搜档网
当前位置:搜档网 › 层次分析法具体应用与实例

层次分析法具体应用与实例

层次分析法具体应用与实例
层次分析法具体应用与实例

层次分析法步骤与实例

1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.

2次分析法的步骤:

找准各因素之间的隶属度

关系建立递阶层次结构

构造判断矩阵(成对比较阵)

并赋值

层次单排序(计算权向量)与检验

(一致性检验)

层次总排序(组合权向量)与检验

(一致性检验)

结果分析

3以一个具体案例进行说明:

【案例分析】市政工程项目建设决策:层次分析法问题提出

市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经

济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层

次分析法解决。

【案例分析】市政工程项目进行决策:建立递阶层次结构

在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综

合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互

关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以

有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作

为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A、 B、 C、 D。。。代表不同层次,同一层次从左到右用 1、 2、 3、 4。。。代表不同因素。这样构成的递阶层次结构如下图。

目标层 A

合理建设市政工程,使综合效益最高(A)

准则层 B

经济效益 (B1) 社会效益 (B2) 环境效益 (B3)

准则层 C 直接经间接带方便日方便假减少环改善城

济效益动效益常出行日出行境污染市面貌

(C1)(C2)(C3)(C4)(C5)(C6)

措施层 D

建高速路 (D1) 建地铁 (D2)

图1 递阶层次结构示意图

2.构造判断矩阵(成对比较阵)并赋值

根据递阶层次结构就能很容易地构造判断矩阵。

构造判断矩阵的方法是:每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。

重要的是填写判断矩阵。填写判断矩阵的方法有:

大多采取的方法是:向填写人(专家)反复询问:针对判断矩阵的准则,其中两个元素两两比较哪个重要,重要多少,对重要性程度按1-9 赋值(重要性标度值见下表)。

重要性标度表 1 重要性标度含义表含义

1表示两个元素相比,具有同等重要性

3表示两个元素相比,前者比后者稍重要

5表示两个元素相比,前者比后者明显重要7表示两个元素相比,前者比后者强烈重要9表示两个元素相比,前者比后者极端重要

2,4,6,8

倒数表示上述判断的中间值

若元素 I 与元素 j 的重要性之比为

aij

,

与元素 I 的重要性之比为 aji =1/a ij

则元素j

设填写后的判断矩阵为A=(aij ) n×n ,判断矩阵具有如下性质:

(1) a i

j

〉0

(2) a j

i

=1/ a

ji

(3)

a

ii =1

根据上面性质,判断矩阵具有对称性,因此在填写时,通常先填写aii =1 部分,然后再仅需判断及填写上三角形或下三角形的n(n-1)/2 个元素就可

以了。

在特殊情况下,判断矩阵可以具有传递性,即满足等式:aij *a jk =aik 当上式对判断矩阵所有元素都成立时,则称该判断矩阵为一致性矩阵。

【案例分析】市政工程项目建设决策:构造判断矩阵并请专家填写

接前例,征求专家意见,填写后的判断矩阵如下:

表 2 判断矩阵表

A B1 B2 B3B1 C1C2B2 C3C4B3 C5C6 B1 1 1/3 1/3 C1 11C3 13C5 13 B2 11C2 1C4 1C6 1 B3 1

C1 D1 D2 C2 D1D2C3 D1D2C4 D1D2 D1 1 5D1 13D1 11/5 D1 17 D2 1D2 1D2 1D2 1

C5 D1 D2 C6 D1D2

D1 1 1/5 D1 11/3

D2 1D2 1

3.层次单排序(计算权向量)与检验(一致性检验)

对于专家填写后的判断矩阵,利用一定数学方法进行层次排序。

层次单排序是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上是计算权向量。计算权向量有特征根法、和法、根法、幂法等,这里简要介绍和法。

和法的原理是,对于一致性判断矩阵,每一列归一化后就是相应的权重。

对于非一致性判断矩阵,每一列归一化后近似其相应的权重,在对这 n 个列向量求取算术

平均值作为最后的权重。具体的公式是:

n

Wi = 1∑n aij

n j=1

∑a

kl

k= 1

需要注意的是,在层层排序中,要对判断矩阵进行一致性检验。

在特殊情况下,判断矩阵可以具有传递性和一致性。一般情况下,并不要求判断矩阵严格满足这一性质。但从人类认识规律看,一个正确的判断矩

阵重要性排序是有一定逻辑规律的,例如若 A 比 B重要, B 又比 C 重要,则从逻辑上

讲, A 应该比 C明显重要,若两两比较时出现 A 比 C 重要的结果,则该判断矩阵违反

了一致性准则,在逻辑上是不合理的。

因此在实际中要求判断矩阵满足大体上的一致性,需进行一致性检验。只有通过检验,才能说明判断矩阵在逻辑上是合理的,才能继续对结果进行分析。

一致性检验的步骤如下。

第一步,计算一致性指标 C.I. ( consistency index )

ma

x n

C.I .

