搜档网
当前位置:搜档网 › 处处不可导连续函数的构造法

处处不可导连续函数的构造法

处处不可导连续函数的构造法
处处不可导连续函数的构造法

导函数图像与原函数图像关系

导函数图像类型题 类型一:已知原函数图像,判断导函数图像。 1. (福建卷11)如果函数)(x f y =的图象如右图,那么导函 数()y f x '=的图象可能就是 ( ) 2. 设 函数f (x ) 在定义域内可导,y=f (x )的图象如下左图所示,则导函数y=f '(x )的图象可能为( ) 3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能就是 ( ) 4. 若函 数 2()f x x b =+的图象的顶点在第 四象限,则其导函数'()f x 的图象就是( ) 类型二:已知导函数图像,判断原函数图像。

5. (2007年广东佛山)设)(x f '就是函数)(x f 的导函数,)(x f y '=的 图象如右图所示,则)(x f y =的图象最有可能的就是( ) 6. (2010年3月广东省深圳市高三年级第一次调研考试文科)已 知函数f x ()的导函数2f x ax bx c '=++()的图象如右图,则f x ()的图象可能就是( ) 7. 函数 ) (x f 的定 义域为开区间 3 (,3)2-,导函数) (x f '在 3 (,3)2 -内的图象如图所示,则函数)(x f 的单调增区间就是_____________ 类型三:利用导数的几何意义判断图像。 8. (2009湖南卷文)若函数()y f x =的导函数... 在区间[,]a b 上就是增函数,则函数()y f x =在区间[,] a b 上的图象可能就是 ( ) O 1 2 x y x y y O 1 2 y O 1 2 x O 1 2 x C D O 1 2 x y a b a b a o x o x y o x y o x y y )(x f y '= x o y

定理设在上连续在内可导

定理设在上连续,在内可导, (1)在内,,则在上单调增; (2)在内,,则在上单调减。 对函数,如何求出的单调增减区间呢? 从图中可看出,应先找出单调增减区间的分界点,哪些点可能成为分界点呢?

如果在可导且是单调增减的分界点,则,所以,使的点可能是单调增减分界点; 定义使的点称为的驻点。 另外,不可导的点也可能成为分界点, 如:在处不可导,但时,单调减,时,单调增。 所以,可能的单调增减分界点有:驻点和不可导的点。 求的单调增减区间的方法: (1)确定的定义域;图5-5 (2)找出的驻点和不可导的 点,用这些点将定义区间分成若干个小 区间; (3)在每个小区间上用的符 号判定。 例1求的单调区间。 解:定义域

驻点:(没有不可导的点) 列表 - 所以,在和内单调增,在内单调减。例2讨论函数的单调性。 解:定义域 驻点:,不可导的点: 列表 - 例3 利用单调性证明:时,有

证:设 当时, 在内单调增,又 既时,有 例4证明:方程只有一个正根。 证明:设 因,又在[0,1] 上连续,由零点存在 定理, 在(0,1)内至少有一点,使,即是方程的一个正根。

因时,,单调增,所以,时, 只有一个零点,即方程只有一个正根。 定义设在的邻域内有定义,对邻域内任意异于的点 (1)如果有,则称为的一个极大值,为极大值点; (2)如果有,则称为的一个极小值,为极小值点。 极大值、极小值统称为极值,极大值点、极小值点统称为极值点。 定理(极值存在的必要条件) 设在可导且在取得极值,则。

如何求函数的极值,首先要找出可能取得极值的点,由上面定理知,驻点是可能取得极值的点,另外,不可导的点也是可能取得极值的点,如:在处。 所以,可能取得极值的点为:驻点 和不可导的点。 对于上述点还要做出判断,是否取得极值,如: 在处,,但不是极值。下 面给出极值 存在的充分条件。 定理(极值存在的充分条件)

