搜档网
当前位置:搜档网 › 利用SPSS进行主成分分析

利用SPSS进行主成分分析

利用SPSS进行主成分分析
利用SPSS进行主成分分析

利用SPSS进行主成分分析

【例子】 以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据(未经标准化)

第二步:打开“因子分析”对话框。

沿着主菜单的“Analyze→Data Reduction→FactorΚ”的路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框的路径

图3 因子分析选项框

第三步:选项设置。

首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“ValueΚ”栏。下面逐项设置。

图4 将变量移到变量栏以后

⒈设置Descriptives选项。

单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框

在Statistics 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。

设置完成以后,单击Continue 按钮完成设置(图5)。

⒉ 设置Extraction 选项。

打开Extraction 对话框(图6)。因子提取方法主要有7种,在Method 栏中可以看到,系统默认的提取方法是主成分(Πρινχιπαλ χομπονεντσ),因此对此栏不作变动,就是认可了主成分分析方法。

在Analyze 栏中,选中Correlation matirx 复选项,则因子分析基于数据的相关系数矩阵进行分析;如果选中Covariance matrix 复选项,则因子分析基于数据的协方差矩阵进行分析。对于主成分分析而言,由于数据标准化了,这两个结果没有分别,因此任选其一即可。

在Display 栏中,选中Unrotated factor solution (非旋转因子解)复选项,则在分析结果中给出未经旋转的因子提取结果。对于主成分分析而言,这一项选择与否都一样;对于旋转因子分析,选择此项,可将旋转前后的结果同时给出,以便对比。

选中Scree Plot (

“山麓”图),则在分析结果中给出特征根按大小分布的折线图(形如山麓截面,故得名),以便我们直观地判定因子的提取数量是否准确。

在Extract 栏中,有两种方法可以决定提取主成分(因子)的数目。一是根据特征根(Eigenvalues )的数值,系统默认的是1=c λ。我们知道,在主成分分析中,主成分得分的方差就是对应的特征根数值。如果默认1=c λ,则所有方差大于等于1的主成分将被保留,其余舍弃。如果觉得最后选取的主成分数量不足,可以将c λ值降低,例如取9.0=c λ;如果认为最后的提取的主成分数量偏多,则可以提高c λ值,例如取

1.1=c λ。主成分数目是否合适,要在进行一轮分析以后才能肯定。因此,特征根数值

的设定,要在反复试验以后才能决定。一般而言,在初次分析时,最好降低特征根的临

界值(如取8.0=c λ) ,这样提取的主成分将会偏多,根据初次分析的结果,在第二轮分析过程中可以调整特征根的大小。

第二种方法是直接指定主成分的数目即因子数目,这要选中Number of factors 复选项。主成分的数目选多少合适?开始我们并不十分清楚。因此,首次不妨将数值设大一些,但不能超过变量数目。本例有8个变量,因此,最大的主成分提取数目为8,不得超过此数。在我们第一轮分析中,采用系统默认的方法提取主成分。

图6 提取对话框

需要注意的是:主成分计算是利用迭代(Iterations )方法,系统默认的迭代次数是25次。但是,当数据量较大时,25次迭代是不够的,需要改为50次、100次乃至更多。对于本例而言,变量较少,25次迭代足够,故无需改动。

设置完成以后,单击Continue 按钮完成设置(图6)。

⒊ 设置Scores 设置。

选中Save as variables 栏,则分析结果中给出标准化的主成分得分(在数据表的后面)。至于方法复选项,对主成分分析而言,三种方法没有分别,采用系统默认的“回归”(Regression )法即可。

图7 因子得分对话框

选中Display factor score coefficient matrix ,则在分析结果中给出因子得分系数矩阵及其相关矩阵。

设置完成以后,单击Continue 按钮完成设置(图7)。

⒋ 其它。

对于主成分分析而言,旋转项(Rotation )可以不必设置;对于数据没有缺失的情况下,Option 项可以不必理会。

全部设置完成以后,点击OK 确定,SPSS 很快给出计算结果(图8)。

图8 主成分分析的结果

第四步,结果解读。

在因子分析结果(Output )中,首先给出的Descriptive Statistics ,第一列Mean 对应的变量的算术平均值,计算公式为

∑==n

i ij j x n x 1

1

第二列Std. Deviation 对应的是样本标准差,计算公式为

2/11

2])(11[∑=??=n

i j ij j x x n σ 第三列Analysis N 对应是样本数目。这一组数据在分析过程中可作参考。

接下来是Correlation Matrix(相关系数矩阵),一般而言,相关系数高的变量,大多会进入同一个主成分,但不尽然,除了相关系数外,决定变量在主成分中分布地位的因素还有数据的结构。相关系数矩阵对主成分分析具有参考价值,毕竟主成分分析是从计算相关系数矩阵的特征根开始的。相关系数阵下面的Determinant=1.133E-0.4是相关矩阵的行列式值,根据关系式0)det(=?R I λ可知,det(λI )=det(R ),从而Determinant=1.133E-0.4=λ1*λ2*λ3*λ4*λ5*λ6*λ7*λ8。这一点在后面将会得到验证。

