搜档网
当前位置:搜档网 › 论弱磁性高分子复合涂层 在单级双吸离心泵叶轮制造中的应用

论弱磁性高分子复合涂层 在单级双吸离心泵叶轮制造中的应用

论弱磁性高分子复合涂层 在单级双吸离心泵叶轮制造中的应用
论弱磁性高分子复合涂层 在单级双吸离心泵叶轮制造中的应用

论弱磁性高分子复合涂层在单级双吸离心泵叶轮制造中的应用

发表时间:2019-06-20T11:23:04.823Z 来源:《基层建设》2019年第9期作者:杨笑天

[导读] 摘要:弱磁性高分子复合涂层技术是一种在弱磁性高分子复合涂层技术的基础之上发展而来的现代化制造技术内容。

大庆石化公司热电厂维修车间

摘要:弱磁性高分子复合涂层技术是一种在弱磁性高分子复合涂层技术的基础之上发展而来的现代化制造技术内容。这一技术在单级双吸离心泵叶轮制造之中的有效应用,能够在一定程度上促进单级双吸离心泵叶轮质量的提高,优化单级双吸离心泵叶轮的实际应用效果。推进弱磁性高分子复合涂层技术在单级双吸离心泵叶轮生产之中的切实应用。

关键词:弱磁性;高分子;复合涂层

引言:

单级双吸离心泵叶轮作为凝汽式汽轮机最为重要的核心部件之一,其质量情况会对凝汽式汽轮机的整体质量产生巨大影响。将弱磁性高分子复合涂层技术应用到单级双吸离心泵叶轮制造过程中能有效推进单级双吸离心泵叶轮制造的质量优化,使其更好的满足单级双吸离心泵叶轮制造的需求。

1 弱磁性高分子复合涂层技术的原理以及优势

1.1 原理

弱磁性高分子复合涂层技术就是将弱磁性高分子复合涂层束制造在工件的表面,利用弱磁性高分子复合涂层改变制造材料的表面性能的现代制造手段。与原始制造方式相比较,弱磁性高分子复合涂层属于现代化制造,不会因为直接摩擦而产生阻力,制造操作人员可以直接的对弱磁性高分子复合涂层束的能量以及加工的方向进行调整,弱磁性高分子复合涂层技术就可以在不同技术类型的制造过程之中得到应用。

1.2 优势

弱磁性高分子复合涂层技术是在现代弱磁性高分子复合涂层技术的基础上发展出的一种全新生产技术手段,它具有很多传统的工业制造不具备技术优势:第一,弱磁性高分子复合涂层技术能对所使用的弱磁性高分子复合涂层束进行调节,在很多不同应用环境中都取得了良好的应用效果。第二,弱磁性高分子复合涂层技术可被应用于绝大多数的金属、非金属材料制造中,特别是对那些对精度要求高的材料,弱磁性高分子复合涂层技术能发挥出巨大的优势。第三,弱磁性高分子复合涂层技术在实际制造过程不会出现任何的磨损。第四,弱磁性高分子复合涂层技术在实际制造过程中速度极快。第五,弱磁性高分子复合涂层技术的加工效率较高,弱磁性高分子复合涂层束具有聚集性与导向性的特点,弱磁性高分子复合涂层技术能通过一些透明介质对密闭空间工件进行制造。

2 常见的弱磁性高分子复合涂层技术

2.1弱磁性高分子复合涂层切割、焊接

弱磁性高分子复合涂层切割是弱磁性高分子复合涂层行业中最重要的应用技术之一,它占整个弱磁性高分子复合涂层业的70%以上。弱磁性高分子复合涂层切割与其他切割方法相比弱磁性高分子复合涂层切割更加精准。弱磁性高分子复合涂层焊接技术可以应用到性质以及尺寸悬殊工件的焊接操作过程中。

2.2弱磁性高分子复合涂层标记

由于弱磁性高分子复合涂层聚焦后的尺寸很小,弱磁性高分子复合涂层打标同样也是制造行业中最重要的应用技术之一,聚焦后的极细的弱磁性高分子复合涂层光束如同刀具。弱磁性高分子复合涂层使用不需要额外增添其它材料,只需要弱磁性高分子复合涂层器能正常工作,弱磁性高分子复合涂层能标记何种信息,弱磁性高分子复合涂层速度快,弱磁性高分子复合涂层由计算机自动控制。

2.3弱磁性高分子复合涂层微调

应用中小型的弱磁性高分子复合涂层器能够改变电参数的切实作用。弱磁性高分子复合涂层微调具有速度快、精准度高的优点,运用这一技术能够有效对设备进行微调。

3 弱磁性高分子复合涂层技术在单级双吸离心泵叶轮制造中的应用

3.1 单级双吸离心泵叶轮的弱磁性高分子复合涂层合金化

弱磁性高分子复合涂层合金化是指在高密度、高能量的弱磁性高分子复合涂层束照射下,弱磁性高分子复合涂层表层快速融化并混合在一起,形成弱磁性高分子复合涂层合金化表层。单级双吸离心泵叶轮表面在经过合金化形成稳定的合金层,这是因为弱磁性高分子复合涂层束能量极高,在弱磁性高分子复合涂层过程中,在弱磁性高分子复合涂层束的照射下使基体迅速融化和冷却,加强了单级双吸离心泵叶轮的抗塑韧性与腐蚀性。

3.2 单级双吸离心泵叶轮的弱磁性高分子复合涂层固溶强化

弱磁性高分子复合涂层固溶强化主要被应用在一些具有特殊沉淀的硬化材料中。在使用同一弱磁性高分子复合涂层技术的制造过程中,可对弱磁性高分子复合涂层束进行固溶扩散操作。例如,在对单级双吸离心泵叶轮头部实施固溶强化的过程中,其次,对其实施弱磁性高分子复合涂层固溶强化处理,实现对强化层的进一步弱磁性高分子复合涂层化。通过此次分析可清楚看到,此弱磁性高分子复合涂层层所呈现出的网状分布结构,单级双吸离心泵叶轮表面硬度明显提高,形成晶化组织,使单级双吸离心泵叶轮的塑形性、韧性都得到了进一步增强。

3.3 单级双吸离心泵叶轮的弱磁性高分子复合涂层修复

运用弱磁性高分子复合涂层技术,可以对一些存在质量问题的单级双吸离心泵叶轮进行修复处理,例如:某单级双吸离心泵叶轮表面存在大量明显的裂纹,可以运用弱磁性高分子复合涂层技术对其表面进行强化修复,就能够使单级双吸离心泵叶轮的表面形成一层化合成,单级双吸离心泵叶轮的质量得到了加强。

结束语:

