搜档网
当前位置:搜档网 › 矩阵的基本运算法则

矩阵的基本运算法则

矩阵的基本运算法则
矩阵的基本运算法则

矩阵的基本运算法则

1、矩阵的加法

矩阵加法满足下列运算规律(设A 、B 、C 都是m n ?矩阵,其中m 和n 均为已知的正整数):

(1)交换律:+=+A B B A

(2)结合律:()()++++A B C =A B C

注意:只有当两个矩阵为同型矩阵(两个矩阵的行数和列数分别相等)时,这两个矩阵才能进行加法运算。

2、数与矩阵相乘

数乘矩阵满足下列运算规律(设A 、B 是m n ?矩阵,λ和μ为数):

(1)结合律:()λμλμ=A A

(2)分配律:()λμλμ+=+A A A

(3)分配律:()λλλ+=+A B A B

注意:矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算。

3、矩阵与矩阵相乘

矩阵与矩阵的乘法不满足交换律、但是满足结合律和分配率(假设运算都是可行的):

(1)交换律:≠AB BA (不满足)

(2)结合律:()()=AB C A BC

(3)结合律:()()()λλλλ==其中为数AB A B A B

(4)分配律:()(),+=++=+A B C AB AC B C A BA CA

4、矩阵的转置

矩阵的转置满足下述运算规律(假设运算都是可行的,符号()T g 表示转置):

(1)()T T =A A

(2)()T T T +=+A B A B

(3)()T

T λλ=A A

(4)()T T T =AB B A 5、方阵的行列式

由A 确定A 这个运算满足下述运算法则(设A 、B 是n 阶方阵,λ为数):

(1)T =A A

(2)n λλ=A A

(3)=AB A B

6、共轭矩阵

共轭矩阵满足下述运算法则(设A 、B 是复矩阵,λ为复数,且运算都是可行的):

(1)+=+A B A B

(2)λλ=A A

(3)=AB AB

7、逆矩阵

方阵的逆矩阵满足下述运算规律:

(1)若A 可逆,则1-A 亦可逆,且()11--=A A

(2)若A 可逆,数0λ≠,则λA 可逆,且()111

λλ--=A A

(3)若A 、B 为同阶矩阵且均可逆,则AB 亦可逆,且()111---=AB B A

参考文献:

【1】线性代数(第五版),同济大学

矩阵的运算及其运算规则

矩阵基本运算及应用 牛晨晖 在数学中,矩阵是一个按照长方阵列排列的或集合。矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。矩阵的运算是领域的重要问题。将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.

1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知

? 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

MatrixEponenential-指数矩阵计算

is invertible then .

symmetric, and that if X is skew-symmetric then e X is orthogonal. exp(X*) = (e X)*, where X* denotes the conjugate transpose of X. It follows that if X is Hermitian then e X is also Hermitian, and that if X is skew-Hermitian then e X is unitary. Linear differential equations One of the reasons for the importance of the matrix exponential is that it can be used to solve systems of linear ordinary differential equations. Indeed, it follows from equation (1) below that the solution of where A is a matrix, is given by The matrix exponential can also be used to solve the inhomogeneous equation See the section on applications below for examples. There is no closed-form solution for differential equations of the form where A is not constant, but the Magnus series gives the solution as an infinite sum. The exponential of sums We know that the exponential function satisfies e x + y = e x e y for any numbers x and y. The same goes for commuting matrices: If the matrices X and Y commute (meaning that XY = YX), then However, if they do not commute, then the above equality does not necessarily hold. In that case, we can use the Baker-Campbell-Hausdorff formula to compute e X + Y. The exponential map Note that the exponential of a matrix is always a non-singular matrix. The inverse of e X is given by e-X. This is analogous to the fact that the exponential of a complex number is always nonzero. The matrix exponential then gives us a map from the space of all n×n matrices to the general linear group, i.e. the group of all non-singular matrices. In fact, this map is surjective which means that every non-singular matrix can be written as the exponential of some other matrix (for this, it is essential to consider the field C of complex numbers and not R). The matrix logarithm gives an inverse to this map. For any two matrices X and Y, we have

求矩阵的基本运算

求矩阵的基本运算 #include #include void jiafa() { int m,n; float a[20][20],b[20][20],c[20][20]; int i,j; printf("请输入矩阵行数:"); scanf("%d",&m); printf("请输入矩阵列数:"); scanf("%d",&n); printf("请输入第一个矩阵:"); for(i=0; i

矩阵的各种运算详解.

