搜档网
当前位置:搜档网 › 克瑞斯伺服驱动器v3.1

克瑞斯伺服驱动器v3.1

克瑞斯伺服驱动器v3.1
克瑞斯伺服驱动器v3.1

交流伺服电机的工作原理

交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行的永磁交流伺服系统。 日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。之后又推出M、F、S、H、C、G 六个系列。20世纪90年代先后推出了新的D系列和R系列。由旧系列矩形波驱动、8051单片机控制改为正弦

伺服电机工作原理

伺服电机的工作原理图 伺服电机工作原理——伺服电机内部的转子是永磁铁,驱动器控制的U/V/W 三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 1、永磁交流伺服系统具有以下等优点: (1)电动机无电刷和换向器,工作可靠,维护和保养简单; (2)定子绕组散热快; (3)惯量小,易提高系统的快速性; (4)适应于高速大力矩工作状态; (5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2、交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

伺服电机的驱动器和电机的变频器有什么区别和联系

伺服电机的驱动器和电机的变频器有什么区别和联系 通常情况下,是不会这样作的,因为如果伺服电机在有自身驱动的时候,应该属于独立的系统,再连接变频器不能达到直接驱动的目的。 但是如果伺服控制器和变频器具备通信接口,同时需要达到同步或其他通信功能,可以如此连接,前提条件是变频器和伺服控制器具备强大的通讯功能或可编程功能,日系产品没有见过如此使用,欧美部分产品可以实现这样的配置。 另外一种情况是伺服控制器和变频器都作为上位控制的从站,实际是总线控制, 和你的描述有本质的区别。 PLC给出的控制信号可以直接送到伺服电机的驱动 伺服的基本概念是准确、精确、快速定位。变频是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速。但伺服将电流环速度环或者位置环都闭合进行控制,这是很大的区别。除此外,伺服电机的构造与普通电机是有区别的,要满足快速响应和准确定位。现在市面上流通的交流伺服电机多为永磁同步交流伺服,但这种电机受工艺限制,很难做到很大的功率,十几KW 以上的同步伺服价格及其昂贵,这样在现场应用允许的情况下多采用交流异步伺服,这时很多驱动器就是高端变频器,带编码器反馈闭环控制。所谓伺服就是要满足准确、精确、快速定位,只要满足就不存在伺服变频之争。 一、两者的共同点: 交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等通过载波频率和PWM 调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/p ,n转速,f频率, p极对数

伺服驱动器的工作原理

伺服驱动器的工作原理 随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用全数字式交流伺服电机作为执行电动机。在控制方式上用脉冲串和方向信号实现。 一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。 速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的死循环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度

方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V 对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过实时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行

伺服电机的三种控制方式

选购要点:伺服电机的三种控制方式 伺服电机速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求以及满足何种运动功能来选择。接下来,松文机电为大家带来伺服电机的三种控制方式。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 一般说驱动器控制的好不好,每个厂家的都说自己做的最好,但是现在有个比较直观的比较方式,叫响应带宽。当转矩控制或者速度控制时,通过脉冲发生器给他一个方波信号,使电机不断的正转、反转,不断的调高频率,示波器上显示的是个扫频信号,当包络线的顶点到达最高值的70.7%时,表示已经失步,此时的频率的高低,就能显示出谁的产品牛了,一般的电流环能作到1000Hz以上,而速度环只能作到几十赫兹。 换一种比较专业的说法: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。 应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。

