搜档网
当前位置:搜档网 › 基于Workbench的行星齿轮组热-结构耦合分析

基于Workbench的行星齿轮组热-结构耦合分析

基于Workbench的行星齿轮组热-结构耦合分析
基于Workbench的行星齿轮组热-结构耦合分析

ANSYS Example07热-结构耦合分析算例 (ANSYS)

07 热-结构耦合分析算例(ANSYS) 在土木工程结构中,温度应力在很多情况下对结构的影响很大。很多时候需要先对结构进行热传导分析,得到结构内部的温度应力分布,再进行结构分析,得到由于温度产生的结构内力。ANSYS提供了很方便的热分析-结构分析切换工具,本节将以一个圆环的热应力分析为例,介绍ANSYS提供的相关功能。 (1)首先进行热分析,进入ANSYS主菜单Preprocessor->Element Type->Add/Edit/Delete, 选择添加单元为Quad 4 node 55 号热分析单元 (2)进入ANSYS主菜单Preprocessor->Material Props->Material Models,添加热传导速率 参数Thermal->Conductivity->Isotropic,设定热传导速率为0.07。添加力学属性Structural->Linear->Elastic->Isotropic,设定弹性模量为30e9,泊松比为0.2。添加热膨胀系数Structural->Thermal Expansion->Secant Coefficient->Isotropic,设定热膨胀系数为1e-5。 (1)开始建立模型。还是按照ANSYS标准的点、线、面、体建立模型。首先建立关键点。 在ANSYS主菜单Preprocessor->Modeling->Create->Keypoints->In Active CS,输入以下关键点信息 (2)下面开始建立弧线。在ANSYS主菜单Preprocessor-> Modeling-> Create-> Lines-> Arcs-> By End KPs&Rad,首先点选关键点2和3,然后点选中心点1,最后输入半径为5,生成第一个圆弧。接着点选关键点4和5,然后点选中心点,输入半径8。生成第二个圆弧 (3)在ANSYS主菜单Preprocessor->Modeling->Create->Lines->Straight Line,连接关键 点2,4和3,5。组成圆环轮廓 (4)在ANSYS主菜单Preprocessor->Modeling->Create->Arbitrary->By Lines,点选圆环周 边轮廓线,生成圆环面。 (5)下面划分网格,由于本模型只有一种单元一种材料,所以不必复杂的设置属性。进入

第19章热-结构耦合分析

第19章热-结构耦合分析 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题。由于结构温度场的分布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素。为此需要先进行相应的热分析,然后在进行结构分析。热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量)等。本章主要介绍在ANSYS中进行稳态、瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析。 19.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力、应变和位移等物理量影响的分析类型。对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即先进行热分析求得结构中的温度场,然后再进行结构分析,且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布。为此,我们需要先了解热分析的基本知识,然后在学习耦合分析方法。 19.1.1 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热对流是指固体的表面与它周围接触的流体之间,由于温差的存在引起的热量的交换。热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程。 如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态。在稳态热分析中任一节点的温度不随时间变化。 瞬态传热过程是指一个系统的加热或冷却过程。在这个过程中系统的温度、热流率、热边界条件以及系统内能随时间都有明显变化。

Maxwell与Fluent电磁热流耦合分析介绍

14.5耦合实例4——Maxwell和FLUENT电磁热流耦合 例, 14.5.1 析钢块在上述工况下的温度场分布情况、风的流线图及风的温度分布云图。 图14-164几何模型 14.5.2软件启动与保存 Step1:启动Workbench。如图14-165所示,在Windows XP下单击“开始”→“所有程序”→ANSYS14.0→Workbench 14.0命令,即可进入Workbench主界面。 图14-165 Workbench启动方法 Step2:保存工程文档。进入Workbench后,单击工具栏中的按钮,将文件保

