搜档网
当前位置:搜档网 › h3c链路聚合配置及实例

h3c链路聚合配置及实例

h3c链路聚合配置及实例
h3c链路聚合配置及实例

1 以太网链路聚合配置任务简介

表1-5 以太网链路聚合配置任务简介

2 1.

3 配置聚合组

请根据需要聚合的以太网接口类型来配置相应类型的聚合组:当需要聚合的是二层以太网接口时,请配置二层聚合组;当需要聚合的是三层以太网接口时,请配置三层聚合组。聚合链路的两端应配置相同的聚合模式。

●配置或使能了下列功能的端口将不能加入二层聚合组:RRPP(请参见“可靠性

配置指导/RRPP”)、MAC地址认证(请参见“安全配置指导/MAC地址认证”)、

端口安全模式(请参见“安全配置指导/端口安全”)、报文过滤功能(请参见

“安全配置指导/防火墙”)、以太网帧过滤功能(请参见“安全配置指导/防火

墙”)、IP Source Guard功能(请参见“安全配置指导/IP Source Guard”)、

802.1X功能(请参见“安全配置指导/802.1X”)以及Portal免认证规则源接口

(请参见“安全配置指导/Portal”)。

●配置或使能了下列功能的接口将不能加入三层聚合组:IP地址(请参见“三层

技术-IP业务配置指导/IP地址”)、DHCP客户端(请参见“三层技术-IP业务

配置指导/DHCP”)、BOOTP客户端(请参见“三层技术-IP业务配置指导

/DHCP”)、VRRP功能(请参见“可靠性配置指导/VRRP”)和Portal功能

(请参见“安全配置指导/Portal”)。

●建议不要将镜像反射端口加入聚合组,有关反射端口的详细介绍请参见“网络

管理和监控配置指导”中的“镜像”。

●镜像目的端口、配置了静态MAC地址的端口以及配置了MAC地址最大学习数

目的端口是否可以加入聚合组与设备的型号有关,请以设备的实际情况为准。

用户删除聚合接口时,系统将自动删除对应的聚合组,且该聚合组内的所有成员端口将全部离开该聚合组。

3 1.3.1 配置静态聚合组

对于静态聚合模式,用户需要保证在同一链路两端端口的选中/非选中状态的一致性,否则聚合功能无法正常使用。

1. 配置二层静态聚合组

表1-6 配置二层静态聚合组

2. 配置三层静态聚合组

本特性的支持情况与设备的型号有关,请以设备的实际情况为准。

表1-7 配置三层静态聚合组

4 1.3.2 配置动态聚合组

●本特性的支持情况与设备的型号有关,请以设备的实际情况为准。

●对于动态聚合模式,聚合链路两端的设备会自动协商同一链路两端的端口在各

自聚合组内的选中/非选中状态,用户只需保证本端聚合在一起的端口的对端也

同样聚合在一起,聚合功能即可正常使用。

1. 配置二层动态聚合组

表1-8 配置二层动态聚合组

2. 配置三层动态聚合组

本特性的支持情况与设备的型号有关,请以设备的实际情况为准。

表1-9 配置三层动态聚合组

5 1.4 聚合接口相关配置

本节对能够在聚合接口上进行的部分配置进行介绍。除本节所介绍的以外,能够在二层/三层以太网接口上进行的配置大多数也能在二层/三层聚合接口上进行,具体配置请参见相关的配置手册。

6 1.4.1 配置聚合接口的描述信息

通过在接口上配置描述信息,可以方便网络管理员根据这些信息来区分各接口的作用。

表1-10 配置聚合接口的描述信息

7 1.4.2 配置三层聚合接口MTU

本特性的支持情况与设备的型号有关,请以设备的实际情况为准。

MTU(Maximum Transmission Unit,最大传输单元)参数会影响IP报文的分片与重组,可以通过下面的配置来改变MTU值。

表1-11 配置三层聚合接口MTU

8 1.4.3 配置处理或转发三层聚合接口流量的业务处理板

本特性的支持情况与设备的型号有关,请以设备的实际情况为准。

在分布式设备或分布式IRF设备上,可以通过本配置将三层聚合接口的流量指定给特定的业务处理板进行处理或转发。

表1-12 配置处理或转发三层聚合接口流量的业务处理板

●对于跨板绑定,为了避免由于选中端口变化而引起处理或转发流量的业务处理

板也发生改变,建议使用本命令来指定一块确定的单板作为处理或转发流量的业

务处理板。

●如果把本配置所指定的业务处理板拔出,将导致流量转发不通;重新插入该板

后,流量可以恢复在该板的正常转发。

9 1.4.4 开启聚合接口链路状态变化Trap功能

在聚合接口上开启了接口链路状态变化Trap功能后,可以使聚合接口在链路状态发生改变时生成并发送端口Link up和Link down的Trap报文。有关Trap的详细介绍,请参见“网络管理和监控配置指导”中的“SNMP”。

表1-13 开启聚合接口状态变化Trap功能

10 1.4.5 限制聚合组内选中端口的数量

本特性的支持情况与设备的型号有关,请以设备的实际情况为准。

聚合链路的带宽取决于聚合组内选中端口的数量,用户通过配置聚合组中的最小选中端口数,可以避免由于选中端口太少而造成聚合链路上的流量拥塞。当聚合组内选中端口的数量达不到配置值时,对应的聚合接口将不会up,从而使流量可以切换到备份链路上。具体实现如下:

●如果聚合组内能够被选中的成员端口数小于配置值,这些成员端口都将变为非

选中状态,对应聚合接口的链路状态也将变为down。

●当聚合组内能够被选中的成员端口数增加至不小于配置值时,这些成员端口都

将变为选中状态,对应聚合接口的链路状态也将变为up。

缺省情况下,聚合组内选中端口的最大数量仅受端口硬件能力的限制;在配置了聚合组中的最大选中端口数之后,聚合组内选中端口的最大数量将同时受配置值和端口硬件能力的限制,即取二者中较低的值作为限制值。用户利用此特性可实现两端口间的冗余备份:在一个聚合组中只添加两个成员端口,并配置该聚合组中的最大选中端口数为1,那么在同一时刻这两个成员端口中只能有一个成为选中端口,另一个将作为备份端口。

表1-14 限制聚合组内选中端口的数量

针对静态聚合组进行本配置时,必须在聚合链路两端进行相同的配置,并保证两端聚合组的配置一致。

● 配置聚合组中的最小选中端口数可能导致聚合组内的所有成员端口都变为非选

中状态。

● 配置聚合组中的最大选中端口数可能导致聚合组内的部分成员端口变为非选中

状态。

11 1.4.6 关闭聚合接口

对聚合接口的开启/关闭操作,将会影响聚合接口对应的聚合组内成员端口的选中/非选中状态和链路状态: ● 关闭聚合接口时,将使对应聚合组内所有处于选中状态的成员端口都变为非选

