能力的一个重要指标。 (2-36) 式中: 2.停留时间 停留时间r指在规定的反应条件下,气体反应物在反应器内停留的时间,单位为s。 式中:; 停留时间与空间速度的关系为

。(二)反应器床层高度及直径的计算 催化剂的用量确定后,催化剂床层的有效体积也就确定。很明显,床层高度增高,床层截面积将变小,操作气速、流体阻力(动力)将增大;反之,床层高度降低必然引起截面积(直径)增大,对传热不利或易产生短路等现象。因此,床层高度与直径应通过操作流速、压降(即动力消耗)、传热、床层均匀性等影响因素作综合评价来确定。 通常,床层高度或直径的计算是根据固定床反应器某一重要操作参数范围或经验选取,然后校验其他操作参数是否合理,如床层压降不超过总压力的15%。床层高度与直径的计算步骤如下。

实验一 流化床反应器的特性测定..

实验一流化床反应器的特性测定 一、实验目的 流化床反应器的重要特征是细颗粒催化剂在上升气流作用下作悬浮运动,固体颗粒 剧烈地上下翻动。这种运动形式使床层内流体与颗粒充分搅动混和,避免了固定床反应器中的“热点”现象,床层温度分布均匀。然而,床层流化状态与气泡现象对反应影响很大,尽管有气泡模型与两相模型的建立,但设计中仍以经验方法为主。本实验旨在观察和分析流化床的操作状态,目的如下: 1、观察流化床反应器中的流态化过程。 2、掌握流化床压降的测定并绘制压降与气速的关系图。 3、计算临界流化速度及最大流化速度,并与实验结果作比较。 二、实验原理 与固定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和 输出;②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失活速率高的过程的进行,石油馏分催化流化床裂化的迅速发展就是这一方面的典型例子。流化床存在的局限性:①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,阵低了目的产物的收率;②反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;③由于固体催化剂在流动过程中的剧烈撞击和摩擦,使催化剂加速粉化,加上床层顶部气泡的爆裂和高速运动、大量细粒催化剂的带出,造成明显的催化剂流失。 (1)流态化现象 气体通过颗粒床层的压降与气速的关系如图4-1所示。当流体流速很小时,固体颗 粒在床层中固定不动。在双对数坐标纸上床层压降与流速成正比,如图AB段所示。此时为固定床阶段。当气速略大于B点之后,因为颗粒变为疏松状态排列而使压降略有下降。 图1-1 气体流化床的实际ΔP -u关系图 该点以后流体速度继续增加,床层压降保持不变,床层高度逐渐增加,固体颗粒悬 浮在流体中,并随气体运动而上下翻滚,此为流化床阶段,称为流态化现象。开始流化 的最小气速称为临界流化速度u mf 。 当流体速率更高时,如超过图中的E点时。整个床层将被流体所带走,颗粒在流体中形成悬浮状态的稀相,并与流体一起从床层吹出,床层处于气流输送阶段。E点之后正常的流化状态被破坏,压降迅速降低,与E点相应的流速称为最大流化速度u t 。

流化床反应器

流化床反应器 流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床反应器。流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克勒炉(见煤气化炉);但现代流化反应技术的开拓,是以40年代石油催化裂化为代表的。目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。 1产品分类 按流化床反应器的应用可分为两类:一类的加工对象主要是固体,如矿石的焙烧,称为固相加工过程;另一类的加工对象主要是流体,如石油催化裂化、酶反应过程等催化反应过程,称为流体相加工过程。 2结构形式 流化床反应器的结构有两种形式:①有固体物料连续进料和出料装置,用于固相加工过程或催化剂迅速失活的流体相加工过程。例如催化裂化过程,催化剂在几分钟内即显著失活,须用上述装置不断予以分离后进行再生。②无固体物料连续进料和出料装置,用于固体颗粒性状在相当长时间(如半年或一年)内,不发生明显变化的反应过程。 3产品优缺点 与固定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和输出; ②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失活速率高的过程的进行,石油馏分催化流化床裂化的迅速发展就是这一方面的典型例子。然而,由于流态化技术的固有特性以及流化过程影响因素的多样性,对于反应器来说,流化床又存在很明显的局限性:①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,阵低了目的产物的收率;②反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;③由于固体催化剂在流动过程中的剧烈撞击和摩擦,使催化剂加速粉化,加上床层顶部气泡的爆裂和高速运动、大量细粒催化剂的带出,造成明显的催化剂流失;④床层内的复杂流体力学、传递现象,使过程处于非定常条件下,难以揭示其统一的规律,也难以脱离经验放大、经验操作。近年来,细颗粒和高气速的湍流流化床及高速流化床均已有工业应用。在气速高于颗粒夹带速度的条件下,通过固体的循环以维持床层,由于强化了气固两相间的接触,特别有利于相际传质阻力居重要地位的情况。但另一方面由于大量的固体颗粒被气体夹带而出,需要进行分离并再循环返回床层,因此,对气固分离的要求也就很高了。(见流态化、流态化设备) 相关文献 流化床反应器应用于高温煤气脱硫的研究进展-科技情报开发与经济-2011年第4期(21) PE流化床反应器床高和床重的测量及控制-合成树脂及塑料-2011年第2期(28) 曝气生物流化床反应器COD降解动力学分析-铁路节能环保与安全卫生-2011年第4期(1)