弱磁性高分子复合涂层技术作为一种现代化重要的生产制造技术,将其应用到单级双吸离心泵叶轮制造过程中能有效提高单级双吸离心泵叶轮质量和整体性能。单级双吸离心泵叶轮质量对整个汽轮机质量有着至关重要的影响,必须要做好单级双吸离心泵叶轮制造工作,推广弱磁性高分子复合涂层技术的使用,将弱磁性高分子复合涂层技术应用到其他领域中,使其能更好的服务于单级双吸离心泵叶轮制造

离心泵性能与叶轮几何尺寸的关系

离心泵性能与叶轮几何尺寸的关系 【摘要】离心泵的性能曲线即扬程-流量曲线和效率-流量曲线会因其叶轮几何参数的改变而受到影响。本文首先介绍了离心泵的基本性能参数的定义、计算公式,然后系统的介绍了离心泵叶轮几何参数如叶片进口安放角、叶轮出口直径、叶片出口宽度等对泵性能曲线的影响,定性的分析了这些影响产生的原因以及在实际设计中如何最大限度的提高离心泵的性能。 【关键词】离心泵;性能;叶轮;叶片;几何参数 引言 众所周知,离心泵的工作性能与其叶轮的参数相关,即离心泵的叶片数、叶片出口安放角、叶片进口安放角、叶轮出口直径、叶片出口宽度、叶轮入口直径、叶片入口宽度及转速等均会对泵性能的产生影响。因此,研究离心泵的叶轮几何参数的改变所引起泵性能的变化问题,显得十分必要。 1 离心泵的组成及工作原理 离心泵主要构成部分有吸入室、叶轮以及压出室。吸入室一般位于水面下叶轮进水口的前面,有直锥形、弯管形和螺旋形三种形式,起到把液体引入叶轮的作用;叶轮由盖板和若干个叶片组成,是泵心脏;压出室主要有蜗壳式、导叶和空间导叶三种形式。 离心泵一般用电动机带动。在工作前,先将泵体内充满被输送的液体,当原动机高速旋转时,通过轴传动到叶轮,带动叶轮高速旋转,叶轮上的叶片将带动液体旋转,在离心力的作用下液体从叶轮中心向叶轮外缘流去,叶轮外缘的流体带有一定的压力能和动能,流速一般可达15~25m/s,高速流体从叶轮出口外缘排出,经由压出室、排出管和出口管道到达目的地。另一方面当泵内的液体从叶轮中心被甩到叶轮外缘的时候,在叶轮中心会形成低压区,在压差作用下,流体由吸入管经由吸入室流向叶轮中心,这样源源不断的会有液体从泵里流进再流出,这样,离心泵便完成了连续输送液体的工作。 2 离心泵的基本性能参数 离心泵的基本性能参数有:流量、扬程、轴功率、有效功率、效率、转速、必须汽蚀余量、允许吸上真空高度、比转速等。 (1)流量Q(m3/h或m3/s) 泵的流量也就是泵输送液体的能力,指单位时间内泵所输送的液体体积。流量取决于泵的叶轮直径、叶片宽度以及转速等。在实际工作中,流量还与管道阻力和所需压力有关。

基于CFD技术的离心泵优化设计

基于CFD技术的离心泵优化设计 文章对目前泵设计方法如模型换算法、速度系数法和面积比原理进行详细介绍,并应用相似换算法和速度系数法对参数为Q=1400m3/h,H=15m,n=990r/min 的离心泵进行设计,通过CFD数值模拟,获得了内部流场较好的泵。 标签:离心泵;叶轮;设计 1 叶轮设计方法 在叶片式流体机械中,叶轮是叶片式流体机械中直接进行能量转换的部件,是叶片式流体机械最关键的部件。由于泵内部流动非常复杂,对其流动规律的认识还不够全面,因此泵的水力设计还需建立在半理论、半经验和试验验证的基础上进行。目前泵设计方法有几种形式,一般分为模型换算法、速度系数法、面积比原理[1]。 1.1 模型换算法 邹滋祥[2]系统的叙述了相似理论的具体内容,包括几何相似、物理现象相似以及两个体系之间相似的必要和充分条件,同时通过具体的例子来阐述叶轮机械模型设计过程中的具体应用方法。陈凤军[3]针对集中空调系统试运行中出现的循环泵电机发热严重、能耗高、实际效果差等问题,提出了运用相似原理、按功率匹配进行叶轮切割的技术改造方案。经实践证明,实现了优化运行,满足了设计要求,提高了经济效益。 应用模型换算法的首要前提条件,必须具有一个优秀的水力模型库,这样才会使得水力设计方便、可靠。 1.2 速度系数法 Stepanoff[4]早在1984年就提出利用比速规律进行水力设计的设计系数法,在统计大量实测资料的基础上提出了著名的Stepanoff速度图。国内于80年代初曾经对部分优秀模型进行统计。1985年陈次昌[5]应用多元逐步回归分析法对离心泵叶轮主要几何尺寸进行了总结与统计,得出了一些具有参考价值的计算公式。90年代初,张俊达[6]和何希杰[7]等对近年来的优秀模型进行了重新统计,提出了一些系数和规律。白小榜[8]等对6个混流泵优秀水力模型统计分析基础上,对叶轮和蜗室的主要几何参数:叶轮进口速度U0、叶轮外径D2(D2a,D2e)、出口宽度b2及蜗室几何参数计算公式中的速度系数进行了公式拟合,给出了混流泵的水力参数计算方法。同时应用设计实例验证设计方法的准确性。沙毅[9]等利用叶片泵能量方程和相似理论,推导出离心泵叶轮外径D2,出口叶片宽度b2和进口直径D0的速度系数法水力计算公式。在IS系列泵参数回归统计基础上,利用最小二乘法拟合速度系数与比转数的关系方程式。并用ns=87和ns=118两泵型的设计实例验证了设计计算方法的准确性和先进性。

离心泵检维修规程

卧式单级离心泵检修规程 1.总则 1.1结构特点 卧式单级离心泵主要有泵壳、转子、叶轮、轴承及密封等组成; 1.1.1泵壳体是卧式,由吸入室和排出室组成。在壳体的两端分别设有支承转子的轴承室、机械密封室; 1.1.2转子结构: 转子由主轴、叶轮、轴套、轴承、联轴节组成,各配件以不同的配合方式装配在轴上;主轴为光轴,叶轮为闭式,轴承为双列向心球面滚子轴承,其润滑方式为油浴; 1.2设备完好标准: 1.2.1电流表、压力表工作正常稳定; 1.2.2机封或填料压盖部位的温度正常,机封无泄漏,填料密封渗漏正常,标准为小于0.5cm3/s; 1.2.3检查泵和动力机的轴承温升正常,轴承温升一般不超过周围温度35℃,最高不能超过75℃; 1.2.4检查泵和动力机的声音和振动。 1.3危险源辨识 1.3.1 危险源:VCM液体、硫酸、盐酸、碱、庚烷、热水、浆料、次钠、氯气、氢气、物体碰撞、打击、触电。 1.3.2 防范措施:按规定穿戴劳动防护用品,检修前泄压排尽、置换、质检分析合格,断电挂牌,签票交出后方可作业,甲级防暴区作业使用防爆工具。