中端口,且所有成员端口的链路状态都将变为down 。 ● 开启聚合接口时,系统将重新计算对应聚合组内成员端口的选中/非选中状态,

且所有成员端口的链路状态都将变为up 。 表1-15 关闭聚合接口

由于聚合子接口不存在对应的聚合组,所以关闭聚合子接口对聚合组没有影响。

12 1.4.7 恢复聚合接口的缺省配置

通过执行本操作可以将接口下的所有配置都恢复为缺省配置。

表1-16 恢复聚合接口的缺省配置

13 1.5 配置聚合负载分担

14 1.5.1 配置聚合负载分担类型

通过改变负载分担的类型,可以灵活地实现聚合组流量的负载分担。用户既可以指定系统按照报文携带的MAC地址、VLAN标签、服务端口号、报文入端口、IP地址、IP协议类型、MPLS标签等信息之一或其组合来选择所采用的负载分担类型,也可以指定系统按照报文类型(如二层、IPv4、IPv6、MPLS等)自动选择所采用的聚合负载分担类型,还可以指定系统对每个报文逐包进行聚合负载分担。

不同型号的设备支持的聚合负载分担类型不同,请以设备的实际情况为准。

用户可以根据需要,选择全局配置或在聚合组内配置聚合负载分担类型。全局的配置对所有聚合组都有效,而聚合组内的配置只对当前聚合组有效。对于某聚合组来说,优先采用该聚合组内的配置,只有该聚合组内未进行配置时,才采用全局的配置。

1. 全局配置聚合负载分担类型

本特性的支持情况与设备的型号有关,请以设备的实际情况为准。

表1-17 全局配置聚合负载分担类型

2. 在聚合组内配置聚合负载分担类型

本特性的支持情况与设备的型号有关,请以设备的实际情况为准。

表1-18 在聚合组内配置聚合负载分担类型

15 1.5.2 配置聚合负载分担为本地转发优先

本特性的支持情况与设备的型号有关,请以设备的实际情况为准。

聚合负载分担的本地转发优先机制可以降低数据流量对IRF物理端口间链路的冲击,采用与未采用该机制时的聚合负载分担方式如图1-4所示。有关IRF的详细介绍,请参见“IRF配置指导”中的“IRF”。

图1-4 本地转发优先处理流程图

表1-19 配置聚合负载分担为本地转发优先

16 1.6 配置聚合流量重定向功能

本特性的支持情况与设备的型号有关,请以设备的实际情况为准。

在使能了聚合流量重定向功能后,当重启分布式设备上的某块单板或IRF中的某台成员设备时,系统可以将待重启单板/设备上的聚合成员端口的流量重定向到其它单板/设备上,从而实现聚合链路上流量的不中断。有关IRF的详细介绍,请参见“IRF 配置指导”中的“IRF”。

表1-20 配置聚合流量重定向功能

●聚合流量重定向功能只支持动态聚合组。

●必须在聚合链路两端都使能聚合流量重定向功能才能实现聚合链路上流量的不

中断。

●如果同时使能聚合流量重定向功能和MSTP功能,在重启单板/设备时会出现少

量的丢包,因此不建议同时使能上述两个功能。

17 1.7 以太网链路聚合显示与维护

在完成上述配置后,在任意视图下执行display命令可以显示配置后以太网链路聚合的运行情况,通过查看显示信息验证配置的效果。

在用户视图下执行reset命令可以清除端口的LACP和聚合接口上的统计信息。

表1-21 以太网链路聚合显示与维护

18 1.8 以太网链路聚合典型配置举例

在聚合组中,只有端口属性类配置(请参见“1.1.1 4. 配置分类”)和第二类配置(请参见“1.1.1 4. 配置分类”)都与参考端口(请参见“1.1.1 5. 参考端口”)相同的成员端口才可以成为选中端口。因此,用户需通过配置使各成员端口的上述配置与参考端口保持一致,而除此以外的其它配置则只需在聚合接口上进行,不必再在成员端口上重复配置。

19 1.8.1 二层静态聚合配置举例

1. 组网需求

●Device A与Device B通过各自的二层以太网接口Ethernet1/1~Ethernet1/3

相互连接。

●在Device A和Device B上分别配置二层静态链路聚合组,并使两端的VLAN

10和VLAN 20之间分别互通。

●通过按照报文的源MAC地址和目的MAC地址进行聚合负载分担的方式,来

实现数据流量在各成员端口间的负载分担。

2. 组网图

图1-5 二层静态聚合配置组网图

3. 配置步骤

(1)配置Device A

# 创建VLAN 10,并将端口Ethernet1/4加入到该VLAN中。

system-view

[DeviceA] vlan 10

[DeviceA-vlan10] port ethernet 1/4

[DeviceA-vlan10] quit

# 创建VLAN 20,并将端口Ethernet1/5加入到该VLAN中。

[DeviceA] vlan 20

[DeviceA-vlan20] port ethernet 1/5

[DeviceA-vlan20] quit

# 创建二层聚合接口1。

[DeviceA] interface bridge-aggregation 1

[DeviceA-Bridge-Aggregation1] quit

# 分别将端口Ethernet1/1至Ethernet1/3加入到聚合组1中。

[DeviceA] interface ethernet 1/1

[DeviceA-Ethernet1/1] port link-aggregation group 1

[DeviceA-Ethernet1/1] quit

[DeviceA] interface ethernet 1/2

[DeviceA-Ethernet1/2] port link-aggregation group 1

[DeviceA-Ethernet1/2] quit

[DeviceA] interface ethernet 1/3

[DeviceA-Ethernet1/3] port link-aggregation group 1

[DeviceA-Ethernet1/3] quit

# 配置二层聚合接口1为Trunk端口,并允许VLAN 10和20的报文通过。[DeviceA] interface bridge-aggregation 1

[DeviceA-Bridge-Aggregation1] port link-type trunk

[DeviceA-Bridge-Aggregation1] port trunk permit vlan 10 20

Please wait... Done.

Configuring Ethernet1/1... Done.

Configuring Ethernet1/2... Done.

Configuring Ethernet1/3... Done.

