搜档网
当前位置:搜档网 › 芳纶纤维布电学性能

芳纶纤维布电学性能

芳纶纤维布电学性能
芳纶纤维布电学性能

卡本芳纶纤维布采用杜邦凯夫拉1414芳纶纤维开发,经国家权威检验单位检测,性能超过国标GB/T 21491-2008要求,专门用于结构加固修复的芳纶纤维布。卡本芳纶纤维布配套树脂以环氧树脂配为主料,增加有利于提高树脂耐提高材料延性、改善脆性的改性树脂生产而成,比普通结构胶强度和伸长率更高。

一、芳纶纤维布加固修复混凝土结构概述

芳纶纤维复合材料加固方法是把芳纶纤维布渗透树脂之后粘贴在混凝土构件外表,以达到与构件一起受力的加固方法。芳纶布加固方法主要有三种基本方法,抗剪加固、延性加固和抗弯加固。抗剪加固,是将芳纶纤维布沿与构件轴线笔直的方向张贴在构件外表,与构件内的钢筋一起承当剪力,提高了构件的抗剪切性能和延展性,然后起到加固的效果。抗弯加固,是将芳纶纤维布沿与构件轴线平行的方向张贴在构件外表,与构件内的钢筋一起承担拉力,进一步提高整个构件的抗弯才能。

二、卡本芳纶纤维布加固技术优点

抗冲击性:芳纶纤维的弹性模量为110GPa,具有良好的延性,延伸率为2.0%。它的破坏形式为塑性破坏,相比之下碳纤维的破坏形式为脆性破坏。因此,芳纶材料广泛应用于航天航空领域、军事装备、防爆设施、桥梁墩柱加固等。

抗动载抗疲劳性能:碳纤维具有很高的抗拉强度,但由于它是一种脆性材料,只能承受长期的静荷载。而芳纶纤维对于抗动载抗疲劳性能要求比较高的领域有着独特的优势。同时,芳纶纤维的抗剪切性能是所有FRP材料中最强的,在进行抗剪加固时应考虑用芳纶纤维复合材料。

耐腐蚀性:芳纶复合材料具有良好的耐酸、耐强碱腐蚀性能,海水中氯离子对混凝土结构有很强的腐蚀性,可导致混凝土碳化钢筋锈蚀。所以,在一些海港码头工程的结构加固及防护工程中较为普遍采用芳纶纤维复合材料进行加固。

不导电性:非磁化性芳纶纤维是一种不导电的材料。因此,在对绝缘性要求很高的加固工程中芳纶纤维复合材料比较适和。

三、芳纶纤维布电学性能

项目性能指标体积电阻率(纤维体积含量48﹪)(Ω.cm)5×1015

介电强度(纤维体积含量48﹪)(V/mm)24.4

介电常数(纤维体积含量58﹪) 3.3

材料的热电性能

材料的热电性能 热电材料是利用固体内部载流子运动实现热能和电能直接转换的功能材料。它的产生于材料的热电性能密不可分,材料的热电性能可以总结为塞贝克效应,帕尔贴效应,汤姆孙效应。 塞贝克效应 热电现象最早在1823年由德国人Seebeck发现。当两种不 同导体构成闭合回路时,如果两个节点处电温度不同,则在两个 节点之间将会产生电动势,且在回路中有电流通过,该现象被叫 图 1 塞贝克效应示意图 做Seebeck效应,此回路称为热电回路,回路中出现的电流称为热电流,回路中出现的电动势称为塞贝克电动势。塞贝克系数可表示为: 式中,V表示电动势;T表示温度,S的大小和符号取决于两种材料和两个结点的温度。当载流子是电子时,冷端为负,S是负值;如果空穴是主要载流子类型,那么热端是负,S是正值。帕尔贴效应 1834年,法国钟表匠Pletier发现了 Seebeck效应的逆效应,即电流通过两个不同导体形成的接点时接点处会发生放热或吸热现象,称为帕尔贴效应。帕尔贴系数可表示为: P表示单位时间接头处所吸收的帕尔贴热; I表示外加电源所提供的电流强度。 汤姆孙效应 当电流通过具有一定温度梯度的导体时,会有一横向热流流入或流出导体,其方向视电流方向和温度梯度的方向而定。 在实际应用中,以无量纲的ZT值来衡量材料的热电性能: 式中,σ为电导率;k为热导率;S是塞贝克系数;T为温度。 σS2又被称作功率因子,用于表征热电材料的电学性能。从上式可以得出,提高热电材料的能量转换效率可以通过增大其功率因子或降低其热导率来实现,但这3个参数并非独立的,它们

取决于材料的电子结构和载流子的散射情况。为了提高塞贝克系数,材料中应该只有单一类型的载流子,n型和p型载流子同时存在会导致两种载流子都向冷端移动,从而降低塞贝克电压。低的载流子浓度会增大塞贝克系数,塞贝克系数公式如下: n为载流子浓度,m为载流子有效质量。 大的载流子有效质量会提高塞贝克系数,但是会降低电导率。m和态密度有关,载流子的有效质量会随着费米能及附近的态密度增加而增加。然而,载流子的有效质量越大,在同样作用力下,载流子的漂移速率就越慢,从而使迁移率减小,电导率降低。功率因子降低。因此需要寻求一合适载流子浓度n来提高功率因子。 热电材料 金属及其合金的塞贝克系数较小且热导率较高,因此相应的ZT值不高。前苏联科学家Loffe 在20世纪50年代提出了带隙半导体热电理论,同时发现了一系列半导体材料具有较大的塞贝克系数。如Bi-Te,Pb-Te,Si-Ge等合金类经典热电材料,它们的最佳工作区间分别是300~500K,500~900K,900~1200K。通过对以上材料的研究,热电现象的微观机理逐渐被解释,即高温端的高能电子向低温端扩散,使低温端电子堆积带负电,高温端逐渐缺少电子带正电,在高温端形成较高的电势,在物体内建立由高温端指向低温端的电场。当电子热扩散力和电场力相等时,两端间形成一稳定的温差电位,因两种材料不同,在各种材料中建立的电场以及热扩散力不同,因此产生的电势差不同,电位差不会完全抵消,因此在闭合回路中产生电动势。 热电材料的主要应用 利用热电效应主要可以制作温差发电机和热电制冷。 温差发电原理 将P型半导体和N型半导体在热端连接,则在冷端可得到一个电压,一个PN结产生的电动势有限,将很多个这样的PN结串联起来就可得到足够的电压,成为一个温差发电机,由于温差发电的效率很低,一般不超过4%,但是温差发电可以 图 2温差发电机示意图