用导数的基本运算法则巧构造导函数的原函数

用导数的基本运算法则巧构造导函数的原函数 构造函数是解决抽象不等式的基本方法,根据题设的条件,并借助初等函数的导数公式和导数的基本运算法则,相应地构造出辅助函数. 通过进一步研究辅助函数的有关性质,给予巧妙的解答. 本文从一到高考试题出发,追根溯源,研究并揭示高考试题的本质. 1 高考真题 真题 设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 取值范围( ). A. (,1)(0,1)-∞- B. (1,0)(1,)-+∞ C. (,1)(1,0)-∞-- D. (0,1)(1,)+∞ 解析:设()()f x F x x =,则2 ()()'()xf x f x F x x '-=. 因为0x >时,()()0xf x f x '-<,所以'()0F x <,即当0x >时,()F x 单调递减. 又因为()f x 为奇函数,且(1)0f -=,所以()()f x F x x = 为偶函数,且(1)(1)0F F -==, 则当0x <时,()F x 单调递增.当(,1)x ∈-∞-时,()0F x <,()0f x >.当(0,1)x ∈时,()0F x <,()0f x >.所以()0f x >成立的x 取值范围(,1)(0,1)-∞-,即答案为A.. 上述题为2015年课标全国Ⅱ选择题第12题,创新有难度,丰富有内涵. 此其题表面看上,不知道如何入手,解决问题. 因为这是一道没有具体函数表达式的不等式试题,且不等式中含有()f x '和()f x ,更是难上加难. 从试题的解析可以看出,巧妙地构造出了函数()F x ,通过分析()F x 的单调性和奇偶性,解答问题. 解题突破口不易寻找,给人一种“旧时茅店社林边,路转溪桥忽见”的感觉. 对题的解析过程进行回顾,本题是如何构造出()()f x F x x = ,从而给出极其巧妙的解答. 为了寻求问题的本质,这里对以下例题进行分析. 2 巧构导函数的原函数 例 1 已知函数()f x 的图像关于y 轴对称,且当(,0)x ∈-∞时,()()0f x xf x '+<成立,若0.20.22(2)a f =?,log 3(log 3)b f ππ=?,33log 9(log 9)b f =?,则,,a b c 的大小关系( ) A. b a c >> B. c a b >> C. c b a >> D. a b c >> 解析:设()()F x xf x =,则'()()()F x f x xf x '=+.因为0x <时,()()0f x xf x '+<,所以'()0F x <,则 当0x <时,()F x 单调递减.又因为函数()f x 的图像关于y 轴对称,所以()f x 为奇函数,当0x >时, ()F x 单调递减.又因为0.2122<<,0log 31π<<,3log 92=,则b a c >>,即答案为A. 例 2已知函数()f x 满足:()2()0f x f x '+>,那么系列不等式成立的是( ) A. (1)f B. (0)(2)f f e < C. (1)(2)f D. 2(0)(4)f e f > 解析:设12()2()x F x e f x =,则1 112221'()2[()()][()2()]2 x x x F x e f x e f x e f x f x ''=+=+.因为()2()0f x f x '+>,所以'()0F x >,则()F x 在定义域上单调递增,所以(1)(0)F F >,则(1)f ,即答案为A. 例 3 已知()f x 为定义在(,)-∞+∞上的可导函数,且()()f x f x '<对于x R ∈恒成立且e 为自然对数的底,则( ) A. 2012(1)(0),(2012)(0)f e f f e f >?>? B. 2012(1)(0),(2012)(0)f e f f e f ? C. 2012(1)(0),(2012)(0)f e f f e f >?,(2012)(0)F F >即答案为A. 例4 定义在(0, )2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '>成立,则( ) ()()43π π B. (1)2()sin16f f π>()()64f ππ>()()63f ππ > 解析:因为(0,)2x π ∈,所以sin 0x >,cos 0>.由()()tan f x f x x '>,得()cos ()sin 0f x x f x x '->

最新导函数图像与原函数图像关系(我)

导函数图像类型题 类型一:已知原函数图像,判断导函数图像。 1. (福建卷11)如果函数)(x f y =的图象如右图,那么导 函数 ()y f x '=的图象可能是 ( ) 2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函 数y=f (x )的 图象可能为( ) 3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能是 ( ) 4. 若 函 数 2()f x x bx c =++的图象的顶点在第 四象限,则其导函数'()f x 的图象是( ) 类型二:已知导函数图 像,判断原函数图像。 5. (2007年广东佛山)设)(x f '是函数)(x f 的导函数,)(x f y '=的图 象如右图所示,则)(x f y =的图象最有可能的是( ) 知函数 象可能是 7. 函数)(x f 的定 义域 为开区间( ,3)2 - ,导函数) (x f '在 3 (,3)2 -内的图象如图所示,则函数)(x f 的单调增区间是_____________ 类型三:利用导数的几何意义判断图像。 8. (2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的 图象可能是 ( ) A . B . C . D .