2 检修周期与内容 2.1检修周期 2.1.1 根据设备点巡检结果及设备运行状况,可以调整保养检修周期; 2.1.2检修周期(见表1) 表1 保养检修周期 2.2检修内容 2.2.1检查机械密封; 2.2.2双支承泵检查清洗轴承、轴承箱、挡油环、挡水环、油标等,调整轴承间隙; 2.2.3检查联轴器及泵的对中; 2.2.4 检查清理冷却水、油封和润滑等系统。 2.2.5解体检查各零部件的磨损、腐蚀和冲蚀情况;泵轴、叶轮必要时进行无损探伤; 2.2.6 检查清理轴承、油封等,测量、调整轴承油封间隙; 2.2.7检查测量转子的各部圆跳动和间隙,必要时做动平衡校验;(外委)

离心泵维护检修规程(完整)

离心泵检修规程 总则 本规程规定了离心泵的完好标准、离心泵的维护、检修周期与检修内容、检修与质量标准、试车与验收。 一、离心泵完好标准 1、离心泵的基本结构离心泵主要由泵壳、转子、叶轮、轴承及密封等组成。泵壳体是卧式,由吸入室和排出室组成。在壳体的两端或一端设有支承转子的轴承室、机械密封室。转子由主轴、叶轮、轴套、轴承、联轴器组成,各配件以不同的配合方式装配在轴上。 2. 设备完好标准 (1)电流表、压力表工作正常稳定 (2)机封或填料压盖部位的温度正常,机封无泄漏,填料密封渗漏正 常。 (3)检查泵的轴承温升正常,轴承温升一般不超过周围温度35C, 最高不 能超过75C。 ( 4)检查泵的声音和振动是否正常。 二、离心泵的维护 1. 日常维护 ( 1)保持设备整洁卫生。 ( 2)注意轴承的油位、油质和温度。 ( 3)填料内滴水是否正常,随时调整填料压盖的松紧程度。 ( 4)经常检查各部分的螺栓是否松动。 ( 5)经常观察各个仪表工作是否正常稳定,泵、电机的响声和振动是否正常。 ( 6)严格执行润滑管理制度。

2. 定期检查 (1)表面除锈、除污和清洗。 (2)检查易损件是磨损和损坏,若零件虽磨损。但还在公差范围内, 则可继续使用。若零件的磨损程度超过了公差范围,应考虑修复后使 用,不能修复的应更换新件。 (3)定期检查泵的入口过滤器。 (4)对重新装配的泵,有条件的应进行试验。 三、检修周期和检修内容 1、检修周期 根据状态监测结果及设备运行状况,可以适当调整检修周期。一般检修周期见表1。 表1检修周期表 2. 小修项目 (1)检查清理冷却水、封油和润滑等系统。 (2)处理在运行中出现的一般缺陷。 (3)根据运行情况,检查机械密封或更换填料密封。 (4)检查清洗轴承、轴承箱、挡油环、挡水环、油标等,调整轴承间隙。并检查轴承滚子外圈间的间隙。 (5)检查各部螺栓有无松动。 (6)检查修理联轴器及驱动机与泵的对中情况。 3. 大修项目 (1)包括小修的所有项目。 (2)解体检查各零部件的磨损、气蚀和冲蚀情况并进行修理或更换, 泵轴、叶轮必要时进行无损探伤。 (3)检查清理轴承、油封等,测量、调整轴承油封间隙。必要时更换

离心泵维修技术标准样本

第一章离心水泵检修原则 一、综述 五丰塘工程中共装置了各类水泵约台,其中离心水泵占绝大某些,别的有螺杆泵、活塞式高压泵、活塞式加药泵、隔膜泵、屏弊泵等各种型式,但数量并不太多。 离心式水泵中从使用介质来分有清水泵、污水泵和渣浆泵等;从构造上分类又有单级泵和多级泵;从安装位置来分,有卧式泵和立式泵之分。但清水泵大多数是卧式单级泵,中、高压清水泵大某些是卧式多级泵,小某些是立式单级泵和立式多级泵(如:深井泵和液下泵等等)、污水泵和渣浆泵则大某些是卧式单级泵。 本检修原则是针对离心泵而编写,从检修角度编写了离心泵各重要部件原则,至于离心泵整体性能和机械性能鉴定,在本原则中,作为附录编写在下面。运营中离心水泵,鉴定其与否要进行修理,除了依照离心水泵使用性能和机械性能而定外,还要依照长期积累经验,鉴定、区别各类离心水泵修理级别及修理内容,因依照离心水泵各重要部件技术状况而定,重要还依赖于良好运营管理和维修管理。 二、离心水泵检修周期和检修内容 1.离心水泵检修周期 离心清水泵检修周期,小修普通为半年左右;中修为1~2年;大修为4~5年。依照实际使用,管理状况,酌情调节周期。对于污水泵、渣浆泵,依照介质含酸,含泥砂以及实际磨损状况,酌情调节检修周期。 2.离心水泵检修内容 1)小修: ⑴检查并更换密封填料; ⑵清洗,检查轴承并调节间隙(如使用锥形可调型轴承),更换润滑脂和润滑油; ⑶检查联轴器零件并校核其同轴度; ⑷检查各部螺丝紧固状况; ⑸检查并修理冷却水管及油管;

2)中修: ⑴涉及小修项目; ⑵检查离心水泵各部零部件磨损,腐蚀和冲蚀限度,必要时进行修理或更换; ⑶检查修理轴承,必要时进行更换; ⑷核校转子晃动度,必要时进行转子平衡; ⑸检查轴套、压盖、底套,油环,口环,中间口环(多级离心泵)等密封件各处间隙,超标予以更换; ⑹测量并调正泵体水平度; ⑺修理或更换吸入阀、逆止阀和输出阀门。 3)大修: ⑴涉及中修内容; ⑵修理或更换泵体;校正或更换水泵主轴; ⑶修补或重新灌溉基本,必要时更换机座; ⑷泵体除锈喷漆。 三、离心水泵重要部件及装配质量原则 离心水泵重要部件有:叶轮,口环(中间口环),主轴,平衡装置,水泵壳体,轴向密封装置,多级离心泵组装,悬臂泵组装,其他零件,多级泵总装等。 1)叶轮:叶轮是离心水泵运动部件,由入口,前盖,后盖和叶道等几某些构成,保证叶轮质量,对离心泵安全运转,具备重要作用。因而,在每次检修时,都要对它进行仔细检查,校核和修理。 (Ⅰ)遇有下列状况之一者,叶轮应更换新: ⑴叶轮表面浮现裂纹; ⑵叶轮表面因腐蚀或浸蚀而形成较多砂眼或穿孔; ⑶因冲刷而使叶轮前盖或后盘变薄,以致影响机械强度; ⑷叶轮入口处发生较严重偏磨现象而不能修复。