一、矩阵的线性运算 定义1 设有两个矩阵和,矩阵与的和记作, 规定为 注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵. 设矩阵记 , 称为矩阵的负矩阵, 显然有 . 由此规定矩阵的减法为 . 定义2 数与矩阵A的乘积记作或, 规定为 数与矩阵的乘积运算称为数乘运算. 矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律:设都是同型矩阵,是常数,则 (1) (2) ; (3) (4) (5) (6) (7) (8) 注:在数学中,把满足上述八条规律的运算称为线性运算. 二、矩阵的相乘 定义3设 矩阵与矩阵的乘积记作, 规定为

其中,( 记号常读作左乘或右乘. 注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算. 若,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即 . 矩阵的乘法满足下列运算规律(假定运算都是可行的): (1) (2) (3) (4) 注: 矩阵的乘法一般不满足交换律, 即 例如, 设则 而 于是且 从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出 或 此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设 则 但 定义4如果两矩阵相乘, 有 则称矩阵A与矩阵B可交换.简称A与B可换. 注:对于单位矩阵, 容易证明 或简写成 可见单位矩阵在矩阵的乘法中的作用类似于数1. 更进一步我们有 命题1设是一个n阶矩阵,则是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。

命题2设均为n阶矩阵,则下列命题等价: (1) (2) (3) (4) 三、线性方程组的矩阵表示 设有线性方程组 若记 则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式: (2) 其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程. 如果是方程组(1)的解, 记列矩阵 则 , 这时也称是矩阵方程(2)的解; 反之, 如果列矩阵是矩阵方程(2)的解, 即有矩阵等式 成立, 则即也是线性方程组(1)的解. 这样, 对线性方程组(1)的讨论便等价于对矩阵方程(2)的讨论. 特别地, 齐次线性方程组可以表示为 将线性方程组写成矩阵方程的形式,不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,这给线性方程组的讨论带来很大的便利. 四、矩阵的转置 定义6把矩阵的行换成同序数的列得到的新矩阵, 称为的转置矩阵, 记作(或 ). 即若 则

MATLAB矩阵运算基础练习题

第2章 MATLAB 矩阵运算基础 2.1 在MA TLAB 中如何建立矩阵?? ?? ??194375,并将其赋予变量a ? 2.2 请产生一个100*5的矩阵,矩阵的每一行都是[1 2 3 4 5] 2.3产生一个1x10的随机矩阵,大小位于(-5 5) 2.2 有几种建立矩阵的方法?各有什么优点? 可以用四种方法建立矩阵: ①直接输入法,如a=[2 5 7 3],优点是输入方法方便简捷; ②通过M 文件建立矩阵,该方法适用于建立尺寸较大的矩阵,并且易于修改; ③由函数建立,如y=sin(x),可以由MATLAB 的内部函数建立一些特殊矩阵; ④通过数据文件建立,该方法可以调用由其他软件产生数据。 2.3 在进行算术运算时,数组运算和矩阵运算各有什么要求? 进行数组运算的两个数组必须有相同的尺寸。进行矩阵运算的两个矩阵必须满足矩阵运算规则,如矩阵a 与b 相乘(a*b )时必须满足a 的列数等于b 的行数。 2.4 数组运算和矩阵运算的运算符有什么区别? 在加、减运算时数组运算与矩阵运算的运算符相同,乘、除和乘方运算时,在矩阵运算的运算符前加一个点即为数组运算,如a*b 为矩阵乘,a.*b 为数组乘。 2.5 计算矩阵??????????897473535与???? ??????638976242之和,差,积,左除和右除。 2.6 求?? ?? ??+-+-+-+-++=i 44i 93i 49i 67i 23i 57i 41i 72i 53i 84x 的共轭转置。 2.7 计算???? ??=572396a 与??????=864142b 的数组乘积。 2.8 “左除”与“右除”有什么区别? 在通常情况下,左除x=a\b 是a*x=b 的解,右除x=b/a 是x*a=b 的解,一般情况下,a\b ≠b/a 。 2.9 对于B AX =,如果??????????=753467294A ,???? ??????=282637B ,求解X 。 2.10 已知:???? ??????=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。 2.11 ??????-=463521a ,?? ????-=263478b ,观察a 与b 之间的六种关系运算的结果。