2017版三菱伺服MR-JE-B

三菱伺服MR-JE-B 一、介绍:MR-JE-B是一款简单易用具备高性能全球通用型的伺服电机,其独特的一键式调整功能,响应速度快精度高等都是这款伺服电机的主要特点。 1.通过SSCENTIII实现系统的高性能化: ①提高系统的响应性:双向150Mbps的高速通信;通过通信周期0.44ms的告高速串行通信,可不更加平滑控制设备。 ②实现设备的高性能化:通过SSCENTIII/H可实现完全通信。实现需要高精度同步的印刷设备,食品设备,加工机等设备的高性能化。 ③能轻松构建多轴系统:1个系统可连接16轴的伺服放大器,从而构建多轴系统。(发生报警所有轴减速停止) ④彻底防御干扰:通过采用光纤电缆彻底防御从电源线及外部设备混入的干扰,与金属电缆相比耐干扰性能有飞跃性的提高。 ⑤缩短了设备的重启时间:使用SSCENT系统只需在SV放大器中安装电池就可以简单构建起绝对位置检测系统。由于不需在接通电源时执行原点复位动作,因此缩短了设备启动时间。 ⑥抑制象限突起现象:空转修正功能,在XY工作台等的轨迹控制中,提高了圆弧轨迹的精度。抑制由摩擦及扭曲等的影响而在伺服电机旋转方向反转产生的象限突起现象。 2.支持SSCENTIII/H的简易运动模块功能: ①丰富的控制模式:位置、速度、转矩控制(推压控制),位置控制可使用直线-圆弧插补控制、定尺寸进给控制。目标位置变更等丰富的功能。推压控制通过切换控制模式实现了位置控制与转矩控制的平滑转换。 ②简易实现位置修正:标记监测功能,高速移动包装纸定位标记进行传感器输入,获取伺服电机的实际当前位置。对输入定位标记的切割轴位置进行修正,实现固定位置对包装纸进行切割。 ③自由度较高的运动指令:通过电子凸轮进行控制,简单制作出各种模式的凸轮数据,通过凸轮自动生成功能制作出旋转切割机的凸轮数据。 ④先进的同步控制:可简单的将齿轮、轴、变速器、凸轮等机械机构替换为软件实现同步控制。 3.通过SV与易运动模块可以实现多种设备的高性能化: ①包装机:先进同步控住、凸轮控制,标记检测功能。 ②简易机床:机械共振抑制虑波器、瞬停TOUGH DRIVE、空转修正。 ③瓶盖锁口机:多轴同步控制、推压控制、机械共振抑制滤波器。 ④机器人传送:一键调谐、先进振动抑制控制II、凸轮控制。 ⑤放卷和卷绕:多轴同步控制、速度转矩控制、鲁棒滤波器。 ⑥检查设备:机械共振抑制滤波器、先进振动抑制控制II、高分辨率编码器。 4.调谐工序不再复杂: ①先进的一键式调整功能:一键式操作调整伺服增益。 ②先进的振动抑制控制II:同时抑制2个低频振动。

伺服电机和伺服驱动器的使用介绍

伺服电机和伺服驱动器的使用介绍 一、伺服电机? 伺服驱动器的控制原理 伺服电机和伺服驱动器是一个有机的整体,伺服电动机的运行性能是电动机及其驱动器二者配合所反映的综合效果。 1、永磁式同步伺服电动机的基本结构 图1为一台8极的永磁式同步伺服电动机结构截面图,其定子为硅钢片叠成的铁芯和三相绕组,转子是由高矫顽力稀土磁性材料(例如钕铁錋)制成的磁极。为了检测转子磁极的位置,在电动机非负载端的端盖外面还安装上光电编码器。驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 图1 永磁式同步伺服电动机的结构 图2 所示为一个两极的永磁式同步电机工作示意图,当定子绕组通上交流电源后,就产生一旋转磁场,在图中以一对旋转磁极N、S表示。当定子磁场以同步速n1逆时针方向旋转时,根据异性相吸的原理,定子旋转磁极就吸引转子磁极,带动转子一起旋转,转子的旋转速度与定子磁场的旋转速度(同步转速n1)相等。当电机转子上的负载转矩增大时,定、转子磁极轴线间的夹角θ就相应增大,导致穿过各定子绕组平面法线方向的磁通量减少,定子绕组感应电动势随之减小,而使定子电流增大,直到恢复电源电压与定子绕组感应电动势的平衡。这时电磁转矩也相应增大,最后达到新的稳定状态,定、转子磁极轴线间的夹角θ称为功率角。虽然夹角θ会随负载的变化而改变,但只要负载不超过某一极限,转子就始终跟着定子旋转磁场以同步转速n1转动,即转子的转速为: (1-1)