(完整版)离心泵——叶轮设计说明书

主要设计参数 本设计给定的设计参数为: 流量Q=3 3 500.01389m m h s =,扬程H=32m ,功率P=15Kw ,转速 1450min r n =。 确定比转速s n 根据比转速公式 3 4 3.65145046.3632s n ?=== 叶轮主要几何参数的计算和确定 1. 轴径与轮毂直径的初步计算 1.1. 泵轴传递的扭矩 3 15 9.5510955098.81450 t P M N m n =?=?=? 其中P ——电机功率。 1.2泵的最小轴径 对于35号调质钢,取[]52 35010N m τ=?,则最小轴径 0.02424d m mm ==== 根据结构及工艺要求,初步确定叶轮安装处的轴径为40B d mm =,而轮毂直径为(1.2~1.4)h B d d =,取51h d mm = 2. 叶轮进口直径 j D 的初步计算 取叶轮进口断面当量直径系数0 4.5K =,则 0 4.50.09696D K m mm ==== 对于开式单级泵,096j D D mm == 3. 叶片进口直径1D 的初步计算

由于泵的比转速为46.36,比较小,故1k 应取较大值。不妨取10.85k =,则 110.859682j D k D mm ==?= 4. 叶片出口直径2D 的初步计算 2 20.5 0.5 246.369.359.3513.73 10010013.730.292292s D D n K D K m mm --???? ==?= ? ? ?? ?? ==== 5. 叶片进口宽度1b 的初步计算 ()00222 111 4/4//v v m j j h v Q Q V V D D d Q b DV ηηππηπ===-= 所以 220111 1 44j j v V D D b V D K D = = 其中,10v V K V =,不妨取0.8v K =,则 22 118535.42440.863.75j v D b mm K D ===?? 6. 叶片出口宽度2b 的初步计算 225/6 5/6 246.360.640.640.3373 1001000.33730.00727.2s b b n K b K m mm ?? ?? ==?= ? ? ?? ??==== 7. 叶片出口角2β的确定 取2β=15° 8. 叶片数Z 的计算与选择 取叶片数Z=8,叶片进口角0155.8β=。 9. 计算叶片包角? ()0 000360/360360 2.491128 t Z Z φλ??====

离心泵叶轮的修理要求

离心泵叶轮的修理要求 一、叶轮的更换经过使用的叶轮可能产生某种损坏,叶轮遇有下列情况之一者,应更换叶轮。 1)叶轮表面出现裂纹。 2)叶轮表面因腐蚀、浸蚀或汽蚀而形成较多的孔眼。 3)因冲刷而造成叶轮盖板及叶片等变薄,影响了机械强度。 4)叶轮的口环轮毂发生较严重的偏磨现象而无修复价值者。 二、叶轮的修理 1)叶轮腐蚀如不严重砂眼不多时,可以用补焊的方法修复。铜叶轮用黄铜补焊,铸铁叶轮亦可用黄铜补焊。 2)补焊的方法是焊前对需施焊的部位进行清理,去除油污、锈蚀、氧化皮等。可以局部或整体预热至250~450。C。焊粉一般选用粉30i,焊丝通常选用丝224硅黄铜焊丝、气焊火焰应采用轻微的氧化焰或中性焰,操作时一般采用压焊法,以减少焊缝金属的过热,并改善焊缝的形成,在操作中,应尽量避免高温的焰心与熔池金属的直接接触,以免在焊缝金属内产生气孔。焊后保温缓冷,以消除应力,改善性能。冷却后,则可进行机械加工。 3)单环型口环轮毂磨损出沟痕,或偏磨现象不严重时,可用砂布打磨,在厚度允许的情况下亦可车光。或用金属喷涂法,恢复原始尺寸。 4)双环型内口环密封边磨损出沟痕,或偏磨现象不严重时,亦可用砂布打磨,在厚度允许的情况下亦可车光。磨损或偏磨严重,则可更换新内环。 5)新叶轮或经修复的叶轮都应进行静平衡试验。叶轮的平衡方法是用去重法,可将试验完的叶轮放到铣床上,在较重的那一面上铣去与较轻那一面在平衡试验时所夹的物体等重的切屑。但在叶轮盖板上铣去的厚度不可超过叶轮盖板厚度的1/3,允许在前后两盖板上切去,切削部分痕迹应与盖板圆盘平滑过渡。 一般离心泵叶轮的静平衡允差可参考下表。

6、使用扬程超过了设计扬程? 7、输送热的、挥发性的介质? 7、降低吸程或采用倒灌按装 8、纠正转向 8、转向反了? 水泵震动严重 1、调正,对准泵与电机轴心 1、水泵电机轴不同心? 2、拆下校直或换新的 2、泵轴弯曲? 3、叶轮不平衡? 3、拆下找平衡 水泵用电机过热 1、使用范围(流量、扬程)超过水泵设计要求? 1、按系列型谱选合适的电机 2、介质比重超过水泵的配置电机? 2、配置合适的盛泽水泵机械密封弹簧调的太紧? 3、重新调整压盖或机械密封的弹簧压缩量 4、泵装配质量差,有摩擦处或电机与泵轴不同心? 4、检查装配质量,排除装配故障 有关振动的常用术语 1. 机械振动 物体相对于平衡位置所作的的往复运动称为机械振动。简称振动。 例如,机器箱体的颤动、管线的抖动、叶片的摆动等都属于机械振动。 振动用基本参数、即所谓的“振动三要素” —振幅、频率、相位加以描述。 2. 涡动、进动、正进动、反进动 转动物体相对于平衡位置所作的旋转运动称为涡动。 物体涡动时,是在绕着自身对称轴旋转(自转)的同时,对称轴又进一步在绕着某一平衡位置旋转(公转),所以涡动又称为进动。 例如,水中的漩涡、玩具陀螺、转子的运动等都属于涡动。 旋转机械转子的实际运动状态是,在以角速度ω(即转速n)绕着自身轴线ACB旋转(自转)的同时,整个轴线又以角速度Ω绕着两轴承中心连线AOB在做圆周运动(公转)。转子实际上是做旋转状的涡动,并不是往复状的机械振动。由于这种涡动在径向上所测得的振幅、频率、相位在数值上与机械振动相同,因此可以沿用机械振动的许多成熟的理论、方法,所以旋转机械转子的涡动通常仍然称作振动。但是,在研究大机组转子的振动时,不应该忘记转子的振动实际上是涡动的这一基本特点。 正进动是指涡动方向与转子旋转方向相同的涡动。 反进动是指涡动方向与转子旋转方向相反的涡动。 因为转子的实际振动是涡动,其涡动轨迹通常为不规整的椭圆,因此需要配置两个相互垂