在Communalities(公因子方差)中,给出了因子载荷阵的初始公因子方差(Initial )和提取公因子方差(Extraction ),后面将会看到它们的含义。

在Total Variance Explained(全部解释方差) 表的Initial Eigenvalues(初始特

征根)中,给出了按顺序排列的主成分得分的方差(Total),在数值上等于相关系数矩阵的各个特征根λ,因此可以直接根据特征根计算每一个主成分的方差百分比(% of Variance)。由于全部特征根的总和等于变量数目,即有m=∑λi=8,故第一个特征根的方差百分比为λ1/m=3.755/8=46.939,第二个特征根的百分比为λ2/m=2.197/8= 27.459,……,其余依此类推。然后可以算出方差累计值(Cumulative %)。在Extraction Sums of Squared Loadings,给出了从左边栏目中提取的三个主成分及有关参数,提取的原则是满足λ>1,这一点我们在图6所示的对话框中进行了限定。

图8 特征根数值衰减折线图(山麓图)

主成分的数目可以根据相关系数矩阵的特征根来判定,如前所说,相关系数矩阵的特

征根刚好等于主成分的方差,而方差是变量数据蕴涵信息的重要判据之一。根据λ值决定主成分数目的准则有三:

i 只取λ>1的特征根对应的主成分

从Total Variance Explained表中可见,第一、第二和第三个主成分对应的λ值都大于1,这意味着这三个主成分得分的方差都大于1。本例正是根据这条准则提取主成分的。

ii 累计百分比达到80%~85%以上的λ值对应的主成分

在Total Variance Explained表可以看出,前三个主成分对应的λ值累计百分比达到89.584%,这暗示只要选取三个主成分,信息量就够了。

iii 根据特征根变化的突变点决定主成分的数量

从特征根分布的折线图(Scree Plot)上可以看到,第4个λ值是一个明显的折点,这暗示选取的主成分数目应有p≤4(图8)。那么,究竟是3个还是4个呢?根据前面两条准则,选3个大致合适(但小有问题)。

在Component Matrix(成分矩阵)中,给出了主成分载荷矩阵,每一列载荷值都显示了各个变量与有关主成分的相关系数。以第一列为例,0.885实际上是国内生产总值(GDP)与第一个主成分的相关系数。将标准化的GDP数据与第一主成分得分进行回归,决定系数R2=0.783(图9),容易算出R=0.885,这正是GDP在第一个主成分上的载荷。

下面将主成分载荷矩阵拷贝到Excel上面作进一步的处理:计算公因子方差和方差贡献。首先求行平方和,例如,第一行的平方和为

h12=0.88492+0.38362+0.12092=0.9449

这是公因子方差。然后求列平方和,例如,第一列的平方和为

s12=0.88492+0.60672+…+0.82272=3.7551

这便是方差贡献(图10)。在Excel中有一个计算平方和的命令sumsq,可以方便地算出一组数据的平方和。显然,列平方和即方差贡献。事实上,有如下关系成立:

相关系数矩阵的特征根=方差贡献=主成分得分的方差

至于行平方和,显然与前面公因子方差(Communalities)表中的Extraction列对应的数据一样。如果我们将8个主成分全部提取,则主成分载荷的行平方和都等于1(图11),即有h i=1,s j=λj。到此可以明白:在Communalities中,Initial对应的是初始公因子方差,实际上是全部主成分的公因子方差;Extraction对应的是提取的主成分的公因子方差,我们提取了3个主成分,故计算公因子方差时只考虑3个主成分。

国内生产总值

-2.00000

0.00000

2.00000

4.00000

第一主成分

图9 国内生产总值(GDP)的与第一主成分的相关关系(标准化数据)

图10 主成分方差与方差贡献

图11 全部主成分的公因子方差和方差贡献

提取主成分的原则上要求公因子方差的各个数值尽可能接近,亦即要求它们的方差极小,当公因子方差完全相等时,它们的方差为0,这就达到完美状态。实际应用中,只要公因子方差数值彼此接近(不相差太远)就行了。从上面给出的结果可以看出:提取3个主成分的时候,居民消费的公因子方差偏小,这暗示提取3个主成分,居民消费方面的信息可能有较多的损失。至于方差贡献,反映对应主成分的重要程度,这一点从方差的统计学意义可以得到理解。

在图11中,将最后一行的特征根全部乘到一起,得0.0001133,这正是相关系数矩阵的行列式数值(在Excel中,求一组数据的乘积之和的命令是product)。

最后说明Component Score Coefficient Matrix(成分得分系数矩阵)和Component Score Covariance Matrix(成分得分协方差矩阵),前者是主成分得分系数,后者是主成分得分的协方差即相关系数。从Component Score Covariance Matrix可以看出,标准化主成分得分之间的协方差即相关系数为0(j≠k)或1(j=k),这意味着主成分之间彼此正交即垂直。