存为“MagtoThemtoFluid”,单击Getting Started窗口右上角的(关闭)按钮将其关闭。 注意:本节算例需要用到ANSOFT Maxwell14.0软件,请读者进行安装; 由于ANSOFT Maxwell软件不支持保存路径中存在中文名,故在进行文档保存时,保存的路径不不能含有中文字符,否则会发生错误。 14.5.3导入几何数据文件 Step1:创建几何生成器。如图14-166所示,在Workbench左侧Toolbox(工具箱)的Analysis Systems中单击Maxwell 3D并按住左键不放将其拖到右侧的Project Schematic窗口中,此时即可创建一个如同EXCEL表格的项目A。 Step2:双击A2(Geometry)进入如图14-167所示的电磁分析环境,此时启动了Maxwell 3D软件。 图14-166项目A Step3:依次选择菜单Modeler→Import,在出现的Import File对话框中选择ThermaltoFluid.x_t几何文件,并单击打开按钮。 图14-167电磁分析环境 Step4:此时模型文件已经成功显示在Maxwell软件中,如图14-168所示,同时弹出Modal Analysis对话框,在对话框左侧的栏中显示的几何图形为Good表示数据读取无误,单击Close按钮。

热结构耦合

第21章热-结构耦合分析 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题。由于结构温度场的分布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素。为此需要先进行相应的热分析,然后在进行结构分析。热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量)等。本章主要介绍在ANSYS中进行稳态、瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析。 21.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力、应变和位移等物理量影响的分析类型。对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即先进行热分析求得结构的温度场,然后再进行结构分析。且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布。为此,首先需要了解热分析的基本知识,然后再学习耦合分析方法。 21.1.1 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换。热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程。 如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态。在稳态热分析中任一节点的温度不随时间变化。 瞬态传热过程是指一个系统的加热或冷却过程。在这个过程中系统的温度、热流率、热边界条件以及系统内能随时间都有明显变化。

热结构耦合分析的例子

这是两个同心圆,我画的不是很圆,请大家见谅。外圆外边温度70o 内圆内边温度200 求圆筒的温度分布,径向盈利,主环向应力 /batch,list /show /title,thermal stress in concentic cylinders-indirect method /prep7 et,1,plane77,,,1 mp,kxx,1,2.2 mp,kxx,2,10.8 rectng,0.1875,0.4,0.05 rectng,0.4,0.6,0,0.05 aglue,all numcmp,area asel,s,area,,1 aatt,1,1,1 asel,s,area,,2 aatt,2,1,1 asel,all esize,0.05 amseh,all esize,0.05 amesh,all nsel,s,loc,x,0.1875 d,all,temp,200 nsel,s,loc,x,0.6 d,all,temp,70 nsel,all finish /solu solve finish /post1 path,radial,2 !设置路径名和定义路径的点数 ppath,l,,,0.1875 !通过坐标来定义路径 ppath,2,,0.6 pdef,temp,temp !温度映射到路径上 T0

paget,path,points,radial !用数组的形式保存路径 plpath,temp finish /prep7 et,1,82,,,1 mp,ex,1,30e6 mp,alpx,1,0.65e-5 mp,nuxy,1,0.3 mp,ex,2,10.6e6 mp,aplx,2,1.35e-5 mp,nuxy,2,0.33 nsel,s,loc,y,0.05 cp,1,uy,all nsel,s,loc,x,0.1875 cp,2,ux,all nsel,s,loc,y,0 d,all,uy,0 nsel,all finish /solu tref,70 ldread,temp,,,,,,rth solve finish /post1 paput,path,points,radial pmap,,mat !设置路径映射来处理材料的不连续 pdef,sx,s,x !映射径向应力 pdef,sz,s,z !映射环向应力 plpath,sx,sz !显示应力结果 plpagm,sx,,node !在几何模型上显示径向应力 finish 这儿是一个在热结构耦合分析的例子,大家有兴趣可以看看,我想同时问一下,cp 这个命令是什么意思啊