9.若函数)(' x f y =在区间),(21x x 内是单调递减函数,则函数)(x f y =在区间),(21x x 内的图像可以是( ) A B C D 10.(选做)已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是 ( ) 类型四:根据实际问题判断图像。 9. (2010年浙江省宁波市高三“十校”联考文科)如右图所示是某一容器的三视图,现向容器中匀速注水, 容器中水面的高度h 随时间t 变化的可能图象是( ) 10.如图,直线l 和圆c ,当l 从0l 开始在平面上绕点o 按逆时针方向匀速转动(转动角度不超过? 90)时,它扫过的园内阴影部分的面积S 是时间t 的函数,这个函数的图 像大致是( ) 11.如图, 水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中, 请分别找出与各容器对应的水的高度h 与时间t 的函数关系图 象. 10. 已知函数 )(x f y =的导函数)(x f y '=的图像如下, 则( ) 函数)(x f 有1个极大值点,1个极小值点 函数 )(x f 有2个极大值点,2个极小值点 函数)(x f 有3个极大值点,1个极小值点 函数)(x f 有1个极大值点,3个极小值点 11. (2008珠海质检理)函数)(x f 的定义域为 ),(b a , 其导函数),()(b a x f 在'内的图象如图所示,则函数)(x f 在区间),(b a 内极小值点的个 数 是( ) (A).1 (B).2 (C).3 (D).4 12. 已知函数3 2 ()f x ax bx cx =++在点0x 处取得极大值5, 其 导函数'()y f x =的图象经过点(1,0),(2,0),如图所示.求: (Ⅰ)0x 的值; (Ⅱ),,a b c 的值. 13. 函数()y f x =在定义域3 (,3)2 - 内可导, 其图象如图,记 ()y f x =的导函数为/()y f x =,则不等式 /()0 f x ≤的解集为_____________ 14. 如图为函数32()f x ax bx cx d =+++的图象, '()f x 为函 数()f x 的导函数,则不等式'()0x f x ?<的解集为_____ _ 15. 【湛江市·文】函数2 2 1ln )(x x x f - =的图象大致是 A . B . C . D . 16. 【珠海·文】如图是二次函数a bx x x f +-=2 )(的部分图象,则函数)(ln )(x f x x g '+=的零点所在的区 间是 ( )

构造函数法在导数不等式中应用

构造函数在导数不等式中的应用 构造函数是解决抽象不等式的基本方法,根据题设的条件,并借助初等函数的导数公式和导数的基本运算法则,相应地构造出辅助函数. 通过进一步研究辅助函数的有关性质,给予巧妙的解答. 1 真题 设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 取值范围( ). A. (,1)(0,1)-∞-U B. (1,0)(1,)-+∞U C. (,1)(1,0)-∞--U D. (0,1)(1,)+∞U 解析:设()()f x F x x = , 则2()()'()xf x f x F x x '-=. 因为0x >时,()()0xf x f x '-<,所以'()0F x <,即当0x >时,()F x 单调递减. 又因为()f x 为奇函数,且(1)0f -=,所以()()f x F x x = 为偶函数,且(1)(1)0F F -==, 则当0x <时,()F x 单调递增. 当(,1)x ∈-∞-时,()0F x <,()0f x >. 当(0,1)x ∈时,()0F x <,()0f x >. 所以()0f x >成立的x 取值范围 (,1)(0,1)-∞-U ,即答案为A.. 对题的解析过程进行回顾,本题是如何构造出()()f x F x x = ,从而给出极其巧妙的解答. 为了寻求问题的本质,这里对以下例题进行分析. 【典例】 例 1 已知函数()f x 的图像关于y 轴对称,且当(,0)x ∈-∞时,()()0f x xf x '+<成立,若0.20.22(2)a f =?,log 3(log 3)b f ππ=?,33log 9(log 9)b f =?,则,,a b c 的大小关系( ) A. b a c >> B. c a b >> C. c b a >> D. a b c >> 解析:设()()F x xf x =,则'()()()F x f x xf x '=+. 因为0x <时,()()0f x xf x '+<,所以'()0F x <,则当0x <时,()F x 单调递减. 又因为函数()f x 的图像关于y 轴对称,所以()f x 为奇函数,当0x >时,()F x 单调递减. 又因为0.2122<<,0log 31π<<,3log 92=,则b a c >>,即答案为A. 例 2已知函数()f x 满足:()2()0f x f x '+>,那么系列不等式成立的是( ) A. (1)f >