初学者常将Component Score Coefficient Matrix表中的数据当成主成分得分或因子得分,这是误会。成分得分系数矩阵的数值是主成分载荷除以相应的特征根得到的结果。在Component Matrix表中,将第一列数据分别除以λ1=3.755,第二列数值分别除以λ2=2.197,…,立即得到Component Score Coefficient;反过来,如果将Component Score Coefficient Matrix表中的各列数据分别乘以λ1=3.755,λ2=2.197,…,则可将其还原为主成分载荷即Component Matrix中的数据。

实际上,主成分得分在原始数据所在的SPSS当前数据栏中给出,不过给出的都是标准化的主成分得分(图12a );将各个主成分乘以相应的√λ即特征根的二次方根可以将其还原为未经标准化的主成分得分。

a.标准化的主成分得分

b. 非标准化的主成分得分

图12 两种主成分得分

计算标准化主成分得分的协方差或相关系数,结果与Component Score Covariance

Matrix表中的给出的结果一致(见图13)。

第一因子第二因子第三因子

第一因子1

第二因子0.00000 1

第三因子0.00000 0.00000 1

图13 主成分(得分)之间的相关系数矩阵

第五步,计算结果分析。

从Component Matrix即主成分载荷表中可以看出,国内生产总值、固定资产投资和工业产值在第一主成分上载荷较大,亦即与第一主成分的相关系数较高;职工工资和货物周转量在第二主成分上的载荷绝对值较大,即负相关程度较高;消费价格指数在第三主成分上的载荷较大,即相关程度较高。

因此可将主成分命名如下:

第一主成分:投入-产出主成分;

第二主成分:工资-物流主成分;

第三主成分:消费价格主成分。

问题在于:一方面,居民消费和商品零售价格指数的归类比较含混;另一方面,主成分的命名结构不清。因此,有必要作进一步的因子分析。

至于因子旋转之类,留待“因子分析”部分说明;计算结果的系统分析不属于软件操作范围,预备课堂讲解。

【说明】本人计算机是双系统,现在常用的WinMe系统出了毛病,SPSS10.0在WinMe系统中;故这次改用本人Win2000系统中的SPSS11.0。对于因子分析之类,SPSS11.0与SPSS10.0基本没有什么差别。

主成分分析案例

姓名:XXX 学号:XXXXXXX 专业:XXXX 用SPSS19软件对下列数据进行主成分分析: ……

一、相关性 通过对数据进行双变量相关分析,得到相关系数矩阵,见表1。 表1 淡化浓海水自然蒸发影响因素的相关性 由表1可知: 辐照、风速、湿度、水温、气温、浓度六个因素都与蒸发速率在0.01水平上显著相关。 分析:各变量之间存在着明显的相关关系,若直接将其纳入分析可能会得到因多元共线性影响的错误结论,因此需要通过主成份分析将数据所携带的信息进行浓缩处理。 二、KMO和球形Bartlett检验 KMO和球形Bartlett检验是对主成分分析的适用性进行检验。 KMO检验可以检查各变量之间的偏相关性,取值范围是0~1。KMO的结果越接近1,表示变量之间的偏相关性越好,那么进行主成分分析的效果就会越好。实际分析时,KMO统计量大于0.7时,效果就比较理想;若当KMO统计量小于0.5时,就不适于选用主成分分析法。 Bartlett球形检验是用来判断相关矩阵是否为单位矩阵,在主成分分析中,若拒绝各变量独立的原假设,则说明可以做主成分分析,若不拒绝原假设,则说明这些变量可能独立提供一些信息,不适合做主成分分析。

由表2可知: 1、KMO=0.631<0.7,表明变量之间没有特别完美的信息的重叠度,主成分分析得到的模型又可能不是非常完善,但仍然值得实验。 2、显著性小于0.05,则应拒绝假设,即变量间具有较强的相关性。 三、公因子方差 公因子方差表示变量共同度。表示各变量中所携带的原始信息能被提取出的主成分所体现的程度。 由表3可知: 几乎所有变量共同度都达到了75%,可认为这几个提取出的主成分对各个变量的阐释能力比较强。 四、解释的总方差 解释的总方差给出了各因素的方差贡献率和累计贡献率。

SPSS软件进行主成分分析的应用例子

SPSS软件进行主成分分析的应用例子 2002年16家上市公司4项指标的数据[5]见表2,定量综合赢利能力分析如下: 第一,将EXCEL中的原始数据导入到SPSS软件中; 【1】“分析”|“描述统计”|“描述”。 【2】弹出“描述统计”对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选“将标准化得分另存为变量”,最后点击确定。 【3】返回SPSS的“数据视图”,此时就可以看到新增了标准化后数据的字段。

