搜档网
当前位置:搜档网 › 组合型Pt3Sn_Al2O3催化剂用于芳香硝基化合物一锅法合成N-烷基芳胺

组合型Pt3Sn_Al2O3催化剂用于芳香硝基化合物一锅法合成N-烷基芳胺

[Article]

https://www.sodocs.net/doc/5019209049.html,

物理化学学报(Wuli Huaxue Xuebao )

Acta Phys.?Chim.Sin .2012,28(9),2141-2147

September Received:April 6,2012;Revised:June 20,2012;Published on Web:June 20,2012.?

Corresponding author.Email:xinhuanyan139@https://www.sodocs.net/doc/5019209049.html,;Tel:+86-571-88320791.

The project was supported by the National Natural Science Foundation of China (21076197),Natural Science Foundation of Zhejiang Province,China (Y4090440),and Qianjiang Talent Program of Zhejiang Province,China (2010R10038).

国家自然科学基金(21076197),浙江省自然科学基金(Y4090440)和浙江省钱江人才项目(2010R10038)资助

?Editorial office of Acta Physico ?Chimica Sinica

doi:10.3866/PKU.WHXB201206201

组合型Pt 3Sn/Al 2O 3催化剂用于芳香硝基化合物

一锅法合成N -烷基芳胺

许响生

顾辉子

陈傲昂

严新焕*

(浙江工业大学绿色化学合成技术国家重点实验室培育基地,杭州310014)

摘要:

采用吸附法制备了组合型Pt 3Sn/Al 2O 3双金属催化剂,将该催化剂用于芳香硝基化合物原位液相加氢一

锅法合成N -烷基芳胺.研究表明,在503K,空速为7.5h -1,水体积分数为5%时,1%(质量分数)Pt 3Sn/Al 2O 3催化剂具有较高的催化性能,硝基苯的转化率为100%,N -乙基苯胺和N ,N -二乙基苯胺的总选择性为98.2%.同时,该催化剂对原位液相加氢烷基化反应具有一定普适性,本文研究的14种芳香硝基化合物与低级脂肪醇反应,均具有较高的N -烷基化产率.关键词:

N -烷基化;原位液相加氢;芳香硝基化合物;N -烷基芳胺;铂锡双金属催化剂

中图分类号:

O643

Heterogeneously Catalyzed One-Pot Synthesis of N -alkyl Anilines from

Nitroaromatics by Assembled Pt 3Sn/Al 2O 3Catalyst

YANG Fang

XU Xiang-Sheng

GU Hui-Zi

CHEN Ao-Ang

YAN Xin-Huan *

(State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,Zhejiang University of

Technology,Hangzhou 310014,P .R.China )Abstract:N -alkyl anilines were obtained from nitroaromatics by a one-pot method using assembled Pt 3Sn/Al 2O 3catalyst for heterogeneous in situ hydrogenation in a continuous-flow fixed-bed reactor.At the optimum reaction conditions (503K,liquid hourly space velocity (LHSV)of 7.5h -1,5%(volume fraction)water,1%(mass fraction)Pt 3Sn/Al 2O 3catalyst),nitrobenzene conversion was 100%,with a total N -ethyl and N ,N -diethyl aniline yield of 98.2%.Moreover,the Pt 3Sn/Al 2O 3catalyst had a great conjoint effect for all in situ hydrogenation reactions for N -alkylation.High yields of N -alkylation products were obtained in aliphatic alcohol/water systems for 14selected nitroaromatics.Key Words:N -alkylation;

In situ liquid hydrogenation;

Nitroaromatic;

N -alkyl aniline;

Pt-Sn bimetallic catalyst

1Introduction

N -alkyl anilines are widely used as synthetic intermediates for pharmaceuticals,agrochemicals,fine chemicals,bioactive compounds,and dye chemicals.1,2The most commonly used method for N -alkylation is the coupling of amines with alkyl halides.3-5This procedure,however,can be problematic be-

cause of the toxic nature of many alkyl halides,as well as the concomitant formation of large quantities of undesired waste.The reductive amination of aldehydes and ketones is another well-known method.6-8Unfortunately,this method requires the usage of strong reducing reagents.In comparison with the methodologies mentioned above,transition metal-catalyzed

2141

Acta Phys.?Chim.Sin .2012

V ol.28

amine alkylation with alcohols has attracted much interest thanking to the ubiquitous availability of alcohols,high atom efficiency,and formation of water as the sole byproduct.In the former reports,extensive attention has been focused on Pd,9,10Ru,11,12Au,13Ir,14,15Ni,16and Zn 17,18as effective catalysts.But,an-ilines need to be firstly synthesized by the reduction of ni-troaromatics.Therefore,direct synthesis of N -alkyl anilines from nitroaromatics and alcohols as starting materials in one-pot reactions is an important issue in chemistry owing to several inherent advantages such as simplifying separation steps,reducing the use of reagents,and increasing yields.Re-cently,it was reported that N -alkyl anilines could be synthe-sized in one-pot using nitroaromatics as starting materials with alcohol as alkylation agent.19-24But,most of the reports focused on homogeneous catalytic systems,which are not practically useful due to the problem of wax-catalyst separation,the indis-pensable use of large amounts of addictives or co-catalysts,highly demanding scaling-up,and catalyst deactivation.25Therefore,it would be highly desirable if a heterogeneous cata-lyst could be used in one-pot synthesis of N -alkyl anilines from nitroarenes without additional hydrogen gas and organic ligand or base,simplifying separation steps,enhancing the life time of the catalyst.

In this study,we report one-pot synthesis of N -alkyl anilines from nitroaromatic catalyzed by a simple and versatile Pt x Sn/Al 2O 3(molar ratio of Pt and Sn is x :1)heterogeneous catalyst in the presence of water in a continuous fixed-bed reactor (Scheme 1).

2Experimental

2.1Catalyst preparation

A γ-alumina (i.d.,2-3mm,surface area,238m 2?g -1,Zheji-ang jingjing alumina Ltd.)was used as support,which was pre-viously calcined in flowing air at 773K for 5h.The assembled Pt x Sn/Al 2O 3catalyst was prepared by the method of absorp-tion as following.(1)the γ-alumina was impregnated with an appropriate concentration of SnCl 2·2H 2O (CP,Shanghai Exper-imental Reagent Ltd.)to get a precursor.The precursor was stirred for 1h and kept for 24h,then the excess solvent was re-moved by heating at 333K.Then the precursor was calcined in air at 623K for 3h,signed as Sn/Al 2O 3.(2)The procedure to prepare Pt 2(dba)3(dba=dibenzylideneacetone)was described in the literature.26,27Pt 2(dba)3(34mg)in 200mL of propylene car-bonate was placed in a 500mL stainless autoclave.And the system purged three times with hydrogen.Hydrogenation was carried out under 4.0MPa hydrogen pressure at ambient tem-perature for about 2h under vigorous stirring to obtain brown

Pt precursor.(3)For depositing the sol on the support,the ob-tained Sn/Al 2O 3was added to Pt precursor solution under stir-ring for 24h,and then the solid catalyst was separated by filtra-tion and purification by acetone to get Pt x Sn/Al 2O 3catalyst.The actual metal content of the catalyst was determined by Shi-madzu inductively coupled plasma mass spectrometry (ICP-MS)measurements.

2.2Catalyst characterization

The Brunauer-Emmett-Teller (BET)specific surface area was measured using nitrogen volumetric adsorption (BET,Mi-cromeritics ASAP 2010)at 77K.Prior to measurement,the samples were degassed to 0.1Pa at 373K.The specific surface areas were calculated in a relative pressure range (0.05

Transmission electron microcopy (TEM)photographs were taken by using a JEOL JEM-200C electron microscope.The catalyst powders were dispersed in ethanol by ultrasonic vibra-tion.One drop of the solution was then deposited onto a thin holey-carbon film supported on lacey-carbon/Cu grid (300Mesh)and left to dry.The powder grains based the metal parti-cles were well separated and supported on the thin holey-car-bon film and then characterized by TEM.TEM was operated at an accelerating voltage of 200kV .

X-ray photoelectron spectroscopy (XPS)was acquired with ESCALab220i-XL.A resolution of 0.1eV was used to deter-mine the metal atomic ratio of the surface region and the metal oxidation state of the selected catalysts.Samples were in pow-der form and were pressed on a double-side adhesive copper tape.All measurements were carried out at room temperature without any sample pre-treatment.An Al K αX-ray source was used in this work.To compensate for surface charge effects binding energies (E B )were calibrated using C 1s hydrocarbon peak at 284.6eV .