图 2 永磁同步电动机的工作原理 电磁转矩与定子电流大小的关系并不是一个线性关系。事实上,只有定子旋转磁极对转子磁极的切向吸力才能产生带动转子旋转的电磁力矩。因此,可把定子电流所产生的磁势分解为两个方向的分量,沿着转子磁极方向的为直轴(或称d轴)分量,与转子磁极方向正交的为交轴(或称q轴)分量。显然,只有q轴分量才能产生电磁转矩。 由此可见,不能简单地通过调节定子电流来控制电磁转矩,而是要根据定、转子磁极轴线间的夹角θ确定定子电流磁势的q轴和d轴分量的方向和幅值,进而分别对q 轴分量和d轴分量加以控制,才能实现电磁转矩的控制。这种按励磁磁场方向对定子电流磁势定向再行控制的方法称为“磁场定向”的矢量控制。 2、位置控制模式下的伺服系统是一个三闭环控制系统,两个内环分别是电流环和速度环。 图 3 ? 稳态误差接近为零; ? 动态:在偏差信号作用下驱动电机加速或减速。

伺服驱动器的工作原理复习过程

伺服驱动器的工作原 理

伺服驱动器的工作原理 随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用全数字式交流伺服电机作为执行电动机。在控制方式上用脉冲串和方向信号实现。 一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。 速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的死循环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以

用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过实时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。

伺服电机驱动控制器DOC

目录 一、伺服驱动概述 (1) 二、本产品特性 (2) 三、电路原理图及PCB版图 (4) 四、电路功能模块分析 (4) 五、焊接(附元件清单) (14)

一.伺服驱动概述 1. 伺服电机的概念 伺服电机是在伺服系统中控制机械元件运转的发动机,作为一种执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出,是一种补助马达间接变速装置。伺服电机是可以连续旋转的电-机械转换器,直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。 2.伺服电机分类 普通直流伺服电动机 直流伺服电机低惯量直流伺服电动机 直流力矩电动机 3. 控制系统对伺服电动机的基本要求 宽广的调速范围 机械特性和调节特性均为线性 无“自转”现象 快速响应 控制功率小、重量轻、体积小等。 4. 直流伺服电机的基本特性 (1)机械特性在输入的电枢电压Ua保持不变时,电机的转速n随电磁转矩M变化而变化的规律,称直流电机的机械特性 (2)调节特性直流电机在一定的电磁转矩M(或负载转矩)下电机的稳态转速n随电枢的控制电压Ua变化而变化的规律,被称为直流电机的调节特性 (3)动态特性从原来的稳定状态到新的稳定状态,存在一个过渡过程,这就是直流电机的动态特性。 5. 直流伺服电机的驱动原理 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm 直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。无刷直流伺服电机电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护不存在碳刷损耗的情况,效率很高,运行温度低噪音小,电磁辐射很小,长寿命,可用于各种环境

步进电机与伺服电机的区别

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲个数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机安设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到高速的目的。 伺服电机又称执行电机,在自动控制系统中,用作执行元件,把收到的电信号转换成电机轴上的角位移或角速度输出。伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)也就是说伺服电机本身具备发出脉冲的功能,它每旋转一个角度,都会发出对应数量的脉冲,这样伺服驱动器和伺服电机编码器的脉冲形成了呼应,所以它是闭环控制,步进电机是开环控制。 步进电机和伺服电机的区别在于:1、控制精度不同。步进电机的相数和拍数越多,它的精确度就越高,伺服电机取块于自带的编码器,编码器的刻度越多,精度就越高。2、控制方式不同;一个是开环控制,一个是闭环控制。3、低频特性不同;步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点便于系统调整。4、矩频特性不同;步进电机的输出力矩会随转速升高而下降,交流伺服电机为恒力矩输出,5、过载能力不同;步进电机一般不具有过载能力,而交流电机具有较强的过载能力。6、运行性能不同;步进电机的控制为开环控制,启动频率过高或负载过大易丢步或堵转的现象,停止时转速过高易出现过冲现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。7、速度响应性能不同;步进电机从静止加速到工作转速需要上百毫秒,而交流伺服系统的加速性能较好,一般只需几毫秒,可用于要求快速启停的控制场合。 综上所述,交流伺服系统在许多性能方面都优于步进电机,但是价格比就不一样了。