数据标准化主要功能就是消除变量间的量纲关系,从而使数据具有可比性,可以举个简单的例子,一个百分制的变量与一个5分值的变量在一起怎么比较?只有通过数据标准化,都把它们标准到同一个标准时才具有可比性,一般标准化采用的是Z标准化,即均值为0,方差为1,当然也有其他标准化,比如0--1标准化等等,可根据自己的研究目的进行选择,这里介绍怎么进行数据的Z标准化。 所的结论: 标准化后的所有指标数据。 注意: SPSS 在调用Factor Analyze 过程进行分析时, SPSS 会自动对原始数据进行标准化处理, 所以在得到计算结果后的变量都是指经过标准化处理后的变量, 但SPSS 并不直接给出标准化后的数据, 如需要得到标准化数据, 则需调用Descriptives 过程进行计算。 factor过程对数据进行因子分析(指标之间的相关性判定略)。 【1】“分析”|“降维”|“因子分析”选项卡,将要进行分析的变量选入“变量”列表;

【2】设置“描述”,勾选“原始分析结果”和“KMO与Bartlett球形度检验”复选框; 【3】设置“抽取”,勾选“碎石图”复选框; 【4】设置“旋转”,勾选“最大方差法”复选框; 【5】设置“得分”,勾选“保存为变量”和“因子得分系数”复选框; 【6】查看分析结果。 所做工作: a.查看KMO和Bartlett 的检验 KMO值接近1.KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析; Bartlett 球度度检验的Sig值越小于显著水平0.05,越说明变量之间存在相关关系。 所的结论: 符合因子分析的条件,可以进行因子分析,并进一步完成主成分分析。 注意: 1.KMO(Kaiser-Meyer-Olkin) KMO统计量是取值在0和1之间。当所有变量间的简单相关系数平方和远远大于偏相关系数平方和时,KMO值接近1.KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析;当所有变量间的简单相关系数平方和接近0时,KMO值接近0.KMO值越接近于0,意味着变量间的相关性越弱,原有变量越不适合作因子分析。 Kaiser给出了常用的kmo度量标准: 0.9以上表示非常适合;0.8表示适合;0.7表示一般; 0.6表示不太适合;0.5以下表示极不适合。 2.Bartlett 球度检验: 巴特利特球度检验的统计量是根据相关系数矩阵的行列式得到的,如果该值较大,且其对应的相伴概率值小于用户心中的显著性水平,那么应该拒绝零假设,认为相关系数矩阵不可能是单位阵,即原始变量之间存在相关性,适合于做主成份分析;相反,如果该统计量比较小,且其相对应的相伴概率大于显著性水平,则不能拒绝零假设,认为相关系数矩阵可能是单位阵,不宜于做因子分析。 Bartlett 球度检验的原假设为相关系数矩阵为单位矩阵,Sig值为0.001小于显著水平0.05,因此拒绝原假设,说明变量之间存在相关关系,适合做因子分析。 所做工作: b. 全部解释方差或者解释的总方差(Total Variance Explained)

SPSS软件进行主成分分析的应用例子

SPSS软件进行主成分分析的应用例子

SPSS软件进行主成分分析的应用例子 2002年16家上市公司4项指标的数据[5]见表2,定量综合赢利能力分析如下: 公司销售净利率(X1)资产净利率(X2)净资产收益率(X3)销售毛利率(X4) 歌华有线五粮液用友软件太太药业浙江阳光烟台万华方正科技红河光明贵州茅台中铁二局红星发展伊利股份青岛海尔湖北宜化雅戈尔福建南纸43.31 17.11 21.11 29.55 11.00 17.63 2.73 29.11 20.29 3.99 22.65 4.43 5.40 7.06 19.82 7.26 7.39 12.13 6.03 8.62 8.41 13.86 4.22 5.44 9.48 4.64 11.13 7.30 8.90 2.79 10.53 2.99 8.73 17.29 7.00 10.13 11.83 15.41 17.16 6.09 12.97 9.35 14.3 14.36 12.53 5.24 18.55 6.99 54.89 44.25 89.37 73 25.22 36.44 9.96 56.26 82.23 13.04 50.51 29.04 65.5 19.79 42.04 22.72 第一,将EXCEL中的原始数据导入到SPSS软件中; 注意: 导入Spss的数据不能出现空缺的现象,如出现可用0补齐。 【1】“分析”|“描述统计”|“描述”。 【2】弹出“描述统计”对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选“将标准化得分另存为变量”,最后点击确定。 【3】返回SPSS的“数据视图”,此时就可以看到新增了标准化后数据的字段。 所做工作: a. 原始数据的标准化处理