数组运算法则

认识一维数组和二维数组。理清概念很重要,不要混淆数组、数组公式。 第一,一维数组和二维数组的定义 单行或单列的数组,我们称为一维数组。 多行多列(含2行2列)的数组是二维数组。 第二,数组和数组公式的区别 数组,就是元素的集合,按行、列进行排列。 数组公式:就是包含有数组运算的公式。ctrl+shift+enter,三键结束,这个过程就是告诉excel请与数组运算的方式来处理本公式,反馈一个信息,就是在公式的外面添加一对花括号。 第三,一维数组和二维数组的运算规律 1、单值x与数组arry运算 执行x与arry中每一个元素分别运算并返回结果,也就是与arry本身行列、尺寸一样的结果。 比如:2*{1,2;3,4;5,6},执行2*1、2*2、2*3……2*6运算,并返回3行2列的二维数组结果{2,4;6,8;10,12},如下图所示: 数组中行和列分别用逗号、分号来间隔。逗号表示行,行之间的关系比较紧密,用逗号分割;列之间,关系相对比较疏远一点,用分号分割。 又比如:"A"&{"B","C"}返回{"AB","AC"}。"A"={"B","A","C"}返回{FALSE,TRUE,FALSE} 2、同向一维数组运算 执行arry1与arry2对应位置的元素分别运算并返回结果。要求arry1与arry2尺寸必须相同,否则多余部分返回#N/A错误。 比如: {1;2;3}*{4;5;6}返回{4;10;18}; {1,2,3,4}*{4,5,6}返回{4,10,18,#N/A},如下图所示: 3、异向一维数组运算 arry1的每一元素与arry2的每一元素分别运算并返回结果,得到两个数组的行数*列数个元素,也就是M行数组与N列数组运算结果为M*N的矩阵数组。 比如:{1;2;3}*{4,5,6,7,8},执行1*4、1*5、……1*8、2*4、2*5……3*8,返回{4,5,6,7,8;8,10,12,14,16;12,15,18,21,24}

实验三 用MATLAB计算矩阵指数函数

实验三 用MATLAB 计算矩阵指数函数 1、实验设备 MATLAB 软件 2、实验目的 ① 学习线性定常系统齐次状态方程的解理论、掌握矩阵指数函数的计算方法; ② 通过编程、上机调试,计算矩阵指数函数。 3、实验原理说明 矩阵指数函数的计算问题有两类: ① 数值计算,即给定矩阵A 和具体的时间t 的值,计算矩阵指数e At 的值; ② 符号计算,即在给定矩阵A 下,计算矩阵指数函数e At 的封闭的(解析的)矩阵函数表达式。 数值计算问题可由基本的Matlab 函数完成,符号计算问题则需要用到Matlab 的符号工具箱。 4、实验步骤 ① 根据所给系统矩阵A ,依据线性定常系统齐次状态方程的解理论,采用MATLAB 编程。 ② 在MATLAB 界面下调试程序,并检查是否运行正确。在Matlab 中有3个计算矩阵指数e At 的函数,分别是expmdemo1(),expmdemo2()和expmdemo3()。 习题1:试在Matlab 中计算矩阵A 在t=0.3时的矩阵指数e At 的值。 (1) 将其输入到MATLAB 工作空间; (2) 计算出在t=0.3时矩阵指数函数。 Matlab 程序如下: A=[0 1; -2 -3]; t=0.3; eAt=expm(A*t) 0123A ??=??--??