离心泵的分类及构形式与特点和适用范围

离心泵的主要分类,基本上涵盖目前水泵行业所生产的全部水泵类型,仅供参考。 ①离心泵按主轴方位分类:a.卧式泵:主轴水平放置;b.斜式泵:主轴与水平面呈一定角度放置;c.立式离心泵:主轴垂直于水平面放置。 ②离心泵按叶轮的吸入方式分类:a.单吸泵:液体从一侧流入叶轮,单吸叶轮;b.双吸泵:液体从两侧流人叶轮,双吸叶轮。 ③离心泵按叶轮级数分类:a.单级泵:泵轴只装一个叶轮;b.多级泵:同一泵轴上装有两个或两个以上叶轮,液体依次流过每级叶轮。 ④离心泵按泵壳体剖分方式分类:a.分段式泵:壳体按与主轴垂直的平面剖分;b.节段式泵:在分段式多级泵中,每一段泵体都是分开的;c.中开式泵:壳体从通过泵轴轴心线的平面上分开,按剖分平面的方位又分为:水平中开式泵:剖分面是水平面,为卧式泵;垂直中开式泵:剖分面与水平面垂直,为立式泵;斜中开式泵:剖分面与水平面呈一定夹角,为斜式泵。 ⑤离心泵按泵体的形式分类:a.蜗壳泵;b.双蜗壳泵。 ⑥特殊结构形式的泵: a.潜水电泵:泵和电动机制成一体,能潜入水中工作,泵体一般为单级或多级立式离心泵和轴流泵。 b.液下泵:属单级或多级立式离心泵,电动机、泵座位于液面上部,泵体淹没在液体中,电动机通过长传动轴带动叶轮旋转。主要用于食品等行业。 c.管道离心泵:直接安装在水平管道中或竖直管道中运行,泵的进口和出口在一条直线上,且多数情况下进口与出口的口径相同,适用于工业系统中途加压、空调循环水输送及城市高层建筑给水。 d.屏蔽泵:电动机和泵合为一体,采用电动机和泵共轴形式,电动机内外转子之间采用屏蔽套隔离开,泵除进出口外,在结构上完全封闭,保证泵输送液体时绝对不泄露。 e.磁力泵:电动机的动力通过磁性联轴器传递给泵,其中磁性联轴器的内转子磁钢带动叶轮,磁性联轴器的内、外磁钢之间采用隔离套,和屏蔽泵一样也是无密封、无泄露泵型。 f.自吸泵:首次向泵中灌入少量液体,起动后可自行上水的泵,多为卧式离心泵、旋涡泵等。在喷灌中应用较多。 g.高速泵:从泵工作原理来分有高速部分流切线泵和高速离心泵两种结构形式。从变速方式分有通过电动机变频直驱式高速泵和增速箱的高速泵。电动机变频直驱式转速在9000r/min以下,由变速箱使泵主轴增速,转速可以更高,但最高转速也不超过24000r/mino h.直联泵:泵利用动力机轴做主轴,省去泵悬架部分。 i.深井泵:属多级立式离心泵,用来取地下水的

离心泵的水力设计讲解

离心泵的水力设计 离心泵叶轮设计步骤 第一步:根据设计参数,计算比转速ns 第二步:确定进出口直径 第三步:汽蚀计算 第四步:确定效率 第五步:确定功率 第六步:选择叶片数和进、出口安放角 第七步:计算叶轮直径D2 第八步:计算叶片出口宽度b2 第九步:精算叶轮外径D2到满足要求 第十步:绘制模具图 离心泵设计参数 作为一名设计人员,在设计一台泵之前,需要详细了解该泵的性能参数、使用场合、特殊要求等。 下表为本章中叶轮水力设计教程中使用的一组性能要求。

确定泵进出口直径 右图为一台ISO单级单吸悬臂式离心泵的实物图和装配图。对于新入门的学习者,请注意泵的进出口位置,很多人会混淆。 确定泵的进口直径 泵吸入口的流速一般取为3m/s左右。从制造方便考虑,大型泵的流速取大些,以减小泵的体积,提高过流能力。而从提高泵的抗汽蚀性能考虑,应减小吸入流速;对于高汽蚀性能要求的泵,进口流速可以取到1.0-2.2m/s。 进口直径计算公式 此处下标s表示的是suction(吸入)的意思 本设计例题追求高效率,取Vs=2.2m/s Ds=77,取整数80 确定泵的出口直径 对于低扬程泵,出口直径可取与吸入口径相同。高扬程泵,为减小泵的体积和排出管直径,可小于吸入口径。一般的计算公式为:

D d=(0.7-1.0)D s 此处下标d表示的是discharge(排出)的意思 本设计例题中,取 D d = 0.81D s = 65 泵进口速度 进出口直径都取了标准值,和都有所变化,需要重新计算。 Vs = 2.05 泵出口速度 同理,计算出口速度= 3.10

汽蚀计算 泵转速的确定 泵的转速越高,泵的体积越小,重量越清。舰艇和军工装备用泵一般都为高 速泵,其具有转速高、体积小的特点。 转速与比转速有关,比转速与效率有关,所以选取转速时需和比转速相结合。 转速增大、过流不见磨损快,易产生振动和噪声。 提高泵的转速受到汽蚀条件的限制。 从汽蚀比转数公式可知,转速n和汽蚀基本参数和C有确定的关系。 按汽蚀条件确定泵转速的方法,是选择C值,按给定的装置汽蚀余量或几何安装高度,计算汽蚀条件允许的转速,所采用的转速应小于汽蚀条件允许的转速。 汽蚀的概念 水力机械特有的一种现象。当流道中局部液流压力降低到接近某极限值(目前多以液体在该 温度下的汽化压力作为极限值)时,液流中就开始发生空(汽)泡,这些充满着气体或蒸汽的空 泡很快膨胀、扩大并随液流至压力较高的地方后又迅速凝缩、溃灭。液流中空泡的发生、扩 大、渍灭过程涉及许多物理、化学现象,会有噪音,振动甚至对流道材料产生侵蚀作用(汽 蚀)。以上这些现象统称为汽蚀现象。 汽蚀会导致泵的噪声与振动,破坏过流部件,加快腐蚀,性能下降等。汽蚀一直是流体机械 研究的热点和难点。