SPSS进行主成分分析

实验七、利用SPSS进行主成分分析 【例子】以全国31个省市的8项经济指标为例,进行主成分分析。 第一步:录入或调入数据(图1)。 图1 原始数据(未经标准化) 第二步:打开“因子分析”对话框。 沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。 图2 打开因子分析对话框的路径

图3 因子分析选项框 第三步:选项设置。 首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value ”栏。下面逐项设置。 图4将变量移到变量栏以后 ⒈设置Descriptives描述选项。 单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框 在Stat is tic s 统计 栏中选中U niva riate d escript ives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial soluti on 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。 在C orrel ation M atri x栏中,选中Coe fficien ts 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Deter minant 复选项,则会给出相关系数矩阵的行列式,如果希望在E xc el中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。 设置完成以后,单击Cont inue 按钮完成设置(图5)。 ⒉ 设置Extra ction 选项。 打开Ext raction 对话框(图6)。因子提取方法主要有7种,在Method 栏中可以看到,系统默认的提取方法是主成分(Pr in ci pa l Compon en ts),因此对此栏不作变动,就是认可了主成分分析方法。 在Ana lyze 栏中,选中Correlatio n ma trix 复选项,则因子分析基于数据的相关系数矩阵进行分析;如果选中Covar iance matri x复选项,则因子分析基于数据的协方差矩阵进行分析。对于主成分分析而言,由于数据标准化了,这两个结果没有分别,因此任选其一即可。 在D isplay 栏中,选中U nrotated factor s olu ti on(非旋转因子解)复选项,则在分析结果中给出未经旋转的因子提取结果。对于主成分分析而言,这一项选择与否都一样;对于旋转因子分析,选择此项,可将旋转前后的结果同时给出,以便对比。 选中Scree P lo t(“山麓”图),则在分析结果中给出特征根按大小分布的折线图(形如山麓截面,故得名),以便我们直观地判定因子的提取数量是否准确。 在Extract 栏中,有两种方法可以决定提取主成分(因子)的数目。一是根据特征根(Eig envalues )的数值,系统默认的是1=c λ。我们知道,在主成分分析中,主成分得分的方差就是对应的特征根数值。如果默认1=c λ,则所有方差大于等于1的主成分将被保留,其余舍弃。如果觉得最后选取的主成分数量不足,可以将c λ值降低,例如取 9.0=c λ;如果认为最后的提取的主成分数量偏多,则可以提高c λ值,例如取1.1=c λ。 主成分数目是否合适,要在进行一轮分析以后才能肯定。因此,特征根数值的设定,要在反复试验以后才能决定。一般而言,在初次分析时,最好降低特征根的临界值(如取

应用统计学因子分析与主成分分析案例解析_SPSS操作分析

因子分析与主成分分析 一、问题概述 现希望对30个省市自治区经济发展基本情况的八项指标进行分析。具体采用的指标只有:GDP、居民消费水平、固定资产投资、职工平均工资、货物周转量、居民消费价格指数、商品零售价格指数、工业总产值。这是一个综合分析问题,八项指标较多,用主成分分析法进行综合。 二、数据处理与分析 1.因子分析 打开数据后,在SPSS中进行因子分析的步骤如下: 选择“分析---降维---因子分析”,在弹出的对话框里 (1)描述---系数、KMO与Bartlett的球形度检验 (2)抽取---碎石图、未旋转的因子解 (3)旋转---最大方差法、旋转解、载荷图 (4)得分---保存为变量、显示因子得分系数矩阵 (5)选项---按大小排序 点击确定得到如下各图: 图3-1 图3-2 KMO 和 Bartlett 的检验 取样足够度的 Kaiser-Meyer-Olkin 度量。.620 Bartlett 的球形度检验近似卡方231.285 df 28 Sig. .000 图3-3 公因子方差

图3-6 成份矩阵a

图3-9

(2)因子模型中各统计量的意义 A)因子载荷错误!未找到引用源。:因子载荷错误!未找到引用源。为第i个变量在第j个因子上的载荷,实际上就是错误!未找到引用源。与错误!未找到引用源。的相关系数,表示变量错误!未找到引用源。依赖因子错误!未找到引用源。的程度,反应了第i个变量错误!未找到引用源。对于第j个因子错误!未找到引用源。的重要性。 B)变量错误!未找到引用源。的变量共同度:k个公因子对第i个变量方差的贡献,也称为公因子方差比,记为错误!未找到引用源。,公式为:错误!未找到引用源。=错误!未找到引用源。(j=1,2,….,k)

【精品管理学】spss因子分析案例 共(13页)

[例11-1]下表资料为25名健康人的7项生化检验结果,7项生化检验指标依次命名为X1至X7,请对该资料进行因子分析。

图 ???对话框(图框。 图 钮返回 图11.3?描述性指标选择对话框 ???点击Extraction...钮,弹出FactorAnalysis:Extraction对话框(图11.4),系统提供如下因子提取方法: 图11.4?因子提取方法选择对话框 ???Principalcomponents:主成分分析法;