[DeviceA-Bridge-Aggregation1] quit

# 配置全局按照报文的源MAC地址和目的MAC地址进行聚合负载分担。[DeviceA] link-aggregation load-sharing mode source-mac destination-mac (2)配置Device B

Device B的配置与Device A相似,配置过程略。

(3)检验配置效果

# 查看Device A上所有聚合组的摘要信息。

[DeviceA] display link-aggregation summary

Aggregation Interface Type:

BAGG -- Bridge-Aggregation, RAGG -- Route-Aggregation

Aggregation Mode: S -- Static, D -- Dynamic

Loadsharing Type: Shar -- Loadsharing, NonS -- Non-Loadsharing

Actor System ID: 0x8000, 000f-e2ff-0001

AGG AGG Partner ID Select Unselect Share Interface Mode Ports Ports Type

-------------------------------------------------------------------------------

BAGG1 S none 3 0 Shar

以上信息表明,聚合组1为负载分担类型的二层静态聚合组,包含有三个选中端口。

# 查看Device A上全局采用的聚合负载分担类型。

[DeviceA] display link-aggregation load-sharing mode

Link-Aggregation Load-Sharing Mode:

destination-mac address, source-mac address

以上信息表明,所有聚合组都按照报文的源MAC地址和目的MAC地址进行聚合负载分担。

20 1.8.2 二层动态聚合配置举例

1. 组网需求

●Device A与Device B通过各自的二层以太网接口Ethernet1/1~Ethernet1/3

相互连接。

●在Device A和Device B上分别配置二层动态链路聚合组,并使两端的VLAN

10和VLAN 20之间分别互通。

●通过按照报文的源MAC地址和目的MAC地址进行聚合负载分担的方式,来

实现数据流量在各成员端口间的负载分担。

2. 组网图

图1-6 二层动态聚合配置组网图

3. 配置步骤

(1)配置Device A

# 创建VLAN 10,并将端口Ethernet1/4加入到该VLAN中。

system-view

[DeviceA] vlan 10

[DeviceA-vlan10] port ethernet 1/4

[DeviceA-vlan10] quit

# 创建VLAN 20,并将端口Ethernet1/5加入到该VLAN中。

[DeviceA] vlan 20

[DeviceA-vlan20] port ethernet 1/5

[DeviceA-vlan20] quit

# 创建二层聚合接口1,并配置该接口为动态聚合模式。

[DeviceA] interface bridge-aggregation 1

[DeviceA-Bridge-Aggregation1] link-aggregation mode dynamic

# 分别将端口Ethernet1/1至Ethernet1/3加入到聚合组1中。

[DeviceA] interface ethernet 1/1

[DeviceA-Ethernet1/1] port link-aggregation group 1

[DeviceA-Ethernet1/1] quit

[DeviceA] interface ethernet 1/2

[DeviceA-Ethernet1/2] port link-aggregation group 1

[DeviceA-Ethernet1/2] quit

[DeviceA] interface ethernet 1/3

[DeviceA-Ethernet1/3] port link-aggregation group 1

[DeviceA-Ethernet1/3] quit

# 配置二层聚合接口1为Trunk端口,并允许VLAN 10和20的报文通过。[DeviceA] interface bridge-aggregation 1

[DeviceA-Bridge-Aggregation1] port link-type trunk

[DeviceA-Bridge-Aggregation1] port trunk permit vlan 10 20

Please wait... Done.

Configuring Ethernet1/1... Done.

Configuring Ethernet1/2... Done.

Configuring Ethernet1/3... Done.

[DeviceA-Bridge-Aggregation1] quit

# 配置全局按照报文的源MAC地址和目的MAC地址进行聚合负载分担。[DeviceA] link-aggregation load-sharing mode source-mac destination-mac (2)配置Device B

Device B的配置与Device A相似,配置过程略。

(3)检验配置效果

# 查看Device A上所有聚合组的摘要信息。

[DeviceA] display link-aggregation summary

Aggregation Interface Type:

BAGG -- Bridge-Aggregation, RAGG -- Route-Aggregation

Aggregation Mode: S -- Static, D -- Dynamic

Loadsharing Type: Shar -- Loadsharing, NonS -- Non-Loadsharing

Actor System ID: 0x8000, 000f-e2ff-0001

AGG AGG Partner ID Select Unselect Share Interface Mode Ports Ports Type

-------------------------------------------------------------------------------

BAGG1 D 0x8000, 000f-e2ff-0002 3 0 Shar

以上信息表明,聚合组1为负载分担类型的二层动态聚合组,包含有三个选中端口。# 查看Device A上全局采用的聚合负载分担类型。

[DeviceA] display link-aggregation load-sharing mode

Link-Aggregation Load-Sharing Mode:

destination-mac address, source-mac address

以上信息表明,所有聚合组都按照报文的源MAC地址和目的MAC地址进行聚合负载分担。

21 1.8.3 二层聚合负载分担配置举例

1. 组网需求

●Device A与Device B通过各自的二层以太网接口Ethernet1/1~Ethernet1/4

相互连接。

●在Device A和Device B上分别配置两个二层静态链路聚合组,并使两端的

VLAN 10和VLAN 20之间分别互通。

●通过在聚合组1上按照源MAC地址进行聚合负载分担、在聚合组2上按照目

的MAC地址进行聚合负载分担的方式,来实现数据流量在各成员端口间的负

载分担。

2. 组网图

图1-7 二层聚合负载分担配置组网图

3. 配置步骤

(1)配置Device A

# 创建VLAN 10,并将端口Ethernet1/5加入到该VLAN中。

system-view

[DeviceA] vlan 10

[DeviceA-vlan10] port ethernet 1/5

[DeviceA-vlan10] quit

# 创建VLAN 20,并将端口Ethernet1/6加入到该VLAN中。

system-view

[DeviceA] vlan 20

[DeviceA-vlan20] port ethernet 1/6

[DeviceA-vlan20] quit

# 创建二层聚合接口1,并配置该接口对应的聚合组内按照源MAC地址进行聚合负载分担。

[DeviceA] interface bridge-aggregation 1

[DeviceA-Bridge-Aggregation1] link-aggregation load-sharing mode source-mac [DeviceA-Bridge-Aggregation1] quit

# 分别将端口Ethernet1/1和Ethernet1/2加入到聚合组1中。

[DeviceA] interface ethernet 1/1

[DeviceA-Ethernet1/1] port link-aggregation group 1

[DeviceA-Ethernet1/1] quit

[DeviceA] interface ethernet 1/2

[DeviceA-Ethernet1/2] port link-aggregation group 1

[DeviceA-Ethernet1/2] quit

# 配置二层聚合接口1为Trunk端口,并允许VLAN 10和20的报文通过。[DeviceA] interface bridge-aggregation 1

[DeviceA-Bridge-Aggregation1] port link-type trunk

[DeviceA-Bridge-Aggregation1] port trunk permit vlan 10 20

Please wait... Done.

Configuring Ethernet1/1... Done.

Configuring Ethernet1/2... Done.