固定床流化床浆态床的优缺点

固定床反应器定义:气体流经固定不动的催化剂床层进行催化反应的装置。特点:结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器。 应用:主要用于气固相催化反应。基本形式:轴向绝热式、径向绝热式、列管式。 固定床反应器缺点:床层温度分布不均匀;床层导热性较差; 对放热量大的反应,应增大换热面积,及时移走反应热,但这会减少有效空间。 流化床反应器(沸腾床反应器)定义:流体(气体或液体)以较高流速通过床层,带动床内固体颗粒运动,使之悬浮在流动的主体流中进行反应,具有类似流体流动的一些特性的装置。应用:应用广泛,催化或非催化的气—固、液—固和气—液—固反应。原理:固体颗粒被流体吹起呈悬浮状态,可作上下左右剧烈运动和翻动,好象是液体沸腾一样,故流化床反应器又称沸腾床反应器。结构:壳体、气体分布装置、换热装置、气—固分离装置、内构件以及催化剂加入和卸出装置等组成。优点:传热面积大、传热系数高、传热效果好。进料、出料、废渣排放用气流输送,易于实现自动化生产。缺点:物料返混大,粒子磨损严重;要有回收和集尘装置;内构件复杂;操作要求高等。 固定床: 、固定床反应器的优缺点凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛。气固相固定床反应器的优点较多,主要表现在以下几个方面: 1、在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。 2、气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。 3、催化剂不易磨损,可以较长时间连续使用。 4、适宜于高温高压条件下操作。由于固体催化剂在床层中静止不动,相应地产生一些缺点: 1、催化剂载体往往导热性不良,气体流速受压降限制又不能太大,则造成床层中传热性能较差,也给温度控制带来困难。对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,而使物料温度升高,这又促使反应以更快的速度进行,放出更多的热量,物料温度继续升高,直到反应物浓度降低,反应速度减慢,传热速度超过了反应速度时,温度才逐渐下降。所以在放热反应时,通常在换热式反应器的轴向存在一个最高的温度点,称为“热点”。如设计或操作不当,则在强放热反应时,床内热点温度会超过工艺允许的最高温度,甚至失去控制而出现“飞温”。此时,对反应的选择性、催化剂的活性和寿命、设备的强度等均极不利。 2、不能使用细粒催化剂,否则流体阻力增大,破坏了正常操作,所以催化剂的活性内表面得不到充分利用。 3、催化剂的再生、更换均不方便。固定床反应器虽有缺点,但可在结构和操作方面做出改进,且其优点是主要的。因此,仍不失为气固相催化反应器中的主要形式,在化学工业中得到了广泛的应用。例如石油炼制工业中的裂化、重整、异构化、加氢精制等;无机化学工业中的合成氨、硫酸、天然气转化等;有机化学工业中的乙烯氧化制环氧乙烷、乙烯水