1

n

R.I. ( random index )第二步,查表确定相应的平均随机一致性指标

据判断矩阵不同阶数查下表,得到平均随机一致性指标R.I. 。例如,对于 5 阶的判断矩阵,查表得到 R.I.=1.12

表 3 平均随机一致性指标R.I. 表( 1000 次正互反矩阵计算结果)

矩阵阶数1 2 3 4 5 6 7 8

R.I.00 0.520.89 1.12 1.26 1.36 1.41 矩阵阶数910 11 12 13 14 15

R.I. 1.46 1.49 1.52 1.54 1.56 1.58 1.59 第三步,计算一致性比例 C.R. ( consistency ratio )并进行判断

C.R.

C.I .

R.I .

当 C.R.<0.1 时,认为判断矩阵的一致性是可以接受的, C.R.>0.1 时,认为判断矩阵不符合一致性要求,需要对该判断矩阵进行重新修正。

【案例分析】市政工程项目建设决策:计算权向量及检验

上例计算所得的权向量及检验结果见下:

表 4 层次计算权向量及检验结果表

A 单( 总) 排序权值 B1 单排序权值 B2 单排序权值 B3 单排序权值 B1 0.1429 C1 0.5000 C3 0.7500 C5 0.7500 B2 0.4286 C2 0.5000 C4 0.2500 C6 0.2500 B3 0.4286 CR

0.0000

CR

0.0000

CR

0.0000

CR 0.0000

C1 单排序权值 C2 单排序权值 C3 单排序权值 C4 单排序权值 D1 0.8333 D1 0.7500 D1 0.1667 D1 0.8750 D2 0.1667 D2 0.2500 D2 0.8333 D2 0.1250 CR 0.0000 CR 0.0000 CR

0.0000

CR

0.0000 C5 单排序权值 C6 单排序权值 D1 0.1667 D1 0.2500 D2 0.8333 D2 0.7500

CR

0.0000

CR 0.0000

可以看出,所有单排序的 C.R.<0.1 ,认为每个判断矩阵的一致性都是可以接受

的。

4. 层次总排序(组合权向量)与检验(一致性检验)

总排序是指每一个判断矩阵各因素针对目标层(最上层)的相对权重。

这一权重的计算采用从上而下的方法,逐层合成。

很明显,第二层的单排序结果就是总排序结果。假定已经算出第 k-1 层

m 个元素相对于总目标的权重 (k-1) (k -1) (k-1) (k-1) ) T

w =(w1 ,w2 , ?,wm ,第 k 层 n 个元素

对于上一层(第 k 层)第 j 个元素的单排序权重是 pj (k)

=(p 1j (k)

,p 2j (k) , ?,p nj (k) ) T

(k ) (k ) (k) (k )

), 表示第 k 层 其中不受 j 支配的元素的权重为零。令 P =(p 1 ,p 2 , ?,p

n

元素对第 k-1 层个元素的排序,则第 k 层元素对于总目标的总排序为:

(k) (k ) (k ) , ? (k ) T (

k ) w (k-1)

w =(w1 ,w2 ,wn ) = p wi

(k) m (k ) wj ( k 1) I=1,2, ? ,n

pi j j 1

同样,也需要对总排序结果进行一致性检验。

假定已经算出针对第 k-1 层第 j 个元素为准则的 C.I. j (k)

、R.I. j (k)

和 C.R. j (k)

, j=1,2, ?,m, 则第 k 层的综合检验指标 C.I. (k ) =(C.I. (k) ,C.I. (k ) , ? , C.I. (k ) (k-1)

j 1 2 m )w

R.I. (k ) =(R.I. (k) ,R.I. (k ) , ? , R.I. (k ) (k-1) j 1 2 m )w

C.R.( k) C.I .(k

)

R.I .(k

)

当 C.R. (k) <0.1 时,认为判断矩阵的整体一致性是可以接受的。

【案例分析】市政工程项目建设决策:层次总排序及检验

上例层次总排序及检验结果见下:

表 5 C 层次总排序 (CR = 0.0000) 表

C1 C2 C3 C4 C5 C6 0.0714

0.0714

0.3214

0.1071

0.3214

0.1071

表 6 D 层次总排序 (CR = 0.0000) D1 D2 0.3408

0.6592

可以看出,总排序的 C.R.<0.1 ,认为判断矩阵的整体一致性是可以接受的

5. 结果分析

通过对排序结果的分析,得出最后的决策方案。 【案例分析】市政工程项目建设决策:结果分析

从方案层总排序的结果看,建地铁( D2)的权重( 0.6592 )远远大于建高速路( D1)