[DeviceA-Bridge-Aggregation1] quit

# 创建二层聚合接口2,并配置该接口对应的聚合组内按照目的MAC地址进行聚合负载分担。

[DeviceA] interface bridge-aggregation 2

[DeviceA-Bridge-Aggregation2] link-aggregation load-sharing mode destination-mac

[DeviceA-Bridge-Aggregation2] quit

# 分别将端口Ethernet1/3和Ethernet1/4加入到聚合组2中。

[DeviceA] interface ethernet 1/3

[DeviceA-Ethernet1/3] port link-aggregation group 2

[DeviceA-Ethernet1/3] quit

[DeviceA] interface ethernet 1/4

[DeviceA-Ethernet1/4] port link-aggregation group 2

[DeviceA-Ethernet1/4] quit

# 配置二层聚合接口2为Trunk端口,并允许VLAN 10和20的报文通过。[DeviceA] interface bridge-aggregation 2

[DeviceA-Bridge-Aggregation2] port link-type trunk

[DeviceA-Bridge-Aggregation2] port trunk permit vlan 10 20

Please wait... Done.

Configuring Ethernet1/3... Done.

Configuring Ethernet1/4... Done.

[DeviceA-Bridge-Aggregation2] quit

(2)配置Device B

Device B的配置与Device A相似,配置过程略。

(3)检验配置效果

# 查看Device A上所有聚合组的摘要信息。

[DeviceA] display link-aggregation summary

Aggregation Interface Type:

BAGG -- Bridge-Aggregation, RAGG -- Route-Aggregation

Aggregation Mode: S -- Static, D -- Dynamic

Loadsharing Type: Shar -- Loadsharing, NonS -- Non-Loadsharing

Actor System ID: 0x8000, 000f-e2ff-0001

AGG AGG Partner ID Select Unselect Share Interface Mode Ports Ports Type

-------------------------------------------------------------------------------

BAGG1 S none 2 0 Shar

BAGG2 S none 2 0 Shar

以上信息表明,聚合组1和聚合组2都是负载分担类型的二层静态聚合组,各包含有两个选中端口。

# 查看Device A上所有聚合接口所对应聚合组内采用的聚合负载分担类型。

[DeviceA] display link-aggregation load-sharing mode interface

Bridge-Aggregation1 Load-Sharing Mode:

source-mac address

Bridge-Aggregation2 Load-Sharing Mode:

destination-mac address

以上信息表明,二层聚合组1按照报文的源MAC地址进行聚合负载分担,二层聚合组2按照报文的目的MAC地址进行聚合负载分担。

22 1.8.4 三层静态聚合配置举例

1. 组网需求

●Device A与Device B通过各自的三层以太网接口Ethernet1/1~Ethernet1/3

相互连接。

●在Device A和Device B上分别配置三层静态链路聚合组,并为对应的三层聚

合接口配置IP地址和子网掩码。

●通过按照报文的源IP地址和目的IP地址进行聚合负载分担的方式,来实现数

据流量在各成员端口间的分担。

2. 组网图

图1-8 三层静态聚合配置组网图

3. 配置步骤

(1)配置Device A

# 创建三层聚合接口1,并为该接口配置IP地址和子网掩码。

system-view

[DeviceA] interface route-aggregation 1

[DeviceA-Route-Aggregation1] ip address 192.168.1.1 24

[DeviceA-Route-Aggregation1] quit

# 分别将接口Ethernet1/1至Ethernet1/3加入到聚合组1中。

[DeviceA] interface ethernet 1/1

[DeviceA-Ethernet1/1] port link-aggregation group 1

[DeviceA-Ethernet1/1] quit

[DeviceA] interface ethernet 1/2

[DeviceA-Ethernet1/2] port link-aggregation group 1

[DeviceA-Ethernet1/2] quit

[DeviceA] interface ethernet 1/3

华为配置静态LACP模式链路聚合示例

华为配置静态LACP模式链路聚合示例 组网需求 如图所示,在两台Switch设备上配置静态LACP模式链路聚合组,提高两设备之间的带宽与可靠性,具体要求如下: 2条活动链路具有负载分担的能力。 两设备间的链路具有1条冗余备份链路,当活动链路出现故障链路时,备份链路替代故障链路,保持数据传输的可靠性。 图配置静态LACP模式链路聚合组网图 配置思路 采用如下的思路配置静态LACP模式链路聚合: 在Switch设备上创建Eth-Trunk,配置Eth-Trunk为静态LACP模式。 将成员接口加入Eth-Trunk。 配置系统优先级确定主动端。 配置活动接口上限阈值。 配置接口优先级确定活动链路。 数据准备 为完成此配置例,需准备如下的数据: 两端Switch设备链路聚合组编号。 SwitchA系统优先级。 活动接口上限阈值。 活动接口LACP优先级。

操作步骤 创建编号为1的Eth-Trunk,配置它的工作模式为静态LACP模式# 配置SwitchA。 system-view [Quidway] sysname SwitchA [SwitchA] interface eth-trunk 1 [SwitchA-Eth-Trunk1] bpdu enable [SwitchA-Eth-Trunk1] mode lacp-static [SwitchA-Eth-Trunk1] quit# 配置SwitchB。 system-view [Quidway] sysname SwitchB [SwitchB] interface eth-trunk 1 [SwitchB-Eth-Trunk1] bpdu enable [SwitchB-Eth-Trunk1] mode lacp-static [SwitchB-Eth-Trunk1] quit 将成员接口加入Eth-Trunk # 配置SwitchA。 [SwitchA] interface ethernet 0/0/1 [SwitchA-Ethernet0/0/1] eth-trunk 1 [SwitchA-Ethernet0/0/1] quit [SwitchA] interface ethernet 0/0/2 [SwitchA-Ethernet0/0/2] eth-trunk 1 [SwitchA-Ethernet0/0/2] quit [SwitchA] interface ethernet 0/0/3 [SwitchA-Ethernet0/0/3] eth-trunk 1 [SwitchA-Ethernet0/0/3] quit# 配置SwitchB。 [SwitchB] interface ethernet 0/0/1 [SwitchB-Ethernet0/0/1] eth-trunk 1 [SwitchB-Ethernet0/0/1] quit [SwitchB] interface ethernet 0/0/2 [SwitchB-Ethernet0/0/2] eth-trunk 1 [SwitchB-Ethernet0/0/2] quit [SwitchB] interface ethernet 0/0/3 [SwitchB-Ethernet0/0/3] eth-trunk 1 [SwitchB-Ethernet0/0/3] quit 在SwitchA上配置系统优先级为100,使其成为LACP主动端

配置eth-trunk链路聚合

配置eth-trunk链路聚合 一、原理概述 两个设备间的带宽不够用时,可采用eth-trunk链路聚合使得原来2个1G的全双工的接口捆绑在一起,可以达到2G。优点:提高可靠性,增加带宽 二、实验目的 (1)确保链路出现故障后及时切换 (2)掌握配置eth-trunk链路聚合的方法(手工负载分担模式)(3)掌握配置eth-trunk链路聚合的方法(静态LACP模式) 三、配置及测试 (一)采用手工负载分担模式 1.通过 [s2] dis stp br 显示交换机的stp接口信息 Port Role(类型)STP State(STP状态) G 0/0/1