2.3Catalytic reactions

The catalytic activity of the Pt x Sn/Al 2O 3was tested by the hy-drogenation and further N -alkylation of nitrobenzene.The cata-lytic tests were performed in a continuous fixed-bed reactor de-signed by our group.28The catalyst (4g)was loaded in the iso-thermal region of the reactor.The reaction temperature was kept constant by CHB 702thermometer within ±0.1°C,and the corresponding pressure was controlled by GO BP-60Back Pressure control regulator.The appropriate pressure was to en-sure that the reactant was in liquid phase.The corresponding concentration of nitrobenzene was dissolved in ethanol/water solution.A HPLC pump (Model 501style,Syltech Corpora-tion)was adopted to pump the reactant into the fixed-bed reac-tor with internal diameter of 0.52cm at liquid hourly space ve-locity (LHSV)of 7.5h -1.After reacting in the fixed-bed reac-tor,the liquid and gas were separated in the vapor-liquid sepa-rator.The reaction products were identified by GC-MS (Agi-lent-6890GC-5973MS equipped with 30m HP-5capillary),and quantified by GC (GC-9790equipped with a flame ioniza-

Scheme 1Synthesis of N -alkyl

aniline

YANG Fang et al.:One-Pot Synthesis of N-alkyl Anilines from Nitroaromatics by Assembled Pt3Sn/Al2O3 No.9

tion detector and SE-30capillary column)every2h.The oven temperature of both was453K,injector temperature was523 K,and detector temperature was533K.

3Results and discussion

3.1Catalyst characterization

The BET specific surface area of the Pt3Sn/Al2O3is222.4 m2?g-1,and the corresponding pore volume and pore diameter are0.5cm3?g-1and8.6nm,respectively.The TEM micrograph of the fresh catalyst is shown in Fig.1a.It is obvious that the Pt particles are highly dispersed onγ-alumina,and the mean size of Pt particles is1.9nm(Fig.1b).

XPS data are shown in Fig.2.No indication can be drawn re-garding alloy formation on our samples from XPS data due to limitations of this technique.Because the energy region of Pt 4f levels was overshadowed by the presence of a very strong Al2p peak,29,30thus Pt3Sn/C was analyzed instead.In this re-gion,the spectra show two peaks.The one at lower binding en-ergy corresponds to Pt4f7/2level and at the higher energy to the Pt4f5/2.The binding energy of71.0eV can be ascribed to Pt(0), and the binding energy of72.6eV can be assigned to the pres-ence of Pt(II)species.The Sn3d spectra of the Pt3Sn/C catalyst show two peaks at about488.2and485.3eV.On the basis of literature indication,31the peak of lower intensity at485.3eV can be characteristic of tin in metallic whereas that at488.2eV can be assigned to the oxidized tin species(Sn(II)and/or Sn(IV)).Unfortunately,distinguishing oxide forms of tin is dif-ficult because their binding energies are too close.The Pt4f7/2 and Sn3d5/2at binding energies of71.0and485.3eV,respec-tively are characteristic of Pt and Sn atoms in the Pt3Sn alloy, which is agreement with the results of Dupont et al.32

3.2Catalytic performance of different Pt-based

catalysts

Firstly,the catalytic activity and selectivity for the N-alkyla-tion of nitrobenzene to the corresponding N-alkyl anilines were compared among various catalysts(Table1).As for entry1, 45.9%aniline was observed if using Pt/Al2O3as the catalyst al-though58.8%nitrobenzene was reduced.In entry2,the intro-duction of tin could remarkably improve the formation of N-alkyl aniline,i.e.,the conversion of aniline to N-alkyl aniline. With the presence of Sn,Sn would dilute Pt sites and increase the electron density of Pt.When the molar ratio of Pt and Sn al-ters from5to3,the conversion of nitrobenzene increases from 99.0%to100%,and the total yields of N-ethyl aniline and N, N-diethyl aniline increase from70.0%to98.2%(entries2-4). The conversion is100%and the selectivity to N-alkyl anilines is98.2%using1%Pt3Sn/Al2O3catalyst(the mass ratio of Pt and Al2O3is1%)(entry4).When the molar ratio of Pt and Sn is2(entry6),the conversion does not change,but the selectivi-ty of N-alkyl anilines decreases compared to the1%Pt3Sn/ Al2O3.This could be explained from the results of XPS.When the molar ratio of Pt and Sn is3:1,the metallic Pt and Sn would exist in the formation of Pt3Sn alloy,which would be fa-vorable for hydrogenation of N=O.We also investigate the

ef-Fig.1(a)TEM image of fresh Pt3Sn/Al2O3and(b)size distribution of Pt particles on the fresh

catalyst

Fig.2XPS spectra of(a)Pt4f and(b)Sn3d of the fresh Pt3Sn/C catalyst

2143

Acta Phys.?Chim.Sin.2012V ol.28

fect of the loading of Pt increasing from0.5%to2%,the re-sults show that there is only little distinction on the conversion and selectivity(entries4,6,7).This illustrates that0.5%Pt has sufficient active sites in the catalyst.However,0.5%Pt is easi-ly leaching with the reaction.

3.3Effect of reaction conditions of the N-alkylation

of nitrobenzene

The effects of the reaction conditions on the conversion and yield are gathered in Table2.In the reaction,water plays an im-portant role,therefore,confirming that the optimum percentage of water is necessary.The effect of water on the reaction is shown in entries8-11.When the volume ratio of ethanol/wa-ter increases from70/30to95/5,no obvious changes on con-version are observed,but the yield of the N-alkyl anilines in-creases significantly.Besides,the yield of N,N-diethyl aniline also increases with the increasing of the volume ratio of etha-nol/water,while that of the quinaldine decreases.This could be explained that with increasing water volume,the efficient of steam reforming would be higher.28However,in the reaction, higher active hydrogen(H*)production is unfavourable to the yield of aniline and further N-alkylation to corresponding N-alkyl aniline because it would cause over-hydrogenation.In ad-dition,reaction temperature would affect catalytic activity and selectivity significantly.It is obvious that with increasing the reaction temperature from443to503K,the conversion of ni-trobenzene raises from81.2%to100%,and the yield of the to-tal N-alkyl aniline raises from80.9%to98.2%(entries11-14). The result suggests that higher reaction temperature produces higher N-alkyliniline,whereas it would produce higher quanti-ties of C-alkylated products if the reaction temperature is high-er according to previously reported results.33Besides,the con-centration and LHSV of nitrobenzene are also investigated(en-tries15-20).With the increase of the concentration and LHSV of nitrobenzene,the conversion and the yield decrease.This could be explained by the following:with the increase of the concentration and LHSV of nitrobenzene,the contact time be-tween the reactant and the catalyst decreases.

3.4N-alkylation of nitroaromatics with alcohols to

the corresponding N-alkyl anilines

Then the scope of the reaction with respect to nitrobenzene with aliphatic alcohols was investigated(Table3).Methanol and nitrobenzene proceeded efficiently with85.5%yield(entry 21).When using ethanol as alkylation agent,the yields of N-alkyl anilines are up to98.2%(entry22).Compared to metha-

Table1Results of different catalysts on nitrobenzene

prepared by the method of adsorption.The overall loading of Pt and the relative constitution of Pt/Sn in the catalyst were measured by ICP-MS.AN:aniline, NEA:N-ethyl aniline,DEA:N,N-diethyl aniline,QL:quinaldine,others:C-alkylaniline and intermediates,NAA:N-ethyl aniline and N,N-diethyl aniline

323

2144

YANG Fang et al .:One-Pot Synthesis of N -alkyl Anilines from Nitroaromatics by Assembled Pt 3Sn/Al 2O 3

No.9

nol,ethanol used as alkylated agent gives the higher yields of target compounds,especially higher conversion of anilines,thanking to high hydrogen atom utilization.Isopropanol,buta-nol,and cyclohexanol used as alkylated reagents react smooth-ly with nitrobenzene,giving the corresponding product in mod-erate yields (entries 23-25),and higher selectivity of di-alkyl aniline than mono-alkyl aniline.This could be attributed to the steric effect.However,the benzyl alcohols do not react due to

Table 3

Alkylation of nitrobenzene with different aliphatic alcohols

323reaction pressure,5MPa;LHSV ,7.5h -1

323reaction pressure,5MPa;LHSV ,7.5h -

1

3Possible mechanism of one-pot synthesis of N -ethyl anilne and N ,N -diethyl aniline from nitrobenzene

2145

Acta Phys.?Chim.Sin.2012V ol.28

the poor solubility.This indicates that hydrogen produced by aliphatic alcohol/water reforming is feasible.

The results for the alkylation of nitroarenes with ethanol are shown in Table4.With1%Pt3Sn/Al2O3as a catalyst,the ethyl-ation of different nitroarenes containing electron-donating sub-stituents in ethanol goes smoothly and produces the corre-sponding N-ethyl and N,N-diethyl anilines,more than90% yields are obtained(entries26-32).This could be explained by the electronic effect and synergetic effect of Sn,which would decrease the electronic density of N atom.The electron abun-dant Pt atom would absorb the electron deficienct N atom, strengthening the adsorption of reactant,which is benefit for the hydrogenation reaction.However,the substituents at differ-ent positions on the nitroarenes affect the reaction yield slight-ly(entries27-29).The yield of para position is better than that of ortho position,which could be explained by the stereo-scopic effect.The reaction tolerates the presence of substitu-ents(entries33-37).Meanwhile,the yields of products de-crease slightly due to the electron-withdraw group,which agrees with the result pointed out by Kawahara et al.14Interest-ingly,two halogenated atoms presented in the substrate exhibit high selectivity of N-alkyl aniline with the yield larger than 94%(entries38,39).