材料的电学性能测试

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的 按照导电性能区分,不同种类的材料都可以分为导体、半导体和绝缘体三大类。区分标准一般以106Ω?cm和1012Ω?cm为基准,电阻率低于106Ω?cm称为导体,高于1012Ω?cm称为绝缘体,介于两者之间的称为半导体。然而,在实际中材料导电性的区分又往往随应用领域的不同而不同,材料导电性能的界定是十分模糊的。就高分子材料而言,通常是以电阻率1012Ω?cm为界限,在此界限以上的通常称为绝缘体的高分子材料,电阻率小于106Ω?cm称为导电高分子材料,电阻率为106 ~1012Ω?cm常称为抗静电高分子。通常高分子材料都是优良的绝缘材料。 通过本实验应达到以下目的: 1、了解高分子材料的导电原理,掌握实验操作技能。 2、测定高分子材料的电阻并计算电阻率。 3、分析工艺条件与测试条件对电阻的影响。 二、实验原理 1、电阻与电阻率 材料的电阻可分为体积电阻(R v)与表面电阻(R s),相应的存在体积电阻率与表面电阻率。 体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。在两电极间可能形成的极化忽略不计。 体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。 表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;该电流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分。在两电极间可能形成的极化忽略不计。 表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻。 体积电阻和表面电阻的试验都受下列因素影响:施加电压的大小和时间;电极的性质和尺寸;在试样处理和测试过程中周围大气条件和试样的温度、湿度。高阻测量一般可以利用欧姆定律来实现,即R=V/I。如果一直稳定通过电阻的电流,那么测出电阻两端的电压,就可以算出R的值。同样,给被测电阻施加一个已知电压,测出流过电阻的电流,也可以算出R的值。问题是R值很大时,用恒流测压法,被测电压V=RI将很大。若I=1μA,R=1012Ω,要测的电压V=106V。用加压测流法,V是已知的,要测的电流I=V/R将很小。因为处理弱电流难度相对小些,我们采用加压测流法,主要误差来源是微弱电流的测量。 2、导电高分子材料的分类

芳纶布参数及加固步骤

芳纶布参数及加固施工步骤 .、八、- 一. 刖言 芳纶布是新一代混凝土结构加固增强纤维材料,由于芳纶布具有高强度?高弹模.抗冲击性?抗动载疲劳性?耐腐蚀?耐久性.不导电等优越特性,在土木工程建设.加固工程等领域得到越来越广泛地应用. 二. 芳纶布参数 1、卡本芳纶纤维布电学性能指标 2.卡本芳纶纤维布力学性能指标 3.卡本芳纶纤维布配套树脂性能标准

三.芳纶布加固施工步骤 (一)施工准备 拟定施工方案和施工计划,对所使用地芳纶布.配套树脂.机具等做好施工前地准备工作. (二)混凝土构件表面处理 1.用角磨机打磨混凝土表面,露出混凝土新地结构层. 2.用吹风机将混凝土表面浮尘吹掉. (三)配制并涂刷底层树脂 1.严格按照配套树脂地主剂.固化剂所规定地比例2:1称量准确,装入容器, 用搅拌器均匀搅拌

2.一次调和量不应过多, 以在可使用时间内用完为准,避免不必要地浪费.如一次未用完, 应重新密封包装贮存. 3.将底层树脂均匀地涂抹于混凝土结构表面, 在树脂表面干燥后进入下一步工序. (四)配制找平树脂, 对混凝土表面不平整处进行找平对构件表面凹陷部位用环氧腻子填平, 修复至表面平整. 在残缺修补中使用 环氧腻子时,要在气温-5C以上,相对湿度小于85%地条件下施工.腻子涂刮后,表面仍存在地凹凸糙纹,应再用砂纸打磨平整,,转角处修补为半径不小于30mm圆弧. (五)粘贴芳纶纤维布 1.粘贴芳纶布之前,首先应确认粘贴表面干燥.气温在-10C以下,相对湿度RH>85时,如无有效措施不得施工. 2.按照设计要求用钢直尺与壁纸刀裁剪芳纶布, 材料地裁切数量应按当天地用量裁切为准. 3.配制浸渍树脂并均匀涂抹于所要粘贴构件,抹胶厚度1?3伽,中间厚,边缘薄. 4.沿纤维方向多次滚压, 挤出气泡, 使浸渍树脂完全浸透芳纶布. 5.芳纶布地表面均匀涂抹浸渍树脂. (六)表面防护按有关规范地规定处理, 并保证防护材料与芳纶布之间有可靠地粘结. 四. 芳纶布施工安全及注意事项 1.施工过程中应避免芳纶布地弯折. 2.配套树脂地甲. 乙两组份应密封贮存, 远离火源, 避免阳光直接照射. 3.施工场所保持通风. 4.操作人员应穿工作服, 戴好防护口罩. 5.施工场所应配备各种必要地灭火器, 以备救护.