单级离心泵设计

单级离心泵设计 摘要:本设计从离心泵的基本工作原理出发,进行了一系列的设计计算。考虑离心泵基本工作性能,流量范围大,扬程随流量而变化,在一定流量下只能供给一定扬程(单级扬程一般10~80m)。本设计扬程为50m,泵水力方案通过计算比转数(n=67.5)确定采用单级单吸结构;通过泵轴功率的计算确定选择三相异步电动机;由设计参数确定泵的吸入、压出口直径;通过叶轮的水力设计确定叶轮的结构以及叶轮的绘型;设计离心泵的过流部件,确定吸入室为直锥形吸入室,压出室为螺旋形压出室;设计轴的结构及进行强度校核;确定叶轮,泵体的密封形式及冲洗,润滑和冷却方式;通过查标准确定轴承,键以及联轴器,保证连接件的标准性。从经济可靠性出发,合理设计离心泵部件,选择标准连接件,保证清水离心泵设计的安全性,实用性,经济性。 关键词:离心泵工作原理;水力方案设计;叶轮和过流部件设计;强度校核;密封设计;键、轴承的选择

Centrifugal Pump Design Manua l Abstract : This design starting from the basic working principle of the centrifugal pump, conducted a series of design calculations. consider the basic centrifugal pump performance, flow in a wide range, lift varies with the flow, the flow can only supply some lift (single-stage lift is generally 10~80m).The design head is 50m ,the design of the pump hydraulic scheme by calculating the number of revolutions(n=67.5) to determine the single-stage single-suction structure; choice of motor shaft power calculation; design parameters to determine the pump suction outlet diameter; determine the structure of the impeller and the impeller of the drawing of the hydraulic design of the impeller; flow parts of the design of centrifugal pump suction chamber for straight conical suction chamber, pressed out of the spiral-shaped pressure chamber; the structure and strength check of the axis design; determine the impeller centrifugal pump seal design, pump closed form and washing, lubrication, cooling method; determined by checking the standard bearings, and coupling to ensure that the standard connection. Departure from the economic viability of the rational design of centrifugal pump components, select the standard connector, to ensure the water using a centrifugal pump design safety, practicality, economy. Keyword:Centrifugal pump working principle ;Hydraulic design;Component design of the impeller and the over current; Strength check; Seal design; The choice of key and bearing

离心泵的工作原理和主要部件图

离心泵的工作原理和主要部件图 一、离心泵的工作原理1、离心泵的工作原理离心泵的叶轮安装在泵壳2内,并紧固在泵轴3上,泵轴由电机直接带动。泵壳中央有一液体吸入4与吸入管5连接。液体经底阀6和吸入管进入泵内。泵壳上的液体排出口8与排出管9连接。在离心泵启动前,泵壳内灌满被输送的液体;启动后,启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。在离心力的作用下,液体从叶轮中心被抛向外缘并获得能量,以高速离开叶轮外缘进入蜗形泵壳。在蜗壳中,液体由于流道的逐渐扩大而减速,又将部分动能转变为静压能,最后以较高的压力流入排出管道,送至需要场所。液体由叶轮中心流向外缘时,在叶轮中心形成了一定的真空,由于贮槽液面上方的压力大于泵入口处的压力,液体便被连续压入叶轮中。可见,只要叶轮不断地转动,液体便会不断地被吸入和排出。 2、气缚现象当泵壳内存有空气,因空气的密度比液体的密度小得多而产生较小的离心力。从而,贮槽液面上方与泵吸入口处之压力差不足以将贮槽内液体压入泵内,即离心泵无自吸能力,使离心泵不能输送液体,此种现象称为“气缚现象”。为了使泵内充满液体,通常在吸入管底部安装一带滤网的底阀,该底阀为止逆阀,滤网的作用是防止固体物质进入泵内损坏叶轮或防碍泵的正常操作。二、离心泵的主要部件离心泵的主要部件有叶轮、泵壳和轴封装置。1、叶轮叶轮的作用是将原动机的机械能直接传给液体,以增加液体的静压能和动能(主要增加静压能)。叶轮一般有6~12片后弯叶片。叶轮有开式、半闭式和闭式三种,

开式叶轮在叶片两侧无盖板,制造简单、清洗方便,适用于输送含有较大量悬浮物的物料,效率较低,输送的液体压力不高;半闭式叶轮在吸入口一侧无盖板,而在另一侧有盖板,适用于输送易沉淀或含有颗粒的物料,效率也较低;闭式叶轮在叶轮在叶片两侧有前后盖板,效率高,适用于输送不含杂质的清洁液体。一般的离心泵叶轮多为此类。叶轮有单吸和双吸两种吸液方式。2、泵壳泵壳的作用是将叶轮封闭在一定的空间,以便由叶轮的作用吸入和压出液体。泵壳多做成蜗壳形,故又称蜗壳。由于流道截面积逐渐扩大,故从叶轮四周甩出的高速液体逐渐降低流速,使部分动能有效地转换为静压能。泵壳不仅汇集由叶轮甩出的液体,同时又是一个能量转换装置。3、轴封装置轴封装置的作用是防止泵壳内液体沿轴漏出或外界空气漏入泵壳内。常用轴封装置有填料密封和机械密封两种。填料一般用浸油或涂有石墨的石棉绳。机械密封主要的是靠装在轴上的动环与固定在泵壳上的静环之间端面作相对运动而达到密封的目的。

离心泵维修技术标准

第一章离心水泵检修标准 一、综述 五丰塘工程中共装置了各类水泵约台,其中离心水泵占绝大部分,其余有螺杆泵、活塞式高压泵、活塞式加药泵、隔膜泵、屏弊泵等多种型式,但数量并不太多。 离心式水泵中从使用的介质来分有清水泵、污水泵和渣浆泵等;从结构上分类又有单级泵和多级泵;从安装的位置来分,有卧式泵和立式泵之分。但清水泵大多数是卧式的单级泵,中、高压清水泵大部分是卧式的多级泵,小部分是立式的单级泵和立式的多级泵(如:深井泵和液下泵等等)、污水泵和渣浆泵则大部分是卧式的单级泵。 本检修标准是针对离心泵而编写的,从检修的角度编写了离心泵各主要部件的标准,至于离心泵整体的性能和机械性能的判定,在本标准中,作为附录编写在下面。运行中的离心水泵,判定其是否要进行修理,除了根据离心水泵的使用性能和机械性能而定外,还要根据长期积累的经验,判定、区分各类离心水泵修理的等级及修理的内容,因根据离心水泵各主要部件的技术状况而定,主要的还依赖于良好的运行管理和维修管理。 二、离心水泵的检修周期和检修内容 1.离心水泵的检修周期 离心清水泵的检修周期,小修一般为半年左右;中修为1~2年;大修为4~5年。根据实际使用,管理情况,酌情调整周期。对于污水泵、渣浆泵,根据介质的含酸,含泥砂以及实际的磨损情况,酌情调整检修周期。 2.离心水泵的检修内容 1)小修: ⑴检查并更换密封填料; ⑵清洗,检查轴承并调整间隙(如使用锥形可调型轴承),更换润滑脂和 润滑油; ⑶检查联轴器的零件并校核其同轴度; ⑷检查各部螺丝的紧固情况; ⑸检查并修理冷却水管及油管; 2)中修: ⑴包括小修项目;