导函数图像与原函数图像关系(我)

导函数图像类型题 类型一:已知原函数图像,判断导函数图像。 1. (福建卷11)如果函数)(x f y =的图象如右图,那么导 函数()y f x '=的图象可能是 ( ) 2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函数y=f '(x )的图象可能为( ) 3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能是 ( ) 4. 若函数2 ()f x x bx c =++的图象的顶点在第四象限,则其导函数'()f x 的图象是( ) 类型二:已知导函数图像,判断原函数图像。

5.(2007年广东佛山)设) (x f'是函数) (x f的导函数,) (x f y' =的图 象如右图所示,则) (x f y=的图象最有可能的是() 6.(2010年3月广东省深圳市高三年级第一次调研考试文科)已 知函数f x ()的导函数2 f x ax bx c '=++ ()的图象如右图,则 f x()的图象可能是( ) 7.函数) (x f的定义域为开区间 3 (,3) 2 -,导函数) (x f'在 3 (,3) 2 -内的图象如图所示,则函数) (x f的单调增区间是_____________ 类型三:利用导数的几何意义判断图像。 O 1 2 x y x y y O 1 2 y O 1 2 x O 1 2 x D O 1 2 x y ) (x f y' = x o y

8.( 2009湖南卷文) 若函数() y f x =的导函数 ...在区间[,] a b上是增函数,则函数() y f x =在区间[,] a b上的图象可能是( ) A .B.C.D. 9.若函数) ('x f y=在区间) , ( 2 1 x x内是单调递减函数,则函数) (x f y=在区间) , ( 2 1 x x内的图像可以是() A B C D 10.(选做)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是 () 类型四:根据实际问题判断图像。 9.(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某一容器的三视图,现向容器 中匀速注水,容器中水面的高度h随时间t变化的可能图象是() o x o x y b a o x y o x y b y

构造函数求解导数题的基本策略

构造函数求解导数题的基本策略 湖北省黄梅县第一中学 赵光新 一构造函数求解恒成立问题,弥补“等号”问题 例1已知函数f (x )=-x 3+ax 2+b (a ,b ∈R ). (1)若函数y=f (x )的图象上任意不同的两点的连线的斜率小于2,求a 的取值范围 分析:本题学生易将图象上任意不同的两点的连线的斜率与 '()f x 混为一谈,错解为:由f (x )=-x 3+ax 2+b 得'2()32f x x ax =-+,'()2,f x <∴Q 23220x ax -+>对一切的x R ∈恒成立,从而 2(2)4320a ?=--??<,260a ∴-< a << 正确解法:不妨设12,x x R ∈且12x x <则1212 ()()2f x f x x x -<<,整理得 1122()2()2f x x f x x ->-,因此构造函数()()2g x f x x =-=322x ax x b -+-+, 则12()()g x g x >,从而()g x 为R 上的减函数,所以' ()0g x ≤即 23220x ax -+≥对一切的x R ∈恒成立,从而 2(2)4320a ?=--??<,260a ∴-≤ a ≤≤ 二构造函数解决多元变量的证明问题 在不等式的证明中,常常会出现多个变量。此时若能用主元思想,将其中一个看成主元,另一个变量看成常数,构造一元函数,利用一元函数的性质,使得多元变量不等式的证明得到很好的解决,高考题中常常出现。 例2已知函数()ln f x x =,当0a b <<时,求证222()()()b b a f b f a --> 3222222' 2222221242()(2)()()()b b x bx b x b x bx F x x x b x x b ----+=--=-++,0x b <= 所以原命题得证。 三构造函数求解代数式的最值问题