芳纶纤维介绍

芳纶 芳纶(芳族聚酰胺纤维)可能是最知名的特种纤维,由尼龙而来,且与尼龙极其类似。芳纶中含5%直接与两个芳香环相连的酰胺键。著名的品牌,包括杜邦的Nomex和Kevl~,以及日本帝人公司与Kevl~非常相似的Twaron纤维。Kevl~的强度和模量比传统的高强尼龙纤维,分别高2倍和9倍。 Kevlar能够应用于如下领域:防弹材料、复合材料支撑物,振动延续阻滞物、轮胎增强材料,高应力作业下的机械橡胶布、高强低延伸的绳索。Nomex与Kevlar在化学组成上不同,它用异酞酰胺取代对酞酰胺,从而获得有优异耐热性的纤维,在高温条件下有优异的性能。 随着芳纶在安全和强力市场领域应用的深入,市场应用将会缓慢增加,但其量不会显著扩大,问题在于产量/价格/利润之间的相互关系。从Spandex大量上市导致价格下降的经验来看,如果纤维价格下跌20%-50%,纤维的产量将会急剧增加芳纶纤维全称为"聚对苯二甲酰对苯二胺",英文为Aramid fiber,是一种新型高科技合成纤维,具有超高强度、高模量和耐高温、耐酸耐碱、重量轻等优良性能,其强度是钢丝的5~6倍,模量为钢丝或玻璃纤维的2~3倍,韧性是钢丝的2倍,而重量仅为钢丝的1/5左右,在560度的温度下,不分解,不融化。它具有良好的绝缘性和抗老化性能,具有很长的生命周期。芳纶的发现,被认为是材料界一个非常重要的历史进程。 芳纶的发明:20世纪60年代由美国杜邦(DuPont)公司成功地开发并率先产业化; 芳纶的发展: 在30多年的时间里,芳纶纤维走过了由军用战略物资向民用物资过渡的历程,价格也降低了将近一半。现在国外芳纶无论是研发水平还是规模化生产都日趋成熟。在芳纶纤维生产领域,对位芳酰胺纤维发展最快,产能主要集中在日本和美国、欧洲。如美国杜邦的Kevlar纤维,荷兰阿克苏诺贝尔(Akzo Nobel)公司(已与帝人合并)的Twaron 纤维,日本帝人公司的Technora纤维及俄罗斯的Terlon纤维等。间位芳酰胺纤维的品种有Nomex、Conex、Fenelon纤维等。美国杜邦生产的Kevlar纤维,目前就有Kevlar一49、Kevlar-29等十多个牌号,每个牌号又有数十种规格的产品。杜邦公司在去年宣布将扩大Kevlar纤维的生产能力,该扩建项目预计在今年年底完工。帝人、赫斯特等芳纶生产的知名企业也不甘示弱,纷纷扩产或联合,并积极开拓市场,希望成为这个朝阳产业的生力军 芳纶纤维在高性能纤维世界中有独特地位。它是强度很高的纤维——以相同重量为基础,是钢材强度的5倍;其另一种卓越性能是极高的比张力模量(抗拉伸)——其韧度是最常用的增强纤维E-玻璃纤维的三倍。 它具有固有的不可燃性,连续使用温度范围极宽,由﹣320。F(﹣196。C)到400。F(204℃)。可耐受超过1000°F(538℃)的材料作有限度接触。 芳纶KEVLAR是杜邦公司独一无二的aramid纤维系列的注册商标,有四种类型的产品出售——芳纶KEVLAR 29、KEVLAR129、KEVLAR 49、KEVLAR 149。 芳纶是用于增强子午线轮胎及其机械用橡胶制品,如软管、输送带及动力传送皮带而专门设计制造的品种。芳纶的工业专门用途,例如绳索、缆绳、防弹织物、涂层织物、

热电材料研究的进展

热电材料研究进展 热电材料研究进展 颜艳明1,应鹏展1,2,张晓军1,崔鑫3 (1中国矿业大学材料科学与工程学院,江苏徐州,221116 2中国矿业大学应用技术学院,江苏徐州,221008 3河南永煤集团城郊煤矿,河南永城,476600,) 摘要:本文介绍了热电材料的种类及各种热电材料的ZT值,提高热电材料热电性能的方法及热电材料在温差发电和制冷方面的应用,并对其发展前景进行了展望。 关键词:热电材料;热导率;载流子 Progress of thermoelectric materials Yanyanming1,Yingpengzhan1,2,zhangxiaojun1,cuixin3 (1:Shool of Materials, CUMT,Xuzhou , Jiangsu, 221116 2: School of applied Technology,CUMT,xuzhou,Jiangsu,221116 3: Yong suburban coal mine in Henan Coal Group,yongcheng,Henan,476600)

Abstract: This paper is described the types of thermoelectric materials and every thermoelectric materials’ZT value,the way to improve the thermoelectric materials’performance of thermal power and the application of thermoelectric materials’on thermal power generation and refrigeration, also give its future development prospects. Key words: Thermoelectric materials; Thermal conductivity; Carrier 1、引言 在以石油价格暴涨为标志的“能源危机”之后,世界上又相继出现以臭氧层破坏和温室气体效应为首的“地球危机”和“全球变暖危机”。各国科学家都在致力于寻求高效、无污染的新的能量转化利用方式, 以达到合理有效利用工农业余热及废热、汽车废气、地热、太阳能以及海洋温差等能量的目的。于是,从上个世纪九十年代以来, 能源转换材料(热电材料)的研究成为材料科学的一个研究热点。尤其是近几年, 国际上关于热电材料的研究更是非常火热。目前,热电材料的研究主要集中在三个领域:室温以下的低温领域、从室温到700K的中温领域和700K以上的高温领域。 热电材料(又称温差电材料)是利用固体内部载流子和声子的输运及其相互作用来实现将热能和电能之间相互转换的半导体功能材料,其具有无机械可动部分、运行安静、小型轻便及对环境无污染等优点,在温差发电和制冷领域具有重要的应用价值和广泛的应用前景。

纳米钛酸钡的研究

纳米钛酸钡的研究 摘要:钛酸钡具有高介电常数、低介质损耗等优异的性能,广泛地应用于多层陶瓷电容器、热敏电阻、光电器件等电子元件,是电子工业中应用最广泛的陶瓷材料之一。本文介绍了钛酸钡结构、性能、用途及制备方法。制备超细,高纯和粒径分布均匀的纳米BaTiO3粉体的制备成为了纳米材料制备领域的研究热点之一。 关键词:钛酸钡,结构,性能,制备方法,粉体 1. 引言 钛酸钡(BaTiO3)是最早发现的一种具有ABO3型钙钛矿晶体结构的典型铁电体,它具有高介电常数、低的介质损耗及铁电、压电和正温度系数效应等优异的电学性能,被广泛应用于制备高介陶瓷电容器、多层陶瓷电容器、PTC热敏电阻、动态随机存储器、谐振器、超声探测器、温控传感器等,被誉为“电子陶瓷工业的支柱”。 2. 钛酸钡晶体的结构 钛酸钡是一致性熔融化合物,其熔点为1618℃。在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。此时,六方晶系是稳定的。在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。在此结构中Ti4+(钛离子)居于O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。 随着温度下降,晶体的对称性下降。当温度下降到130℃时,钛酸钡发生顺电-铁电相变。在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。