G 0/0/2 G 0/0/4 2. [S1]dis int e b S1中输入以下命令 4.在S2的配置与S1一置 ping pc2 ,即:在PC1中ping –t,然后关闭S1的g 0/0/1端口,把PC1 ping pc2的界面,截图 6.显示S1的eth-trunk的接口信息,在S1中输入以下 dis int eth 1,把显示的结果截图,并对结果进行分析。 (二)静态LACP模式 问题:链路聚合线路中某条线路发生故障时,只有一条链路能正常工作,这样无法保证有足够的带宽。 解决办法:再部署一条链路作为备份链路,采用静态LACP模式配置

链路聚合,当某链路出现故障时,立即启用备份链路进行链路聚合。 1.增加一条新的链路g 0/0/3,如图示: 2.删除S1,S2已经加入到eth-trunk1的接口 注:S2的配置与S1的配置一样 ,S2的工作模式设置为静态LACP模式,并将S1,S2中的g0/0/1 ,g0/0/2 , g0/0/3添加到eth-trunk1中

华为S5700配置实例76667

目录 1 以太网配置 1、1 以太网接口配置 1、1、1 配置端口隔离示例 1、2 链路聚合配置 1、2、1 配置手工负载分担模式链路聚合示例 1、2、2 配置静态LACP模式链路聚合示例 1、3 VLAN配置 1、3、1 配置基于接口划分VLAN示例 1、3、2 配置基于MAC地址划分VLAN示例 1、3、3 配置基于IP子网划分VLAN示例 1、3、4 配置基于协议划分VLAN示例 1、3、5 配置VLAN间通过VLANIF接口通信示例 1、3、6 配置VLAN聚合示例 1、3、7 配置MUX VLAN示例 1、3、8 配置自动模式下的Voice VLAN示例 1、3、9 配置手动模式下的Voice VLAN示例 1、4 VLAN Mapping配置 1、4、1 配置单层Tag的VLAN Mapping示例 1、4、2 配置单层Tag的VLAN Mapping示例(N:1) 1、5 QinQ配置 1、5、1 配置基于接口的QinQ示例 1、5、2 配置灵活QinQ示例 1、5、3 配置灵活QinQ示例-VLAN Mapping接入 1、5、4 配置VLANIF接口支持QinQ Stacking示例 1、6 GVRP配置 1、6、1 配置GVRP示例 1、7 MAC表配置 1、7、1 配置MAC表示例 1、7、2 配置基于VLAN的MAC地址学习限制示例 1、7、3 配置接口安全示例 1、7、4 配置MAC防漂移示例

1、7、5 配置全局MAC漂移检测示例 1、8 STP/RSTP配置 1、8、1 配置STP功能示例 1、8、2 配置RSTP功能示例 1、9 MSTP配置 1、9、1 配置MSTP的基本功能示例 1、9、2 配置MSTP多进程下单接环与多接环接入示例 1、10 SEP配置 1、10、1 配置SEP封闭环示例 1、10、2 配置SEP多环示例 1、10、3 配置SEP混合环示例 1、10、4 配置SEP+RRPP混合环组网示例(下级网络拓扑变化通告) 1、10、5 配置SEP多实例示例 1、11 二层协议透明传输配置 1、11、1 配置基于接口的二层协议透明传输示例 1、11、2 配置基于VLAN的二层协议透明传输示例 1、11、3 配置基于QinQ的二层协议透明传输示例 1、12 Loopback Detection配置 1、1 2、1 配置Loopback Detection示例 1以太网配置 本文档针对S5700的以太网业务,主要包括以太网接口配置、链路聚合配置、VLAN配置、VLAN Mapping配置、QinQ配置、GVRP配置、MAC表配置、STP/RSTP、MSTP配置、SEP配置、二层协议透明传输配置、Loopback Detection配置。 本文档从配置过程与配置举例两大方面介绍了此业务的配置方法与应用场景。 ?1、1 以太网接口配置 介绍以太网接口的基本知识、配置方法与配置实例。 ?1、2 链路聚合配置 介绍链路聚合的基本知识、配置方法与配置实例。

华为链路聚合典型配置指导

链路聚合典型配置指导(版本切换前) 链路聚合是将多个物理以太网端口聚合在一起形成一个逻辑上的聚合组,使用链路聚合服务 的上层实体把同一聚合组内的多条物理链路视为一条逻辑链路。 链路聚合可以实现出/入负荷在聚合组中各个成员端口之间分担,以增加带宽。同时,同一 聚合组的各个成员端口之间彼此动态备份,提高了连接可靠性。 组网图 链路聚合配置示例图 应用要求 设备Switch A用3个端口聚合接入设备Switch B,从而实现出/入负荷在各成 员端口中分担。 Switch A 的接入端口为GigabitEthernet1/0/1 ?GigabitEthernet1/0/3 。 适用产品、版本 配置过程和解释 说明: 以下只列出对Switch A的配置,对Switch B也需要作相同的配置,才能实现链路聚合。 配置聚合组,实现端口的负载分担(下面两种方式任选其一) 采用手工聚合方式 #创建手工聚合组1。 system-view [SwitchA] link-aggregation group 1 mode manual | # 将以太网端口GigabitEthernet1/0/1 至GigabitEthernet1/0/3 加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1

[SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 采用静态LACP聚合方式 #创建静态LACP聚合组1。 system-view [SwitchA] link-aggregation group 1 mode static #将以太网端口GigabitEthernet1/0/1 至GigabitEthernet1/0/3 加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 完整配置 采用手工聚合方式: # link-aggregation group 1 mode manual # interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 | port link-aggregation group 1 # 采用静态LACP聚合方式: # link-aggregation group 1 mode static interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 port link-aggregation group 1 # 配置注意事项 不同平台软件对静态聚合方式的实现不同,所以不同平台软件的产品采用静态 聚合方式对接时,容易产生问题。有关平台软件的版本信息可以通过 display version 命令查看。

链路聚合配置命令

目录 1 链路聚合配置命令................................................................................................................................ 1-1 1.1 链路聚合配置命令............................................................................................................................. 1-1 1.1.1 description .............................................................................................................................. 1-1 1.1.2 display lacp system-id ............................................................................................................ 1-2 1.1.3 display link-aggregation member-port.................................................................................... 1-2 1.1.4 display link-aggregation summary.......................................................................................... 1-4 1.1.5 display link-aggregation verbose............................................................................................ 1-5 1.1.6 enable snmp trap updown...................................................................................................... 1-7 1.1.7 interface bridge-aggregation .................................................................................................. 1-8 1.1.8 lacp port-priority...................................................................................................................... 1-8 1.1.9 lacp system-priority................................................................................................................. 1-9 1.1.10 link-aggregation mode........................................................................................................ 1-10 1.1.11 port link-aggregation group ................................................................................................ 1-10 1.1.12 reset lacp statistics............................................................................................................. 1-11 1.1.13 shutdown ............................................................................................................................ 1-11