高考数学专题07+导数有关的构造函数方法-(理)(教师版)

专题07 导数有关的构造函数方法 一.知识点 基本初等函数的导数公式 (1)常用函数的导数 ①(C )′=________(C 为常数); ②(x )′=________; ③(x 2)′=________; ④???? 1x ′=________; ⑤(x )′=________. (2)初等函数的导数公式 ①(x n )′=________; ②(sin x )′=__________; ③(cos x )′=________; ④(e x )′=________; ⑤(a x )′=___________; ⑥(ln x )′=________; ⑦(log a x )′=__________. 5.导数的运算法则 (1)[f (x )±g (x )]′=________________________; (2)[f (x )·g (x )]′=_________________________; (3)???? ??f (x )g (x )′=____________________________. 6.复合函数的导数 (1)对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这两个函数(函数y =f (u )和u =g (x ))的复合函数为y =f (g (x )). (2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为___________________,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 二.题型分析 1.构造多项式函数 2.构造三角函数型 3.构造x e 形式的函数 4.构造成积的形式 5.与ln x 有关的构造 6.构造成商的形式

处处不可导连续函数

教案 数学分析中一个反例的教学 复旦大学 陈纪修 金 路 邱维元 教学内容 讲授数学分析发展历史上一个重要的反例:处处连续处处不可导的函数,以及这一反例对数学学科发展的影响;介绍德国数学家Weierstrass 的生平与对数学分析所作的贡献。 指导思想 通过讲授处处连续处处不可导的函数的例子与介绍德国数学家Weierstrass 的贡献,使学生掌握函数项级数一致收敛理论的重要应用,认识到数学家如何通过从提出猜想,到证明或否定猜想的过程,使数学学科得到发展的,从而使学生在今后的学习中重视对反例的探讨。 教学安排 (1)德国数学家Weierstrass 的简单介绍 同学们,前一阶段,我们学习了函数项级数一致收敛的理论,有了这一基础,我们可以来介绍一个在数学分析中非常重要的内容。这个结果是属于Weierstrass 的。关于Weierstrass 这个名字,我们并不陌生(我们已学过以他的名字冠名的定理有:有界数列必有收敛子列,函数项级数的Weierstrass 判别法等),在以后的学习中,你们将会不断遇上Weierstrass 这个名字。Karl Weierstrass (1815—1897)是19世纪德国数学家,他在数学的许多领域都作出了重大贡献,其中不少成果是在他做中学教师时取得的。后来他被聘为柏林大学教授和法国巴黎科学院院士。他是数学分析基础的主要奠基者之一,是把严格的数学论证引进分析学的一位大师。Weierstrass 利用单调有界的有理数数列来定义无理数,从而在严格的逻辑基础上建立了实数理论;关于连续函数的分析定义(即δε-语言)也是他给出的,这些贡献使得数学分析的叙述精确化,论证严格化。 (2)处处连续处处不可导的函数 在数学分析的发展历史上,数学家们一直猜测:连续函数在其定义区间中,至多除去可列个点外都是可导的。也就是说,连续函数的不可导点至多是可列集。 在当时,由于函数的表示手段有限,而仅仅从初等函数或从分段初等函数表示的角度出发去考虑,这个猜想是正确的。 但是随着级数理论的发展,函数表示的手段扩展了,数学家可以通过函数项级数来表示更广泛的函数类。Weierstrass 是一位研究级数理论的大师,他于1872年利用函数项级数第一个构造出了一个处处连续而处处不可导的函数,为上述猜测做了一个否定的终结: ()∑∞== 0cos )(n n n x b a x f ,b a <<<10, 1>ab 。 下面叙述的反例在证明上要相对简易些,它是由荷兰数学家Van Der Waerden 于1930年给出的: 设?(x )表示x 与最邻近的整数之间的距离,例如当x = 1.26,则?(x ) = 0.26;当x = 3.67,则?(x ) = 0.33。显然?(x )是周期为1的连续函数,且2/1)(≤?x 。 注意当y x ,]21,[+∈k k 或]1,2 1[++k k 时,成立|||)()(|y x y x -=-??。 Van Der Waerden 给出的例子是:

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A. B. C. D. 2.设函数是奇函数的导函数,,当时,,则使得 成立的的取值范围是() A. B. C. D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A. B. C. D. 4.已知函数定义在数集上的偶函数,当时恒有,且,则不等式的解集为( ) A. B. C. D. 5.定义在上的函数满足,,则不等式的解集为() A. B. C. D. 6.设定义在上的函数满足任意都有,且时,有,则的大小关系是() A. B. C. D. 7.已知偶函数满足,且,则的解集为 A. B. C. D.

8.定义在R上的函数满足:是的导函数,则不等式(其中e为自然对数的底数)的解集为( ) A. B. C. D. 9.已知定义在上的函数的导函数为,满足,且,则不等式 的解集为() A. B. C. D. 10.定义在上的函数f(x)满足,则不等式的解集为A. B. C. D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A. B. C. D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A. e2017f(-2017)e2017f(0) B. e2017f(-2017)f(0),f(2017)>e2017f(0) D. e2017f(-2017)>f(0),f(2017)

原函数与导函数的关系

课题:探究原函数与导函数的关系 首师大附中 数学组 王建华 设计思路 这节课就是在学完导数与积分之后,学生从大量的实例中对原函数与导函数的关系有了一定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律与对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣与成就感。教师实际上就是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要,重要的就是研究相互关联的事物的一般思路与方法。对优秀生或热爱数学的学生来说会有更多的收获。 整个教学流程 1、 从经验观察发现,猜想得命题p,q 、 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。 2、 学生自然会想到这个命题的逆命题就是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。 3、 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x a =对称,研究前面的四个命题还就是否成立。研究方法可以类比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。 4、已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。 教学目标 在这个探究过程中 1、加强学生对导函数与原函数相生相伴的关系的理解; 2、增强学生对函数对称性的理解与抽象概括表达能力; 3体验研究事物的角度,一个新定理就是怎样诞生的,怎样才就是全面地认识了一个事物。4、培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。 教学重点 以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。 教学难点 灵活运用所学知识探索未知领域。 新课引入 前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,您能根据原函数的图像画出导函数的示意图不? 一. 探究由原函数的奇偶性能否推出导函数的奇偶性。 问题1 已知函数()y f x =的图像,请尝试画出其导函数的图像示意图。 3()f x x = 2'()3y f x x ==

