搜档网
当前位置:搜档网 › 集合式并联电容器开口三角电压保护的一种实用公式

集合式并联电容器开口三角电压保护的一种实用公式

集合式并联电容器开口三角电压保护的一种实用公式
集合式并联电容器开口三角电压保护的一种实用公式

集合式并联电容器开口三角电压保护的一种实用公式

一、前言

集合式并联电容器一般是采用若干具有内熔丝的元件封装在一个注油的铁壳内,构成电容器单元,再由数台电容器单元先并后串,再封装在一个浸满油的铁箱内组成。其一次接线大都采用单星形接线,如果该电容器采用六个瓷套引出,它的内部故障、继电保护必然采用开口三角电压保护方式。

但我们在实际工作中,发现一部分用户,对集合式并联电容器开口三角电压保护的整定计算存在模糊概念,甚至由于概念不清,把放电线圈仅作放电之用。不用它的二次线圈作为开口三角电压保护的采样电路,而误认为电容器回路中设置了过流及速断保护就可以了。这致使集合式并联电容器的安全经济运行,产生了隐患及不合格因数。

因此,本文力图抓住一些主要因数,而忽略一些不起主导作用的因数,推导其整定公式,澄清概念,以得出一个实用性的整定公式供参考使用。

集合式并联电容器的电容器单元内的元件,通常采用全并联方式,但也有采用具有二段串联的电容器单元。本文仅讨论前一种情况。

二、实用公式的推导

假设集合式并联电容器的A相作为故障相,每个电容器单元内的并联元件数为m,每个串联段的电容器单元并联数为M,每相串联段数为N,元件电容量为Cy,串联电抗器感抗和电容器容抗的百分比为A,如图所示。则当A相中,某串联段有k只元件因介质击穿,内熔丝熔断而退出运行,则有

电路示意图

A相容抗

(1)

A相阻抗

(2)

健全相阻抗

(3)

设三相电源电压对称,则

(4)

其中a、a2为单位向量算子,分别为:

(5)

根据电路理论节点电压法,中性点零序电压为:

(6)

将(4)、(5)式代入上式,并合并同类项

(7)

将(2)、(3)式再代入上式,整理后得

(8)

由于故障相某串联段部份元件击穿,内熔丝熔断,使部分元件退出运行,使故障相电容量减小,容抗增大,故障相电压降增加,并且主要是由于故障相故障段电压降增加引起。因此,只要使故障相故障段上完好电容器单元及元件不超过电容器规定的1.1倍长期过电压值,并且选择该电压值作为开口三角电压保护的相应整定值,就能使集合式并联电容器在不致于扩大故障的前提下安全经济运行。

因此,当故障相故障段中有k只元件切除后的故障电压计算如下:

故障相的电压

(9)

故障段的电压

(10)

(11)

UN为集合式并联电容器额定电压

UA为系统相电压有效值。

当限制故障相故障段上的完好电容器电压为电容器元件额定电压的1.1倍时,作为k

值的限制条件,则有

(12)

将(10)、(11)式代入上式,化简后得

(13)

因此,根据上式,只要知道集合式并联电容器每相串联段数N,每段电容器单元并联数M,每只电容器单元并联元件数m,串联电抗器的电抗率百分数A,集合式并联电容器额定电压,系统额定电压,则可确定允许断开元件数k值,而上述这些参数显然是很容易了解得到。k值为小数时,可用进一法取整。代入开口三角零序电压公式:

(14)

即得到3Uo值,再根据放电线圈变比及选择继电器的灵敏系数,就能得到开口三角电压保护电路中电压继电器的动作电压整定值。

对k公式的补充说明

对k公式的推导,没有考虑相间及各串联的容量误差,其原因是由于电容器制造工艺技术水平的提高,电容元件可控制在很小的误差范围内、各串联段的最大与最小电容之比不超过1.005,各相间电容的最大值与最小值之比不会超过1.01。实际控制误差还可以更小,已明显低于相应标准要求。因此电容值误差对公式所产生的影响已很小,远远低于开口三角电压保护继电器动作灵敏系数的影响。忽略电容值的制造误差,可避免k公式推导的繁琐化,并且相间容差虽然容易通过实测计算得到,而串联段的容差一般说是难于了解的。所以,忽略容差,利于公式的实用化。