热力耦合分析单元简介

热力耦合分析单元简介! SOLID5-三维耦合场实体 具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。本单元由8个节点定义,每个节点有6个自由度。在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。在结构和压电分析中,具有大变形的应力钢化功能。与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。 INFIN9-二维无限边界 用于模拟一个二维无界问题的开放边界。具有两个节点,每个节点上带有磁向量势或温度自由度。所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。使用热自由度时,只能进行线性稳态分析。 PLANE13-二维耦合场实体 具有二维磁场、温度场、电场和结构场之间有限耦合的功能。由4个节点定义,每个节点可达到4个自由度。具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。具有大变形和应力钢化功能。当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。 LINK31-辐射线单元 用于模拟空间两点间辐射热流率的单轴单元。每个节点有一个自由度。可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。 允许形状因子和面积分别乘以温度的经验公式是有效的。发射率可与温度相关。如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。 LINK32-二维传导杆 用于两节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于二维(平面或轴对称)稳态或瞬态的热分析问题。 如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。 LINK33-三维传导杆 用于节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于稳态或瞬态的热分析问题。 如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。 LINK34-对流线单元 用于模拟节点间热对流的单轴单元。该单元每个节点只有一个温度自由度。热对流杆单元可用于二维(平面或轴对称)或三维、稳态或瞬态的热分析问题。 如果包含热对流单元的模型还需要进行结构分析,热对流单元可被一个等效(或空)的结构单元所代替。单元的对流换热系数可分为非线性,即对流换热系数是温度或时间的函数。

热-结构耦合(单元转换)

ANSYS热-结构耦合分析实例 在土木工程结构中,温度应力在很多情况下对结构的影响很大。很多时候需要先对结构进行热传导分析,得到结构内部的温度应力分布,再进行结构分析,得到由于温度产生的结构内力。ANSYS提供了很方便的热分析-结构分析切换工具,本节将以一个圆环的热应力分析为例,介绍ANSYS提供的相关功能。 (1) 首先进行热分析,进入ANSYS主菜单Preprocessor->Element Type->Add/Edit/Delete,选择添加单元为Quad 4 node 55 号热分析单元 (2) 进入ANSYS主菜单Preprocessor->Material Props->Material Models,添加热传导速率参数Thermal->Conductivity->Isotropic,设定热传导速率为0.07。添加力学属性Structural->Linear->Elastic->Isotropic,设定弹性模量为30e9,泊松比为0.2。添加热膨胀系数Structural->Thermal Expansion->Secant Coefficient->Isotropic,设定热膨胀系数为1e-5。 (1) 开始建立模型。还是按照ANSYS标准的点、线、面、体建立模型。首先建立关键点。在ANSYS主菜单 Preprocessor->Modeling->Create->Keypoints->In Active CS,输入以下关键点信息 (2) 下面开始建立弧线。在ANSYS主菜单Preprocessor-> Modeling-> Create-> Lines-> Arcs-> By End KPs&Rad,首先点选关键点2和3,然后点选中心点1,最后输入半径为5,生成第一个圆弧。接着点选关键点4和5,然后点选中心点,输入半径8。生成第二个圆弧 (3) 在ANSYS主菜单Preprocessor->Modeling->Create->Lines->Straight Line,连接关键点2,4和3,5。组成圆环轮廓 (4) 在ANSYS主菜单Preprocessor->Modeling->Create->Arbitrary->By Lines,点选圆环周边轮廓线,生成圆环面。 (5) 下面划分网格,由于本模型只有一种单元一种材料,所以不必复杂的设置属性。进入ANSYS主菜单Preprocessor->Meshing->Size Cntrls-> ManualSize->Global->Size,在Global Element Size窗口中设置单元尺寸为0.5。在ANSYS主菜单Preprocessor->Meshing->Mesh->Areas,点选圆环进行网格划分 (6) 下面首先进入热分析,进入ANSYS主菜单Solution->Analysis Type->New Analysis,设置分析类型为稳态分析Steady-state

热力耦合分析单元简介

共享:热力耦合分析单元简介! 挑选了部分常用的,希望能方便大家的使用,其中自己翻译了一部分,不准确之处还望见谅,大家还可以继续补充哦!: SOLID5-三维耦合场实体    具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。本单元由8个节点定义,每个节点有6个自由度。在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。在结构和压电分析中,具有大变形的应力钢化功能。与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。 INFIN9-二维无限边界    用于模拟一个二维无界问题的开放边界。具有两个节点,每个节点上带有磁向量势或温度自由度。所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。使用热自由度时,只能进行线性稳态分析。 PLANE13-二维耦合场实体    具有二维磁场、温度场、电场和结构场之间有限耦合的功能。由4个节点定义,每个节点可达到 4个自由度。具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。具有大变形和应力钢化功能。当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。LINK31-辐射线单元   用于模拟空间两点间辐射热流率的单轴单元。每个节点有一个自由度。可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。   允许形状因子和面积分别乘以温度的经验公式是有效的。发射率可与温度相关。如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。 LINK32-二维传导杆   用于两节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于二维(平面或轴对称)稳态或瞬态的热分析问题。   如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。 LINK33-三维传导杆   用于节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于稳态或瞬态的热分析问题。   如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。