伺服驱动器参数设置方法

伺服驱动器参数设置方法 在自动化设备中,经常用到伺服电机,特别是位置控制,大部分品牌的伺服电机都有位置控制功能,通过控制器发出脉冲来控制伺服电机运行,脉冲数对应转的角度,脉冲频率对应速度(与电子齿轮设定有关),当一个新的系统,参数不能工作时,首先设定位置增益,确保电机无噪音情况下,尽量设大些,转动惯量比也非常重要,可通过自学习设定的数来参考,然后设定速度增益和速度积分时间,确保在低速运行时连续,位置精度受控即可。 1.位置比例增益:设定位置环调节器的比例增益。设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。参数数值由具体的伺服系统型号和负载情况确定。 2.位置前馈增益:设定位置环的前馈增益。设定值越大时,表示在任何频率的指令脉冲下,位置滞后量越小位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡。不需要很高的响应特性时,本参数通常设为0表示范围:0~100% 3.速度比例增益:设定速度调节器的比例增益。设置值越大,增益越高,刚度越大。参数数值根据具体的伺服驱动系统型号和负载值情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较大的值。 4.速度积分时间常数:设定速度调节器的积分时间常数。设置值越小,积分速度越快。参数数值根据具体的伺服驱动系统型号和负载情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较小的值。 5.速度反馈滤波因子:设定速度反馈低通滤波器特性。数值越大,截止频率越低,电机产生的噪音越小。如果负载惯量很大,可以适当减小设定值。数值太大,造成响应变慢,可能会引起振荡。数值越小,截止频率越高,速度反馈响应越快。如果需要较高的速度响应,可以适当减小设定值。 6.最大输出转矩设置:设置伺服驱动器的内部转矩限制值。设置值是额定转矩的百分比,任何时候,这个限制都有效定位完成范围设定位置控制方式下定位完成脉冲范围。本参数提供了位置控制方式下驱动器判断是否完成定位的依据,当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,驱动器认为定位已完成,到位开关信号为ON,否则为OFF。 在位置控制方式时,输出位置定位完成信号,加减速时间常数设置值是表示电机从0~2000r/min的加速时间或从2000~0r/min的减速时间。加减速特性是线性的到达速度范围设置到达速度在非位置控制方式下,如果伺服电机速度超过本设定值,则速度到达开关信号为ON,否则为 OFF。在位置控制方式下,不用此参数。与旋转方向无关。 7.手动调整增益参数 调整速度比例增益KVP值。当伺服系统安装完后,必须调整参数,使系统稳定旋转。首先调整速度比例增益KVP值.调整之前必须把积分增益KVI及微分增益KVD调整至零,然后将KVP值渐渐加大;同时观察伺服电机停止时足否产生振荡,并且以手动方式调整KVP参数,观察旋转速度是否明显忽快忽慢.KVP值加大到产生以上现象时,必须将KVP值往回调小,使振荡消除、旋转速度稳定。此时的KVP值即初步确定的参数值。如有必要,经KⅥ和KVD调整后,可再作反复修正以达到理想值。 调整积分增益KⅥ值。将积分增益KVI值渐渐加大,使积分效应渐渐产生。由前述对积分控制的介绍可看出,KVP值配合积分效应增加到临界值后将产生振荡而不稳定,如同KVP值一样,将KVI值往回调小,使振荡消除、旋转速度稳定。此时的KVI值即初步确定的参数值。

三菱伺服电机对应控制软件

另三菱还有一个容量选择软件capacity selection,用于选择伺服电机型号。 三菱伺服软件调试 一、软件基本设置 1、双击SETUP154C图标——设置——系统设定——机种选择“MR——E——A”;——波特率选择“9600”——串口选择“COM3这是看你自己的计算机口了”——有站号——确定。 2、点站号设定:选00站。 3、点击参数——进行“参数设定、调整、变更清单显示、详细信息显示”里——点击“参数设定”——参数一览表“批量读取、核对、批量写入、变更清单、详细信息、初期设定、终止”。 4、参数写入操作步骤:修改表里相应参数值后——回车——点“写入”。注意:有*好的参数伺服要停电后5S再启。 三)、软件调试运行功能(点动运行、定位运行、无电机运行、程序运行) 1、试运行 1)、点动运行操作 试运行——点动运行——电机转速3000r/min注意设定时不要超过3000转——加减速时间常数1000ms——点正转停止或反转停止即可。 2)、定位运行操作 试运行——定位运行——电机转速200r/min注意设定时不要超过3000转——加减速时间常数1000ms——移动量9310720pules——点正转停止或反转停止即可。 3)、程序运行操作 试运行——程序运行——点“编辑”——在“程序运行”里点“编辑”——出现“程序运行—编辑”栏,在右边大空白栏里输入以下程序如下: TIMS(3):运行程序3次; SPN(1000):进给转速1000r/min; STC(500):伺服到达额定转速时间500ms; MOV(100000):正转给移动脉冲距离100000PULES; TIM(3) :等待下一步操作时间3秒; SPN(1000):进给转速1000r/min; STC(500) :伺服到达额定转速时间500ms; MOV(-100000) :正转给移动脉冲距离100000PULES; STOP:停止;