习题2:试在Matlab 中计算矩阵A 的矩阵指数e At 。 (1) 将其输入到MATLAB 工作空间; (2) 计算出在时刻t 时矩阵指数函数。 Matlab 程序如下: syms t ; A=[0 1;-2 -3]; eAt=expm(A*t) 0123A ?? =??--??

Matlab常用函数数组及矩阵的基本运算

实验一 Matlab 常用函数、数组及矩阵的基本运算 一、 实验目的 1. 了解Matlab7.0软件工作界面结构和基本操作; 2. 掌握矩阵的表示方法及Matlab 常用函数; 3. 掌握数组及矩阵的基本运算. 二、 实验内容 1. 了解命令窗口(command widow)和变量空间(workspace)的作用,掌握清 除命令窗口(clc )和变量空间(clear)的方法.掌握查询函数(help)的方法. 2. 掌握保存和加载变量的方法. 加载变量:load 变量名. 3. 掌握掌握矩阵的表示方法: 给a,b,c 赋如下数据: ]6,46,23,4,2,6,3,8,0,1[,356838241248 7,278744125431-=??????????--=??????????=c b a 4. 求a+b,a*b,a.*b,a/b,a./b,a^2,a.^2的结果. 5. 将str1=electronic; str2 = information; str3 = engineering; 三个字符串连接 在一起成str = electronic information engineering. 6. 求矩阵a 的逆矩阵a -1,行列式计算。 (inv(a),det(a)) 三、 实验要求 1.上机操作,熟练掌握清除命令窗口和变量空间的方法、查询变量的方法、加载变量的方法。 2.第2道题请写出步骤。 3.对实验内容中第3-6项,写出指令,上机运行. 记录运行结果(数据)。 4.写出实验报告。 四、 实验结果 2. 用save 函数,可以将工作空间的变量保存成txt 文件或mat 文件等. 比如: save peng.mat p j 就是将工作空间中的p 和j 变量保存在peng.mat 中. 用load 函数,可以将数据读入到matlab 的工作空间中. 比如:load peng.mat 就是将peng.mat 中的所有变量读入matlab 工作空间中。

矩阵的定义及其运算规则

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母 A 、B …来表示。例如一个m 行n 列的矩阵可以简记为: ,或 。即: (2-3) 我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此

都相等且均为1,如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)表示矩阵A及B的和,则有: m ×n 式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵的乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则: (1)k(A+B)=kA+kB (2)(k+h)A=kA+hA (3)k(hA)=khA