微积分十大经典问题

这里入选原则是必须配得起“经典”二字。知识范围要求不超过大二数学系水平, 尽量限制在实数范围内,避免与课本内容重复。排名不分先后。 1)开普勒定律与万有引力定律互推。绝对经典的问题,是数学在实际应用中的光辉典范,其对奠定数学科学女皇的地位起着重要作用。大家不妨试试,用不着太多的专 业知识,不过很有挑战性。重温下牛顿当年曾经做过的事,找找当牛人的感觉吧,这个问题是锻炼数学能力的好题! 2)最速降线问题。该问题是变分法中的经典问题,不少科普书上也有该问题。答案是摆线(又称悬轮线),关于摆线还有不少奇妙的性质,如等时性。其解答一般变分 书上均有。本问题的数学模型不难建立,即寻找某个函数,它使得某个积分取最小值。这个问题往深层次发展将进入泛函领域,什么是泛函呢?不好说,一个通俗的解释是“函数的函数”,即“定义域”不是区间,而是“一堆”函数。最速降线问题通过引入光的折射定律可以直接化为常微分方程,大大简化了求解过程。不过变分法是对这类问题的一般方法,尤其在力学中应用甚广。 3)曲线长度和曲面面积问题。一条封闭曲线,所围面积是有限的,但其周长却可以是无限的,比如02年高中数学联赛第14题就是这样一条著名曲线-----雪花曲线。 如果限制曲线是可微的,通过引入内折线并定义其上确界为曲线长度。但把这个方法搬到曲面上却出了问题,即不能用曲面的内折面的上确界来定义曲面面积。德国数学家H.A.Schwarz 举出一个反例,说明即使像直圆柱面这样的简单的曲面,也可以具有面积任意大的内接折面。 4)处处连续处处不可导的函数。长久以来,人们一直以为连续函数除了有限个或可数无穷个点外是可导的。但是,魏尔斯特拉斯给出了一个函数表达式,该函数处处连续却处处不可导。这个例子是用函数级数形式给出的,后来不少人仿照这种构造方式给出了许多连续不可导的函数。现在教材中举的一般是范德瓦尔登构造的比较简单的例子。至于魏尔斯特拉斯那个例子,可以在齐民友的《重温微积分》中找到证明。其实上面那个雪花曲线也是一条处处连续处处不可导的曲线。 5)填满正方形的连续曲线。数学总是充满神奇与不可思议,以前人们总是以为曲线是一维的,但是皮亚诺却发现了一条可以填满正方形的连续曲线。结果人们不得不重新审视以往对曲线的看法。 BTW:先写到这里,明天接着写另外5个。1345中的例子可以在《数学分析新讲》中找到。

构造函数法解决导数不等式问题教学设计公开课

构造函数法解决导数不等式问题 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x = ,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。 构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥ 构造''[()][()()]x x e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造''[()]()()xf x xf x f x =+ (3)'()()0xf x nf x +≥构造''11'[()]()()[()()]n n n n x f x x f x nx f x x xf x nf x --=+=+ (注意对x 的符号进行讨论) 关系式为“减”型 (1)' ()()0f x f x -≥ 构造'''2()()()()()[]()x x x x x f x f x e f x e f x f x e e e --== (2)' ()()0xf x f x -≥ 构造''2()()()[]f x xf x f x x x -= (3)' ()()0xf x nf x -≥构造'1''21()()()()()[]()n n n n n f x x f x nx f x xf x nf x x x x -+--== (注意对x 的符号进行讨论)

原函数与导函数的关系

课题:探究原函数与导函数的关系 首师大附中数学组王建华 设计思路 这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣和成就感。教师实际上是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要,重要的是研究相互关联的事物的一般思路和方法。对优秀生或热爱数学的学生来说会有更多的收获。 整个教学流程 1.从经验观察发现,猜想得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。 2.学生自然会想到这个命题的逆命题是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。 3.函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x = a对称,研究前面的四个命题还是否成立。研究方法可以类比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。 4.已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。 教学目标 在这个探究过程中 1.加强学生对导函数与原函数相生相伴的关系的理解; 2.增强学生对函数对称性的理解和抽象概括表达能力; 3 体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。 4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。 教学重点 以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。教学难点 灵活运用所学知识探索未知领域。 新课引入前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,你能根据原 函数的图像画出导函数的示意图吗? 一.探究由原函数的奇偶性能否推出导函数的奇偶性。