H3C交换机的端口配置

H3C交换机的端口配置 一、端口常用配置 1. 实验原理 1.1 交换机端口基础 随着网络技术的不断发展,需要网络互联处理的事务越来越多,为了适应网络需求,以太网技术也完成了一代又一代的技术更新。为了兼容不同的网络标准,端口技术变的尤为重要。端口技术主要包含了端口自协商、网络智能识别、流量控制、端口聚合以及端口镜像等技术,他们很好的解决了各种以太网标准互连互通存在的问题。以太网主要有三种以太网标准:标准以太网、快速以太网和千兆以太网。他们分别有不同的端口速度和工作视图。1.2 端口速率自协商 标准以太网其端口速率为固定10M。快速以太网支持的端口速率有10M、100M和自适应三种方式。千兆以太网支持的端口速率有10M、100M、1000M和自适应方式。以太网交换机支持端口速率的手工配置和自适应。缺省情况下,所有端口都是自适应工作方式,通过相互交换自协商报文进行匹配。 其匹配的结果如下表。 速率一致。其修改端口速率的配置命令为: [H3C-Ethernet0/1] speed {10|100|1000|auto} 如果两端都以固定速率工作,而工作速率不一致时,很容易出现通信故障,这种现象应该尽量避免。 1.3 端口工作视图 交换机端口有半双工和全双工两种端口视图。目前交换机可以手工配置也可以自动协商来决定端口究竟工作在何种视图。修改工作视图的配置命令为: [H3C-Ethernet0/1] duplex {auto|full|half} 1.4 端口的接口类型 目前以太网接口有MDI和MDIX两种类型。MDI称为介质相关接口,MDIX称为介质非相关接口。我们常见的以太网交换机所提供的端口都属于MDIX接口,而路由器和PC提供的都属于MDI接口。有的交换机同时支持上述两种接口,我们可以强制制定交换机端口的接口类型,其配置命令如下: [H3C-Ethernet0/1] mdi {normal| cross| auto} Normal:表示端口为MDIX接口 Cross:表示端口为MDI接口 Auto:表示端口工作在自协商视图 1.5 流量控制 由于标准以太网、快速以太网和千兆以太网混合组网,在某些网络接口不可避免的会出现流量过大的现象而产生端口阻塞。为了减轻和避免端口阻塞的产生,标准协议专门规定了解决这一问题的流量控制技术。在交换机中所有端口缺省情况下都禁用了流量控制功能。开启/关闭流量控制功能的配置命令如下: [H3C-Ethernet0/1]flow-control

华为S配置实例

目录 1 ?以太网配置 ?以太网接口配置 ?配置端口隔离示例 ?链路聚合配置 ?配置手工负载分担模式链路聚合示例 ?配置静态LACP模式链路聚合示例 ?VLAN配置 ?配置基于接口划分VLAN示例 ?配置基于MAC地址划分VLAN示例 ?配置基于IP子网划分VLAN示例 ?配置基于协议划分VLAN示例 ?配置VLAN间通过VLANIF接口通信示例 ?配置VLAN聚合示例 ?配置MUX VLAN示例 ?配置自动模式下的Voice VLAN示例 ?配置手动模式下的Voice VLAN示例 ?VLAN Mapping配置

?配置单层Tag的VLAN Mapping示例 ?配置单层Tag的VLAN Mapping示例(N:1) ?QinQ配置 ?配置基于接口的QinQ示例 ?配置灵活QinQ示例 ?配置灵活QinQ示例-VLAN Mapping接入 ?配置VLANIF接口支持QinQ Stacking示例 ?GVRP配置 ?配置GVRP示例 ?MAC表配置 ?配置MAC表示例 ?配置基于VLAN的MAC地址学习限制示例 ?配置接口安全示例 ?配置MAC防漂移示例 ?配置全局MAC漂移检测示例 ?STP/RSTP配置 ?配置STP功能示例 ?配置RSTP功能示例 ?MSTP配置 ?配置MSTP的基本功能示例

?配置MSTP多进程下单接环和多接环接入示例 ?SEP配置 ?配置SEP封闭环示例 ?配置SEP多环示例 ?配置SEP混合环示例 ?配置SEP+RRPP混合环组网示例(下级网络拓扑变化通告) ?配置SEP多实例示例 ?二层协议透明传输配置 ?配置基于接口的二层协议透明传输示例 ?配置基于VLAN的二层协议透明传输示例 ?配置基于QinQ的二层协议透明传输示例 ?Loopback Detection配置 ?配置Loopback Detection示例 1 ?以太网配置 本文档针对S5700的以太网业务,主要包括以太网接口配置、链路聚合配置、VLAN配置、VLAN Mapping配置、QinQ配置、GVRP配置、MAC表配置、STP/RSTP、MSTP配置、SEP配置、二层协议透明传输配置、Loopback Detection配置。

H3C 交换机配置命令手册

目录 H3C 交换机配置命令手册: (2) 交换机端口链路类型介绍: (2) 认证方式为Scheme时Telnet登录方式的配置 (2) Vlan 的创建及描述 (2) 将端口配置为Trunk端口,并允许VLAN10和VLAN20通过 (3) DHCP典型配制举例: (3) 链路聚合典型配置 (4) 三层交换的IP路由配置: (5) (1)配置各接口的IP地址 (5) (2) 配置静态路由 (5) # 在Switch B上配置两条静态路由。 (5) 配置举例:建立SSL Proxy服务器 (5) 1. 组网需求 (5) 2. 组网图 (6) 3. 配置步骤 (6) # 配置接口IP地址。 (6) SSL服务器端策略配置: (6) 证书属性过滤组的配置: (7) 证书ACP策略配置: (7) SSL Proxy服务器策略配置: (7) # 配置目标HTTP服务器。 (8) 运行SSL Proxy服务器: (8) # 配置ACL,用来匹配将要进行SSL代理的数据流。 (8) # 将路由策略应用到接口上。 (9)

H3C 交换机配置命令手册: 交换机端口链路类型介绍: 1.Access类型的端口只能属于1个VLAN,一般用于连接计算机的端口; 2.Trunk类型的端口可以属于多个VLAN,可以接收和发送多个VLAN的报文,一般用于交换机之间连接的端口; 3.Hybrid类型的端口可以属于多个VLAN,可以接收和发送多个VLAN的报文,可以用于交换机之间连接,也可以用于连接用户的计算机。 认证方式为Scheme时Telnet登录方式的配置 # telnet server enable # local-user guest service-type telnet level 3 password simple 123456 # Vlan 的创建及描述 # system-view #进入配置选项命令行 [SwitchA] vlan 100 #创建当前VLAN [SwitchA-vlan100] description Dept1 #当前VLAN的描述 [SwitchA-vlan100] port GigabitEthernet 1/0/1 #将当前端口加入到对就的VLAN下面

网卡链路聚合简单设置实现双倍带宽.