的权重( 0.3408 ),因此,最终的决策方案是建地铁。

根据层次排序过程分析决策思路。

对于准则层 B 的 3 个因子,直接经济效益 ( B1)的权重最低 (0.1429 ),社会效益

(B2)和环境效益( B3)的权重都比较高(皆为 0.4286 ),说明在决策中比较看重社会效益和环境

效益。

对于不看重的经济效益, 其影响的两个因子直接经济效益 ( C1)、间接带动效益( C2) 单排序权重都是建高速路远远大于建地铁, 对于比较看重的社会效益和环境效益, 其影响的 四个因子中有三个因子的单排序权重都是建地铁远远大于建高速路, 由此可以推出, 建地铁 方案由于社会效益和环境效益较为突出,权重也会相对突出。

从准则层 C 总排序结果也可以看出,方便日常出行( C3)、减少环境污染( C 5)是权 重值较大的,而如果单独考虑这两个因素,方案排序都是建地铁远远大于建高速路。

由此我们可以分析出决策思路, 即决策比较看重的是社会效益和环境效益, 不太看重

经济效益, 因此对于具体因子,

方便日常出行和减

少环境污染成为主要考虑因素, 对于这两

个因素,都是建地铁方案更佳,由此,最终的方案选择建地铁也就顺理成章了。 4 优缺点

优点:( 1)系统性:层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。

( 2)实用性: 层次分析把定性和定量方法结合起来, 能处理许多许多用传统的最优化技术无法着手的实际问题, 应用范围很广。 同时,这种方法将决策者和决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策者的了解和掌握。

( 3)简洁性:具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,并且所得的结果简单明确,容易为决策者了解和掌握。

缺点: 囿旧:只能从原有方案中选优,不能生成新方案;粗略:它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;主观:从建立层次结构模型到给出成对比较矩阵,

人的主观因素的作用很大, 这就使得决策结果可能难以为众人接受。 当然,采取专家群体判断的办法是克服这个缺点的一种途径。 应用范围

5 应用范围:管理信息系统评价、横渡江河海峡的抉择、科技成果的综合评价、工作选择、国家实力分析、选择旅游景点的问题、选择升学志愿等多目标多层次的综合评价问题。

AHP层次分析法 实例

刘永祥 20060549 06级工商5班 一、用AHP 分析法解答“公司从联想、华硕、同方三个品牌中选择一家,订购价位在5000元的台式机”的问题。用到的五个相关属性是:CPU 、内存、硬盘、电源、主板,分别用P1、P2、P3、P4、P5来表示。 解: 1

2、求出目标层的权重估计 用“和积法”计算其最大特征向量 判断矩阵B : 3 8 7.3 15 3.3 对向量W=(W 1、W 2、W 3、W 4、W 5)t 归一化处理 1 i i n i i W W W == ∑(i=1,2,……n) W t = (0.35,0.14,0.14,0.09,0.27) W=(W 1 、W 2、W 3、W 4、W 5)T =(0.35,0.14,0.14,0.09,0.27) T (BW)= max max 1 ()n i i i BW nW λ==∑ =1.19/5*0.35+0.8/5*0.14+0.8/5*0.14+0.48/5*0.09+1.45/5*0.27=5.11 C.I. = ( λmax -N) / (N-1) = (5.11-5) / (5-1) =0.03 C.R. =0.03/1.12=0.02 =

3、求出方案层对目标层的最大特征向量(同2),求得: (W11W21W31) = (0.54,0.16,0.30) (W12W22W23) = (0.30,0.10,0.60) (W13W23W33) = (0.63,0.26,0.11) (W14W24W34) = (0.22,0.67,0.11) (W15W25W35) = (0.30,0.60,0.10) 4、求得三家公司的总得分: 甲的得分=W i*W i1 =0.35*0.54+0.14*0.3+0.14*0.63+0.09*0.22+0.27*0.3=0.42 乙的得分=W i*W i2 =0.35*0.16+0.14*0.1+0.14*0.26+0.09*0.67+0.27*0.6=0.33 丙的得分=W i*W i3 =0.35*0.30+0.14*0.6+0.14*0.11+0.09*0.11+0.27*0.1=0.24 所以应该选择甲(联想)公司进行电脑订购。

层次分析法案例

层次分析法的应用 层次分析法由美国著名运筹学家萨蒂于1982年提出,它综合了人们主观判断,是一种简明、实用的定性分析与定量分析相结合的系统分析与评价的方法。目前,该方法在国内已得到广泛的推广应用,广泛应用于能源问题分析、科技成果评比、地区经济发展方案比较,尤其是投入产出分析、资源分配、方案选择及评比等方面。它既是一种系统分析的好方法,也是一种新的、简洁的、实用的决策方法。 层次分析法的基本原理 人们在日常生活中经常要从一堆同样大小的物品中挑选出最重的物品。这时,一般是利用两两比较的方法来达到目的。假设有n 个物品,其真实重量用w 1,w 2 ,…表示。要想知道w 1 ,w 2 ,…的值, 最简单的就是用秤称出它们的重量,但如果没有秤,可以将几个物品两两比较,得到它们的重量比矩阵A。 如果用物品重量向量[w 1,w 2 ,…]T右乘矩阵A,则有:

由上式可知,n是A的特征值,W是A的特征向量。根据矩阵理论,n是矩阵A的唯一非零解,也是最大的特征值。这就提示我们,可以利用求物品重量比判断矩阵的特征向量的方法来求得物品真实的重量向量W。从而确定最重的物品。 将上述n个物品代表n个指标(要素),物品的重量向量就表示各指标(要素)的相对重要性向量,即权重向量;可以通过两两因素的比较,建立判断矩阵,再求出其特征向量就可确定哪个因素最重要。依此类推,如果n个物品代表n个方案,按照这种方法,就可以确定哪个方案最有价值。 应用层次分析法进行系统评价的主要步骤如下: (1)将复杂问题所涉及的因素分成若干层次,建立多级递阶的层次结构模型(目标层、判断层、方案层)。 (2)标度及描述。同一层次任意两因素进行重要性比较时,对它们的重要性之比做出判断,给予量化。 (3)对同属一层次的各要素以上一级的要素为准则进行两两比较,根据评价尺度确定其相对重要度,据此构建判断矩阵A。 (4)计算判断矩阵的特征向量,以此确定各层要素的相对重要度(权重)。 (5)最后通过综合重要度(权重)的计算,按照最大权重原则,确定最优方案。 具体案例: 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区

层次分析法步骤介绍

层次分析法整个计算过程包括以下五个部分。 (1)建立递阶层次结构 应用AHP解决实际问题,首先明确目标;接下来分析影响目标决策的各个因素,并将它们之间的关系条理化、层次化;最后,用线将各个层次、各个因素间的关系连接起来就构成了递阶层次结构。[25] 通常,递阶层次结构包括以下三个基本层次: 1.目标层:通过分析,明确目标就是什么,将其作为最高层的元素,必须就是唯一的, 如:选择最合适的供应商 2.准则层:即中间层,元素包含所有可能影响目标实现的准则,且会随着问题的复杂 程度增多。这时,需要详细分析各准则元素间的相互关系(就是同级关系还就是隶属关系)。如果就是隶属关系,则需要构建子准则层甚至更下一层准则。 3.措施层:即方案层。分析解决问题的方案有哪些,并将其作为最底层因素。 (2)构造判断矩阵并赋值 1.构造判断矩阵:将每一个具有向下隶属关系的元素作为判断矩阵的第一个元素(位 于左上角),隶属于它的各个元素依次排列在其后的第一行与第一列。 2.填写判断矩阵:最常用的方法就是咨询专家,将两个元素两两比较,按照重要性程 度表赋值(见下表)。 表3 重要性标度含义表 设填写后的判断矩阵为A=(a ij)n×n,判断矩阵具有如下三个性质: 1.a ii=1 2.a ji=1/a ij 3.a ij>0 (3)层次单排序与检验 1.层次单排序 利用数学方法将专家填写后的判断矩阵进行层次排序。层次单排序就是将每一个因素对于其准则的重要性进行排序,实际就就是计算权向量。计算权向量有特征根法、与法等,以下详细介绍特征根法的计算方法。 A.计算判断矩阵每一行元素的乘积

∏==n j ij i a M 1 (3、2) 式中: M i 第i 行各元素的乘积 a ij 第i 个元素与第j 个元素的关系比值

层次分析法实例与步骤

层次分析法实例与步骤 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: *目标层(最高层):指问题的预定目标; *准则层(中间层):指影响目标实现的准则; *措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

层次分析法的应用实例

第二节 层次分析法的应用实例 层次分析法在解决定量与定性复杂问题时,由于方法的简单性、直观性,同时在解决各种领域的实际问题时又显示其有效性和可行性,因而深受广大工程技术人员和应用数学工作者的欢迎而被广泛采用。下面我们举例说明它的实用性。 设某港务局要改善一条河道的过河运输条件,要确定是否建立桥梁或隧道以代替现在的轮渡。 此问题可得到两个层次结构:过河效益层次结构和过河代价层次结构;由图5-3(a)和(b)分别表示。 例 过河的代价与效益分析。 (a) 过河效益层次结构 (b) 过河代价层次结构 图5-3 过河的效益与代价层次结构图 过河的效益 A 过河的效益 2B 经济效益 1B 过河的效益 3B 隧 道 2D 桥 梁 1D 渡 船 3D 美化 11 C 进出方便 10 C 舒适 9 C 自豪感 8 C 交往沟通 7C 安全可靠 6 C 建筑就业 5 C 当地商业4C 岸间商业3C 收入2C 节省时间1 C 过河的代价 A 社会代价 2B 经济代价 1B 环境代价 3B 隧 道 2D 桥 梁 1D 渡 船 3D 对生态的污染 9 C 对水的污染 8 C 汽车的排放物 7 C 居民搬迁 6 C 交往拥挤 5C 安全可靠 4 C 冲击渡船业 3 C 操作维护 2 C 投入资金 1 C