matlab中的矩阵的基本运算命令

1.1 矩阵的表示 1.2 矩阵运算 1.2.14 特殊运算 1.矩阵对角线元素的抽取 函数diag 格式X = diag(v,k) %以向量v的元素作为矩阵X的第k条对角线元素,当k=0时,v为X的主对角线;当k>0时,v为上方第k条对角线;当k<0时,v为下方第k条对角线。 X = diag(v) %以v为主对角线元素,其余元素为0构成X。 v = diag(X,k) %抽取X的第k条对角线元素构成向量v。k=0:抽取主对角线元素;k>0:抽取上方第k条对角线元素;k<0抽取下方第k条对角线元素。 v = diag(X) %抽取主对角线元素构成向量v。 2.上三角阵和下三角阵的抽取 函数tril %取下三角部分 格式L = tril(X) %抽取X的主对角线的下三角部分构成矩阵L L = tril(X,k) %抽取X的第k条对角线的下三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。函数triu %取上三角部分 格式U = triu(X) %抽取X的主对角线的上三角部分构成矩阵U U = triu(X,k) %抽取X的第k条对角线的上三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。3.矩阵的变维 矩阵的变维有两种方法,即用“:”和函数“reshape”,前者主要针对2个已知维数矩阵之间的变维操作;而后者是对于一个矩阵的操作。 (1)“:”变维 (2)Reshape函数变维 格式 B = reshape(A,m,n) %返回以矩阵A的元素构成的m×n矩阵B B = reshape(A,m,n,p,…) %将矩阵A变维为m×n×p×… B = reshape(A,[m n p…]) %同上 B = reshape(A,siz) %由siz决定变维的大小,元素个数与A中元素个数 相同。 (5)复制和平铺矩阵 函数repmat 格式 B = repmat(A,m,n) %将矩阵A复制m×n块,即B由m×n块A平铺而成。 B = repmat(A,[m n]) %与上面一致 B = repmat(A,[m n p…]) %B由m×n×p×…个A块平铺而成 repmat(A,m,n) %当A是一个数a时,该命令产生一个全由a组成的m×n矩阵。 1.3 矩阵分解 1.3.1 Cholesky分解 函数chol 格式R = chol(X) %如果X为n阶对称正定矩阵,则存在一个实的非奇异上三角阵R,满足R'*R = X;若X非正定,则产生错误信息。 [R,p] = chol(X) %不产生任何错误信息,若X为正定阵,则p=0,R与上相同;若X非正定,则p为正整数,R是有序的上三角阵。 1.3.2 LU分解

矩阵基本性质

矩阵的基本性质 矩阵的第?第列的元素为。我们?或()表?的单位矩阵。 1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…,

(2)矩阵乘法满足的运算法则 a. b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2)

8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4) 9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵

矩阵指数函数的性质与计算

矩阵指数函数的性质与计算PROPERTIES AND CALCULATION OF MATRIX EXPONENTIAL FUNCTION 指导教师: 申请学位级别:学士 论文提交日期:2014年6月 8日

摘要 矩阵函数是矩阵理论的重要组成部分,而矩阵函数中的一个最重要的函数就是矩阵指数函数,它广泛地应用于自控理论和微分方程。本文深入浅出地介绍了矩阵指数函数,并进一步探讨如何借助矩阵指数函数分析相关问题。文章以齐次线性微分方程组求解基解矩阵为出发点引出矩阵指数函数的概念,证明求解矩阵指数函数就是求解齐次线性微分方程组的基解矩阵,然后得到矩阵指数函数的一些基本性质。本文的重点是讨论矩阵指数函数的五种计算方法。其中,前三种方法广泛适用于各种矩阵,虽然计算过程复杂程度不同,但都需要计算矩阵特征值,如遇高阶矩阵或复特征值,则特征值的计算会变得异常麻烦。后两种方法较特殊,虽然缺乏普适性,只能计算特殊矩阵的指数函数,但却避过了特征值计算,简化了运算过程。最后,本文具体阐述矩阵指数函数在微分方程求解中的应用。 关键词:矩阵指数函数;Jordon 标准形;微分方程组

ABSTRACT Matrix function is an important part of the matrix theory. And among the matrix function, there is a special and important function that is matrix exponential function. It has been widely used in automatic control theory and differential equations. This paper introduces profound theories on matrix exponential function in simple language, furthermore, it explores how to use matrix exponential function analysis related issues. Through the basic solution matrix of homogeneous linear differential equations, this paper draws out the concept of matrix exponential function. In this part, the author proves that solving matrix exponential function is to solve the basic solution matrix of the homogeneous linear differential equations. Then, some basic properties of matrix exponential function can be derived. The focus of this paper is on the discussion of five kinds of calculation on matrix exponential function. The first three methods can be applied to general cases. Although each method is different, in complexity, all of them need to compute the matrix eigenvalues. The calculation on high-order matrix or complex eigenvalues will be in trouble frequently. The latter two methods is more special for they can only calculate special matrix exponential function. These methods simplify the operation process instead of calculating eigenvalues, but their shortcomings are obvious. At the final part of this paper, the article expounds the application of