热电材料应用

热电材料 关键字:热电材料分类探究与展望 热电材料是一种能将热能和电能相互转换的功能材料,1823年发现的塞贝克效应和1834年发现的帕尔帖效应为热电能量转换器和热电制冷的应用提供了理论依据。 较好的热电材料必须具有较高的Seebeck系数,从而保证有较明显的热电效应,同时应有低的热导率,使能量能保持在接头附近。另外还要求热阻率较小,使产生的焦耳热量小。目前限制热电材料得以大规模应用的问题是其热电转换效率太低。热电材料的热电转换效率可用无量纲热电优值—ZT值来表征,ZT= S2Tσ/λ, ZT越大, 热电材料的性能越好,这里的T为绝对温度,Z=S2σ/λ,式中S为材料的热电系数,即材料的Seebeck系数,σ为材料的电导率,S2σ 又称为材料的功率因子,它决定了材料的电学性能。由Z的表达式可以看出,要提高材料的热电转换效率,应选用同时具有较大功率因子和尽可能低热导率的热电材料。影响热电材料的优值Z的3个参数Seebeck系数、热导率、电导率都是温度的函数。同时优值Z又敏感地依赖于材料种类、组分、掺杂水平和结构。因此每种热电材料都有各自的适宜工作温度范围。 1半导体金属合金型热电材料 金属材料的热电效应非常小,除在测温方面的应用外,其他没有实际的应用价值。直到20世纪50年代,人们发现小带隙(small band gap)掺杂半导体比金属大很多热电效应,研制温差电源和热电制冷器已具有现实意义。这类材料以Ⅲ,Ⅳ,Ⅴ族及稀土元素为主。目前,研究较为成熟并且已经应用于热电设备中的 材料主要是金属化合物及其固溶体合金如Bi 2Te 3 /Sb 2 Te 3 、PbTe、SiGe、CrSi等, 这些材料都可以通过掺杂分别制成P型和n型材料。有报道称在实验室得到的最 高ZT值达到2.2 (AgPb m SbTe 2+m , 800K) 到2.4(Bi 2 Te 3 /Sb 2 Te 3 超晶格, 300K)。通 过调整成分、掺杂和改进制备方法可以进一步提高这些材料的ZT,通过化学气相 沉积( CVD )过程得到综合两维Sb 2Te 3 /Bi 2 Te 3 超晶格薄膜的ZT高达2.5,ZT的 研究还在继续进行。但是这些热电材料存在制备条件要求较高,需在一定的气体保护下进行,不适于在高温下工作以及含有对人体有害的重金属等缺点[1]。 2方钴矿(Skutterudite)热电材料 Skutterudide是CoSb 3的矿物名称,名称为方钴矿,是一类通式为AB 3 的化 合物(其中A是金属元素,如Ir、Co、Rh、Fe等;B是V族元素,如As、Sb、P 等)。二元Skutterudite化合物是窄带隙半导体,其带隙仅为几百毫电子伏,同时此类化合物具有较高的载流子迁移率和中等大小的反Seebeek系数,但热导率比传统的热电材料要高.此类化合物的显著特点是,外来小原子可以插入晶体结构的孔隙,在平衡位置附近振动,从而可以有效地散射热声子,大大降低晶格 热导率。最初的研究集中在等结的IrSb 3, RhSb 3 和CoSb 3 等二元合金,其中CoSb 3 的热性能相比较而言最好。尽管二元合金有良好的电性能,但其热电数据受到热 导率的限制。因此对多元合金的研究得到了重视,实验得到P型CeFe 3.5Co 0.5 Sb 12 方钴矿化合物ZT值在620K时达到1.4。目前进一步提高Skutterudite材料热电性能的途径有两条:(l)通过各种拾杂调节电学性能,(2)引入额外的声子散射降低晶格热导率[2]。

钛酸钡

题目:关于压电陶瓷之钛酸钡的简单分析班级: 姓名: 学号:

摘要: 传统的压电陶瓷大多是含铅陶瓷,其中氧化铅(或四氧化三铅)约占原料总质量的70%左右,在制备、使用及废弃处理过程中,都会给环境和人类带来危害。从生态环境保护和社会可持续发展战略的实施来看,压电陶瓷的无铅化是其发展的必然趋势。ABO3型钙钛矿结构的BaTiO3(BT)是最早发现的无铅压电陶瓷,也是最先获得应用的压电陶瓷材料。 关键字:无铅陶瓷钛酸钡环保 一、压电陶瓷简介 压电材料是微机电系统(MEMS)常用的一种功能材料。压电材料的主要属性是,其弹性效应和电极化效应在机械应力或电场(电压)作用下将发生相互耦合,也就是应力-应变-电压之间存在内在联系。压电效应有正负之分,正压电效应在机械应力作用下,将机械能转换为电能;负压电效应则在电压作用下,将电能转换为机械能。利用正压电效应感知外界的机械能,可以制作微传感器;利用逆压电效应作为驱动力,可以制作压电微执行器。 陶瓷材料是以化学合成物质为原材料,经过精密的成型烧结而成。烧结前,严格控制合成物质的组份比,便可以研制成适合多种用途的功能陶瓷,如压电陶瓷(电致伸缩材料)、半导体陶瓷、导体陶瓷、磁性陶瓷及多孔陶瓷等。压电陶瓷是陶瓷经过电极化之后形成的,电极化之后的压电陶瓷为各向异性的多晶体。常用的压电陶瓷有钛酸钡(BT)、锆钛酸铅(BZT)、改性锆钛酸铅、偏铌酸铅(PN)、铌酸铅钡锂(PBLN)、改性钛酸铅等。 下面主要针对压电陶瓷常用的材料钛酸钡(BT)的机理及应用问题做简单分析 二、钛酸钡陶瓷特点及应用 自20世纪40年代年发现钛酸钡陶瓷的压电性以来,压电陶瓷的发展已有60余年。压电陶瓷作为一类重要的、国际竞争极为激烈的功能材料,其应用已遍及人类生产及生活的各个角落。然而,传统的压电陶瓷大多是含铅陶瓷,其中氧化铅(或四氧化三铅)约占原料总质量的70%左右,在制备、使用及废弃处理过程中,都会给环境和人类带来危害。从生态环境保护和社会可持续发展战略的实施来看,压电陶瓷的无铅化是其发展的必然趋势。ABO3型钙钛矿结构的BaTiO3(BT)是最早发现的无铅压电陶瓷,也是最先获得应用的压电陶瓷材料。 钛酸钡晶体有一般压电材料的共有特性:当它受压力而改变形状的时候,会产生电流,一通电又会改变形状。于是,人们把钛酸钡放在超声波中,它受压便产生电流,由它所产生的电流的大小可以测知超声波的强弱。相反,用高频电流通过它,则可以产生超声波。现在,几乎所有的超声波仪器中,都要用到钛酸钡。除此之外,钛酸钡还有许多用途。例如:铁路