3.5Possible mechanism of in situ hydrogenation

N-alkylation

Although the mechanism for the present reaction is not com-pletely clear yet,a possible mechanism is shown in Fig.3.First-ly,the nitro group is reduced to amine by H*produced by etha-nol/water reforming.And ethanol dehydrogenates to corre-sponding acetaldehyde.In the next step,two different routes are proposed.On the one hand,the amine reacts with the alco-hol to give N-ethyl aniline.The produced N-ethyl aniline fur-ther undergoes substitution of N-ethylation with ethanol as al-kylation reagent,getting N,N-diethyl aniline.On the other hand,aldol condensation would happen between ethanol and acetaldehyde,and further react with amine to2-methyl-quino-line.Besides,the amine reacts with H*to corresponding cyclo-hexanamine,therefore,rich H*and water conditions should be avoid.

4Conclusions

In summary,the one-pot synthesis of N-alkyl anilines from nitroaromatics was successfully realized with assembled Pt3Sn/ Al2O3as catalyst in a continuous fixed-bed reactor.The conver-sion of nitrobenzene was100%,with the total yield of N-ethyl and N,N-diethyl anilines of98.2%at the optimum reaction con-ditions(503K,7.5h-1,5%water).This novel reaction contains the advantages such as highly hydrogen atom utilization,sim-plification procedure,and environment-friendly.

References

(1)Xia,J.H.;Zhang,X.;Matyjaszewski,K.ACS Symp.Ser.2000,

760,207.doi:10.1021/bk-2000-0760.ch013

(2)Clardy,J.M.;Fischbach,A.;Walsh,C.T.Nat.Biotechnol.

2006,24,1541.doi:10.1038/nbt1266

(3)Oku,T.;Arita,Y.;Tsuneki,H.;Ikariya,T.J.Am.Chem.Soc.

2004,126,7368.doi:10.1021/ja048557s

(4)Salvatore,R.N.;Nagle,A.S.;Jung,https://www.sodocs.net/doc/5019209049.html,.Chem.2002,

67,674.doi:10.1021/jo010643c

(5)Basu,B.;Paul,S.;Nanda,A.K.Green Chem.2009,11,1115.

doi:10.1039/b905878h

(6)Tripathi,R.P.;Verma,S.S.;Pandey,J.;Tiwari,https://www.sodocs.net/doc/5019209049.html,.

Chem.2008,10,1093.

(7)Byun,E.;Hong,B.;De Castro,K.A.;Lim,M.;Rhee,https://www.sodocs.net/doc/5019209049.html,.

Chem.2007,72,9815.doi:10.1021/jo701503q

(8)Abdel-Magid,A.F.;Mehrman,https://www.sodocs.net/doc/5019209049.html,.Process Res.Dev.

2006,10,971.doi:10.1021/op0601013

(9)Shimizu,K.;Shimura,K.;Ohshima,K.;Tamura,M.;Satsuma,

A.Green Chem.2011,13,3096.doi:10.1039/c1gc15835j

(10)Xu,C.;Xiao,Z.;Zhou,B.;Wang,Y.;Huang,P.Chem.

Commun.2010,46,7834.doi:10.1039/c0cc01487g

(11)Yamaguchi,K.;He,J.;Oishi,T.;Mizuno,N.Chem.Eur.J.

2010,16,7199.

(12)Hamid,M.H.S.;Allen,A.C.L.;Lamb,G.W.;Maxwell,A.C.;

Maytum,H.C.;Waston,A.J.A.;Williams,J.M.J.J.Am.

Chem.Soc.2009,131,1766.doi:10.1021/ja807323a

(13)He,L.;Lou,X.;Ni,J.;Liu,Y.;Cao,Y.;He,H.;Fan,K.Chem.

Eur.J.2010,16,13965.doi:10.1002/chem.201001848

(14)Kawahara,R.;Fujita,K.;Yamaguchi,R.Adv.Synth.Catal.

2011,353,1161.doi:10.1002/adsc.201000962

(15)Saidi,O.;Blacker,A.J.;Farah,M.M.;Marsden,S.P.;

Williams,https://www.sodocs.net/doc/5019209049.html,mun.2010,46,1541.doi:

10.1039/b923083a

(16)Ruano,J.L.G.;Parra,A.;Aleman,J.;Yuste,F.;Mastranzo,V.

https://www.sodocs.net/doc/5019209049.html,mun.2009,404.

(17)Zhu,A.;Li,L.;Wang,J.;Zhuo,K.Green Chem.2011,13,1244.

doi:10.1039/c0gc00763c

(18)Enthaler,S.Catal.Lett.2011,141,55.doi:10.1007/

s10562-010-0463-4

(19)Peng,Q.;Zhang,Y.;Shi,F.;Deng,https://www.sodocs.net/doc/5019209049.html,mun.2011,

47,6476.doi:10.1039/c1cc11057h

(20)Pandarus,V.;Ciriminna,R.;Beland,F.;Pagliaro,M.Catal.Sci.

Technol.2011,1,1616.doi:10.1039/c1cy00097g

(21)Lee,C.C.;Liu,https://www.sodocs.net/doc/5019209049.html,mun.2011,47,6981.doi:

10.1039/c1cc11609f

(22)Xiang,Y.Z.;Li,X.N.;Lu,C.;Ma,L.;Zhang,Q.Alpplied

Catal.A:Gen.2010,375,289.doi:10.1016/j.

apcata.2010.01.004

(23)Feng,C.;Liu,Y.;Peng,S.;Shuai,Q.;Deng,G.;Li,https://www.sodocs.net/doc/5019209049.html,.Lett.

2010,12,4888.doi:10.1021/ol1020527

(24)Bea,J.W.;Cho,Y.J.;Lee,S.H.;Yoon,C.M.;Yoon,C.M.

https://www.sodocs.net/doc/5019209049.html,mun.2000,1857.

(25)Reddy,R.C.;Vijeender,K.,Bhusan,B.P.;Madhavi,P.P.;

Chandrasekhar,S.Tetrahedron Lett.2007,48,2765.doi:

2146

YANG Fang et al.:One-Pot Synthesis of N-alkyl Anilines from Nitroaromatics by Assembled Pt3Sn/Al2O3 No.9

10.1016/j.tetlet.2007.02.050

(26)Ely,T.O.;Pan,C.;Amiens,C.;Chaudret,B.;Dassenoy,F.;

Lecante,P.;Casanove,M.J.;Mosset,A.;Respaud,M.;Broto,J.

M.J.Phys.Chem.B2000,104,695.doi:10.1021/jp9924427 (27)Mao,J.Z.;Yan,X.H.;Gu,H.Z.;Jiang,L.C.Chin.J.Catal.

2009,30,182.[毛建忠,严新焕,顾辉子,江玲超.催化学报,

2009,30,182.]doi:10.1016/S1872-2067(08)60095-9

(28)Zhou,L.;Gu,H.Z.;Yan,X.H.Catal.Lett.2009,132,16.doi:

10.1007/s10562-009-0036-6

(29)Riguetto,B.A.;Damyanova,S.;Goluliev,G.;Marques,C.M.

P.;Petrov,L.;Bueno,J.M.C.J.Phys.Chem.B2004,108,5349.(30)Navarro,R.M.;álvarez-Galván,M.C.;Sánchez-Sánchez,M.

C.;Rosa,F.;Fierro,J.L.G.Appl.Catal.B:Environ.2005,55,

229.doi:10.1016/j.apcatb.2004.09.002

(31)Merlen,E.;Beccat,P.;Bertolini,J.C.;Delichère,P.;Zanier,N.;

Didillon,B.J.Catal.1996,159,178.doi:10.1006/

jcat.1996.0077

(32)Dupont,C.;Delbecq,F.;Loffreda,D.;Jugnet,Y.J.Catal.2011,

278,239.doi:10.1016/j.jcat.2010.12.012

(33)Narayanan,S.;Deshpande,K.Appl.Catal.A1996,135,125.

doi:10.1016/0926-860X(95)00220-0

2147

综合化学实验报告浸渍法

综合化学实验报告实验名称浸渍法制备Pd/γ-Al2O3催化剂 学院化学化工学院 学生姓名张宇周超朱军洁 专业化学 学号70 71 72 年级2013 指导教师王永钊

浸渍法制备Pd/γ-Al2O3催化剂 张宇周超朱军洁 (山西大学化学化工学院,山西太原030006) 摘要:浸渍法是将载体浸泡在含有活性组分(主,助催化剂组分)的可溶性化合物溶液中,接触一定的时间后除去过剩的溶液,再经干燥,焙烧和活化,即可制得催化剂。本实验采用等体积浸渍法制备负载型Pd/γ-Al2O3催化剂。实验中首先测出γ-Al2O3的饱和吸附量,进而计算出采用等体积浸渍法时所需的含有活性组分Pb2+的PbCl2溶液和水的量,然后将载体γ-Al2O3浸泡在适量的含有活性组分Pb2+的PbCl2溶液与适量的水的混合液中,接触一定的时间后,再经干燥,焙烧和活化,即可制得催化剂。 关键字:等体积浸渍法催化剂Pd/γ-Al2O3 0 引言: 固体催化剂的制备方法很多,工业上使用的固体催化剂的制备方法有:沉淀法,浸渍法,机械混合法,离子交换法,熔融等[1]。由于制备方法的不同,尽管原料和用量完全一样,但所制得的催化剂的性能仍可能有很大的差异。