???Unweightedleastsquares:未加权最小平方法; ???Generalizedleastsquares:综合最小平方法; ???Maximumlikelihood:极大似然估计法; ???Principalaxisfactoring:主轴因子法; ???Alphafactoring:α因子法; ???对话框。 ???5种因图 ???旋转的目的是为了获得简单结构,以帮助我们解释因子。本例选正交旋转法,之后点击Continue钮返回FactorAnalysis对话框。 ???点击Scores...钮,弹出弹出FactorAnalysis:Scores对话框(图11.6),系统提供3种估计因子得分系数的方法,本例选Regression(回归因子得分),之后点击Continue钮返回FactorAnalysis对话框,再点击OK钮即完成分析。

图11.6?估计因子分方法对话框? ?11.2.3?结果解释 ??在输出结果窗口中将看到如下统计数据: ??系统首先输出各变量的均数(Mean)与标准差(StdDev),并显示共有25例观察单位进入分析;接着输出相关系数矩阵(CorrelationMatrix),经Bartlett检验表明:Bartlett值=326.28484,P<0.0001,即相关矩阵不是一个单位矩阵,故考虑进行因子分析。 好。今KMO值 NumberofCases?=?????25 CorrelationMatrix: X1???????X2???????X3???????X4???????X5???????X6???????X7 X1????????1.00000 X2?????????.58026??1.00000

SPSS主成分分析

主成分分析方法运用案例 1.《自然因素与社会经济因素对耕地质量贡献率研究》 选取了卧龙区为研究分析对象,以 1: 50000土地利用现状图为基础, 通过图形叠加添加土壤图、地貌类型图, 形成2981个评价单元。 (1)选定选取耕地质量的自然因素和社会经济因素。自然因素:土壤质地( X1 )、pH 值(Ⅹ2 )、有机质含量(Ⅹ 3 )、坡度(Ⅹ 4 )、障碍层次(Ⅹ5 )、砾石含量( X6 )、土层厚度(Ⅹ7 )、海拔(Ⅹ 8 ) 社会经济因素:灌溉保证率(Y1 )、田块分散度( Y2 )、地面平整度( Y3 )、中心城镇影响度( Y4 )、外部交通通达度( Y5 )、区域内路网密度(Y6 )、田间道路状况( Y7 ) (2)利用spss的主成分分析功能剔除在主成分中不呈显著性相关关系的因子。 自然因素:剔除了Ⅹ2 与Ⅹ8。剩下影响耕地质量的自然因子6个, 为土壤质地、有机质含量、坡度、障碍层次、砾石含量、土层厚度; 社会经济因素:剔除了 Y3 与Y7 。剩下影响耕地质量的社会经济因子5个, 为灌溉保证率、田块分散度、中心城镇影响度、外部交通通达度、区域内路网密度。 (3)对评价因素进行量化。

区域内路网密度分值: (4)采用特尔菲法确定各个因子的权重。 (5)计算评价单元的自然因素分值和社会经济因素分值。 (6)确定自然因素与社会经济因素贡献率。 2.《中国循环经济发展的空间分异与优化》 本文采取了主成分分析做循环经济发展水平的综合评价。(1)选取循环经济发展水平的因素

(2)采取spss软件进行主成分分析,得出了9个累积贡献率大于85%的主成分指标。(3)确定各主成分的贡献率,即权重。 (4)进行加权求和法计算出各地区循环经济发展能力综合分值。 聚类分析方法运用案例 1.陕西省县域经济发展水平聚类分析 (1)选取聚类的指标

spss主成分分析案例研究

多元统计分析实验报告

实验三、主成分分析 一、实验名称:主成分分析 二、实验目的:通过本实验掌握使用SPSS进行主成分分析 三、主成分分析步骤,我们归纳如下: 1. 根据研究问题选取初始分析变量; 2. 根据初始变量特性判断由协方差阵求主成分还是由相关阵求主成分; 3. 求协差阵或相关阵的特征根与相应标准特征向量; 4. 判断是否存在明显的多重共线性,若存在,则回到第一步; 5. 得到主成分的表达式并确定主成分个数,选取主成分; 6. 结合主成分对研究问题进行分析并深入研究。 四、分析结果: 搜集到有关大学生创业的调查问卷,问卷达到206份,具体数据附表1所示,为了从这些(创业目的、创业类型、创业领域的根据、创业的优势、创业地区、创业方式、)变量中提取主成分,先从做这些变量的相关矩阵: 相关矩阵 创业目的创业类型创业领域的根 据 创业的优势创业方式创业地区 相关创业目的 1.000 .031 .199 .157 .091 -.082 创业类型.031 1.000 -.037 .018 -.071 .077 创业领域的根据.199 -.037 1.000 .102 .128 -.099 创业的劣势.157 .018 .102 1.000 .083 .018 创业方式.091 -.071 .128 .083 1.000 -.127 创业地区-.082 .077 -.099 .018 -.127 1.000 Sig.(单侧)创业目的.272 .000 .001 .037 .054 创业类型.000 .000 .360 .081 .065 创业领域的根据.000 .235 .023 .006 .027 创业的劣势.001 .360 .023 .051 .361 创业方式.037 .081 .006 .051 .006 创业地区.054 .065 .027 .361 .006