钛酸钡系铁电陶瓷的制备技术及性能研究

国内图书分类号:TM 22+3 硕士学位论文 题目:钛酸钡系铁电陶瓷的制备技术 及性能研究 硕士研究生:张培凤 导师:樊慧庆 申请学位级别:硕士 学科、专业:材料学 所在单位:材料学院 答辩日期:2008年3月 授予学位单位:西北工业大学

Classified index:TM22+3 Dissertation for Master’s Degree PREPARATION AND CHARACTERIZATION OF BARIUM TITANATE BASED FERROELECTRIC CERAMICS Candidate: Peifeng Zhang Advisor: Prof. Huiqing Fan Specialty: Material Science Subject: Material Science and Engineering Northwestern Polytechnical University March, 2008 ? Xi’an

摘要 摘 要 钛酸钡(BaTiO3)是性能优异的强介电和铁电材料,被广泛应用于制造热敏电阻器、多层陶瓷电容器、电光器件和DRAM器件。自从20世纪40年代发现钛酸钡的优良的压电和介电性能以来,关于钛酸钡及掺杂钛酸钡的制备和介电性能的研究己成为一个热点领域。为了满足高性能介电材料的要求,关键之一就是要实现粉体原料的超细和均匀化,因此本文对BaTiO3系粉体及陶瓷进行了系统研究。 首先,采用水热法,以硝酸钡,二氧化钛,作为矿化剂的氢氧化钠为原料,在Ba/Ti摩尔比为1.6,矿化剂NaOH的浓度为3M,于180℃下水热反应16 h,获得了超细、高纯、高均匀性的立方相BaTiO3纳米粉体,并具体分析了Ba/Ti 摩尔比、反应时间和前驱物对粉体的影响。其次,采用溶胶-凝胶法制备Mg取代Ti的掺杂BaTiO3粉体,并分别于一系列温度下烧结成陶瓷(简称为SG-BMT),Mg的掺杂对陶瓷性能影响很大,纯BaTiO3中加入Mg后,其结构逐渐由四方相向立方相转变;同时,其介电常数、介电损耗降低,但稳定性大大增加;居里温度降低,并且居里峰展宽,出现明显的弥散现象。对于Mg掺杂BaTiO3陶瓷来讲,其可以取代Ti,也可以取代Ba,为进一步研究其不同的取代对制备的掺杂BaTiO3陶瓷的影响,采用传统固相法制备Mg取代Ba的掺杂BaTiO3陶瓷(简称为SS-BMT),其电学性能不如SG-BMT的好,介电常数较低,在最佳制备条件下仅1600,而SG-BMT高达2330,但居里温度下降的幅度不如SG-BMT大,其居里温度为93℃,SG-BMT为83℃。最后,采用传统固相法制备La掺杂BaTiO3陶瓷,发现其烧结温度升高到1450℃,电学性能也显著改善,其介电常数随着La含量的增大而减小,随烧结温度的升高则是先增大后减小,1450℃烧结得到的Ba0.98La0.02TiO3陶瓷性能最好,介电常数高达3515,损耗低至0.01,并且稳定性有较大提高,但居里温度降低至15℃以下。 关键词:钛酸钡,水热合成,掺杂工艺,介电性能

芳纶纤维布力学性能

芳纶纤维布力学性能 一、芳纶纤维布加固修复混凝土结构概述 芳纶纤维复合材料加固混凝土工法是指使用芳纶布配套树脂把芳纶布粘贴在混凝土结构表面与原有构件共同受力的加固方法。芳纶布与混凝土的粘结程度将直接影响加固效果。 芳纶布加固方法主要有三种基本方法,抗剪加固、延性加固和抗弯加固。抗剪加固和延性加固是将芳纶布沿与构件轴线垂直的方向粘贴在构件表面,与构件内的钢筋共同承担剪力,提高构件的抗剪能力和延性;抗弯加固,是将芳纶布沿与构件轴线平行的方向粘贴在构件表面,与构件内的钢筋共同承受拉力,提高整个构件的抗弯能力。 芳纶布加固主要材料为芳纶布及配套环氧树脂。 二、卡本芳纶纤维布加固优点 1、抗冲击性:芳纶纤维的弹性模量为110GPa,具有良好的延性,延伸率为 2.0%。它的破坏形式为塑性破坏,相比之下碳纤维的破坏形式为脆性破坏。因此,芳纶材料广泛应用于航天航空领域、军事装备、防爆设施、桥梁墩柱加固等。 2、抗动载抗疲劳性能:碳纤维具有很高的抗拉强度,但由于它是一种脆性材料,只能承受长期的静荷载。而芳纶纤维对于抗动载抗疲劳性能要求比较高的领域有着独特的优势。同时,芳纶纤维的抗剪切性能是所有FRP材料中最强的,在进行抗剪加固时应考虑用芳纶纤维复合材料。 3、耐腐蚀性:芳纶复合材料具有良好的耐酸、耐强碱腐蚀性能,海水中氯离子对混凝土结构有很强的腐蚀性,可导致混凝土碳化钢筋锈蚀。所以,在一些海港码头工程的结构加固及防护工程中较为普遍采用芳纶纤维复合材料进行加固。 4、不导电性:非磁化性芳纶纤维是一种不导电的材料。因此,在对绝缘性要求很高的加固工程中芳纶纤维复合材料比较适和。 三、芳纶纤维布特点 1、外观均一整齐,无夹杂,无破洞。 2、无缺纬、脱纬,无断经现象。 3、纤维排列平直均匀,无歪斜、起皱现象。