浸渍法是将载体浸泡在含有在活性组分(主,助催化剂组分)的可溶性化合物溶液中,接触一定的时间后除去过剩的溶液,再经干燥,焙烧和活化,即可制得催化剂[2]。由于浸渍法比较经济,且催化剂形状、表面积、孔隙率等主要取决于载体,容易选取。等体积浸渍法是预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的溶液量,这种方法称为等体积浸渍法。应用这种方法可以省去过滤多余的浸渍溶液的步骤,而且便于控制催化剂中活性组分的含量。因此,本实验采用等体积浸渍法[3][4]制备负载型Pd/γ- Al2O3催化剂。实验中首先测出γ- Al2O3的饱和吸附量,进而计算出采用等体积浸渍法时所需的含有活性组分Pb2+的PbCl2溶液和水的量,然后将载体γ- Al2O3浸泡在适量的含有活性组分Pb2+的PbCl2溶液与适量的水的混合液中,接触一定的时间后,再经干燥,焙烧和活化,即可制得催化剂。 1.载体的选择和浸渍液的配制[5] (1)载体的选择浸渍催化剂的物理性能很大程度上取决于载体的物理性质,载体甚至还影响到催化剂的化学活性。因此正确的选择载体和对载体进行必要的预处理,是采用浸渍法制备催化剂时首先要考虑的问题。载体种类繁多,作用各异,有关载体的选择要从物理因素和化学因素两方面考虑。物理因素指的是颗粒大小,表面积和孔结构。通常采用已成型好的具有一定尺寸和外形的载体进行浸渍,省去催化剂的成型。化学因素指的是载体可分为三种情况:(ⅰ)惰性载体,载体的作用是使活性组份得到适当的分布;(ⅱ)载体与活性组分有相互作用,它使活性组分有良好的分散并趋于稳定,从而改变催化剂的性能(ⅲ)载体具有催化作用,载体除有负载活性组分的功能外,还与所负载的活性组分一起发挥自身的催化作用。 (2)浸渍液的配制进行浸渍时,通常并不是用活性组分本身制成溶液,而是用活性组分金属的易容盐配成溶液,本实验采用PbCl2溶液。所用的活性组分化合物应该是易溶于水的,而且在焙烧时能分解成所需活性组分,或在还原后变成金属活性组分;同时还必须使无用组分,特别是对催化剂有毒的物质在热分解或还原过程中挥发出去。因此常用的是硝酸盐,铵盐,有机盐。一般以去离子水为溶剂,但当载体易溶于水或活性组分不溶于水时,则可用醇或烃作为溶剂。 2.活性组分在载体上的分布与控制[6] 浸渍时溶解在溶剂中含活性组分的盐类(溶质)在载体表面的分布,与载体对溶质和溶剂的吸附性能有很大的关系。

论芳香硝基化合物的还原反应

论芳香硝基化合物的还原反应 摘要:旨在探索一种具有先进性和创造性的催化方法,利用一氧化碳在温和的条件下高选择性地还原芳香硝基化合物制备芳胺。以中等强度的无机碱作助催化剂,以廉价易得的硒为催化剂一氧化碳/水为还原剂,在常压条件下就可实现将二硝基芳香化合物高选择性地还原为单硝基芳胺。 关键词:芳香硝基化合物;还原;硝基苯胺 0 前言 硝基苯胺类化合物是重要的精细合成中间体,广泛用于染料、农药、医药和橡胶助剂的合成。如间硝基苯胺可用作冰染染料橙色基R或制色酚AS-BS,还可与环氧乙烷轻乙基化制3-硝基-N。通过多硝基化合物的部分还原是生产此类产品的主要方法。 1 理论基础 催化加氢作为一种很好的硝基还原法,以其高效清洁的优点得到了人们的青睐。但催化加氢的催化选择性较差。对特定的底物,通过调变催化剂可以达到选择还原的目的。如下图所示,通过不同的催化体系甚至可以控制还原不同的硝基。 CO/H2O还原体系对于硝基的还原具有很好的选择性而且CO价廉易得,如果催化剂格便宜将是一种很有工业应用前景的催化体系。 2 实验条件 2.1 试剂 间二硝基苯及其衍生物为分析纯试剂;所用DMF等溶剂为分析纯溶剂;水为自制去离子水;硒粉为高纯硒粉,纯度99. 99%;CO为高纯钢瓶气体,纯度在99%以上,用于高压反应时未经处理,用于常压反应经分子筛除水。 2.2 仪器 NMR测试在Bruker-DRX-400型共振谱仪上进行;熔点通过北京泰克仪器有限公司的X-4双目显微熔点测定仪进行,温度未经校正。 3 实验过程 高压还原反应过程:还原反应在带有电磁搅拌的100 ml不锈钢高压釜中进行,将二硝基苯10 mmol,需要量的硒粉、水、碱及溶剂加入反应釜中,密封,用2 MPa CO气体置换3次后充至表压为所需压力。将釜放入已升至所需温度的恒温油浴中,搅拌反应所需时间后,取出用水迅速冷却至室温,放掉残余气体,打开釜,通入氧气或露置于空气中搅拌一段时间以使硒沉淀析出,过滤,滤液浓缩后经柱层析(硅胶柱,淋洗液石油醚:乙酸乙酯=5:1)得产品,产品经测熔点,1H NMR,3C NMR鉴定结构。 常压还原反应过程:反应在装有搅拌、温度计、通气管和冷凝管的50m1四口瓶中进行。

芳硝基还原

单位代码09 学号100166064 分类号R9 密级 毕业论文 芳硝基化合物还原制备芳胺的研究进展及应用 院(系)名称医学院(药学系) 专业名称药学 学生姓名郭新云 指导教师贾安 2013 年10 月18 日

摘要: 综述了芳香硝基化合物还原制备芳胺的方法及近年的研究进展. 其方法主要包括催化氢化法、CO/ H2O还原法、金属还原法、硫化碱还原法、金属氢化物还原法、电化学还原法和光化学还原法. 其中催化氢化法中的氢气还原法和水合肼还原法符合绿色化学的理念, 并且反应收率高, 选择性好, 具有很高的应用价值. 关键词: 芳香硝基化合物; 还原; 芳胺;进展 芳胺是重要的有机化工原料, 是合成许多精细化学品的中间体, 在染料、医药、农药、表面活性剂、纺织助剂、螯合剂、阻燃剂、高分子材料等行业中具有广泛的应用. 芳香胺的制备主要有含氨基的化合物缩合制备、硝基化合物的还原等. 其中缩合反应包括卤素和金属的交换反应、羟醛缩合等. 由于缩合反应需要在反应中加入氨基保护基,其收率较低,一般用于特定物质的合成. 芳香族硝基化合物还原为相应的氨基化合物是精细化工生产制备芳胺的常用方法. 硝基还原制备芳胺由于其操作简便、原料便宜易得而广泛应用. 实现这一过程的方法很多,主要为: 催化氢化法, CO/ H2 O 还原法、金属还原法、硫化碱还原法、金属氢化物还原法以及电化学还原法和光化学还原法等, 本文主要综述了近年来上述几种方法的研究进展, 重点介绍了应用广泛的催化氢化法. 1催化加氢法 在工业上,采用加氢还原方法还原制备芳香胺的工艺有两种, 即气相加氢法和液相加氢法. 气相加氢法仅适用于沸点较低、容