在过河效益层次结构中,对影响渡河的经济因素来说桥梁或隧道具有明显的优越性。一种是节省时间带来的效益,另一种是由于交通量的增加,可使运货增加,这就增加了地方政府的财政收入。交通的发达又将引起岸间商业的繁荣,从而有助于本地商业的发展;同时建筑施工任务又创造了大量的就业机会。以上这些效益一般都可以进行数量计算,其判断矩阵可以由货币效益直接比较而得。但社会效益和环境效益则难以用货币表示,此时就用两两比较的方法进行。从整体看,桥梁和隧道比轮渡更安全,更有助于旅行和交往,也可增加市民的自豪感。从环境效益看,桥梁和隧道可以给人们更大的舒适性、方便性,但渡船更具有美感。由此得到关于效益的各个判断矩阵如表5-9—表5-23所示。 表5-9 表5-10 表5-11 表5-12 表5-13 表5-14

层次分析法实例

层次分析法应用实例 问题描述:通讯交流在当今社会显得尤其重要,手机便是一个例子,现在每个人手里都有至少一部手机。但如今生产手机的厂家越来越多,品种五花八门,如何选购一款适合自己的手机这个问题困扰了许多人。 目标:选购一款合适的手机 准则:选择手机的标准大体可以分成四个:实用性,功能性,外观,价格。 方案:由于手机厂家有几十家,我们不妨可以将其归类:○1欧美(iphone);○2亚洲(索爱);○3国产(华为). 解决步骤: 1.建立递阶层次结构模型 图1 选购手机层次结构图 2.设置标度 人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。

为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i与要素j相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。 注:aij表示要素i与要素j相对重要度之比,且有下述关系: aij=1/aji ;aii=1;i,j=1,2,…,n 显然,比值越大,则要素i的重要度就越高。 3.构造判断矩阵 A B1 B2 B3 B4 B1 1 3 5 1 B2 1/3 1 3 1/3 B3 1/5 1/3 1 1/5 B4 1 3 5 1 表1 判断矩阵A—B B1 C1 C2 C3 C1 1 1/3 1/5 C2 3 1 1/3 C3 5 3 1 表2 判断矩阵B1—C

B2 C1 C2 C3 C1 1 3 3 C2 1/3 1 1 C3 1/3 1 1 表3 判断矩阵B2—C B3 C1 C2 C3 C1 1 3 6 C2 1/3 1 4 C3 1/6 1/4 1 表4 判断矩阵B3—C B4 C1 C2 C3 C1 1 1/4 1/6 C2 4 1 1/3 C3 6 3 1 表5 判断矩阵B4—C 4.计算各判断矩阵的特征值,特征向量和一致性检验 用求和发计算特征值: ○1将判断矩阵A 按列归一化(即列元素之和为1):bij= aij /Σaij ; ○2将归一化的矩阵按行求和:ci=Σbij (i=1,2,3….n ); ○3将ci 归一化:得到特征向量W=(w1,w2,…wn )T ,wi=ci /Σci , W 即为A 的特征向量的近似值; ○4求特征向量W 对应的最大特征值: 1).1 5 3 1 51131513131311531 = A ,按列归一化后为 38 1514 522 938 1538314122138338514322338539151452293815 2).按行求和并归一化后得()T 389 .0069 .0153 .0389.0=W

层次分析法步骤介绍

层次分析法步骤介绍 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

层次分析法整个计算过程包括以下五个部分。 (1)建立递阶层次结构 应用AHP解决实际问题,首先明确目标;接下来分析影响目标决策的各个因素,并将它们之间的关系条理化、层次化;最后,用线将各个层次、各个因素间的关系连接起来就构成了递阶层次结构。[25] 通常,递阶层次结构包括以下三个基本层次: 1.目标层:通过分析,明确目标是什么,将其作为最高层的元素,必须是唯一的, 如:选择最合适的供应商 2.准则层:即中间层,元素包含所有可能影响目标实现的准则,且会随着问题的复杂 程度增多。这时,需要详细分析各准则元素间的相互关系(是同级关系还是隶属关系)。如果是隶属关系,则需要构建子准则层甚至更下一层准则。 3.措施层:即方案层。分析解决问题的方案有哪些,并将其作为最底层因素。 (2)构造判断矩阵并赋值 1.构造判断矩阵:将每一个具有向下隶属关系的元素作为判断矩阵的第一个元素(位 于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。 2.填写判断矩阵:最常用的方法是咨询专家,将两个元素两两比较,按照重要性程度 表赋值(见下表)。 表3 重要性标度含义表