芳纶布的种类及特性

芳纶布的种类及特性 芳纶布,即凯芙拉布,芳纶纤维布,芳纶织物。 主要有以下几种 1、芳纶纤维无捻粗纱织物,主要用芳纶1414长丝,无捻粗纱是由平行原丝或平行单丝集束而成的。生产粗纱所用芳纶纤维的单丝直径从5~15μm不等。无捻粗纱的号数从100号到8000号(tex)。无捻粗纱可直接用于某些复合材料工艺成型方法中,如特种纺织、片材预浸、管道缠绕、型材拉挤等工艺,无捻度的纱线因其张力均匀,可织成无捻粗纱布和特种芳纶织物,用于航天、国防、军工等特种行业。 2、芳纶无纺布,毡片,芳纶纸,用于绝缘保温 3、芳纶纤维加捻细纱布,芳纶织物,芳纶面料,主要用芳纶1313或少量1414短纤 (1)芳纶纤维加捻细纱布主要是指用芳纶1313或少量1414短纤维纱线加捻后织造的各种织物。主要用于防火阻燃等领域。织物的特性由纤维性能、经纬密度、纱线结构和织纹所决定。经纬密度又由纱结构和织纹决定。经纬密加上纱结构,就决定了织物的物理性质,如重量、厚度和断裂强度等。有五种基本的织纹:平纹、斜纹、缎纹、罗纹和席纹。 (2)芳纶加捻织带,分为有织边带(光边带)和无织边带(毛边带)主要织法是平纹。用于制造高强度、介电性能好的电气设备零部件以及汽车胶管等。 (3)芳纶帘子布,即加捻的芳纶单向织物浸胶而成,其特点是在经纱0度或者纬纱90度方向上具有高强度。其中经向单向织物是一种粗经纱和细纬纱织成的四经破缎纹或长轴缎纹织物,用于飞机轮胎和高级汽车轮胎。 (4)立体织,立体织物是相对平面织物而言,其结构特征从一维二维发展到了三维,从而使以此为增强体的复合材料具有良好的整体性和仿形性,大大提高了复合材料的层间剪切强度和抗损伤容限。它是随着航天、航空、兵器、船舶等部门的特殊需求发展起来的,目前其应用已拓展至汽车、体育运动器材、医疗器械等部门。主要有五类:机织三维织物、针织三维织物、正交及非正交非织造三维织物、三维编织织物和其它形式的三维织物。立体织物的形状有块状、柱状、管状、空心截锥体及变厚度异形截面等。 (5)异形织物,异形织物的形状和它所要增强的制品的形状非常相似,必须在专用的织机上织造。对称形状的异形织物有:圆盖、锥体、帽、哑铃形织物等,还可以制成箱、船壳等不对称形状。 (6)槽芯织物,槽芯织物是由两层平行的织物,用纵向的竖条连接起来所组成的织物,其横截面形状可以是三角形或矩形。 (7)缝编织物,亦称为针织毡或编织毡,它既不同于普通的织物,也不同于通常意义的毡。最典型的缝编织物是一层经纱与一层纬纱重叠在一起,通过缝编将经纱与纬纱编织在一起成为织物。 3、组合芳纶布 即把芳纶毡、芳纶无捻粗纱织物和芳纶无捻粗纱等,按一定的顺序组合起来的芳纶复合布。 青岛新天成纺织有限公司创立于1976年(原青岛第十三棉纺织厂)至今已有37年历史。公司占地60余亩,职工300多名,拥有纱锭37000枚,倍捻锭2000枚,织布机100台,主要生产各种规格芳纶线,阻燃线,芳纶缝纫线,芳纶布,纱线,丙纶纱线和面料,阻燃缝纫线,芳纶纱线和面料,及其它芳纶类产品下面就由青岛新天成纺织来给大家介绍下苏伦布的特性。 1、良好的机械特性间位芳纶是一种柔性高分子,断裂强度高于普通涤纶、棉、尼龙等,伸长率较大,手感柔软,可纺性好,可生产成不同纤度、长度的短纤维和长丝,在一般纺织机械制成不同纱支织成面料、无纺布,经过后整理,满足不同领域的防护服装的要求。

芳纶纤维布加固系统

芳纶纤维布加固系统 卡本?芳纶纤维布采用杜邦凯夫拉1414芳纶纤维开发,经国家权威检验单位检测,性能超过国标GB/T 21491-2008要求,专门用于结构加固修复的芳纶纤维布。卡本?芳纶纤维布配套树脂以环氧树脂配为主料,增加有利于提高树脂耐提高材料延性、改善脆性的改性树脂生产而成,比普通结构胶强度和伸长率更高。 一、卡本?芳纶纤维布加固技术特点 抗冲击性:芳纶纤维的弹性模量为110Gp,具有良好的延性延。伸率为2.0,芳纶材料首先通过形变吸收大量能量,它的破坏形式为塑性破坏,相比之下碳纤维的破坏形式为脆性破坏。因此,芳纶材料广泛应用于航天航空领域、军事装备、防爆设施、桥梁墩柱加固等。 抗动载抗疲劳性能:碳纤维具有很高的抗拉强度,但碳纤维的破坏形式为脆性破坏只能承受长期的静荷载性能,而芳纶纤维对于抗动载抗疲劳性能要求比较高的领域有着独特的优势。因此,在进行结构加固应注意根据结构加固部位应力分布的特点,考虑采用芳纶纤维还是碳纤维进行加固。同时,芳纶纤维的抗剪切性能是所有FRP材料中最强的,在进行抗剪加固时应考虑用芳纶纤维复合材料。 耐腐蚀性:芳纶复合材料具有良好的耐酸耐强碱腐蚀性能,海水中氯离子对混凝土结构有很强的腐蚀性,可导致混凝土碳化钢筋锈蚀。所以,在一些海港码头工程的结构加固及防护工程中较为普遍采用芳纶纤维复合材料进行加固。 不导电性:非磁化性芳纶纤维是一种不导电的材料。因此,在诸如地铁、高铁、仪器房和医院以及一些特殊工业厂房等工程,对绝缘性要求很高,在这些领域的加固工程中芳纶纤维复合材料比较适和。 二、卡本?芳纶纤维布加固应用范围 1、混凝土梁、板和柱等建筑结构的抗剪、抗弯、延性和抗震加固补强; 2、地铁隧道、车站、电气铁路的隧道,电脑房等需要绝缘的建筑物; 3、交通、水利、核电和能源等基础设施的结构加固修复。 三、卡本?芳纶纤维布电学性能指标