催化加氢还原芳香硝基化合物制备芳胺的技术进展

58 精细石油化工 SPECIALITYPETROCHEMICALS 第23卷第4期 2006年7月 催化加氢还原芳香硝基化合物 制备芳胺的技术进展 徐善利陈宏博李树德 (大连理工大学化工学院,辽宁大连116024) 摘要:综述了催化加氢还原芳香硝基化合物制备芳胺及其衍生物的近况,讨论了影响催化加氢反应的主要因 素和工艺条件,并展望了催化加氢法制备芳胺工艺的应用前景和发展方向。 关键词:催化加氢香硝基化合物芳胺 中图分类号:TQ246.3文献标识码:A 芳胺及其衍生物广泛应用于化工、医药、染 料、农药等领域,绝大多数的芳胺及其衍生物系列产物都是由相应的芳香硝基化合物还原而来的。芳香硝基化合物还原为芳胺的方法主要有经典化学还原法、电解还原法、CO/H:O体系还原法和催化加氢还原法。经典化学还原法主要包括铁粉法、甲醛法、硫化碱法、水合肼法等。这些方法工艺流程长,三废多,对环境污染大,代之以清洁生产工艺势在必行;电解还原法由于设备投资较大,能耗相对较高,工业生产还存在一定的技术难题;Co/H。o还原体系对催化剂要求较高,存在贵金属催化剂回收问题,且反应大多需高温高压,目前还多处在实验室研究阶段[1],但是该法具有设备通用性好、反应易控制、原料来源容易等优点,是催化加氢法的一个良好补充[21;催化加氢法具有产品质量好、三废少、后处理容易以及反应选择性可控制等优点使其在工业生产上具有较好的应用前景,是目前实验研究和技术开发的重要领域。 1催化加氢还原法 芳香硝基化合物催化加氢还原按反应物料的状态可分为气相催化加氢法和液相催化加氢法。气相催化加氢法是以气态反应物进行的催化加氢还原,实际上为气固反应,此法仅适用于沸点较低,容易气化或在蒸发温度下,仍能保持稳定状态的芳香硝基化合物的还原。硝基苯制苯胺是气相催化加氢的典型实例。液相催化加氢法是在液相介质中进行的加氢还原。一般采用固体催化剂,实质上为气一液一固三相反应。如果催化剂溶于反应体系相则为气、液两相反应,称之为均相催化,是目前研究的热点之一。由二硝基甲苯催化加氢制备二氨基甲苯是液相催化加氢的典型实例[3]。 以下针对催化加氢法还原芳香硝基化合物制备芳胺的主要影响因素(催化剂性能和反应条件)作进一步的论述。 1.1催化剂 在催化加氢还原反应中,催化剂的性能是影响反应的主要因素,其对反应的温度、压力、反应活性、反应的选择性、产物质量和收率有着显著的影响。 用于催化加氢反应的催化剂主要为过渡金属,可分为贵金属系和一般金属系。贵金属以铂、钯为主,此外还有铑、锇、钌等,其特点是催化活性高,反应条件温和,适用于中性或酸性反应,虽然铂的活性最好,但其价格相对较高,限制了它的应用。钯的活性介于铂和镍之间,其中以Pd/C催化剂较常用,价格较便宜。金属铑催化剂在氯代硝基芳烃的催化加氢过程中可使脱氯现象大为减少[4],但铑可使苯环加氢。近年来,铑以其良好的选择性而再次引起人们的关注。一般金属系以镍为主,其次是铜、钼、钴、铁等。 常用的催化剂可以是金属单质的粉末,如铂黑、钯黑等,可直接以金属氧化物还原制得;或者是骨架型,如Raney-Ni。为了使活性金属能和原料充 收稿日期:2006一03一09;修改稿收到日期:2006一06—19。 作者简介:徐善利(1980一),男,硕士,从事染料中闻体合成的研究。

硝基还原的方法

硝基还原的方法1.用金属加盐酸还原,常用金属是锌、铁等,适合对酸稳定的化合物; 2.用催化氢化,除了你提到的催化剂,还有Pt、Ni等催化剂,温和还原的话(室温稍加压)可以只还原硝基; 3.氢化锂铝,这是比较强的还原剂,除了双键三键之外全部还原。 以上均还原为氨基。 以下是硝基苯的一些特征还原反应: 4.用锌在弱酸性条件下还原为苯基羟胺; 5.用锌在碱性条件下还原,水溶液得偶氮苯,醇溶液得氢化偶氮苯。 暂时就能想到这些,机理是在是太繁琐了,建议找专业书籍来看。 硝基还原中各种反应过渡态如出现亚硝基偶氮连氨等是不可避免的跟踪反应时通常能看到很多反应点个人认为楼主的情况首选尝试延长反应时间(同时建议降低反应温度),一般继续反应会将这些中间体基本还原彻底如果还不行是不是可以考虑改变氢化条件如催化剂用pd/c(虽然它的活性在碱性条件下会有所降低)供氢体采用肼等 虽然加入少量碱性物质如三乙胺、氨甲醇溶液、氢氧化锂等能大大提高催化剂的活性但还原硝基化合物除外 虽然加入少量碱性物质如三乙胺、氨甲醇溶液、氢氧化锂等能大大提高催化剂的活性"中的催化剂是指活性镍不是pd/c 活性镍在中性和弱碱介质中能起到良好的催化作用,在弱碱性介质中效果更好Pd/C在酸性和碱性介质中都能起到催化作用,只是碱性条件下活性稍微降低 最近看到很多虫子求助氢化的问题,就氢化这个反应我在这里做个肤浅阐述,还请大家批评指正. 氢化反应在有机合成化学中发挥了很重要的作用,该反应不仅操作简单,而且后处理相当方便,因此得到了广泛的运用,通过氢化反应可以实现碳碳不饱和键的还原,一系列伯胺的合成,保护基的脱除等等.具体表现:碳碳双键,三键的氢化;腈基,硝基,叠氮基,肟的还原; Cbz,苄基脱除去保护;羟基的脱除或卤素(Cl, Br, I)的脱除以及一些杂芳环的氢化等等。而氢化所用到催化剂一般为PtO2, Pd/C, Pd(OH)2/C, Raney Ni等。 1. 不饱和键的氢化; 双键氢化包括一般烯烃和不饱和酮(酯)的双键的氢化,一般烯烃双键的氢化需要加热加压才能反应.例如:与芳环共轭的烯烃氢化一般需要50-60 psi的压力。不饱和酮的双键氢化在一个大气压下(15 psi)即能反应,并且要在体系中加入少量的二苯硫醚,使Pd/C 部分中毒以抑制酮羰基的还原;不饱和酯的双键氢化要根据底物的结构进行催化剂筛选,如果底物含有Cl, 氢化时应选用PtO2,如果底物是杂环化合物Pd/C氢化而使得杂环发生氢化,则应使用Willkinson催化剂进行氢化. 氢化要注意溶剂选择一般MeOH的活性最高.如果底物是甲酯就用甲醇,底物是乙酯就用乙醇,避免出现酯交换发生,一般室温酯交换的可能性不大,加热反应酯交换还是比较容易发生的.三键氢化成双键,若生成的产物为顺式烯烃,可用Lindlar 催化剂;反式烯烃,用Na/NH3(l). 生成饱和脂肪烃过度氢化就行了. 2. 腈基, 硝基, 叠氮基, 肟的还原,; 腈基通过氢化可以还原为相应的伯胺,一般氢化的需要加压才能发生反应, 比起用LiAlH4还原,具有操作简单,后处理方面,反应条件温和,以及产率高等优点. 硝基的还原成相应的伯胺, Pd/C氢化是首选,但硝基还原反应具有很多的中间态,不能只从TLC薄板看原料消耗完了就认为反应结束了.其中有一个中间体就是(N=O),因此反应一般要求过夜,主要是让其彻底反应完全.如果底物底物具有氢化不稳定基团,例如:底物结构含有Br,可以用Raney Ni氢化,如果底物含有杂环那就要用化学方法还原Zn/NH4Cl,Fe/HOAc,SnCl2, 保险粉等等还原方法,学习的过程一定要学会辩证运用所学理论解决实际问题.利用

化合物命名原则

根据IUPAC命名法及1980年中国化学学会命名原则,按各类化合物分述如下. 1.带支链烷烃 主链选碳链最长、带支链最多者. 编号按最低系列规则.从靠侧链最近端编号,如两端号码相同时,则依次比较下一取代基位次,最先遇到最小位次定为最低系统(不管取代基性质如何).例如, 命名为2,3,5-三甲基己烷,不叫2,4,5-三甲基己烷,因2,3,5与2,4,5对比是最低系列. 取代基次序IUPAC规定依英文名第一字母次序排列.我国规定采用立体化学中“次序规则”:优先基团放在后面,如第一原子相同则比较下一原子.例如, 称2-甲基-3-乙基戊烷,因—CH2CH3>—CH3,故将—CH3放在前面. 2.单官能团化合物 主链选含官能团的最长碳链、带侧链最多者,称为某烯(或炔、醇、醛、酮、酸、酯、……).卤代烃、硝基化合物、醚则以烃为母体,以卤素、硝基、烃氧基为取代基,并标明取代基位置. 编号从靠近官能团(或上述取代基)端开始,按次序规则优先基团列在后面.例如, 3.多官能团化合物 (1)脂肪族 选含官能团最多(尽量包括重键)的最长碳链为主链.官能团词尾取法习惯上按下列次序, —OH>—NH2(=NH)>C≡C>C=C 如烯、炔处在相同位次时则给双键以最低编号.例如, (2)脂环族、芳香族 如侧链简单,选环作母体;如取代基复杂,取碳链作主链.例如: (3)杂环 从杂原子开始编号,有多种杂原子时,按O、S、N、P顺序编号.例如: 4.顺反异构体 (1)顺反命名法 环状化合物用顺、反表示.相同或相似的原子或基因处于同侧称为顺式,处于异侧称为反式.例如, (2)Z,E命名法 化合物中含有双键时用Z、E表示.按“次序规则”比较双键原子所连基团大小,较大基团处于同侧称为Z,处于异侧称为E. 次序规则是: (Ⅰ)原子序数大的优先,如I>Br>Cl>S>P>F>O>N>C>H,未共享电子对:为最小;(Ⅱ)同位素质量高的优先,如D>H; (Ⅲ)二个基团中第一个原子相同时,依次比较第二、第三个原子; (Ⅳ)重键 分别可看作 (Ⅴ)Z优先于E,R优先于S. 例如 (E)-苯甲醛肟 5.旋光异构体 (1)D,L构型 主要应用于糖类及有关化合物,以甘油醛为标准,规定右旋构型为D,左旋构型为L.凡分子中离羰基最远的手性碳原子的构型与D-(+)-甘油醛相同的糖称D型;反之属L型.例如, 氨基酸习惯上也用D、L标记.除甘氨酸无旋光性外,α-氨基酸碳原子的构型都是L型. 其余化合物可以通过化学转变的方法,与标准物质相联系确定.例如:

芳香族硝基化合物的水合肼催化还原反应的研....