第20章 热-应力耦合分析实例

第20章热-应力耦合分析实例 由于温度的分布不均在部件内部会产生热应力,在结构分析中常会遇到需要考虑温度场对应力分布影响的情况。特别在进行各类燃机部件,如航空发动机的涡轮盘、叶片等的强度计算分析时通常要考虑热问题。还有一些输送管道由于内外温度不同也会产生热应力。另外材料的性能和其温度是相关的,不同的温度下其性能通常不同,这也会造成部件应力的变化。本章将通过实例来讲解如何用ANSYS6.1来进行这类问题的分析。 20.1 问题描述 一无限长的截面形状和尺寸如图20.1所示的厚壁双层圆管,其内外层温度分别为Ti 和To,材料数据和边条如表20.1所示,利用ANSYS程序来求解圆管沿径向的温度分布情况,并求解圆管内沿径向和周向的应力情况。 图20.1 双层管道的截面图 从上面描述的问题可以看出,本实例属于轴对称问题,我们可以采用轴对称方法来进行分析。同时本问题为典型的热-应力耦合问题,可以采用间接法顺序耦合分析的一般步骤进行分析。因为管道为无限长,故建模时轴向尺寸可以是任意大于零的值,且将其一边

轴向约束,一边所有节点轴向自由度耦合。下面我们将首先建立有限元模型,进行稳态热分析,并观察分析其沿径向的温度分布情况。然后将模型中的热单元类型转换称对应的结构分析单元类型,从新定义材料的力学性能参数,并将热分析的结果以体载荷的形式施加到模型中,定义合理的边界条件,进行结构静力求解。最后,观察并分析整个结构沿径向和周向的应力分布情况。 20.2 建立模型 在ANSYS6.1中,首先我们通过完成如下工作来建立本算例的有限元模型,需要完成的工作有:指定分析标题,定义材料性能,定义单元类型,建立几何模型并划分有限元网格等。本节中定义的单元类型和材料属性都是针对热分析的。下面将详细讲解分析过程。 20.2.1指定分析标题并设置分析范畴 在这一步中我们将指定本实例的分析路径、数据库的名称、分析标题。另外为了得到适合热分析的菜单选项,需要将分析范畴指定为热分析。 1.选取菜单路径Utility Menu >File >Change Jobname,将弹出修改文件名(Change Jobname)对话框,如图20.2所示。在输入新文件名(Enter new jobname)文本框中输入文字“CH20”,为本分析实例的数据库文件名。单击按钮,完成文件名的修改。 图20.2 修改文件名(Change Jobname)对话框 2.选取菜单路径Utility Menu >File >Change Title,将弹出修改标题(Change Title)对话框,如图20.3所示。在输入新标题(Enter new title)文本框中输入文字“Thermal Stress in Concentric Cylinders-Indirect Method”,为本分析实例的标题名。单击按钮,完成对标题名的指定。 图20.3 修改标题(Change Title)对话框 3.选取菜单路径Main Menu >Preference,将弹出菜单过滤参数选择(Preference of GUI Filtering)对话框,如图20.4所示。单击对话框中的Themal(热)选择按钮,选中Thermal选项,以便ANSYS6.1的主菜单设置为与热分析相对应的菜单选项。单击按钮,完成