SPSS软件进行主成分分析的应用例子修订版

S P S S软件进行主成分分析的应用例子 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

SPSS软件进行主成分分析的应用例子 2002年16家上市公司4项指标的数据[5]见表2,定量综合赢利能力分析如下: 1. 第一,将EXCEL中的原始数据导入到SPSS软件中; 【1】“分析”|“描述统计”|“描述”。 【2】弹出“描述统计”对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选“将标准化得分另存为变量”,最后点击确定。 【3】返回SPSS的“数据视图”,此时就可以看到新增了标准化后数据的字段。 进行因子分析(指标之间的相关性判定略)。 【1】“分析”|“降维”|“因子分析”选项卡,将要进行分析的变量选入“变量”列表; 【2】设置“描述”,勾选“原始分析结果”和“KMO与Bartlett球形度检验”复选框;

【3】设置“抽取”,勾选“碎石图”复选框; 【4】设置“旋转”,勾选“最大方差法”复选框; 【5】设置“得分”,勾选“保存为变量”和“因子得分系数”复选框;【6】查看分析结果。

【1】将初始因子载荷矩阵中的两列数据输入( 可用复制粘贴的方法) 到数据编辑窗口( 为 中输入“F 1”,然后在数字表达式中输入“V 1 /SQR(λ 1 )”[注:λ 1 =1.897], 即可得到特征向量F 1 ; 【3】然后利用“转换”|“计算变量”, 打开“计算变量”对话框,在“目标变量”文本框 中输入“F 2”,然后在数字表达式中输入“V 2 /SQR(λ 2 )”[注:λ 1 =1.550], 即可得到特征向量F 2 ; 【4】最后得到特征向量矩阵(主成分表达式的系数)。 【1】将得到的特征向量与标准化后的数据相乘, 然后就可以得出主成分函数的表达式; 中输入“Z 1 ”,然后在数字表达式中输入“0.531* Z (销售净利率)+0.594*Z (资产净利 率)+0.261*Z (净资产收益率)+0.546*Z (销售毛利率)” [注:F 1 =0.531,0.594,0.261,0.546], 即可得到特征向量Z 1 ; 【3】同理[注:F 2=-0.412,0.404,0.720,-0.383], 可得到特征向量Z 2 ; 【4】求出16家上市公司的主成分值。

利用SPSS进行主成分分析

利用SPSS进行主成分分析 【例子】 以全国31个省市的8项经济指标为例,进行主成分分析。 第一步:录入或调入数据(图1)。 图1 原始数据(未经标准化) 第二步:打开“因子分析”对话框。 沿着主菜单的“Analyze→Data Reduction→FactorΚ”的路径(图2)打开因子分析选项框(图3)。 图2 打开因子分析对话框的路径

图3 因子分析选项框 第三步:选项设置。 首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“ValueΚ”栏。下面逐项设置。 图4 将变量移到变量栏以后 ⒈设置Descriptives选项。 单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框 在Statistics 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。 在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。 设置完成以后,单击Continue 按钮完成设置(图5)。 ⒉ 设置Extraction 选项。 打开Extraction 对话框(图6)。因子提取方法主要有7种,在Method 栏中可以看到,系统默认的提取方法是主成分(Πρινχιπαλ χομπονεντσ),因此对此栏不作变动,就是认可了主成分分析方法。 在Analyze 栏中,选中Correlation matirx 复选项,则因子分析基于数据的相关系数矩阵进行分析;如果选中Covariance matrix 复选项,则因子分析基于数据的协方差矩阵进行分析。对于主成分分析而言,由于数据标准化了,这两个结果没有分别,因此任选其一即可。 在Display 栏中,选中Unrotated factor solution (非旋转因子解)复选项,则在分析结果中给出未经旋转的因子提取结果。对于主成分分析而言,这一项选择与否都一样;对于旋转因子分析,选择此项,可将旋转前后的结果同时给出,以便对比。 选中Scree Plot ( “山麓”图),则在分析结果中给出特征根按大小分布的折线图(形如山麓截面,故得名),以便我们直观地判定因子的提取数量是否准确。 在Extract 栏中,有两种方法可以决定提取主成分(因子)的数目。一是根据特征根(Eigenvalues )的数值,系统默认的是1=c λ。我们知道,在主成分分析中,主成分得分的方差就是对应的特征根数值。如果默认1=c λ,则所有方差大于等于1的主成分将被保留,其余舍弃。如果觉得最后选取的主成分数量不足,可以将c λ值降低,例如取9.0=c λ;如果认为最后的提取的主成分数量偏多,则可以提高c λ值,例如取 1.1=c λ。主成分数目是否合适,要在进行一轮分析以后才能肯定。因此,特征根数值 的设定,要在反复试验以后才能决定。一般而言,在初次分析时,最好降低特征根的临