矩阵的基本运算法则

矩阵的基本运算法则 1、矩阵的加法 矩阵加法满足下列运算规律(设A 、B 、C 都是m n ?矩阵,其中m 和n 均为已知的正整数): (1)交换律:+=+A B B A (2)结合律:()()++++A B C =A B C 注意:只有当两个矩阵为同型矩阵(两个矩阵的行数和列数分别相等)时,这两个矩阵才能进行加法运算。 2、数与矩阵相乘 数乘矩阵满足下列运算规律(设A 、B 是m n ?矩阵,λ和μ为数): (1)结合律:()λμλμ=A A (2)分配律:()λμλμ+=+A A A (3)分配律:()λλλ+=+A B A B 注意:矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算。 3、矩阵与矩阵相乘 矩阵与矩阵的乘法不满足交换律、但是满足结合律和分配率(假设运算都是可行的): (1)交换律:≠AB BA (不满足) (2)结合律:()()=AB C A BC (3)结合律:()()()λλλλ==其中为数AB A B A B (4)分配律:()(),+=++=+A B C AB AC B C A BA CA 4、矩阵的转置 矩阵的转置满足下述运算规律(假设运算都是可行的,符号()T g 表示转置): (1)()T T =A A

(2)()T T T +=+A B A B (3)()T T λλ=A A (4)()T T T =AB B A 5、方阵的行列式 由A 确定A 这个运算满足下述运算法则(设A 、B 是n 阶方阵,λ为数): (1)T =A A (2)n λλ=A A (3)=AB A B 6、共轭矩阵 共轭矩阵满足下述运算法则(设A 、B 是复矩阵,λ为复数,且运算都是可行的): (1)+=+A B A B (2)λλ=A A (3)=AB AB 7、逆矩阵 方阵的逆矩阵满足下述运算规律: (1)若A 可逆,则1-A 亦可逆,且()11--=A A (2)若A 可逆,数0λ≠,则λA 可逆,且()111 λλ--=A A (3)若A 、B 为同阶矩阵且均可逆,则AB 亦可逆,且()111---=AB B A 参考文献: 【1】线性代数(第五版),同济大学

矩阵的基本运算

矩阵的基本运算 (摘自:华东师范大学数学系;https://www.sodocs.net/doc/5f15135775.html,/)§3.1 加和减 §3.2矩阵乘法 §3.2.1 矩阵的普通乘法 §3.2.2 矩阵的Kronecker乘法 §3.3 矩阵除法 §3.4矩阵乘方 §3.5 矩阵的超越函数 §3.6数组运算 §3.6.1数组的加和减 §3.6.2数组的乘和除 §3.6.3 数组乘方 §3.7 矩阵函数 §3.7.1三角分解 §3.7.2正交变换 §3.7.3奇异值分解 §3.7.4 特征值分解 §3.7.5秩 §3.1 加和减

如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差.如果矩阵A和B的维数不匹配,Matlab会给出相应的错误提示信息.如: A= B= 1 2 3 1 4 7 4 5 6 2 5 8 7 8 0 3 6 0 C =A+B返回: C = 2 6 10 6 10 14 10 14 0 如果运算对象是个标量(即1×1矩阵),可和其它矩阵进行加减运算.例如: x= -1 y=x-1= -2 0 -1 2 1 §3.2矩阵乘法 Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍. §3.2.1 矩阵的普通乘法 矩阵乘法用“ * ”符号表示,当A矩阵列数与B矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同. 如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B, 结果为 C=×==