交流伺服电机与伺服驱动器

SEAMADE 交流伺服电机与伺服驱动器 ●简介 交流伺服技术自八十年代初发展至今,技术日臻成就,性能不断提高,现已广泛应用于数控机床、印刷包装机械、纺织机械、自动化生产等自动化领域。 ●特点 电机:选用高工作温度,高磁能积优质的永磁材料制作,使用优化的电磁参数设计,电机长期运行仍保持优良的工作状态;用正弦波电流驱动,低速特性好;电机惯量适中,满足各种场合应用;IP65的防护等级,特别适用于工业环境。 驱动器:SDXXX 系列交流伺服是本公司研发的新一代交流伺服驱动器,主要采用最新的IRMCK201作为核心运算单元,并采用了复杂可编程器件EPLD及三菱智能功率模块,具有集成度高,体积小,响应速度快,保护完善,可靠性高等一系列优点。伺服电机自带编码器,位置信号反馈至伺服驱动器,与开环位置控制器一起构成半闭环控制系统。调速比为1:5000,从低速到高速都具有转矩特性。通过修改参数可对伺服系统的工作方式、运行特性作出适当的设置,以适应不同的要求。改进的空间矢量控制算法,比普通的SPWM产生的力矩更大,噪音更小。高达3倍的过载能力,带负载能力强。完善的保护功能:过流,过压,过热和编码器故障。监视功能允许15个参数状态,包括位置误差,电机转速、反馈脉冲、指令脉冲、电机电流等。高适应性,能够适应高速高精度电机,可以配套2-8磁极,200-6000线编码器的各型号电机。 ST系列交流伺服电机型号编号说明 110 ST -M 050 30 L F B Z 1 2 3 4 5 6 7 8 9 1: 表示电机外径,单位:mm。 2:表示电机是正弦波驱动的永磁同步交流伺服电机。 3:表示电机安装的反馈元件,M—光电编码器,X—旋转变压器。 4:表示电机零速转矩,其值为三位数×0.1,单位:Nm。 5:表示电机额定转速,其值为二位数×100,单位:rpm。 6:表示电机适配的驱动器工作电压,L—AC220V,H—AC380V。 7:表示反馈元件的规格,F—复合式增量光电编码器(2500 C/T),R—1对极旋转变压器。8:表示电机类型,B—基本型。 9:表示电机安装了失电制动器。 SD系列交流伺服驱动器型号编号说明 SD 30 MN 1 2 3 1:表示采用空间矢量调制方式(SVPWM)的交流伺服驱动器 2:表示IPM模块的额定电流(15/20/30/50/75A) 3:表示功能代码(M:数字量与模拟量兼容)

三菱E60M64简明调试手册之欧阳歌谷创编

目录 欧阳歌谷(2021.02.01) 一:E60,M64的联接1 1:E60-NC联接1 2:基本I/O联接3 3:M64S-NC6 4:伺服系统的联接8 5:E60,M60系列系统联接总图9 二:外围线路的检查及上电注意事项11 三:参数的设定11 1:基本参数的设定11 2:轴参数的设定13 3:原点复归参数13 4:伺服参数的设定14 5:主轴参数的设定16 6:机械误差17 7:PLC17 8:巨程式,位置开关详见操作手册18 四.PLC程序的输入18 1:PLC4B格式PLC传输18

2:GPPW格式PLC程序输入19 3:PLC系统部分运行测试21 五:资料备份及恢复22 1:RS-232C传输方式22 2:资料备份卡存储方式22 六:附录23 1:伺服参数标准设定表(未列明的系列请参照手册)23 2:主轴参数(未列明的请参照手册)24 3:SVJ2伺服参数的优化27 4:模具加工经验参数及高速高精度的使用28 5:三菱相关软件29 一:E60,M64的联接 1:E60-NC联接 (1)E60-NC(FCU6-MU071)接口图:

(2)控制单元联接系统图 (3)*紧急停止按钮的配线: 三菱E60及64系列以后的紧急停止的配线与以往系统的配线有本质区别,现在急停端口内部为有源输出,如果外部贸然接入电源,有可能造成短路而烧毁NC。望用户引起注意。

例: 2:基本I/O联接 (1)HR341/HR351端口图: CF31/CF32/CF33/CF34插头 DI:CF31/CF32 注1:漏/源改变联接,请给 COM提供以下电压 漏:DC24V 源:0V 注2:I/O口的电源与基本I/O的DCIN回路不同,请单独加载直流电源。

永磁同步伺服电机驱动器原理

永磁同步伺服电机驱动器原理: 1、引言: 随着现代电机技术、现代电力电子技术、微电子技术、永磁材料技术、交 流可调速技术及控制技术等支撑技术的快速发展,使得永磁交流伺服技术有着 长足的发展。永磁交流伺服系统的性能日渐提高,价格趋于合理,使得永磁交 流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成 了现代电伺服驱动系统的一个发展趋势。永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单; (2)定子绕组散热快; (3)惯量小,易提高系统的快速性; (4)适应于高速大力矩工作状态; (5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满 足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已 经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方 法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能 的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机 和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器 硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是 国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2、交流永磁伺服系统的基本结构: 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口 单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中 伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的 交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于 高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统 的驱动系统所不可比拟的。

闭环步进伺服电机驱动器参数安装图

SS57 闭环步进驱动器功能使用说明 一、产品简介 1.1概述 SS57闭环步进伺服电机驱动器是一能机电全新推出的SS混合伺服系列产品,采用行业最新的Cotex-M4ARM核处理器,主频高达80MHz,使得驱动器对外部响应频率最高可达500KHz,用以适配57闭环步进电机,从而使电机具有高精度,快响应,不失步,停止时绝对静止等优良特性,是当前业内同类产品中特性表现极其优异的一款产品。 1.2闭环步进伺服电机驱动器特点 ◆全新Cotex-M4ARM核技术32位处理器◆主频高达80MHZ ◆电机最高空载运行速度达4000转◆电机响应频率最高达500KHZ以上 ◆输出电流最高达7A◆细分高达25600 ◆输入电压最高75VDC◆双脉冲及脉冲加方向模式切换 ◆报警复位功能◆脉冲,方向,使能兼容5-24V输入 ◆丰富的报警及运行显示讯号◆失步报警输出功能 1.3功能示意图 二、电气、机械和环境指标 2.1闭环步进伺服电机驱动器电气指标 说明项目 SS57 最小值典型值最大值单位

输入电压244875 VDC 驱动电流1-7.0A 输入脉冲频率1-2M Hz 输入脉冲宽度250-5E+8ns 方向信号宽度62.5--μs 输入信号电压 3.6524VDC 输出信号电压--100mA 输出信号电流--30vdc 2.2闭环步进伺服电机驱动器使用环境及参数 冷却方式自然冷却或强制风冷 环境及参数 场合尽量避免粉尘、油雾及腐蚀性气体环境温度-20℃—+40℃ 最高工作温度80℃ 湿度40—90%RH9(不能结露和有水珠)震动 5.9m/s2Max 保存温度-20℃—+50℃ 重量约210克 2.3闭环步进伺服电机驱动器机械安装图 单位:毫米(mm) 图1.安装尺寸图 三、SS57闭环步进驱动器接口和接线介绍 3.1SS57闭环步进驱动器接口与接线示意图