⑵检查离心水泵各部零部件的磨损,腐蚀和冲蚀程度,必要时进行修理或更换; ⑶检查修理轴承,必要时进行更换; ⑷核校转子晃动度,必要时进行转子的平衡; ⑸检查轴套、压盖、底套,油环,口环,中间口环(多级离心泵)等密封件各处间隙,超标的予以更换; ⑹测量并调正泵体水平度; ⑺修理或更换吸入阀、逆止阀和输出阀门。 3)大修: ⑴包括中修内容; ⑵修理或更换泵体;校正或更换水泵主轴; ⑶修补或重新浇灌基础,必要时更换机座; ⑷泵体除锈喷漆。 三、离心水泵主要部件及装配的质量标准 离心水泵的主要部件有:叶轮,口环(中间口环),主轴,平衡装置,水泵壳体,轴向密封装置,多级离心泵的组装,悬臂泵的组装,其它零件,多级泵的总装等。 1)叶轮:叶轮是离心水泵的运动部件,由入口,前盖,后盖和叶道等几部分组成,确保叶轮的质量,对离心泵的安全运转,具有重要的作用。因此,在每次检修时,都要对它进行仔细检查,校核和修理。 (Ⅰ)遇有下列情况之一者,叶轮应更换新的: ⑴叶轮表面出现裂纹; ⑵叶轮表面因腐蚀或浸蚀而形成较多的砂眼或穿孔; ⑶因冲刷而使叶轮的前盖或后盘变薄,以致影响机械强度; ⑷叶轮入口处发生较严重的偏磨现象而不能修复。 (Ⅱ)新叶轮应进行检查并符合技术要求:

离心泵水力设计流程

离心泵水力设计 课程设计及指导书 (一)离心泵水力设计任务书 1 设计目的 掌握离心式叶轮和进、出水室水力设计的基本原理和基本方法.加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。 2 设计参数及有关资料 (1)泵的设计参数:(可自选一组参数设计,也可参照给出的参数变更局部参数设计,每个人必须选择不同的参数进行设计)

1. m h rpm n m H h m Q a 3.3,2900,60,/373 =?=== 2. m h rpm n m H h m Q a 44.5, 1450, 16, /903 =?=== 3. 900 ,1430,24, /663 ====C rpm n m H h m Q 4. 900 %, 80,2900, 48,/1453 =====C rpm n m H h m Q η 5. m 5, 2970, 5.18,/12====SZ H rpm n m H s l Q 泵的安装高度 6. m h rpm n m H s l Q r 13.2, 2870,10,/3.2=?=== 7. m rpm n m H h m Q 6.2h , 1450,5.32,/170r 3 =?=== 8. % 60,2h , 2900, 20,/20r 3==?===ηm rpm n m H h m Q (2)工作条件:抽送常温清水。 (3)配用动力:用电动机作为工作动力。 3 设计内容及要求 (1)设计内容。包括以下几个方面: l )、离心泵结构方案的确定。 2)、离心泵水力过流部件(进水室、叶轮、压水室)主要几何参数的选择和计算。 3)、叶轮轴面投影图的绘制。 4)、螺旋形压水室水力设计。 (2)要求。包括以下几个方面: l )、用速度系数法和解析计算法进行离心泵水力设计。 2)、绘出压水室设计图。 3)、编写设计计算说明书。

离心泵叶轮型式

离心泵闭式开式半开式叶轮的区别 点击次数:8022 发布时间:2012-2-29 离心泵叶轮的区别,闭式叶轮开式叶轮的区别 叶轮是离心泵的做功零件,依靠它高速旋转对液体做功而实现液体的输送,是离心泵的重要零件之一。离心泵叶轮的区别: (1)叶轮的分类叶轮一般由轮毂、叶片和盖板三部分组成。叶轮的盖板有前盖板和后盖板之分,叶轮入口侧的盖板称为前盖板,另一侧的盖板称为后盖板。按结构形式,叶轮可分为以下三种。 ①闭式叶轮叶轮的两侧均有盖板,盖板间有4~6个叶片,如图2-20 (a)所示。当叶片弯曲方向与叶轮旋转方向相反时,称为盾弯式叶片。一般叶轮的叶片均为后弯式叶片。这种闭式叶轮效率较高,应用最广,适用于输送不含固体颗粒及纤维的清洁液体。闭式叶轮有单吸和双吸(图2—21)两种类型。双吸叶轮比单吸叶轮输液量大。 ②开式叶轮叶轮两侧均没有盖板,叶片通过筋板连接在轮毂上,如图2-20 (b)所示。这种叶轮结构简单,制造容易,但效率低,适用输送含较多固体悬浮物或带纤维的液体。 ⑧半开式叶轮这种叶轮只有后盖板,如图2-20(c)所示。它适用于输送易于沉淀或含固体悬浮物的液体,其效率介于开式和闭式叶轮之间。 按叶轮的形状及液体在叶轮内流动方向的不同,叶轮可分为径流式、轴流式和混流式,径流式叶轮应用在离心泵中,液体沿轴向进入叶轮,沿径向从叶轮流出。液体获得的能量主要来源于叶轮旋转时产生的离心力。轴流式叶轮应用在轴流泵中,液体轴向通过叶轮,液体获得的能量主要来源于叶轮旋转时产生的升

力(即推力)。混流式叶轮应用在混流泵中,液体沿轴向进入叶轮,而沿轴向与移径向之间的某方向流出,依靠离心力和轴向推力的混合作用输送液体. 根据不同的需要,叶轮可由铸铁、铸钢、不锈钢、玻璃钢、塑辩等材料制成。叶轮的制造方法有翻砂铸造、精密铸造、焊接、模压等,其尺寸、形状和制造精度对泵的性能影响很大。

离心泵维修专业技术标准

离心泵维修技术标准

————————————————————————————————作者: ————————————————————————————————日期: ?