网卡链路聚合简单设置实现双倍带宽 电脑爱好者 2016-02-19 09:01 如今所有主板至少自带一个千兆以太网端口,有些高档主板带有两个端口。很多用户都不知道家用环境下双网卡主板如何充分利用两个网口,其实使用链路聚合(Link aggregation)就是一个好思路。 双倍带宽的链路聚合 链路聚合是指将两条或多条物理以太网链路聚合成一条逻辑链路。所以,如果聚合两个1Gb/s端口,就能获得2GB/s的总聚合带宽(图1)。聚合带宽和物理带宽并不完全相同,它是通过一种负载均衡方式来实现的。在用户需要高性能局域网性能的时候很有帮助,而局域网内如果有NAS则更是如此。比如说我们在原本千兆(1Gb/s)网络下PC和NAS之间的数据传输只能达到100MB/s左右,在链路聚合的方式下多任务传输速度可以突破200MB/s,这其实是一个倍增。 01 链路聚合原本只是一种弹性网络,而不是改变了总的可用吞吐量。比如说如果你通过一条2Gb聚合链路将文件从一台PC传输到另一台PC,就会发现总的最高传输速率最高为1Gb/s。然而如果开始传输两个文件,会看到聚合带宽带来的好处。

简而言之链路聚合增加了带宽但并不提升最高速度,但如果你在使用有多个以太网端口的NAS,NAS就能支持链路聚合,速度的提升是显而易见的。 目前家用的局域网环境不论是线缆还是网卡多数都停留在1Gb/s的水平,如果你想要真正的更高吞吐量改用更高的带宽比如10Gb/s网卡,但对于大多数家庭用户万兆网卡是不太可能的。就算我们使用普通单千兆网卡主板,通过安装外接网卡来增添一个网络端口就能实现效果。 链路聚合准备工作 首先你的PC要有两个以太网端口,想要连接的任何设备同样要有至少两个端口。除了双千兆(或一集成一独立)网卡的主板外,我们还需要一个支持链路聚合(LACP或802.1ad等)的路由器。遗憾的是很多家用路由器不支持链路聚合,选择时要注意路由器具体参数,或者干脆选择一个支持链路聚合的交换机。 除了硬件方面的要求,还需要一款支持链路聚合的操作系统。我们目前广泛使用的Windows 7并没有内置的链路聚合功能,一般微软要求我们使用Windows Server,但其实Windows 8.1和10已经提供了支持了。其实如果操作系统不支持可以考虑使用厂商提供的具有链路聚合功能的驱动程序,比如英特尔PROSet 工具。另外操作系统Linux和OS X都有内置的链路聚合功能,满足了所有先决条件后下面介绍如何实现。 测试平台 主板华硕Rampage IV 处理器英特尔酷睿i7-3970X 内存三星DDR3 32GB 硬盘三星850Pro 1TB(RAID 0) 交换机网件ProSAFE XS708E 10GbE 网卡双端口10GBASE-T P2E10G-2-T 线缆 CAT7

华为链路聚合典型配置指导

链路聚合典型配置指导(版本切换前) 链路聚合是将多个物理以太网端口聚合在一起形成一个逻辑上的聚合组,使用 链路聚合服务的上层实体把同一聚合组内的多条物理链路视为一条逻辑链路。 链路聚合可以实现出/入负荷在聚合组中各个成员端口之间分担,以增加带宽。 同时,同一聚合组的各个成员端口之间彼此动态备份,提高了连接可靠性。组网图 链路聚合配置示例图 应用要求 设备Switch A用3个端口聚合接入设备Switch B,从而实现出/入负荷在各成员端口中分担。 Switch A的接入端口为GigabitEthernet1/0/1~GigabitEthernet1/0/3。 适用产品、版本 配置适用的产品与软硬件版本关系 配置过程和解释 说明: 以下只列出对Switch A的配置,对Switch B也需要作相同的配置,才能实现链路聚合。 配置聚合组,实现端口的负载分担(下面两种方式任选其一) 采用手工聚合方式 # 创建手工聚合组1。 system-view [SwitchA] link-aggregation group 1 mode manual # 将以太网端口GigabitEthernet1/0/1至GigabitEthernet1/0/3加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1

[SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 采用静态LACP聚合方式 # 创建静态LACP聚合组1。 system-view [SwitchA] link-aggregation group 1 mode static # 将以太网端口GigabitEthernet1/0/1至GigabitEthernet1/0/3加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 完整配置 采用手工聚合方式: # link-aggregation group 1 mode manual # interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 port link-aggregation group 1 # 采用静态LACP聚合方式: # link-aggregation group 1 mode static interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 port link-aggregation group 1 # 配置注意事项 不同平台软件对静态聚合方式的实现不同,所以不同平台软件的产品采用静态聚合方式对接时,容易产生问题。有关平台软件的版本信息可以通过 display version命令查看。 配置了RRPP的端口、配置了静态MAC地址或者黑洞MAC地址的端口、使能Voice VLAN的端口以及使能802.1x的端口不能加入聚合组。 链路聚合典型配置指导(版本切换后) 组网图 链路聚合配置示例图

h3c型交换机配置命令详细说明

H3C 交换机配置命令详解 华为3COM交换机配置命令详解 1、配置文件相关命令 [Quidway]display current-configuration ;显示当前生效的配置 [Quidway]display saved-configuration ;显示flash中配置文件,即下次上电启动时所用的配置文件reset saved-configuration ;檫除旧的配置文件 reboot ;交换机重启 display version ;显示系统版本信息 2、基本配置 [Quidway]super password ;修改特权用户密码 [Quidway]sysname ;交换机命名 [Quidway]interface ethernet 0/1 ;进入接口视图 [Quidway]interface vlan x ;进入接口视图 [Quidway-Vlan-interfacex]ip address 10.65.1.1 255.255.0.0 ;配置VLAN的IP地址[Quidway]ip route-static 0.0.0.0 0.0.0.0 10.65.1.2 ;静态路由=网关 3、telnet配置 [Quidway]user-interface vty 0 4 ;进入虚拟终端 [S3026-ui-vty0-4]authentication-mode password ;设置口令模式 [S3026-ui-vty0-4]set authentication-mode password simple 222 ;设置口令 [S3026-ui-vty0-4]user privilege level 3 ;用户级别 4、端口配置 [Quidway-Ethernet0/1]duplex {half|full|auto} ;配置端口工作状态 [Quidway-Ethernet0/1]speed {10|100|auto} ;配置端口工作速率 [Quidway-Ethernet0/1]flow-control ;配置端口流控 [Quidway-Ethernet0/1]mdi {across|auto|normal} ;配置端口平接扭接 [Quidway-Ethernet0/1]port link-type {trunk|access|hybrid} ;设置端口工作模式 [Quidway-Ethernet0/1]undo shutdown ;激活端口