P型SnTe基热电材料的电声输运及性能优化

P型SnTe基热电材料的电声输运及性能优化IV-VI族化合物是使用最早、研究最多的热电材料之一。其中,SnTe基热电材料在近年来以其具有与PbTe相似的能带结构、但无毒且环境友好而备受关注。本征SnTe因具有高浓度的本征Sn空位,一般呈现重掺杂P型半导体特性。 但过高的载流子浓度极大地抑制了其本征Seebeck系数,过大的轻重价带能量差距也增大了通过能带简并等手段提升Seebeck系数的难度。此外,过高的晶格热导率和过小的带隙,也都极大抑制了 SnTe的本征热电性能。本文以SnTe基热电材料为研究对象,利用高温熔炼结合热压烧结工艺制备试样,通过共振掺杂、载流子浓度优化、能带简并等手段提升材料的电学性质,通过引入点缺陷、第二相等多重散射机制降低材料的晶格热导率,并通过物相分析、微结构表征、物理建模等方式,进一步分析材料高性能的原因。 此外,本文还系统研究了新型层状热电材料SnTe·Sb2Te3多晶及区熔铸锭的热电输运特性。获得的主要结论如下:1)通过双带模型的构建,计算了 SnTe的理论Pisarenko曲线;通过第一性原理计算,证实了 In在SnTe中掺杂可以引入共振能级,增加费米能级附近态密度,有效提升其室温Seebeck系数。分别以 Sn0.995In0.005Te和(SnTe)2.88(In2Te3)0.04为基体,进行了载流子浓度的再优化。 其中,Sn0.995In0.o05Te中加入Sb有效抑制了基体过高的载流子浓度,且迁移率也得到一定的提升;Seebeck系数也获得进一步提高,电学性能整体优化。最终,成分为Sno.915In0.oosSbo.08Te的材料在825 K时获得最大zT值约1.1,说明In-Sb双掺杂可以有效提升SnTe基材料的热电性能。此外,利用SnTe较强的热塑性,成功制备SnTe热变形试样。

芳纶概述

芳纶概论 一,简述 凯芙拉,英文原名KEVLAR,也译作克维拉。是美国杜邦(DuPont)公司研制的一种芳纶纤维材料产品的品牌名,材料原名叫“聚对苯二甲酰对苯二胺”,化学式的重复单位为-[-CO-C6H4-CONH-C6H4-NH-]-接在苯环上的胺基团为对位结构(间位结构为另一项商标名为Nomex的产品,俗称防火纤维) 在上世纪60年代,美国杜邦公司研制出一种新型芳纶纤维复合材料----芳纶1414,此芳纶复合材料在1972年正式实现商品化并为该产品注册商标为Kevlar。型号分为K29,K49,K49AP等。 由于这种新型材料密度低、强度高、韧性好、耐高温、易于加工和成型,其强度为同等质量钢铁的5倍,但密度仅为钢铁的五分之一(Kevlar密度为每立方厘米1.44克,钢铁密度为每立方厘米7.859克),而受到人们的重视。由于凯夫拉品牌产品材料坚韧耐磨、刚柔相济,具有刀枪不入的特殊本领。在军事上被称之为"装甲卫士 "。 二,应用 反坦克武器的出现,又促使人们改进坦克、装甲车的装甲性能。通常要提高坦克、装甲车的防护性能,就要增加金属装甲的厚度,这样势必影响它的灵活机动性能。"凯夫拉"材料的出现使这个问题迎刃而解,坦克、装甲车的防护性能提高到了一个崭新的阶段。与玻璃钢相比,在相同的防护情况下,用"凯夫拉" 材料时重量可以减少一半,并且"凯夫拉"层压薄板的韧性是钢的3倍,经得起反复撞击。"凯夫拉"薄板与钢装甲结合使用更是威力无比。如果采用"钢枣芳纶枣钢"型复合装甲,能防穿甲厚度为700毫米的反坦克导弹,还可防中子弹。 目前,“凯夫拉”层压薄板与钢、铝板的复合装甲,不仅已广泛应用于坦克、装甲车,而且用于核动力航空母舰及导弹驱逐舰,使上述兵器的防护性能及机动性能均大为改观。 "凯夫拉"与碳化硼等陶瓷的复合材料是制造直升飞机驾驶舱和驾驶座的理想材料。据试验,它抵御穿甲子弹的能力比玻璃钢和钢装甲好得多。为了提高战场人员的生存能力,人们对避弹衣的研制越来越重视。"凯夫拉"材料还是制造避弹衣的理想材料。据报道,用"凯夫拉"材料代替尼龙和玻璃纤维,在

纳米钛酸钡的结构性能及制备方法

纳米钛酸钡的结构性能及制备方法 摘要:钛酸钡纳米材料具有高介电常数和低介质损耗等优异的性能,是电子工业中应用最广泛的陶瓷材料之一。本文主要介绍了钛酸钡结构性能、应用方向和纳米钛酸钡制备方法。 关键词:钛酸钡结构性能制备方法粉体 前言 钛酸钡(BaTiO3)具有高介电常数、低的介质损耗及铁电、压电和正温度系数效应等优异的电学性能,被誉为“电子陶瓷工业的支柱”,广泛的应用于半导体陶瓷和电子工业等方面。 一、钛酸钡晶体的结构 钛酸钡是一致性熔融化合物,其熔点为1618℃。在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。此时,六方晶系是稳定的。在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。在此结构中钛离子居于氧离子构成的氧八面体中央,钡离子则处于八个氧八面体围成的空隙中。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。随着温度下降,晶体的对称性下降。当温度下降到130℃时,钛酸钡发生顺电-铁电相变。在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c 轴)拉长,而沿另两轴缩短。 当温度下降到5℃以下,在5~-90℃温区内,钛酸钡晶体转变成正交晶系mm2点群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线[011]方向。钛酸钡从四方晶系转变为正交晶系,其结构变化也不大。从晶胞来看,相当于原立方晶系的一根面对角线伸长了,另一根面对角线缩短了,c轴不变。当温度继续下降到-90℃以下时,晶体由正交晶系转变为三斜晶系3m点群,此时晶体仍具有铁电性,其自发极化强度方向与原立方晶胞的体对角线[111]方向平行。钛酸钡从正交晶系转变成三斜晶系,其结构变化也不大。 综上所述,在整个温区(<1618℃),钛酸钡共有五种晶体结构,即六方、立方、四方、单斜、三斜,随着温度的降低,晶体的对称性越来越低。在130℃(即居里点)以上,钛酸钡晶体呈现顺电性,在130℃以下呈现铁电性。 二、钛酸钡晶体的性能 1.钛酸钡晶体的自发极化。钛酸钡是一种典型的铁电体,所以提到钛酸钡,就一定要提到它的自发极化。一般来讲,电介质的电极化过程(方式)有三种,