主成分分析实例

在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 主成分分析的主要作用体现在五个方面,第一,主成分分析能降低所研究的数据空间的维数。第二,可通过因子负荷的结论,弄清X变量间的某些关系。第三,可用于多为数据的一种图形表现方法。第四,可由主成分分析构造回归模型,即把各个主成分作为新自变量代替原来自变量做回归分析。第五,用主成分分析筛选回归变量。

应用统计学因子分析与主成分分析案例解析+SPSS操作分析

因子分析与主成分分析 摘要:通过搜集相关数据,采用因子分析法和主成份分析法,对我国各个省市自治区经济发展基本情况的八项指标进行分析。具体采用的指标只有:GDP、居民消费水平、固定资产投资、职工平均工资、货物周转量、居民消费价格指数、商品零售价格指数、工业总产值。这是一个综合分析问题,八项指标较多,用主成分分析法进行综合评价。 关键词:由于样本数比较多,这里不再给出,可参见factor1.sav文件 引言:因子分析是寻找潜在的起支配作用的因子模型的方法。因子分析是根据相关性大小把变量分组,使得同组内的变量之间相关性较高,但不同的组的变量相关性较低。每组变量代表一个基本结构,这个基本结构称为公共因子。对于所研究的问题就可试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。通过因子分析得来的新变量是对每个原始变量进行内部剖析。因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子和特殊因子两部分。具体地说,就是要找出某个问题中可直接测量的具有一定相关性的诸指标,如何受少数几个在专业中有意义、又不可直接测量到、且相对独立的因子支配的规律,从而可用各指标的测定来间接确定各因子的状态。基本步骤:在SPSS中进行因子分析的步骤如下: 选择“分析---降维---因子分析”,在弹出的对话框里 (1)描述---系数、KMO与Bartlett的球形度检验 (2)抽取---碎石图、未旋转的因子解 (3)旋转---最大方差法、旋转解、载荷图 (4)得分---保存为变量、显示因子得分系数矩阵 (5)选项---按大小排序 点击确定得到如下各图 图3-1

SPSS进行主成分分析(PCA)

利用SPSS进行主成分分析 【例子】以全国31个省市的8项经济指标为例,进行主成分分析。 第一步:录入或调入数据(图1)。 图1 原始数据(未经标准化) 第二步:打开“因子分析”对话框。 沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。 图2 打开因子分析对话框的路径

图3 因子分析选项框 第三步:选项设置。 首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value ”栏。下面逐项设置。 图4 将变量移到变量栏以后 ⒈设置Descriptives选项。 单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框 在Statistics 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。 在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。 设置完成以后,单击Continue 按钮完成设置(图5)。 ⒉ 设置Extraction 选项。 打开Extraction 对话框(图6)。因子提取方法主要有7种,在Method 栏中可以看到,系统默认的提取方法是主成分(∏ρινχιπαλ χομπονεντσ),因此对此栏不作变动,就是认可了主成分分析方法。 在Analyze 栏中,选中Correlation matirx 复选项,则因子分析基于数据的相关系数矩阵进行分析;如果选中Covariance matrix 复选项,则因子分析基于数据的协方差矩阵进行分析。对于主成分分析而言,由于数据标准化了,这两个结果没有分别,因此任选其一即可。 在Display 栏中,选中Unrotated factor solution (非旋转因子解)复选项,则在分析结果中给出未经旋转的因子提取结果。对于主成分分析而言,这一项选择与否都一样;对于旋转因子分析,选择此项,可将旋转前后的结果同时给出,以便对比。 选中Scree Plot (“山麓”图),则在分析结果中给出特征根按大小分布的折线图(形如山麓截面,故得名),以便我们直观地判定因子的提取数量是否准确。 在Extract 栏中,有两种方法可以决定提取主成分(因子)的数目。一是根据特征根(Eigenvalues )的数值,系统默认的是1=c λ。我们知道,在主成分分析中,主成分得分的方差就是对应的特征根数值。如果默认1=c λ,则所有方差大于等于1的主成分将被保留,其余舍弃。如果觉得最后选取的主成分数量不足,可以将c λ值降低,例如取9.0=c λ;如果认为最后的提取的主成分数量偏多,则可以提高c λ值,例如取 1.1=c λ。主成分数目是否合适,要在进行一轮分析以后才能肯定。因此,特征根数值 的设定,要在反复试验以后才能决定。一般而言,在初次分析时,最好降低特征根的临

相关主题