即Matlab返回: C = 19 22 43 50 如果A或B是标量,则A*B返回标量A(或B)乘上矩阵B(或A)的每一个元素所得的矩阵. §3.2.2 矩阵的Kronecker乘法 对n×m阶矩阵A和p×q阶矩阵B,A和B的Kronecher乘法运算可定义为: 由上面的式子可以看出,Kronecker乘积A B表示矩阵A的所有元素与 B之间的乘积组合而成的较大的矩阵,B A则完全类似.A B和B A均为np ×mq矩阵,但一般情况下A B B A.和普通矩阵的乘法不同,Kronecker乘 法并不要求两个被乘矩阵满足任何维数匹配方面的要求.Kronecker乘法的Matlab命令为C=kron(A,B),例如给定两个矩阵A和B: A= B= 则由以下命令可以求出A和B的Kronecker乘积C: A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; C=kron(A,B) C = 1 3 2 2 6 4 2 4 6 4 8 12 3 9 6 4 12 8

matlab中矩阵基本运算命令.docx

1.1矩阵的表示 1.2矩阵运算 1.2.14特殊运算 1.矩阵对角线元素的抽取 函数diag 格式X = diag(v,k)% 以向量 v 的元素作为矩阵 X 的第 k 条对角线元素,当 k=0 时, v 为 X 的主对角线;当 k>0 时,v 为上方第 k 条对角线;当 k<0 时, v 为下方第 k 条对角线。 X = diag(v)% 以 v 为主对角线元素,其余元素为 0 构成 X。 v = diag(X,k)%抽取 X 的第 k 条对角线元素构成向量 v。k=0:抽取主对角线元素; k>0 :抽取上方第 k 条对角线元素;k<0 抽取下方第 k 条对角线元素。 v = diag(X)% 抽取主对角线元素构成向量 v。 2.上三角阵和下三角阵的抽取 函数tril% 取下三角部分 格式L = tril(X)%抽取 X 的主对角线的下三角部分构成矩阵L L = tril(X,k)% 抽取 X 的第 k 条对角线的下三角部分; k=0 为主对角线; k>0 为主对角线以上; k<0 为主对角线以下。 函数triu% 取上三角部分 格式U = triu(X)%抽取 X 的主对角线的上三角部分构成矩阵U U = triu(X,k)% 抽取 X 的第 k 条对角线的上三角部分; k=0 为主对角线; k>0 为主对角线以上; k<0 为主对角线以下。3.矩阵的变维 矩阵的变维有两种方法,即用“:”和函数“reshape,”前者主要针对 2 个已知维数矩阵之间的变维操作;而后者是对 于一个矩阵的操作。 (1)“:”变维 (2)Reshape 函数变维 格式 B = reshape(A,m,n)%返回以矩阵 A 的元素构成的 m×n 矩阵 B B = reshape(A,m,n,p,)% 将矩阵 A 变维为 m×n×p× B = reshape(A,[m n p])%同上 B = reshape(A,siz)% 由 siz 决定变维的大小,元素个数与 A 中元素个数 相同。 (5)复制和平铺矩阵 函数repmat 格式 B = repmat(A,m,n)% 将矩阵 A 复制 m×n 块,即 B 由 m×n 块 A 平铺而成。 B = repmat(A,[m n])%与上面一致 B = repmat(A,[m n p]) %B 由 m×n×p× 个 A 块平铺而成 repmat(A,m,n)%当 A 是一个数 a 时,该命令产生一个全由 a 组成的 m×n 矩阵。 1.3矩阵分解 1.3.1Cholesky 分解 函数chol 格式R = chol(X)% 如果 X 为 n 阶对称正定矩阵,则存在一个实的非奇异上三角阵R,满足 R'*R = X ;若 X 非正定,则产生错误信息。 [R,p] = chol(X)% 不产生任何错误信息,若X 为正定阵,则p=0 ,R 与上相同;若X 非正定,则p 为正整数, R 是有序的上三角阵。 1.3.2 LU 分解