第六章 流化床反应器思考题

第七章流化床反应器思考题 1.所谓流态化就是固体粒子像_______一样进行流动的现象。(流体) 2.对于流化床反应器,当流速达到某一限值,床层刚刚能被托动时,床内粒子就开始流化起来了,这时的流体空线速称为_______。(起始流化速度) 3.对于液—固系统的流化床,流体与粒子的密度相差不大,故起始流化速度一般很小,流速进一步提高时,床层膨胀均匀且波动很小,粒子在床内的分布也比较均匀,故称作_______。(散式流化床) 4.对于气—固系统的流化床反应器的粗颗粒系统,气速超过起始流化速度后,就出现气泡,气速愈高,气泡的聚并及造成的扰动亦愈剧烈,使床层波动频繁,这种流化床称为_______。(聚式流化床) 6.对于气—固系统的流化床反应器,气泡在上升过程中聚并并增大占据整个床层,将固体粒子一节节向上推动,直到某一位置崩落为止,这种情况叫_______。(节涌) 7.对于流化床反应器,当气速增大到某一定值时,流体对粒子的曳力与粒子的重力相等,则粒子会被气流带出,这一速度称为_______。(带出速度或终端速度)8.对于流化床反应器,当气速增大到某一定值时,流体对粒子的_______与粒子的_______相等,则粒子会被气流带出,这一速度称为带出速度。(曳力、重力)9.对于气—固相流化床,部分气体是以起始流化速度流经粒子之间的空隙外,多余的气体都以气泡状态通过床层,因此人们把气泡与气泡以外的密相床部分分别称为_______与_______。(泡相、乳相) 10.气—固相反应系统的流化床中的气泡,在其尾部区域,由于压力比近傍稍低,颗粒被卷了进来,形成了局部涡流,这一区域称为_______。(尾涡) 11.气—固相反应系统的流化床中的气泡在上升过程中,当气泡大到其上升速度超过乳相气速时,就有部分气体穿过气泡形成环流,在泡外形成一层所谓的_______。(气泡云) 12.气—固相反应系统的流化床反应器中的气泡,_______和_______总称为气泡晕。(尾涡、气泡云) 13.气—固相反应系统的流化床中,气泡尾涡的体积约为气泡体积的_______。(1/3) 14.在气—固相反应系统的流化床中设置分布板,其宗旨是使气体_______、

固定床反应器的数学模型..

固定床反应器的数学模型 1、概述 凡是流体通过不动的固体物料所形成的床层而进行反应的装置都称作固定床反应器,其中尤以用气态的反应物料通过由固体催化剂所构成的床层进行反应的气-固相催化反应器占最主要的地位。如炼油工业中的催化重整,异构化,基本化学工业中的氨合成、天然气转化,石油化工中的乙烯氧化制环氧乙烷、乙苯脱氢制苯乙烯等等。此外还有不少非催化的气-固相反应,如水煤气的生产,氮与电石反应生成石灰氮(CaCN2)以及许多矿物的焙烧等,也都采用固定床反应器。固定床反应器之所以成为气固催化反应器的主要形式,是由于具有床内的流体轴向流动可看作为平推流,在完成同样的生产任务时,所需的催化剂用量(或反应器体积)最小;床内流体的停留时间可严格控制,温度分布可适当调节,因而有利于提高化学反应的转化率和选择性;床内催化剂不易磨损,可以在高温高压下操作等优点,但固定床中传热较差,对于热效应大的反应过程,传热与控温问题就成为固定床技术中的难点和关键,为解决这一问题而提出了多种形式的床层结构。 2、固定床反应器的结构形式 固定床反应器类型很多.按换热方式不同可分为:绝热式反应器和换热式反应器。 2.1绝热式反应器 在反应器中的反应区(催化剂层)不与外界换热的称为绝热式反应器。一般来说,反应热效应小;调节进A反应器的物料温度,就可使反应温度不致超出反应允许的温度范围的反应过程等可采用绝热式反应器。绝热式反应器具有结构简单,反应空间利用率高,造价便宜等优点。图1是绝热床反应器的示意图。 如果反应热效应较大,为了减小反应区内轴间温度分布不均,可将绝热反应器改成多段绝热式反应器,在各段之间进行加热或冷却,它可使各段反应区接近适宜温度。图2是多段绝热床反应器的示意图。 总之,不论是吸热或放热的反应,绝热床的应用相当广泛。特别对大型的,高温的或高压的反应器,希望结构简单,同样大小的装置内能容纳尽可能多的催化剂以增加生产能力(少加换热空间),而绝热床正好能符合这种要求。不过绝热床的温度变化总是比较大的,而温度对反应结果的影响也是举足轻重的,因此如何取舍,要综合分析并根据实际情况来决定。此外还应注意到绝热床的高/径比

流化床反应器简介

流化床反应器简介 一、概述 流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态 ,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时 ,又称沸腾床反应器。流化床反应器在现代工业中的早期应用为2O世纪2O年代出现的粉煤气化的温克勒炉,但现代流化反应技术的开拓,是以4O年代石油催化裂化为代表的。目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。 二、基本流态化现象 固定式和临界流化态 将一批固体颗粒对方在多孔的分布板上形成床层(图1),使流体自下而上通过床层。由于流体的流动及其与颗粒表面的摩擦,造成流体通过床层的压力降。当流体通过床层的表观流速(按床层截面计