四、结论

(1)、集合式并联电容器单星形接线采用开口三角电压保护方式,为保证某相某段并联元件不至因故障退出部份元件而承受过高电压,导致故障扩大,合理选择该段允许退出的元件数k值,是保证集合式并联电容器安全经济运行的重要条件。同时,k值是开口三角电压

保护公式中唯一要经过计算而确定的关键参数。和k值相关的参数,应便于了解,使公式更符合实际应用时客观情况。

(2)、为保证按k公式设定的开口三角电压保护的准确性,使k公式尽量不受到集合式并联电容器制造误差的影响,应提高生产工艺水平,使各串联段及各相间的电容值误差尽量减小。

(3)、本文中公式仅用于集合式并联电容器中的单元电容器的元件为全并联连接方式。

开口三角电压保护整定值计算

什么是开口三角形 开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。 此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a -x”、“b -x”、“c -x”,开口三角就是“a -x”的x 与“b -x”的b 相连,“b -x”中的x 与“c -x”的c 相连,从“a -x”的a 与“c -x”x 引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x ,就是开口三角电压。 正常情况下,开口三角上没有电压,当发生系统单相接地时,电压互感器一次绕组就会有一相上无电压,造成对应的二次绕组上也无电压,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象,这在系统上被称为“接地监察” 本装置电容器组按招标数据单要求,必须具备不平衡电流保护(或不平衡电压保护)功能。根据电容器组单台中性点不接地单星接线方式,本设备采用了“开口三角电压保护”实现不平衡电压保护。开口三角形即将电压互感器一次侧与单星接线的每相电容器并联,将互感器的二次线圈接成三角形,但将三角形的最后一个“角”不联接,构成从原理图上看即构成一个开口的三角形。正常情况下,三角开口上没有电压,而当发电容器发生故障时,将引起相间电压的不平衡,从而在三角的开口上形成电压输出,该电压也称为“零序电压”,该电压可做为电容器的保护动作信号。这种方式的优点是不受系统接地故障和系统电压不平衡的影响,也不受三次谐波的影响,灵敏度高,安装简单,可检测到单台电容器故障并实现保护,是电容器组经常与熔断器配合使用的不平衡保护方式之一。 1.1. 设计要点 在正常情况下,由于电机三相绕组、三相电容客观存在的不平衡,以及电网电压的不对称,开口三角存在着不平衡零序电压。为防止保护系统发生误动作,必须对开口三角电压保护整定值(只有一台电容器因故障切除时的开口电压输出值)进行计算、验证,确保其与正常不平衡零序电压之比不小于预定的可靠系数。 1.1.1. 开口三角电压保护整定值计算 开口三角电压公式如下: lm y ch dz K N U U = ex ch U K K M N K U 2)(33+-=

电流电压公式

(1)串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流到处相称I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和... (1)串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流到处相称I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和P=P1+P2 (2)并联电路 总电流等于遍地电流之和I=I1+I2 遍地电压相称U1=U1=U 总电阻等于各电阻之积除以各电阻之和R=R1R2÷(R1+R2) 总电功等于各电功之和W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和P=P1+P2 (3)统一用电器的电功率 ①定额功率比现实功率等于定额电压比现实电压的平方Pe/Ps=(Ue/Us)的平方 2.有关电路的公式 (1)电阻R ①电阻等于材料疏密程度乘以(长度除以横截平面或物体表面的大)R=疏密程度×(L÷S) ②电阻等于电压除以电流R=U÷I ③电阻等于电压平方除以电功率R=UU÷P (2)电功W 电功等于电流乘电压乘时间W=UIT(普式公式) 电功等于电功率乘以时间W=PT 电功等于电荷乘电压W=QT 电功等于电流平方乘电阻乘时间W=I×IRT(纯电阻电路) 电功等于电压平方除以电阻再乘以时间W=U?U÷R×T(同上) (3)电功率P ①电功率等于电压乘以电流P=UI ②电功率等于电流平方乘以电阻P=IIR(纯电阻电路) ③电功率等于电压平方除以电阻P=UU÷R(同上) ④电功率等于电功除以时间P=W:T (4)电热Q 电热等于电流平方成电阻乘时间Q=IIRt(普式公式) 电热等于电流乘以电压乘时间Q=UIT=W(纯电阻电路 功率=1.732*定额电压*电流是三相电路中星型接法的纯阻性负载功率计算公式 功率=定额电压*电流是单相电路中纯阻性负载功率计算公式 P=1.732×(380×I×COSΦ)是三相电路中星型接法的感性负载功率计算公式 单相电阻类电功率的计算公式= 电压U*电流I 单相机电类电功率的计算公式= 电压U*电流I*功率因子COSΦ 三相电阻类电功率的计算公式= 1.732*线间电压U*线电流I (星形接法)