设填写后的判断矩阵为A=(a ij )n×n ,判断矩阵具有如下三个性质: 1. a ii =1 2. a ji =1/a ij 3. a ij >0 (3) 层次单排序与检验 1. 层次单排序 利用数学方法将专家填写后的判断矩阵进行层次排序。层次单排序是将每一个因素对于其准则的重要性进行排序,实际就是计算权向量。计算权向量有特征根法、和法等,以下详细介绍特征根法的计算方法。 A. 计算判断矩阵每一行元素的乘积 ∏==n j ij i a M 1 式中: M i 第i 行各元素的乘积 a ij 第i 个元素与第j 个元素的关系比值

层次分析法例题94055

。数 学 建 模 作 业 班级:高分子材料与工程 姓名:林志许、朱金波、任宇龙

。 学号:1211020115、1211020126、1211020134 层次分析法 某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示。以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性。1C ,2C ,3C 表示备选的3种品牌的设备。 解题步骤: 1、标度及描述 人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。 为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。 目标层 判断层 方案层 图 设备采购层次结构图

注:a ij 表示要素i与要素j相对重要度之比,且有下述关系: a ij =1/a ji ; a ii =1; i,j=1,2,…,n 显然,比值越大,则要素i的重要度就越高。 2、构建判断矩阵A 判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据。根据结构模型,将图中各因素两两进行判断与比较,构造判断矩阵: ●判断矩阵B A-(即相对于物流系统总目标,判断层各因素相对重要性比较)如表1所示; ●判断矩阵C B- 1(相对功能,各方案的相对重要性比较)如表2所示; ●判断矩阵C B- 2(相对价格,各方案的相对重要性比较)如表3所示; ●判断矩阵C B- 3(相对可维护性,各方案的相对重要性比较)如表4所示。 B A- C B- 1 C B- 3 3、计算各判断矩阵的特征值、特征向量及一致性检验指标 一般来讲,在AHP法中计算判断矩阵的最大特征值与特征向量,必不需

层次分析法实例与步骤(精)讲课教案

层次分析法实例与步 骤(精)

层次分析法实例与步骤 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构

层次分析法的基本步骤和要点

层次分析法的基本步骤和要点 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

层次分析法例题

二、AHP求解 令狐采学 层次分析法(Analytic Hierarchy Process)是一种定量与定性相结合的多目标决策分析法,将决策者的经验给予量化,这在对目标(因素)结构复杂且缺乏必要数据的情况下较为实用。(一)、建立递阶层次结构 目标层:最优生鲜农产品流通模式。 准则层:方案的影响因素有: c自然属性、2c经济价值、3c基础 1 设施、 c政府政策。 5 方案层:设三个方案分别为: A农产品产地一产地批发市场一 1 销地批发市场一消费者、 A农产品产地一产地批发市场一销地 2 批发市场一农贸市场一消费者、 A农业合作社一第三方物流企 3 业一超市一消费者(本文假设农产品的生产地和销地不在同一个地区)。 。

图3—1 递阶层次结构 (二)、构造判断(成对比较)矩阵 所谓判断矩阵昰以矩阵的形式来表述每一层次中各要素相对其上层要素的相对重要程度。为了使各因素之间进行两两比较得到量化的判断矩阵,引入1~9的标度,见表3—1. 表3—1 标度值 目标层: 准则层: 方案层:

为了构造判断矩阵,作者对6个专家进行了咨询,根据专家和作者的经验,四个准则下的两两比较矩阵分别为:

(三)、层次单排序及其一致性检验 层次单排序就是把本层所有要素针对上一层某一要素,排出评比的次序,这种次序以相对的数值大小来表示。 对应于判断矩阵最大特征根λmax 的特征向量,经归一化(使向量中各元素之和等于1)后记为W 。 W 的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。 能否确认层次单排序,需要进行一致性检验,所谓一致性检验是指对A 确定不一致的允许范围。 由于λ连续的依赖于ij a ,则λ比n 大的越多,A 的不一致性越严重。用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用λ―n 数值的大小来衡量 A 的不一致程度。用一致性指标进行检验:max 1 n CI n λ-= -。其中max λ是比较矩阵的最 大特征值,n 是比较矩阵的阶数。CI 的值越小,判断矩阵越接近于完全一致。反之,判断矩阵偏离完全一致的程度越大。 (四)、层次总排序及其一致性检验 同理可计算出判断矩阵 对应的最大特征值与特征向量依次为:

层次分析法的基本步骤和要点

层次分析法的基本步骤与要点 结合一个具体例子,说明层次分析法的基本步骤与要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案就是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即就是多准则决策问题,考虑运用层次分析法解决。 1、建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求就是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些就是主要的准则,有些就是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次与组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该就是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标就是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益与环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