件组合。计算书可以直接提交设计部门进行工业设计。 4 结论 作者对从 C 4 齐聚物分离2, 4, 4-三甲基戊烯的过程进行了精密分离研究, 应用Aspen Plus 流程模拟系统为工作平台建立了数学模型, 结合精确的定 性和定量分析以及精馏热模试验, 实现了最终目的产品2, 4, 4-三甲基戊烯纯度 95%、收率98%的分离结果, 超出预计指标。由于采用了以数学模型为中心的研究思路, 热模试验主要以验证数学模型计 算结果为目标, 目的性强, 研究周期缩短。 参考文献 [1] Aspen T ech , Aspen Plus Release 9. 1User . s Guide, Vol. l&Vol. 2, 1994 [2] 鲍杰等, 齐鲁石油化工, (4 , 221(1994 [3] 汪文虎等, 烃类物理化学数据手册, 烃加工出版社, 1990 (1997-07-05收稿 =作者简介>鲍杰, 1984年毕业于华东工程学院化学工程 专业, 1984年在中石化齐鲁石化公司研究院工作至今。先后从事化工过程开 发、流程模拟和精细化工等领域的研究工作。发表论文多篇。 Study on the Precision Separation of 2, 4, 4-Trimethylpentene from C 4Oligomers Bao Jie, An Yam ing, Ding Wenguang

(Qilu Petr ochemical Research I nstitute, Zibo , Shandong Pr ovince, Pos tcode 255400 Abstract:The precision separation of 2, 4, 4-trimethy lpentene from C 4oligomers w as studied. The flowsheet simulation model of the process in Aspen Plus platform w as built up and the accurate analysis and a few bench -tests w ere accomplished. The results show ed that the purity of 2, 4, 4-tirmethy lpentene w as over 95%and the recovery yield reached 98%.Keywords:oligomers, 2, 4, 4-trimethylpentene, precision separation, Aspen Plus 芳香族硝基化合物的水合肼催化 还原反应的研究 唐洪张蕾徐寿颐 (清华大学化学系, 北京, 邮编100084 摘要研究了以80%水合肼为还原剂,在FeCI 3#6H 20/C存在下,回流3~8h,将 芳香族硝基化合物转变成芳香族氨基化合物的还原反应。相应的氨基化合物的产率达到85%~98%。关键词催化还原反应, 水合肼, 芳香族氨基化合物 芳香族硝基化合物转变成相应的氨基化合物是精细化工生产中常用的反应之一。实现这一过程的方法很多, 如:(1 硫化物还原法; (2 金属在酸性、中性和碱性体系的还原法; (3 催化氢化法, 但这些方法各有缺点。方法1和2后处理困难, 产品 颜色深; 方法3催化剂制备困难, 且价格高。而水 合肼还原法以其方便、高产率得到了广泛的应用, 据文献报道, 水合肼还原法使用的催化剂主要有两类[1~ 3]

浸渍法制备PdAl2O3催化剂

山西大学 综合化学实验报告实验名称浸渍法制备Pd/γ-Al2O3催化剂 学院化学化工学院 学生姓名 ddd 专业化学 学号 4444 年级 2009 指导教师王永钊 二Ο一二年 5月11日

浸渍法制备Pd/γ-Al2O3催化剂 姓名:tttt 学号:jikij 专业:化学 (山西大学化学化工学院,山西太原030006) 摘要:用等体积浸渍法,预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的Pd溶液与蒸馏水的量,经干燥,焙烧,还原制备Pd/γ-Al2O3催化剂,此催化剂为银灰色蛋壳型。 关键词:浸渍法 Pd/γ-Al2O3 催化剂 引言: 固体催化剂的制备方法很多。由于制备方法的不同,尽管原料和用量完全一样,但所制得的催化剂的性能仍可能有很大的差异。本次实验使用等体积浸渍法制备Pd/γ-Al2O3催化剂,使学生了解并掌握催化剂制备的基本原理与简单操作。 浸渍法是将载体浸泡在含有活性组分(主,助催化剂组分)的可溶性化合物溶液中,接触一定的时间后除去过剩的溶液,再经干燥,焙烧和活化,即可制得催化剂。而等体积浸渍法,能较便捷的得出所需净渍液的大概体积,由此可以省去过滤多余的浸渍溶液的步骤,而且便于控制催化剂中活性组分的含量。此方法预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的溶液量。 用浸渍法制备催化剂时,毛细管中浸渍液所含的溶质在干燥过程中会发生迁移,造成活性组分的不均匀分布。这时由于在缓慢干燥过程中,热量从颗粒外部传递到其内部,颗粒外部总是先达到液体的蒸发温度,因而孔口部分先蒸发使一部分溶质析出,由于毛细管上升现象,含有活性组分的溶液不断地从毛细管内部上升到孔口,并随溶剂的蒸发溶质不断地析出,活性组分就会向表层集中,留在孔内的活性组分减少。因此,为了减少干燥过程中溶质的迁移,常采用快速干燥法,使溶质迅速析出。有时也可采用稀溶液多次浸渍法来改善。 浸渍完全后再经干燥,焙烧处理得到催化剂产物。 实验部分 1、实验步骤 1.1实验试剂与仪器 1.1.1 试剂:γ-Al2O3小球,蒸馏水,Pd[9.6 mg/mL]溶液 1.1.2 仪器:坩埚,玻璃棒,移液管(1ml),洗耳球,小量筒(10ml),烘箱,马弗炉 1.2具体操作方法 1.2.1 载体吸入溶液能力试验称取三份1.0 g的40-60 目γ-Al2O3小球,逐步滴加蒸馏水,

“芳香族化合物”结构和性质题解及启示

“芳香族化合物”结构和性质题解及启示 例1:分子式为388O H C 的芳香族化合物有多种不同的结构,其中A 、B 、C 三种有机物苯环上的一氯取代物均有两种。等物质的量的A 、B 、C 分别与足量的NaOH 溶液完全反应时,消耗NaOH 的物质的量为1:2:3。 (1)A 可发生分子间酯化反应;B 遇3FeCl 溶液显紫色,其分子内含有羧基,则A 、B 的结构简式分别为A_________,B_________。 (2)C 可以看为酯类,C 与足量的NaOH 溶液反应的方程式为_________。 解析:本题只限于在芳香族化合物中寻找答案。由“A 、B 、C 三种有机物苯环上的一氯取代物均有两种”知:该芳香族化合物中除苯环外还应有两个取代基,且在对位上。分子式可改写为:34246O H C H C -,而342O H C -可以分解为两个取代基的方法有:OH -和COOH CH 2-或OH CH 2-和COOH -或OH -和-COO CH 3等;能与NaOH 溶液反应的官能团有:酚羟基)(OH -、羧基(COOH -)、酯(--COO )。根据题意molA 1与molNaOH 1反应,且A 能发生酯化反应,说明A 中含有醇羟基或羧基,可推测得A 的结构简式为:,与NaOH 反应的化学方程式为: 。 “B 遇3FeCl 溶液显紫色,其分子内含有羧基”,说明B 分子中含有酚羟基和羧基,得B 的结构简式为: ,它与NaOH 反应的化学方程式为: 。“C 可以看 为酯类”,C 的结构简式为:,它与NaOH 反应的化学方程式为: 。 例2:A 、B 都是芳香族化合物,1molA 水解得到1molB 和1mol 醋酸。A 、B 的相对分

6.1硝基化合物的还原

英国技术项目(二) (牛津大学国际技术转移中心) 一、手持式3D扫描仪 随着最近3D打印在世界范围内的兴起,3D应用在游戏、艺术、产品设计、消费者市场和制造业等领域的需求得到了前所未有的增加。 世界3D打印市场预测到2017年将达到50亿美元的规模。但是制作出用于3D打印或游戏中高质量的3D图像是非常耗时和成本高昂的,目前手持式3D扫描仪造价已经超过了一万五千美元,高于绝大多数独立游戏开发商、设计师和艺术家能够承担的范围。该款来自英国的手持式3D扫描仪,是世界上第一款能够在几秒时间里结合预先校准的立体照相机和光度成像技术去捕捉和处理文件的的扫描仪。它能够捕捉和提供极高质量的3D造型和色彩,可广泛应用于各种具有创造性的领域,目前正在寻求中国市场商业扩展合作伙伴。 该3D扫描系统能够分解含有大量物理和颜色度量的完全3D 表面,然后能够从任何方向进行观察、编辑,并能够作为3D打印或在屏幕上操作的源文件。 传统的3D手机或数码照相机所应用的技术是立体成像;它利用两个照相机视角,分别作用于每只眼睛,在立体屏幕上显示所谓的3D图形,以产生具有深度的印象。与之相反,该项3D扫描系统技术创新的核心是将几何形状和光度立体技术相融合,并仔细地调整,以捕捉高分辨率的3D颜色图像。该系统提供了能够捕捉目标物体真正的3D几何形状和全彩色的机会,可应用于任何非医学领域。该技术也从本质上擅长于捕捉其他有机和无机物具有高度网纹的表面。