第一章离心水泵检修标准 一、综述 五丰塘工程中共装置了各类水泵约台,其中离心水泵占绝大部分,其余有螺杆泵、活塞式高压泵、活塞式加药泵、隔膜泵、屏弊泵等多种型式,但数量并不太多。 离心式水泵中从使用的介质来分有清水泵、污水泵和渣浆泵等;从结构上分类又有单级泵和多级泵;从安装的位置来分,有卧式泵和立式泵之分。但清水泵大多数是卧式的单级泵,中、高压清水泵大部分是卧式的多级泵,小部分是立式的单级泵和立式的多级泵(如:深井泵和液下泵等等)、污水泵和渣浆泵则大部分是卧式的单级泵。 本检修标准是针对离心泵而编写的,从检修的角度编写了离心泵各主要部件的标准,至于离心泵整体的性能和机械性能的判定,在本标准中,作为附录编写在下面。运行中的离心水泵,判定其是否要进行修理,除了根据离心水泵的使用性能和机械性能而定外,还要根据长期积累的经验,判定、区分各类离心水泵修理的等级及修理的内容,因根据离心水泵各主要部件的技术状况而定,主要的还依赖于良好的运行管理和维修管理。 二、离心水泵的检修周期和检修内容 1.离心水泵的检修周期 离心清水泵的检修周期,小修一般为半年左右;中修为1~2年;大修为4~5年。根据实际使用,管理情况,酌情调整周期。对于污水泵、渣浆泵,根据介质的含酸,含泥砂以及实际的磨损情况,酌情调整检修周期。 2.离心水泵的检修内容 1)小修: ⑴检查并更换密封填料; ⑵清洗,检查轴承并调整间隙(如使用锥形可调型轴承),更换润滑脂和润滑油; ⑶检查联轴器的零件并校核其同轴度; ⑷检查各部螺丝的紧固情况; ⑸检查并修理冷却水管及油管; 2)中修: ⑴包括小修项目; ⑵检查离心水泵各部零部件的磨损,腐蚀和冲蚀程度,必要时进行修理或更换; ⑶检查修理轴承,必要时进行更换; ⑷核校转子晃动度,必要时进行转子的平衡; ⑸检查轴套、压盖、底套,油环,口环,中间口环(多级离心泵)等密封件各处间

离心泵工作原理及叶轮的作用

离心泵工作原理及叶轮的作用 当化工离心泵启动后,泵轴带动叶轮一起作高速旋转运动,迫使预先充灌在叶片间液体旋转,在惯性离心力的作用下,液体自叶轮中心向外周作径向运动。当化工离心泵启动后,泵轴带动叶轮一起作高速旋转运动,迫使预先充灌在叶片间液体旋转,在惯性离心力的作用下,液体自叶轮中心向外周作径向运动。液体在流经叶轮的运动过程获得了能量,静压能增高,流速增大。当液体离开叶轮进入化工离心泵壳后,由于壳内流道逐渐扩大而减速,部分动能转化为静压能,最后沿切向流入排出管路。所以蜗形泵壳不仅是汇集由叶轮流出液体的部件,而且又是一个转能装置。当液体自叶轮中心甩向外周的同时,叶轮中心形成低压区,在贮槽液面与叶轮中心总势能差的作用下,致使液体被吸进叶轮中心。依靠叶轮的不断运转,液体便连续地被吸入和排出。液体在化工离心泵中获得的机械能量最终表现为静压能的提高。 叶轮的作用是将原动机的机械能直接传给液体,以增加液体的静压能和动能(主要增加静压能)。 1.叶轮 叶轮的作用是将原动机的机械能直接传给液体,以增加液体的静压能和动能(主要增加静压能)。叶轮有开式、半闭式和闭式三种。开式叶轮在叶片两侧无盖板,制造简单、清洗方便,适用于输送含有较大量悬浮物的物料,效率较低,输送的液体压力不高;半闭式叶轮在吸入口一侧无盖板,而在另一侧有盖板,适用于输送易沉淀或含有颗

粒的物料,效率也较低;闭式叶轮在叶轮在叶片两侧有前后盖板,效率高,适用于输送不含杂质的清洁液体。一般的化工离心泵叶轮多为此类。 2.泵壳 作用是将叶轮封闭在一定的空间,以便由叶轮的作用吸入和压出液体。化工离心泵壳多做成蜗壳形,故又称蜗壳。由于流道截面积逐渐扩大,故从叶轮四周甩出的高速液体逐渐降低流速,使部分动能有效地转换为静压能。泵壳不仅汇集由叶轮甩出的液体,同时又是一个能量转换装置。

离心泵检修规程

离心泵检修技术规程

目录 1.目录 (1) 2.总则 (2) 3.离心泵主要部件的结构与作用 (3) 4.检修周期和检修内容 (5) 5.离心泵常见故障、原因及处理方法 (6) 6.主要零部件的检修技术 (8) 7.试车与验收 (13)

一.总则 在化工装置中,使用着各种各样的泵,这些泵作为化工生产中的一个要素,有助于生产过程中液体的流动和化学反应的进行,对提高工厂生产率起着相当重要的作用。在化工装置中使用的各种泵,一般来说是把所需要的一定量的液体打到工艺所要求的高度,或送入有一定压力的容器。这种在单位时间内所输送的液体量即为泵的流量,其单位通常用L/s或m3/h表示。所要求的高度或所要求的压力,即相当于泵的扬程。实际扬程加上输送液体的管路内各种损失压头,即为泵的总扬程,单位通常用液柱高度(米)来表示。 离心泵是使用最广泛的一种化工泵,其工作原理如下: 离心泵开泵之前,打开出入管道阀,泵体内应充满流体,当泵叶轮转动时,叶轮的叶片驱使流体一起转动,使流体产生了离心力,在此离心力的作用下,流体沿叶片流道被甩向叶轮出口,经扩压器、蜗壳送入排出管。流体从叶轮获得能量,使压力能和速度能增加,当一个叶轮不能满足流体足够能量时,可用多级叶轮串联,获取较高能量。在流体被甩向叶轮出口的同时,叶轮中心入口处的压力显著下降,瞬时形成了真空,入口管的流体经泵吸入室进入了叶轮中心,这样当叶轮不停地旋转,流体就不断地被吸入和排出,将流体送到管道和容器中。离心泵的工作过程,就是在叶轮转动时将机械能传给叶轮内的流

体,使它转换为流体的流动能,当流体经过扩压器时,由于流道截面大,流速减慢,使一部分动能转换成压力能,流体的压力就升高了。所以流体在泵内经过两次能量转换,即从机械能转换成流体动能,该动能部分地又转换为压力能,从而泵就完成输送液体的任务。 在空分车间,使用有多台离心泵,包括冷却水泵、冷冻水泵、三大机组冷凝液泵、发电机油泵、射水泵、合成气压缩机组油泵,它们结构相近,原理相同,所以制定一个通用的检修技术规范。检修时同时参照各泵的使用说明书,数据矛盾时以说明书为准。 二、离心泵主要部件的结构与作用 离心泵主要由吸入、排出部分、叶轮和转轴、轴密封、扩压器和泵壳等四大部分组成。 1.叶轮 叶轮是抽送液体作用的主体,是离心泵最重要的部件,离心泵是由叶轮的离心力作用,给予抽送流体以速度能,并将该速度能的一部分转换为压力能,提高流体的压力和速度,完成泵输送液体的过程。 泵叶轮的形状随着比转数的不同有不同的差别,叶轮按比转数从小到大的顺序和液体在叶轮中流动的方向,可分为径流式叶轮、混流式叶轮、斜流式叶轮、轴流式叶轮。若按叶轮结构可分为闭式叶轮、开式叶轮、诱导轮全开式叶轮、半开式叶轮。 2.泵壳 泵壳是泵结构的中心,其型式也比较多。

相关主题