层次分析法在决策中的应用

数学在决策中的应用 ———层次分析法 学习应用数学后,我结合海运学院的相关专业,寻找数学应用的相关领域时,被利用数 学进行决策的层次分析法吸引住了,现在将所学习到的和所想到的做了总结,并将我学习层 次分析法的心得分享一下。 首先简单的介绍一下层次分析法,层次分析法(Analytic Hierarchy Process ,简称AHP) 是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量 分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美 国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络 系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法[1]。 层次分析法是一种定性与定量相结合、系统化的决策方法。它将决策者的主观判断与实 践经验导入模型,并进行量化处理,体现了决策中分析、判断、综合的基本特征。该方法首 先将复杂问题按支配关系分层,然后两两比较每层各因素的相对重要性,最后确定各个因素 相对重要性的顺序,按顺序做出决策。 层次分析法的具体方法和步骤如下。[2] 1. 建立层次结构模型 通过深入分析实际问题,将问题分解成三个层级,即目标层、准则层(要素层)和方案层 , 同一层次的因素对上层因素有影响,同时又支配下层因素。目标层是最高层,通常只有 1 个 因素,最下层通常为方案措施,要素层可以不止一层,当要素过多时( 譬如多于 9 个) , 可以进一步分解出子要素层,并建立关联,见图1。 2. 构造判断(成对比较)矩阵 从第二层开始,把同一层级的因素用成对比较法和一定比较尺度构造判断矩阵 A ,直到 最后一层。 ji j i ij n n ij a a a a A 1,0,)(=>=?,其中i ,j=(1,2,3,……,n ) 矩阵 A 中,aij 表示因素 i 与因素 j 对上一层因素的重要性之比,aij 表示因素j 与因素i 的重要性之比,且aij= 1 / aji 。对于aij 的值,Saaty 等建议引用数字 1 至 9 及 其倒数作为标度,见表1。

层次分析法具体应用与实例

层次分析法步骤与实例 1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序. 2次分析法的步骤: 找准各因素之间的隶属度 关系建立递阶层次结构 构造判断矩阵(成对比较阵) 并赋值 层次单排序(计算权向量)与检验 (一致性检验) 层次总排序(组合权向量)与检验 (一致性检验) 结果分析

3以一个具体案例进行说明: 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经 济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层 次分析法解决。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综 合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互 关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以 有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作 为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。 同时,为了方便后面的定量表示,一般从上到下用A、 B、 C、 D。。。代表不同层次,同一层次从左到右用 1、 2、 3、 4。。。代表不同因素。这样构成的递阶层次结构如下图。 目标层 A 合理建设市政工程,使综合效益最高(A) 准则层 B 经济效益 (B1) 社会效益 (B2) 环境效益 (B3) 准则层 C 直接经间接带方便日方便假减少环改善城 济效益动效益常出行日出行境污染市面貌 (C1)(C2)(C3)(C4)(C5)(C6) 措施层 D 建高速路 (D1) 建地铁 (D2) 图1 递阶层次结构示意图 2.构造判断矩阵(成对比较阵)并赋值 根据递阶层次结构就能很容易地构造判断矩阵。 构造判断矩阵的方法是:每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。

(完整版)层次分析法实例讲解学习

层次分析法实例讲解学习 生活实际例题: 旅游实例,有三个旅游地点供游客们选择,连云港,常州,徐州。影响游客们决策的因素主要有以下五项:景色、费用、居住、饮食、旅途。请根据个人偏好选择最佳旅游地点。 分析:旅游点是方案层,将它们分别用B,B2,B3表示,影响旅游决策的因素为准 则层AAAAA;目标层为选择旅游地,即可以建立以下模型: 建立判断矩阵: 准则层判断矩阵(即各种因素在旅客偏好选择中所占有的不同比重) 1 1/ 2 4 3 3 2 1 7 5 5 A 1/4 1/7 1 1/2 1/3 1/3 1/5 2 1 1 1/3 1/5 3 1 1 方案层判断矩阵建立(针对每一个影响因素来对方案层建立) 1 2 5 1 1/3 1/8 1 1 3 B 1/2 1 2 B1 3 1 1/3 B1 1 1 3 1/5 1/2 1 8 3 1 1/3 1/3 1 1 3 4 1 1 1/4 B1 1/3 1 1 B1 1 1 1/4 1/4 1 1 4 4 1 求准则层判断矩阵A的特征值: Matlab 运行程序:[a,b]=eig(A)

'矩阵的对角线为准则层判断矩阵 A 的特征值: 5.073 0 0 0 0 0.031 0 0 0 b 0 0 0.031 0 0 0 0 0 0.005 0 0.005 即 1 5.073, 2 0.031, 3 0.031, 4 0.005, 5 0.005 选出最大特征值: max ( 1, 2, 3, 4, 5 ) 1 最大特征值的特征向量即为准则层的影响因素所占的权重, 为: 所对应的特征向量 w 1 -0.4658 -0.8409 -0.0951 -0.1733 -0.1920 归一化(最简 matlab 程序为 w=w1./sum(w1)) w 0.2636 0.4759 0.0538 0.0981 0.1087 一致性指标的检验: 由max 是否等于5来检验判断矩阵A 是否为一致矩阵。由于特征根连续地依 赖于矩阵A 中的值,故max 比5大得越多,A 的非一致性程度也就越严重, max 对应的标准化特征向量也就越不能真实地反映出对因素 A i (i 1, ,5)的影 响中所占的比重。 计算一致性指标CI : 此题的一致性指标为 5.073-5 0.018 5-1 平均随机一致性指标RI 相对固定,如下表: RI 随机一致性指标 3456789 10 11 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 计算一致性比例CR : CR q RI 当CR 时,认为判断矩阵的一致性是可以接受的,否则应对判断矩阵作适当修正。 本题: CR ? 皿 0.016 0.1 RI 1.12 可行。 按照如上方式处理矩阵B, B 2, B 3, B 4, B 5得: CI max n n 1 max n n 1 CI n 1 2 RI 0