李群方法里的矩阵指数计算_张林华

2008年7月重庆师范大学学报(自然科学版) J u l y 2008第25卷第3期 J o u r n a l o f C h o n g q i n g N o r m a l U n i v e r s i t y (N a t u r a l S c i e n c e ) V o l .25N o .3 李群方法里的矩阵指数计算 * 张林华1 ,吴 永 2 (1.重庆师范大学数学与计算机科学学院,重庆400047;2.重庆工学院数理学院,重庆400050) 摘 要:矩阵指数计算与力学计算中的动力学问题、最优控制的计算问题等密切相关,是数值代数里研究得最为广泛的课题之一。目前虽有以P S S A 和P I M 为代表的经典算法以及其最佳运算量的估计,但远未令人满意。近年来在国外流行的李群方法,由于具有重大的科学价值,在李群算法发展的需求下,李群、李代数里的指数计算,也成为了研究的热点。由于它要求逼近计算在李群与李代数里进行,一般不能直接使用经典的方法。因此,它比经典的指数逼近计算更为困难。本文系统地阐述了目前流行的几种主要逼近算法,对这些算法进行了详细的评估,并提出了一些有待深入研究的问题。 关键词:非线性度李群方法;李理论;矩阵指数;对称空间;李三系中图分类号:O 241.81;O 152.5 文献标识码:A 文章编号:1672-6693(2008)03-0017-04 矩阵指数逼近计算是数值代数里最为古老且被研究最为广泛的课题之一,19种令人犹豫不决的算 法[1] ,以及许多针对具体问题的有效的算法,远远未令人满意,并且还留下许多公开的问题。由于在理论与应用上具有巨大价值,始终吸引不少研究者,如我国钟万勰院士,利用2-幂逼近方法,发现了目前在动力学中广泛使用的精细积分算法。 本文主要就当前比较流行,并在控制论、机器人、材料科学、相对论、电动力学、分子动力学和量子力学等有重要应用的李群算法里矩阵指数逼近问题进行分析讨论。这里的逼近不同于经典的逼近方法,它要求矩阵属于某个李代数g g l (n ,C )-全体n 阶复矩阵李代数,而相应的指数、指数逼近属于李代数对应的李群G G L (n ,C )-全体n 阶可逆复矩阵群,所以理论上难度更大。 1理论背景 先简要介绍李理论与微分流形的一些基本概念,详细内容可参考文献[2]。一般地,设任意F ∈X (M )是流形M 上向量场,F ∶M ※T M =∪p ∈M T p M ,这里F (p )∈T p M (p 点的切空间),F 在点p ∈M 的积分曲线是指映射y :R ※M ,y (0)=p ∈M ,并且d d t y =F (y ),y (0)=p ∈M ,等价于F (y )∈T y M ,y ∈M 。 定义1 流形M 上的微分方程,是指满足下列条件的方程 y ′=F (y ),t ≥0,y (0)=p ∈M (1) 其中F ∈X (M ),F 的流是指映射ψF ,t :M ※M ,使得对 t ∈R ,y (t )=ψF ,t (y (0))=ψF ,t (P )是微分方程(1)保持在M 上的解,并称微分方程(1)在M 上变化,有 d ψF ,t (y )d t t =0=F (y )。经典的数值方法直接应用到(1)式常常会产生漂移。 为了便于应用,很多时侯需假设有下列流形上微分方程的一般表示方法 [2] 。 假设 设y ′=F (t ,y )设是M 上的方程(一般情形),存在李代数g ,函数f :R×M ※g ,李作用λ:g ×M ※M ,李代数同态映射λ*:g ※X (M ),使对y (t )∈M 有 y ′=(λ*f (t ,y ))(y ),y (0)=p (2) 而λ*(X )(y )=d d t λ(t X ,y ) t =0。设G 是李群,g 是G 的李代数,e x p :g ※G 定义映射使e x p (a )=∑∞ i =0a i i ! ∈G ,称为指数映射。关于李群、李代数的伴随映射A d 与a d 有关系 * 收稿日期:2008-03-03 资助项目:重庆市教委基金项目(N o .K J 080805);重庆市自然科学基金项目(N o .C S T C 2007B B 2411);重庆师范大学基金项目(N o . 07X L B 036) 作者简介:张林华(1966-),男,副教授,博士,研究方向为代数群论和编码密码学。

相关主题