伺服电机驱动器的工作原理

伺服电机驱动器的工作原理 伺服驱动器又称为“伺服控制器”、“伺服放大器”,是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要应用于高精度的定位系统。一般是通过位置、速度和力矩三种方式对伺服马达进行控制,实现高精度的传动系统定位,目前是传动技术的高端产品。 伺服进给系统的要求 1、调速范围宽 2、定位精度高 3、有足够的传动刚性和高的速度稳定性 4、快速响应,无超调 为了保证生产率和加工质量,除了要求有较高的定位精度外,还要求有良好的快速响应特性,即要求跟踪指令信号的响应要快,因为数控系统在启动、制动时,要求加、减加速度足够大,缩短进给系统的过渡过程时间,减小轮廓过渡误差。 5、低速大转矩,过载能力强 一般来说,伺服驱动器具有数分钟甚至半小时内1.5倍以上的过载能力,在短时间内可以过载4~6倍而不损坏。 6、可靠性高 要求数控机床的进给驱动系统可靠性高、工作稳定性好,具有较强的温度、湿度、振动等环境适应能力和很强的抗干扰的能力。 对电机的要求 1、从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r/min或更低速时,仍有平稳的速度而无爬行现象。 2、电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4~6倍而不损坏。 3、为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。 4、电机应能承受频繁启、制动和反转。 常州丰迪电气有限公司是一家专业生产三相步进电机、交流伺服电机、三相伺服电机、伺服电机驱动器、步进电机驱动器的企业,产品主要用于各类数控机床、医疗机械、包装机械、纺织机械等自动化控制领域。公司技术力量雄厚,生产工艺精湛,电机全部采用优质材料,技术性能和质量指标达到国内同类产品的领先水平,丰迪始终以诚信、共赢的经营宗旨立足于市场。下面就由丰迪电气讲述下伺服电机驱动器的工作原理。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC的过程。整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。 随着伺服系统的大规模应用,伺服驱动器使用、伺服驱动器调试、伺服驱动器维修都是伺服驱动器在当今比较重要的技术课题,越来越多工控技术服务商对伺服驱动器进行了技术深层次研究。

变频器与伺服电机的区别

简单的讲,伺服是一个闭环控制系统,而变频器通常工作于开环控制,所以无论从速度还是精度上,变频器都无法和伺服相比。 其实变频只是伺服的一个部分,伺服是在变频的基础上进行闭环的精确控制从而达到更理想的效果。 变频器只是一个V-F转换,用于控制电机的一个器件。而伺服是一个闭环的系统。简单说变频器主要控制电机的转速。伺服是既可以控制速度,又可以控制位置和移动量,力距,定位,从而达到精确、稳定,不会因变频而产生死机。伺服不仅能达到以上的功能,而且产生一个闭环的系统,从而避免变频器产生的辐射。变频器在变频过程中还会产生大量热量,造成温度的提高与声音,而伺服系统是不会产生这样的后果。所以说伺服系统的达到的效果是变频电机无法比拟的。 伺服电机都是同步电机,其转子转速就是电机的实际转速,不存在速度差,而变频器控制对象是异步电机,其实际转速跟转子转速存在着转差,所以它本身电机在速度就不是很稳定。 伺服的基本概念是准确、精确、快速定位。变频仅仅是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速)。但伺服将电流环速度环或者位置环都闭合进行控制,这是很大的区别。除此外,伺服电机的构造与普通电机是有区别的,要满足快速响应和准确定位。同步伺服的成本价格及其昂贵,这样在现场应用允许的情况下多采用交流异步伺服,这时很多驱动器就是高端变频器,带编码器反馈闭环控制。所谓伺服就是要满足准确、精确、快速定位,所以往往只有高端的产品才采用伺服系统。 变频最早只是用来调速,无论同步还是异步电机都可以用,并不用来完成精确定位跟踪的工作,伺服本身的功能就是精确快速定位跟踪,变频器一般做不到这个效果。 应用方面: 由于变频器和伺服在性能和功能上的不同,所以应用也不大相同。 1、在速度控制和力矩控制的场合要求不是很高的一般用变频器,也有在上位加位置反馈信号构成闭环用变频进行位置控制的,精度和响应都不高。现有些变频也接受脉冲序列信号控制速度的,但直接控制位置不准确。 2、在有严格位置控制要求的场合中只能用伺服来实现,还有就是伺服的响应速度远远大于变频,有些对速度的精度和响应要求高的场合也用伺服控制,能用变频控制的运动的场合几乎都能用伺服取代,但关键是在价格方面伺服远远高于变频。 伺服的基本概念是准确、精确、快速定位。变频是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速)。但伺服将电流环速度环或者位置环都闭合进行控制,这是很大的区别。除此外,伺服电机的构造与普通电机是有区别的,要满足快速响应和准确定位。现在市面上流通的交流伺服电机多为永磁同步交流伺服,但这种电机受工艺限制,很难做到很大的功率,十几KW以上的同步伺服价格及其昂贵,这样在现场应用允许的情况下多采用交流异步伺服,这时很多驱动器就是高端变频器,带编码器反

相关主题