层次分析法例题

实验目的: 熟悉有关层次分析法模型的建立与计算,熟悉Matlab 的相关命令。 实验准备: 1. 在开始本实验之前,请回顾教科书的相关内容; 2. 需要一台准备安装Windows XP Professional 操作系统和装有Matlab 的计算机。 实验内容及要求 试用层次分析法解决一个实际问题。问题可参考教材P296第4大题。 实验过程: 某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示。以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性。1C ,2C ,3C 表示备选的3种品牌的设备。 解题步骤: 1、标度及描述 人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。 为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。 标度 定义(比较因素i 与j ) 1 因素i 与j 同样重要 3 因素i 与j 稍微重要 5 因素i 与j 较强重要 7 因素i 与j 强烈重要 9 因素i 与j 绝对重要 2、4、6、8 两个相邻判断因素的中间值 倒数 因素i 与j 比较得判断矩阵a ij ,则因素j 与i 相比的判断为a ji =1/a ij 设备采购层次结构图

层次分析法步骤解析—根法、和法、幂法

层次分析法(AHP) AHP(Analytic Hierarchy Process)方法,是由20世纪70年代由美国著名运筹学学家T.L.Satty提出的。它是指将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。这一方法的特点,是在对复杂决策问题的本质、影响因素及其内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多准则或无结构特性的复杂决策问题提供了一种简便的决策方法。 AHP十分适用于具有定性的,或定性定量兼有的决策分析。这是一种十分有效的系统分析和科学决策方法,现在已广泛地应用在企业信用评级、经济管理规划、能源开发利用与资源分析、城市产业规划、企业管理、人才预测、科研管理、交通运输、水资源分析利用等方面。 一、递阶层次结构的建立 一般来说,可以将层次分为三种类型: (1)最高层:只包含一个元素,表示决策分析的总目标,因此也称为总目标层。 (2)中间层:包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。 (3)最低层:表示实现各决策目标的可行方案、措施等,也称为方案层。 典型的递阶层次结构如下: 一个好的递阶层次结构对解决问题极为重要,因此在建立递阶层次结构时,应注意到: (1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。 (2)整个结构不受层次限制。 (3)最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层。 (4)对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构。 二、构造比较判断矩阵 设有m个目标(方案或元素),根据某一准则,将这m个目标两两进行比较,把第i个目标(i=1,2,…,m)对第j个目标的相对重要性记为a ij,(j=1,2,…,m),这样构造的m阶矩阵用于求解各个目标关于某准则的优先权重,成为权重解析判断矩阵,

层次分析法例题

某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示。以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性。 C ,C ,3C 表示备选的3种品牌的设备。 解题步骤: 1、标度及描述 人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。 为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。 注:a ij 表示要素i 与要素j 相对重要度之比,且有下述关系: a ij =1/a ji ;a ii =1; i ,j=1,2,…,n 显然,比值越大,则要素i 的重要度就越高。 目标层 判断层 方案层 图 设备采购层次结构图

2、构建判断矩阵A 判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据。 根据结构模型,将图中各因素两两进行判断与比较,构造判断矩阵: ●判断矩阵B A -(即相对于物流系统总目标,判断层各因素相对重要性比较)如表1所示; ●判断矩阵C B -1(相对功能,各方案的相对重要性比较)如表2所示; ●判断矩阵C B -2(相对价格,各方案的相对重要性比较)如表3所示; ●判断矩阵C B -3(相对可维护性,各方案的相对重要性比较)如表4所 示。 1B A - C B -1 4C B -3 3、计算各判断矩阵的特征值、特征向量及一致性检验指标 一般来讲,在AHP 法中计算判断矩阵的最大特征值与特征向量,必不需要较高的精度,用求和法或求根法可以计算特征值的近似值。 ●求和法 1)将判断矩阵A 按列归一化(即列元素之和为1):b ij = a ij /Σa ij ; 2)将归一化的矩阵按行求和:c i =Σb ij (i=1,2,3….n ); 3)将c i 归一化:得到特征向量W =(w 1,w 2,…w n )T ,w i =c i /Σc i , W 即为A 的特征向量的近似值;

相关主题