魏尔斯特拉斯函数

在数学中, 魏尔斯特拉斯函 数(Weierstrass function)是一类处处连续而处处不可导的实值函数。魏尔斯特拉斯函数是一种无法用笔画出任何一部分的函数,因为每一点的导数都不存在,画的人无法知道每一点该朝哪个方向画。魏尔斯特拉斯函数的每一点的斜率也是不存在的。魏尔斯特拉斯函数得名于十九世纪的德国数学家卡尔·魏尔斯特拉斯 (Karl Theodor Wilhelm Weierstrass ; 1815–1897)。历史上,魏尔斯特拉斯函数是一个著名的数学反例。魏尔斯特拉斯之前,数学家们对函数的连续性认识并不深刻。许多数学家认为除了少数一些特殊的点以外,连续的函数曲线在每一点上总会有斜率。魏尔斯特拉斯函数的出现说明了所谓的“病态”函数的存在性,改变了当时数学家对连续函数的看法。 构造 魏尔斯特拉斯的原作中给出的构造是: :f(x)= \sum_{n=0} ^\infty a^n \cos(b^n \pi x), 其中0b 为正的奇数,使得: : ab > 1+\frac{3}{2} \pi. 这个函数以及它处处连续而又处处不可导的证明首次出现在魏尔斯特拉斯于1872年6月18日在普鲁士科学院出版的一篇论文中。 证明这个函数处处连续并不困难。由于无穷级数的每一个函数项a^n \cos(b^n \pi x)的绝对值都小于常数a^n,而正项级数 \sum_{n=0} ^\infty a^n 是收敛的。由比较审敛法可以知道原级数一致收敛。因此,由于每一个函数项a^n \cos(b^n \pi x)都是{\mathbb R}上的连续函数,级数和f(x) 也是{\mathbb R}上的连续函数。 下面证明函数处处不可导:对一个给定的点x \in {\mathbb R},证明的思路是找出趋于x 的两组不同的数列(x_n)(x'_n),使得 :\lim \inf \frac{f(x_n) - f(x)}{x_n - x} > \lim \sup \frac{f(x'_n) - f(x)}{x'_n - x}. 这与函数可导的定义矛盾,于是证明完毕。

求原函数不错的方法

如何求原函数 浙江 李向辉 微积分基本定理表明,计算定积分()b a f x dx ?的关键是找到满足()()F x f x '=的函数()F x ,我们这里不妨称之为()f x 的原函数. 一、求积分与求导数互为逆运算 让我们试着就求导的这个方面思考一下.对某函数()f x 求导,可得导函数()f x '.根据 导函数的原始定义0()()()lim h f x h f x f x h →+-'=计算.那么反过来,已知导函数时,能否从它得到求导前的“原来的函数”呢想一想的话,会发觉其实并不是很难.比如,2()2x x '=因此(求导后得到2x 的函数)2x =. 这样,对应于导函数的求导前的“原来的函数”被称为“原函数”.也可以认为是“逆 求导”. 但是,求导后得到2x 的函数并不只是221x x +·和22x +求导后都可以得到2x .一般而言,2()2x C x '+=(C 为常数).考虑到“常数求导后等于0”,那么(2x 的原函数)=(求导后得到2x 的函数)2x C =+.“求原函数”是通往求积分的第一步. 二、一些常用函数的原函数 对于求原函数主要运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出.下面给出一些常用函数的原函数. (1)(0的原函数)C = (2)(1的原函数)x C =+ (3)(x α的原函数)1(10)1 x C x ααα+=+≠->+, (4)(1x 的原函数)ln (0)x C x =+≠ (5)(x e 的原函数)x e C =+ (6)(x a 的原函数)ln x a C a =+ (7)(cos x 的原函数)sin x C =+ (8)(sin x 的原函数)cos x C =-+ 说明:微积分基本定理的公式()()()()b a b f x dx F x F b F a a ==-?(其中()()F x f x '=中含

(完整版)多元函数微分学复习题及答案

第八章 多元函数微分法及其应用 复习题及解答 一、选择题 1. 极限lim x y x y x y →→+00 242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于 12 (D) 存在且不等于0或1 2 2、设函数f x y x y y x xy xy (,)sin sin =+≠=? ????1100 ,则极限lim (,)x y f x y →→0 = ( C ) (提示:有界函数与无穷小的乘积仍为无穷小) (A) 不存在 (B) 等于1 (C) 等于0 (D) 等于2 3、设函数f x y xy x y x y x y (,)=++≠+=??? ? ?22 2222000 ,则(,)f x y ( A ) (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx = , 20 0(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以, (,)f x y 在整个定义域内处处连续.) (A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件 (B)充分而非必要条件 (C)充分必要条件 (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22 + (B) - +y x y 22 (C) y x y 22 + (D) -+x x y 22 6、设f x y y x (,)arcsin =,则f x '(,)21= ( A ) (A )-1 4 (B ) 14 (C )-12 (D )1 2 7、设y x z arctan =,v u x +=,v u y -=,则=+v u z z ( C )

相关主题