一旦使用该扫描仪得到原始图像数据,并通过专用软件,所有的物体信息将被转化成真正的3D颜色几何数据;该扫描仪将配套专用的软件,并且只需要普通的计算机配臵即可使用(苹果操作系统或者Windows 7操作系统或以上,2GB RAM,双核处理器)。 该3D扫描仪具有的优势: 〃成本优势:最明显的,该3D扫描仪的价格是同质竞争对手的十分之一。 〃简单易用,手持式,瞄准然后按快门操作,与普通数码相机一样。 〃更加先进的功能,高分辨率,真正的3D几何形状捕捉,全色彩。 该3D扫描仪适用于有需要快速创建3D模型的任何用户,是广泛工业领域中的客户的理想工具,包括大规模个性定制、游戏、动画、艺术或者任何其他创意产业开发者。 该3D扫描仪尤其在捕捉下述的物体和表面具有优势: 〃皮肤,比如脸部和身体部位 〃布料 〃有机物,比如植物、叶子 〃石头、石工、砖头 〃食品 〃艺术品,比如有织纹的油画、雕塑

有机化合物的分类和命名

专题2 有机物的结构与分类第二单元有机化合物的分类和命名 课前预习 情景导入 通过前面的学习,已知有机物种类繁多,迄今为止,人类发现和合成的有机化合物已超过3 000万种。从1995年开始,人类每年新发现和新合成的有机物已超过100万种,有机物种类繁多的主要原因有: (1)碳原子有4个价电子,能与其他原子形成4个价键。 (2)碳原子之间可以成环、成链,且碳链的长度可以不同;碳原子之间的结合方式可有:单键、双键、叁键等。 (3)普遍存在同分异构现象。 这么多的有机物,认识和学习起来较困难,需要一个科学的方法对有机物进行分类,然后按类学习,就比较轻松了。 知识预览 一、有机化合物的分类 1.反映一类有机化合物共同特性的原子或原子团叫做_________。如醇类的官能团是_________,醇类可以简单的记为_________;羧酸(R—COOH)的官能团是_________;烯烃、炔烃的官能团分别是_________、_________;卤代烃、酚、醚的官能团分别是_________、_________、_________;醛、酮、胺的官能团分别是_________、_________、_________。 ”原子团的有机化合物互相称为_________。同系“CH相似,分子组成相差一个或若干个2. _________2物具有相同的_________,所以它们的化学性质_________,同系物还具有相同的通式,如链烷烃的通式为_________,链状饱和一元羧酸通式为_________。 3.依据_________对有机化合物进行分类,是有机化学中常用的分类方法。据此,可以将烃分为烷烃、_________、_________和_________;可以将烃的衍生物分为卤代烃、醇、_________、醚、_________酮、羧酸、_________和_________等。我们也可以从不同角度对有机物进行分类,如把不含苯环的有机物称为_________,把含有苯环的有机物称为_________;根据有机物分子中碳原子是连成链状还是环状,把有机物分为_________和_________。 碳碳双键碳碳叁键卤素原子羟基醚键醛基答案:1.官能团羟基R—OH—COOH 羰基氨基 2.结构同系物官能团相似CHHO 222n+2nnn 3.官能团烯 烃炔烃芳香烃酚醛酯胺脂肪族化合物芳香族化合物链状化合物环状化合物 二、有机化合物的命名 1.有机化合物的命名方法有_________和_________;在用习惯命名法命名烷烃时,当分子中碳原子数在10以内时,用天干——甲、乙、丙、丁、戊、己、_________、_________、_________、

硝基化合物还原方法

芳香族硝基化合物的还原 一、芳香胺重要价值 芳香胺被广泛用作医药中间体染料、感光材料、医药和农业化学品和抗氧化剂。制芳胺是一重要的有机合成单元反应,还原芳香族硝基化合物是制备芳胺的重要途径,目前, 随着我国化学工业的发展,特别是精细化学品的迅猛发展, 其应用范围不断拓宽, 市场前景看好,芳胺作为一重要化工产品, 必将随着我国经济发展, 特别是医药、农药、染料等的发展, 需求量呈现快速增长势。1 二、芳香族硝基化合物还原为相应胺的方法很多,下面我将对我了解到的相关方法做一个简短的说面,常见的方法有化学还原法,催化加氢还原法,电解还原法,常压下C O/H 2 O还原法, 水合肼还原法。 1、化学还原法是一大类还原方法其中就金属催化剂不同,反应条件的不同 可以分为很多类。 1.1金属还原法 很多活泼金属( 如铁、锡、锂、锌等) 在供质子剂存在下, 可以将芳香族硝基化合物还原成相应的胺。其中以铁粉还原最为常见。 此法具有较强还原能力, 基本上适用于所有硝基化合物的还原, 还原过程羰基、氰基、卤素、碳碳双键基本不受影响,且操作条件温和, 工艺简单, 副反应少, 对设备要求低。生产芳胺的同时还可以制得铁红颜料, 技术经济较合。但该生产存在着自动化水平低, 工人劳动强度大, 所产生的含芳胺铁泥和废水对环境污染严重等问题。因而, 该法已逐渐被其他生产工艺所取代。1 1.2硫化物还原法 在硫化碱还原法中, 常用的硫化碱有 Na 2 S、NaHS、Na 2 S 2 , 可用于多硝 基化合物的部分还原和全部还原。在进行部分还原时, 须严格控制硫化碱用量( 一般过量 5%~10% ) 和还原温度, 以避免多硝基化合物的完全还原。

切断法合成芳香族化合物前篇

一.切断法 1.概念:通过一系列逆向思维把目标分子恰当地切断,找到合理的路线,不通过胡乱猜测如何合成目标分子。这种逆向思维的方法就是切断法。 2.步骤:a.分析目标化合物的化学结构,包括官能团,C链长度,C链的排列方式等特 殊性结构; b.思考在哪里切断,用哪些已知可靠的反应切断; c.对片断进行分析看是否需要重复切断,从而找到易于取得的起始原料; d.根据设计所需的反应来寻找反应试剂与反应条件。 3.必要的化学知识: a.懂的常用的反应类型,理解这些反应的机; b.知道常用的起始合成原料,尽量做到低价格,低污染,低毒性; c.了解常用反应中的立体化学变化,如常用的马氏规则,反马氏规则反应,常见的SN1,SN2亲电取代反应过程中是否出现构型的翻转等。 二.切断法在芳香族化合物合成中的简单应用 苯环是一个非常稳定的结构单元,合成芳香族化合物通常意味着在苯环上引入侧链,因此,切断几乎总是在侧链与苯环之间,而我们需要做到的就是决定何时进行切断;在哪里切断。 影响我们决断的主要因素有两个:1.苯环上的取代基定位效应;2.苯环上取代基的稳定性。定位效应分为邻对位定位与间位定位,常见的邻对位定位基团有:酚羟基(-OH);甲氧基(-OCH3);氨基(-NH3)等,常见的间位定位集团有:硝基(-NO2);醛基(-CHO);羧基(-COOH);磺酸基(-SO3H)等。 实例: 局部麻醉药苯佐卡因的合成 根据分析苯佐卡因的结构,我们发现有酯基和氨基两个官能团,且处于对位,那么我们就首先从两个官能团分析,氨基现阶段我们暂时没有可靠的反应可以直接引入至苯环,所以,氨基我们需要转化成其他更容易引入的官能团,我们将这个过程称为官能团的转化,由此我们可以想到由硝基经过还原来制备氨基,其次是酯基,我们都知道酯基可通过酸与醇反应制得,这是一个可靠反应,故而原化合物经过转化官能团以后变为对氨基苯甲酸 然后我们根据定位效应知道羧基是间位定位基,故而不能在引入羧基后引入硝基,于是我们需要一个是邻对位定位又可转化为羧基的基团,我们知道,苯环上的羧基可通过酸性

浸渍法原理

概述以浸渍为关键和特殊步骤制造催化剂的方法称浸渍法也是目前催化剂工业生产中广泛应用的一种方法。浸渍法是基于活性组分含助催化剂以盐溶液形态浸渍到多孔载体上并渗透到内表面而形成高效催化剂的原理。通常将含有活性物质的液体去浸各类载体当浸渍平衡后去掉剩余液体再进行与沉淀法相同的干燥、焙烧、活化等工序后处理。经干燥将水分蒸发逸出可使活性组分的盐类遗留在载体的内表面上这些金属和金属氧化物的盐类均匀分布在载体的细孔中经加热分解及活化后即得高度分散的载体催化剂。活性溶液必须浸在载体上常用的多孔性载体有氧化铝、氧化硅、活性炭、硅酸铝、硅藻土、浮石、石棉、陶土、氧化镁、活性白土等可以用粉状的也可以用成型后的颗粒状的。氧化铝和氧化硅这些氧化物载体就像表面具有吸附性能的大多数活性炭一样很容易被水溶液浸湿。另外毛细管作用力可确保液体被吸人到整个多孔结构中甚至一端封闭的毛细管也将被填满而气体在液体中的溶解则有助于过程的进行但也有些载体难于浸湿例如高度石墨化或没有化学吸附氧的碳就是这样可用有机溶剂或将载体在抽空下浸渍。浸渍法有以下优点第一附载组分多数情况下仅仅分布在载体表面上利用率高、用量少、成本低这对铂、铑、钯、铱等贵金属型负载催化剂特别有意义可节省大量贵金属第二可以用市售的、已成形的、规格化的载体材料省去催化剂成型步骤。第三可通过选择适当的载体为催化剂提供所需物理结构特性如比表面、孔半径、机械强度、热导率等。可见浸渍法是一种简单易行而且经济的方法。广泛用于制备负载型催化剂尤其是低含量的贵金属附载型催化剂。其缺点是其焙烧热分解工序常产生废气污染。浸渍法工艺浸渍法可分为粉状载体浸渍法和粒状载体浸渍法两种工艺其特点可由流程图看出。粒状载体浸渍法工艺如图6—2所示。粒状载体浸渍前通常先做成一定形状抽空载体后用溶液接触载体并加入适量的竞争吸附剂。也可将活性组分溶液喷射到转动的容器中翻滚到载体上然后可用过滤、倾析及离心等方法除去过剩溶液。粉状载体浸渍法与粒状载体浸渍法类似但需增加压片、挤条或成球等成形步骤其流程见图6—3。浸渍的方法对