02-中兴设备实现链路聚合的配置

任务二:中兴设备实现链路聚合一、目的 掌握交换机的链路静态聚合和动态聚合的配置和使用 二、内容 静态聚合和动态聚合的配置 三、设备 3228 两台 直连网线两条 串口线一条 四、拓扑 交换机3228-1和交换机3228-2通过smartgroup端口相连,它们分别由2 个物理端口聚合而成。smartgroup的端口模式为trunk,承载VLAN10和 VLAN20。 五、配置步骤 1、静态聚合 下面以3228-1为例进行配置说明: /*关于VLAN的部分自己完成*/ /*创建Trunk组*/ ZXR10(config)#interface smartgroup1 【创建smartgroup端口,它有两个物理端口汇聚

而成】 ZXR10(config-if)#smartgroup mode on /*绑定端口到Trunk组*/ ZXR10(config)#interface fei_1/1 ZXR10(config-if)#smartgroup 1 mode on //设置聚合模式为静态【设为静态的,两台交换机也都必须都设为静态的‘ON’】 ZXR10(config)#interface fei_1/2 ZXR10(config-if)#smartgroup 1 mode on【将端口FE-1/1和FE-1/2设置为聚合端口放置在smartgroup 1并以静态方式工作】 /*修改smartgroup端口的VLAN链路类型*/ ZXR10(config)#interface smartgroup1 ZXR10(config-if)#switchport mode trunk ZXR10(config-if)#switchport trunk vlan 10 //把smartgroup1端口以trunk方式加入vlan10 ZXR(config-if)#switchport trunk vlan 20 //把smartgroup1端口以trunk方式加入vlan10 2、动态聚合 下面以3228-1为例进行配置说明: /*创建Trunk组*/ ZXR10(config)#interface smartgroup1 ZXR10(config-if)#smartgroup mode 802.3ad /*绑定端口到Trunk组*/ ZXR10(config)#interface fei_1/1 ZXR10(config-if)#smartgroup 1 mode active //设置聚合模式为active【配置动态链路聚合时,应当将一端端口的聚合模式设置为active,另一端设置为passive,或者两端都设置为active。】 ZXR10(config)#interface fei_1/2 ZXR10(config-if)#smartgroup 1 mode active /*修改smartgroup端口的VLAN链路类型*/ ZXR10(config)#interface smartgroup1 ZXR10(config-if)#switchport mode trunk

H3C配置

华为3COM交换机配置命令详解 1、配置文件相关命令 [Quidway]display current-configuration ;显示当前生效的配置[Quidway]display saved-configuration ;显示flash中配置文件,即下次上电启动时所用的配置文件 reset saved-configuration ;檫除旧的配置文件 reboot ;交换机重启 display version ;显示系统版本信息 2、基本配置 [Quidway]super password ;修改特权用户密码[Quidway]sysname ;交换机命名 [Quidway]interface ethernet 0/1 ;进入接口视图[Quidway]interface vlan x ;进入接口视图 [Quidway-Vlan-interfacex]ip address 10.65.1.1 255.255.0.0 ;配置VLAN的IP地址 [Quidway]ip route-static 0.0.0.0 0.0.0.0 10.65.1.2 ;静态路由=网关3、telnet配置 [Quidway]user-interface vty 0 4 ;进入虚拟终端 [S3026-ui-vty0-4]authentication-mode password ;设置口令模式[S3026-ui-vty0-4]set authentication-mode password simple 222 ;设置口令[S3026-ui-vty0-4]user privilege level 3 ;用户级别 4、端口配置 [Quidway-Ethernet0/1]duplex {half|full|auto} ;配置端口工作状态[Quidway-Ethernet0/1]speed {10|100|auto} ;配置端口工作速率[Quidway-Ethernet0/1]flow-control ;配置端口流控[Quidway-Ethernet0/1]mdi {across|auto|normal} ;配置端口平接扭接 [Quidway-Ethernet0/1]port link-type {trunk|access|hybrid} ;设置端口工作模式 [Quidway-Ethernet0/1]undo shutdown ;激活端口[Quidway-Ethernet0/2]quit ;退出系统视图 5、链路聚合配置 [DeviceA] link-aggregation group 1 mode manual ;创建手工聚合组1 [DeviceA] interface ethernet 1/0/1 ;将以太网端口Ethernet1/0/1加入聚合组1 [DeviceA-Ethernet1/0/1] port link-aggregation group 1 [DeviceA-Ethernet1/0/1] interface ethernet 1/0/2 ;将以太网端口Ethernet1/0/1加入聚合组1 [DeviceA-Ethernet1/0/2] port link-aggregation group 1 [DeviceA] link-aggregation group 1 service-type tunnel # 在手工聚合组的基础上创建Tunnel业务环回组。 [DeviceA] interface ethernet 1/0/1 # 将以太网端口Ethernet1/0/1加入业务环回组。 [DeviceA-Ethernet1/0/1] undo stp

链路聚合配置

目录 1 链路聚合配置 ....................................................................................................................................... 1-1 1.1 链路聚合简介.................................................................................................................................... 1-1 1.1.1 链路聚合的作用...................................................................................................................... 1-1 1.1.2 链路聚合的基本概念 .............................................................................................................. 1-1 1.1.3 链路聚合的模式...................................................................................................................... 1-3 1.1.4 聚合组的负载分担类型........................................................................................................... 1-4 1.2 配置静态聚合组 ................................................................................................................................ 1-5 1.3 配置动态聚合组 ................................................................................................................................ 1-6 1.4 聚合接口基本配置............................................................................................................................. 1-8 1.4.1 配置聚合接口描述信息........................................................................................................... 1-8 1.4.2 配置三层聚合接口/三层聚合子接口的最大传输单元MTU ..................................................... 1-9 1.4.3 开启聚合接口链路状态变化Trap功能................................................................................... 1-9 1.4.4 关闭聚合接口 ....................................................................................................................... 1-10 1.5 配置聚合负载分担模式 ................................................................................................................... 1-10 1.6 链路聚合显示与维护....................................................................................................................... 1-11 1.7 链路聚合典型配置举例 ................................................................................................................... 1-11 1.7.1 二层静态聚合配置举例......................................................................................................... 1-11 1.7.2 二层动态聚合配置举例......................................................................................................... 1-12 1.7.3 二层聚合负载分担模式配置举例 .......................................................................................... 1-13 1.7.4 三层静态聚合配置举例......................................................................................................... 1-14 1.7.5 三层动态聚合配置举例......................................................................................................... 1-15 1.7.6 三层聚合负载分担模式配置举例 .......................................................................................... 1-16

相关主题