O形橡胶密封圈的热应力耦合分析

O形橡胶密封圈的热应力耦合分析 研究原油高温热采工具O 形橡胶密封圈在高温高压下的密封特性。借助于 大型有限元分析软件ANSYS,建立O 形橡胶密封圈及其边界的二维轴对称有限元模型,研究油压、装配间隙和摩擦因数对密封面最大接触应力、剪切应力和Von Mises 应力的影响,并采用热应力耦合分析方法,分析温度对O 形密封圈密封 性能的影响。结果表明:摩擦因数对应力影响不大,而油压和装配间隙对应力影响很大,过大的装配间隙会造成O 形橡胶密封圈最大接触应力下降和最大剪切 应力上升,造成密封失效;当温度升高时,密封圈最大剪切应力和接触应力相应减小,而最大Von Mises 应力明显减小,因此应使O 形密封圈在适当的温度下工作,以确保密封的可靠性。 随着国民经济的快速发展,陆地石油资源的不断减少,海上稠油开采将会成为热点之一。海上稠油开采通常采用高温热采作业模式,因此对开采工具的高温高压密封性能要求较高。当前原油开采一般都是在150 ℃以下进行,开采工具 的密封部件基本上都是采用简单高效、可靠性高的橡胶O 形圈,而橡胶O 形圈的耐用性、可靠性以及密封性能对温度比较敏感,同时对安装结构尺寸也有一定的要求。O 形密封圈简称O 形圈,是一种截面为圆形的橡胶密封圈,其成本低廉、安装和使用方便,被广泛应用于机械、汽车、动力及石油化工等领域。 对于常温下橡胶O 形圈的密封性能,目前研究报道较多,而对于高温(150 ℃以上) 下密封性能的研究,公开报道尚不多见。研究高温( 在橡胶材料可用最高温度范围内) 和高压( 稠油开采要求最高压强达到20 MPa) 下橡胶O 形圈的热应力耦合特性,对提升稠油高温热采工具密封性能有着至关重要的作用,可为密封部件的选择和结构优化提供理论依据和数据支撑。 利用ANSYS 有限元分析软件对O 形橡胶密封圈进行应力分析,并采用热应力耦合分析方法,分析温度对O 形密封圈密封性能的影响,得到温度与应力变 化的关系。 1、模型的建立 1. 1、几何模型的建立 O 形橡胶密封圈工作时依靠密封圈发生弹性变形,在密封接触面上产生接触应力,当接触应力大于密封介质的压力时,则不发生泄漏。如图1(a) 所示,当O 型密封圈装入密封槽后,其截面承受接触压缩应力而产生弹性变形,对接触面

ansys中的热分析

【转】热-结构耦合分析 知识掌握篇2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分 布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发 生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析, 然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如 热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳 态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析. 21.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的 分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即 先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作 为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知 识,然后再学习耦合分析方法. 21.1.1 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温 度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传 递方式.此外,还可以分析相变,有内热源,接触热阻等问题. 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度 而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存 在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换 过程. 如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统 的热量:q流入+q生成-q流出=0,则系统处于热稳态.在稳态热分析中任一节点的温度不随时间变 化. 瞬态传热过程是指一个系统的加热或冷却过程.在这个过程中系统的温度,热流率, 热边界条件以及系统内能随时间都有明显变化. ANSYS热分析的边界条件或初始条件可分为七种:温度,热流率,热流密度, 对流,辐射,绝热,生热. 热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种,它们如表 21.1所示. 表21.1 热分析单元列表 单元类型名称说明 线性 LINK32 LINK33 LINK34 LINK31 两维二节点热传导单元 三维二节点热传导单元 二节点热对流单元

ANSYS电热耦合分析

一、Electric-Thermal Analysis ANSYS中电热耦合分析主要焦耳热效应(Joule heating)、塞贝克效应(Seebeck effect)、珀尔帖效应(Peltier effect)、珀尔帖效应(Thomson effect)。我们这里的分析主要是Joule heating分析,即通电产生热量,用于加热双层薄片。 1. ANSYS电-热耦合知识点 1.1、Element DOFs选项:UX, UY, UZ, and TEMP: 可用于Thermal-Electric Analysis 的单元类型如上表所示,其中LINK68, PLANE67, SOLID69, and SHELL157 是专用的thermal-electric elements,专用于Joule heating effects,SOLID5, SOLID98, PLANE223, SOLID226, and SOLID227 则需要选择DOFs选项为TEMP and VOLT。 For SOLID5 or SOLID98, set KEYOPT(1) to 1; For PLANE223, SOLID226, or SOLID227, set KEYOPT(1) to 110。 1.2、Material Properties设置: 对于Joule heating effects,需要设置材料参数: 电学参数:electric permittivity电阻率RSVX、RSVY、RSVZ 热学参数:thermal conductivity导热系数KXX, KYY, KZZ 若考虑瞬态热效应,需设置密度DENS、比热C或焓ENTH 1.3、Load载荷设置: 设置Applied Voltage or Current 设置对流、辐射、传热等边界条件

相关主题