硝基化合物还原方法研究报告

硝基化合物还原方法研究报告芳胺是重要的有机合成中间体和原料,用于合成农药、医药、橡胶助剂、染料和颜料、合成树脂、纺织助剂、表面活性剂、感光材料等多种精细化学品。芳胺可由相应的芳香硝基化合物还原得到,工业中还原芳香硝基化合物的方法主要有金属(铁粉、锌粉等)还原法、催化加氢还原法和硫化碱还原法,而其他还原方法也多有研究。最近,针对铁粉还原法制备芳胺的过程中,存在含盐废水的污染问题,还提出了许多绿色,环境友好的还原硝基物制相应芳胺的新方法。 1 金属还原法 金属还原法,尤其铁粉还原法适用面广、操作简单、还原效率高、选择性好、产品质量好,尤其对品质有特殊要求的芳胺的制备,仍有优越性。适宜于采用铁粉还原法生产的胺类有:①容易被水蒸气蒸出的芳胺; ②易溶于水,并且可以通过蒸馏分离的芳胺; ③能溶于热水的芳胺; ④含磺酸基或羧酸基等水溶性基团的芳胺。 近年来,仍有许多关于各种活化铁还原芳香硝基化合物,以适合特殊芳胺制备方法的研究。Hazlet、孙权一、LIU等分别制成了活化铁,还原各种芳香硝基化合物,相应芳胺的收率很高,对于那些易还原的基团不影响。除了铁粉外,锌粉也用于还原芳香硝基化合物制芳胺,锡也是一种常用的还原剂。另外,用镁粉,锰粉,铟、钐以及活性镍等作为还原剂,还原芳香硝基化合物也有研究。这些金属还原芳香硝基化合物制备相应芳胺,均可获得较高收率的芳胺。与铁粉相比,这些金属的价格较贵,有些还非常容易氧化。而且多数反应还需要催化剂或其他条件辅助作用,反应后都会产生含盐的废弃物。 2 催化加氢还原法 在催化加氢还原反应过程中,不产生有害副产物,废气、废液排放很少。由于催化加氢还原硝基苯制苯胺的产量大,产品质量高,对解决环境污染问题有着显著的优越性,目前已经成为工业上生产苯胺的主要方法。其缺点是对于苯环上有其他易还原取代基的芳香硝基化合物,其催化加氢过程中会发生大量副反应。为了抑制这些副反应,一种方法是对催化剂进行改性,常用于催化加氢还原硝基物的催化剂有:铂基催化剂心、钯基催化剂、钌基催化剂、金基催化剂、骨架镍催化剂以及非晶态合金催化剂。通过选择不同的催化剂、添加另一种金属或改变载体物质等方法对催化剂进行改性,可以有效地抑制脱卤,提高胺的选择性。Corma等研究了纳米金负载在TiO2或Fe2O3上催化芳香硝基化合物的还原反应,发现该催化剂可以有效地抑制反应过程中羟胺的积累,生成芳胺的选择性很高。此方法得到了Blaser 的高度推崇。但是这些方法的缺点是:经处理或改性的加氢催化剂的活性和稳定性均有所下降,导致催化剂用量增加。而且对有些底物的催化加氢还原,仍然存在着选择性问题。 虽然催化加氢生产工艺清洁、产量大,但对于固体芳香硝基化合物需要使用有机溶剂溶解,这些有机溶剂挥发会带来环境污染问题。另外,催化加氢制备芳胺一般都在加压下进行,对生产装置和工艺控制的要求较高。而且催化还原所得产物的品质不及铁粉还原产物的品质,在空气中易变色。同时,催化加氢还需要优良的催化剂和氢气来源。以上诸多因素在一定程度上影响了其广泛的应用。 3 硫化碱还原法 不宜用铁粉还原时,可用硫化物还原。硫化碱还原法是在硫化物的水溶液中进行芳香

硝基还原的方法

经典的合成方法1.是Pd/C还原,用甲醇做溶剂,加4倍当量的甲酸铵,回流,最后过滤旋干,萃取就OK了,产率很高,没有副反应。2.铁粉还原,铁粉是4倍当量的,加2倍当量的氯化铵,然后用水和乙醇作溶剂,水和乙醇的体积比是1:3,回流完毕后趁热过滤,冷却,可能就会有大量固体析出,如果没有的话就旋干,萃取。3.硫化钠和硫代硫酸钠还原,很经典的4.用水合肼兰尼镍还原5.用LAH 或者NaBH4-BF3还原!!这些应该足够LZ还原了! 我做过黄酮上面硝基的还原,甲醇溶剂,钯碳,水浴40°,2h就好了,产率可以达到85以上!~ 严重推荐!~ Fe粉还原,欢迎拍砖已有2人参与 ★★★★★ xiaopengs:恭喜,你的帖子被版主审核为资源贴了别人回复你的帖子对资源进行评价后,你就可以获得金币了理由:OK 2011-05-19 23:22 xiaopengs(金币+5): 谢谢分享2011-05-19 23:24:44 秋天白云(OCI+1): 欢迎你继续支持有机交流版!2011-05-25 14:20:37 Fe粉还原 自小虫进入本论坛以来,看见很多关于Fe还原的帖子,虽然这是一个简单的傻瓜反应,其机理与历程,通法与后处理都为广大科技工作者所熟知,但是其中或多或少存在着一些细节,本虫就本虫做过的几个Fe粉还原工业化对Fe粉还原进行简要的总结,以期和广大虫友交流,纯属抛砖引玉,妄论之处还请广大虫友不吝赐教(因为本人高中肄业,仅在一小化工厂当了10几年的操作工,目前处于失业状态,理论水平非常有限,参考书目给大家列出)。 Fe还原反应是通过电子的转移而实现的[1]。即Fe是电子给体,被还原物的某个原子首先在Fe粉的表面得到电子生成负离子自由基,后者再从质子给体(例如水)得到质子而生成产物。Fe的给电子能力比较弱,适用于容易被还原的基团的还原,是一种选择性还原剂,尤其是苯系硝基衍生物的还原,基本不影响苯环上其它基团(水不稳定性和热不稳定性基团除外)。 以Fe为还原剂对苯系硝基衍生物的还原在工业上获得广泛应用,至今任然是在某些苯系硝基物的还原中使用,虽然国家发改委在2005年左右下达停止使用Fe还原的文件。加氢还原工艺非常好,但是面临的最大问题--本虫认为是氢源的问题,氢源解决好了,其它神马都是浮云。因为本虫做过一个加氢,理论上需要不到3瓶氢气即完活,结果用了15瓶氢气。其时本虫就茅塞顿开,换瓶子(每瓶大概只装2kg左右的氢气)的速度很难跟上呀,是个繁重的体力活。。。 1.反应特点 以金属Fe为还原剂,反应在弱酸性电解质溶液中进行,一般都选择回流温度。其优点为:选择性好,可以避免脱卤、氰基还原等副反应的发生,收率高(后处理得好的话,>95%很容易达到),工艺简单、成熟,对设备要求低、可执行性好,常压反应。其缺点为:分离难,含胺废水不好处理且量大,产生大量固体Fe泥(现在有人收购,抢着要)。

催化剂的制备性能评价及使用技术多相催化剂常用哪些

第二章催化剂的制备、性能评价及使用技术 1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么? 多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。 所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。2)借助固态反应使催化剂得到一定的晶型、晶粒大小、孔隙结构和比表面。3)提高催化剂的机械强度。 2.沉淀法制备催化剂的原理是什么?金属盐和沉淀剂的选择原则是什么? 沉淀法制备催化剂的原理是沉淀反应,金属盐一般首选硝酸盐来提供无机催化剂材料所需的阳离子;金、铂、钯等贵金属不溶于硝酸,但可溶于王水。 沉淀剂的选择原则是:(1)尽可能使用易分解并含易挥发成分的沉淀剂;(2)沉淀便于过滤和洗涤;(3)沉淀剂自身的溶解度要足够大;(4)沉淀物的溶解度应很小;(5)沉淀剂必须无毒,不造成环境污染。

相关主题