芳纶纤维布电学性能

卡本芳纶纤维布采用杜邦凯夫拉1414芳纶纤维开发,经国家权威检验单位检测,性能超过国标GB/T 21491-2008要求,专门用于结构加固修复的芳纶纤维布。卡本芳纶纤维布配套树脂以环氧树脂配为主料,增加有利于提高树脂耐提高材料延性、改善脆性的改性树脂生产而成,比普通结构胶强度和伸长率更高。 一、芳纶纤维布加固修复混凝土结构概述 芳纶纤维复合材料加固方法是把芳纶纤维布渗透树脂之后粘贴在混凝土构件外表,以达到与构件一起受力的加固方法。芳纶布加固方法主要有三种基本方法,抗剪加固、延性加固和抗弯加固。抗剪加固,是将芳纶纤维布沿与构件轴线笔直的方向张贴在构件外表,与构件内的钢筋一起承当剪力,提高了构件的抗剪切性能和延展性,然后起到加固的效果。抗弯加固,是将芳纶纤维布沿与构件轴线平行的方向张贴在构件外表,与构件内的钢筋一起承担拉力,进一步提高整个构件的抗弯才能。 二、卡本芳纶纤维布加固技术优点 抗冲击性:芳纶纤维的弹性模量为110GPa,具有良好的延性,延伸率为2.0%。它的破坏形式为塑性破坏,相比之下碳纤维的破坏形式为脆性破坏。因此,芳纶材料广泛应用于航天航空领域、军事装备、防爆设施、桥梁墩柱加固等。 抗动载抗疲劳性能:碳纤维具有很高的抗拉强度,但由于它是一种脆性材料,只能承受长期的静荷载。而芳纶纤维对于抗动载抗疲劳性能要求比较高的领域有着独特的优势。同时,芳纶纤维的抗剪切性能是所有FRP材料中最强的,在进行抗剪加固时应考虑用芳纶纤维复合材料。 耐腐蚀性:芳纶复合材料具有良好的耐酸、耐强碱腐蚀性能,海水中氯离子对混凝土结构有很强的腐蚀性,可导致混凝土碳化钢筋锈蚀。所以,在一些海港码头工程的结构加固及防护工程中较为普遍采用芳纶纤维复合材料进行加固。 不导电性:非磁化性芳纶纤维是一种不导电的材料。因此,在对绝缘性要求很高的加固工程中芳纶纤维复合材料比较适和。 三、芳纶纤维布电学性能 项目性能指标体积电阻率(纤维体积含量48﹪)(Ω.cm)5×1015 介电强度(纤维体积含量48﹪)(V/mm)24.4 介电常数(纤维体积含量58﹪) 3.3

新型热电材料及研究进展

新型热电材料及研究进展摘要:热电效应在发电和致冷方面有着巨大的应用潜力。从如何提高热电材料热电优值的理论研究出发,列出了寻找高优值热电材料的几种主要途径。在此基拙上,重点介绍了最近几年来新型热电材料的研究发展情况,包括笼式化合物、超晶格热电材料、Half一Hueselr合金等。并提出了亚待解决的问题和今后的研究方向。 关键字:热电;电优值;新型热电材料 1引言 能源是人类活动的物质基础,随着人类活动以及工业化革命的不断进行,传统的一些不可再生能源开始日益枯竭’所以新能源的开发迫在眉睫,而新能源的开发利用需要借助能源材料来实现’能源转换材料(热电材料)成为材料科学热点’热电材料的应用主要有温差发电和热电制冷,温差发电是利用效应,直接将热能转化为电能的研究’温差发电在工业余热&废热和低品味热温差发电方面有很大的潜在应用’与温差发电相反,热电制冷利用效应可以制造热电制冷机’热电制冷具有机械压缩制冷机所没有的一些优点,尺寸小质量轻无任何机械转动部分工作无噪声无液态或气态介质,因而不存在污染环境问题;可以实现精确控温,响应速度快,器件使用寿命长,因此热电制冷已用于很多领域’另外,热电制冷材料的一个可能具有实际应用意义的场合是为超导材料的使用提供低温环境’1823年,Seebeck首次发现了热电效应(又称温差电效应),从而开始了人类对热电材料的研究和应用。近年来,随着人们对环境和能源问题的日益重视,热电材料开始受到更为普遍的关注。 2材料的热电效应 热电材料具有3 个基本效应,即效应效应和效应,这3 个效应奠定了热电理论的基础,同时也确定了热电材料的应用方向。 Seebeck效应又称为温差电效应,是指在两种不同金属构成的回路中,如果两个接头处的温度不同,发现了回路中有一电动势存在Seebeck 效应的大小可通过Seebeck系数(温差电动势率)来表征 3新型热电材料种类 随着科技进步和新材料合成技术的发展&各种测试手段的不断提高以及计算机在材料 研究中的广泛应用,使得目前热电材料的研究日新月异,大量的新型热电材料层出不穷。 3.1半导体金属合金型热电材料 金属材料的热电效应非常小,除在测温方面的应用外,其他没有实际的应用价值。直到20世纪50年代,人们发现小带隙(small band gap)掺杂半导体比金属大很多热电效应,研制温差电源和热电制冷器已具有现实意义[1]。这类材料以Ⅲ,Ⅳ,Ⅴ族及稀土元素为主。目前,研究较为成熟并且已经应用于热电设备中的材料主要是金属化合物及其固溶体合金如 Bi2Te3/Sb2Te3、PbTe、SiGe、CrSi等,这些材料都可以通过掺杂分别制成P型和n型材料。有报道称在实验室得到的最高ZT值达到2.2 (AgPb m SbTe2+m, 800K)[2]到2.4(Bi2Te3/Sb2Te3超晶格, 300K) [3]。通过调整成分、掺杂和改进制备方法可以进一步提高这些材料的ZT,通过化学气相沉积( CVD )过程得到综合两维Sb2Te3/Bi2Te3超晶格薄膜的ZT高达2.5[4],ZT的研究还在继续进行[5]。但是这些热电材料存在制备条件要求较高,需在一定的气体保护下进行,不适于在高温下工作以及含有对人体有害的重金属等缺点。 3.2方钴矿(Skutterudite)热电材料 Skutterudide是CoSb3的矿物名称,名称为方钴矿,是一类通式为AB3的化合物(其中A是金属元素,如Ir、Co、Rh、Fe等;B是V族元素,如As、Sb、P等)。二元Skutterudite 化合物是窄带隙半导体,其带隙仅为几百毫电子伏,同时此类化合物具有较高的载流子迁移率和中等大小的反Seebeek系数,但热导率比传统的热电材料要高.此类化合物的显著特点

相关主题