算的流速)不大时,颗粒之间仍保持静止和互相接触,这种床层称为固定床。 当表观流速增大至起始流化速度时,床层压力降等于单位分布板面积上的颗粒浮重(颗粒的重力减去同体积流体的重力),这时颗粒不再相互支撑,并开始悬浮在流体之中。进一步提高表观流速,床层随之膨胀,床层压力降近乎不变,但床层中颗粒的运动加剧。而当流速达到某一限值,床层刚刚能被流体拖动时,床内颗粒就开始流化起来了,这时的流体空床线速称为临界流化速度。 散式流态化和聚式流态化 这两种流态化现象,是根据流化床内颗粒和流体的运动状况来区分的。在散式流态化时,颗粒均匀分布在流体中,并在各方向上作随机运动,床层表面平稳且清晰,床层随流体表观流速的增加而均匀膨胀。在聚式流态化时,床层内出现组成不同的两个相,即含颗粒甚少的不连续气泡相,以及含颗粒较多的连续乳化相。乳化相的气固运动状况和空隙率,与起始流化状态相近。通过床层的流体,部分从乳化相的颗粒间通过,其余以气泡形式通过床层。增加流体流量时,通过乳化相的气量基本不变,而气泡量相应增加。气泡在分布板上生成,在上升过程中长大;小气泡会合并成大气泡;大气泡也会破裂成小气泡。气泡上升至床面时破裂,使床面频繁地波动起伏,同时将一部分固体颗粒抛撒到界面以上,形成一个含固体颗粒较少的稀相区;与此相对应,床面以下的床层称为浓相区。气泡的运动既使床层中的颗粒剧烈运动,也影响到气固间的均匀接触。美国学者R.H.威海姆和中

化学反应工程习题-第六章:固定床反应器

第六章 固定床反应器 1.凡是流体通过不动的固体物料所形成的床层而进行反应的装置都称作_______。(固定床反应器) 2.固定床中催化剂不易磨损是一大优点,但更主要的是床层内流体的流动接近于_______,因此与返混式的反应器相比,可用较少量的催化剂和较小的反应器容积来获得较大的生产能力。(平推流) 3.固定床中催化剂不易磨损是一大优点,但更主要的是床层内流体的流动接近于平推流,因此与返混式的反应器相比,可用_______的催化剂和_______的反应器容积来获得较大的生产能力。(较少量、较小) 4.目前描述固定床反应器的数学模型可分为_______和_______的两大类。(拟均相、非均相) 5.描述固定床反应器的拟均相模型忽略了粒子与流体之间_______与_______的差别。(温度、浓度) 6.描述固定床反应器的数学模型,忽略了粒子与流体之间温度与浓度的差别的模型称之为_______。(拟均相模型) 7.描述固定床反应器的数学模型,考虑了粒子与流体之间温度与浓度的差别的模型称之为_______。(非均相模型) 8.描述固定床反应器的拟均相模型,根据流动模式与温差的情况它又可分为平推流与有轴向返混的_______模型,和同时考虑径向混合和径向温差的_______模型。(一维、二维) 9.固定床中颗粒的体积相当直径定义为具有相同体积P V 的球粒子直径,表达式 V d =_______。(3/1)/6(πP V ) 10.固定床中颗粒的面积相当直径是以外表面P a 相同的球形粒子的直径,表达式a d =_______。( π/P a ) 11.固定床中颗粒的比表面相当直径是以相同的比表面V S 的球形粒子直径来表示,表达式 S d =_______。(V S /6) 12.对于非球形粒子,其外表面积P a 必大于同体积球形粒子的外表面积 S a ,故可定义颗粒的形状系数=S ?_______。(P S a a /) 13.颗粒的形状系数S ?对于球体而言,=S ?_______,对于其他形状的颗粒S ?_______。 (=1、均小于1) 14.固定床的_______定义为水力半径H R 的四倍,而水力半径可由床层空隙率及单位床层体积中颗粒的润湿表面积来求得。(当量直径e d ) 15.固定床中的传热实质上包括了_______、_______以及_______几个方面。(粒内传热、颗粒与流体间的传热、床层与器壁的传热) 16.绝热床反应器由于没有径向床壁传热,一般可以当作平推流处理,只考虑流体流动方向上有温度和浓度的变化,因此一般可用_______模型来计算。(拟均相一维) 17.对于可逆的放热反应,存在着使反应速率最大的最优温度opt T 和平衡温度eq T ,二者的关 系为______________。(1212ln E E E E R T T T T opt eq opt eq -= ?-) 18.对于固定床反应器,当某一参数变化到一定程度时就可能使床层温度迅速升高,这种现象俗称_______,它是固定床反应器设计和操作中所应注意的问题。(飞温) 19.不属于气固相催化反应固定床反应器拟均相二维模型的特点是_______。(A ) A. 粒子与流体间有温度差 B. 粒子与流体间无温度差 C. 床层径向有温度梯度 D. 床层轴向有温度梯度 20.不属于气固相催化反应固定床反应器拟均相二维模型的特点是_______。(A )

相关主题