PT开口三角电压

ENR-DRY型电容电流测试仪使用说明书 保定市伊诺尔电气设备有限公司

目录 1.概述------------------------------------------3 2.测量基本原理----------------------------------4 3.性能指标--------------------------------------4 4.测量接线及注意事项----------------------------5 5.操作方法--------------------------------------6 6.ENR-DRY-2面板说明----------------------------6 7.界面显示--------------------------------------7 8.保护功能及其显示------------------------------8 9.附件------------------------------------------9 10.售后服务--------------------------------------9 保定市伊诺尔电气设备有限公司 2

1.概述 对于中性点不接地电网,当对地电容电流过大时将对系统的安全运行造成严重威胁,因此规程规定对地电容电流大于一定数值时必须装设消弧线圈进行补偿。为选择合适的消弧线圈容量或对已安装的老式消弧线圈进行调节,首先要对系统的对地电容电流进行测量。 对地电容电流进行测量方法有直接接地法和间接测量法,直接接地法是在系统中人为制造单相接地故障,直接测量接地线流过的电流。该方法操作多、接线复杂、危险程度高,且易引发绝缘薄弱点击穿造成两相短路事故,一般不轻易采用。间接测量法是采用外加电容的方法,虽可避免直接接地法可能引发事故的弊端,但测量时仍然要与一次侧打交道,同样存在操作多、接线复杂、危险程度高的缺点。 为解决上述问题,我公司技术人员经多年努力,研制成功“DRY-2型电容电流测量仪”,只需将母线PT开口三角的两端子与仪器信号输出端子连接,按下“测量”按钮,即可准确的测出系统对地电容电流,方便、快捷、安全。 该仪器的操作面板上有一个电源开关、两个输出端子和三个操作按钮。输出端子用于输出电流;有三个操作按钮“复位”、“设置”、“测量”。整个操作方法非常简单,将电流输出线接入PT的开口三角后,打开电源开关,然后按“设置”按钮选择相应的系统电压(从6kV-10kV-35KV-66kV-1kV-3kV循环显示),按下“测量”按钮,几秒钟后测量结果就显示出来,再次按下“测量”键可进行重复测量。测量结果包括系统电容、容抗和电容电流。 该测量仪的主要特点有: 保定市伊诺尔电气设备有限公司 3

开口三角

开口三角 这种接线方法在三相五柱式电压互感器上使用较多,也就是在电压互感器的次级除了有一个三相绕组以外还有一个辅助绕组,其接法是将三相按照首尾相连的方式连接好,但是第一相的头和最后一相的尾并不连在一起,而起接一个电压继电器,该继电器在电路三相运行正常时向量和是零,因此继电器不动作,而当电路中有接地时,三相电压的向量和不为零了,有电压产生,达到继电器定值后继电器动作。 这个概念是供电中的。开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a-x”、“b-x”、“c-x”,开口三角就是“a-x”的x与“b-x”的b相连,“b-x”中的x与“c-x”的c相连,从“a-x”的a与“c-x”x引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x,就是开口三角电压。正常情况下,开口三角上没有电压,当发生系统单相接地时,电压互感器一次绕组就会有一相上无电压,造成对应的二次绕组上也无电压,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象,这在系统上被称为“接地监察” 用来测量零序电压,匝数是相绕组的13。 开口三角形端电压等于三相对地电压的向量和的13。 当三相对地电压平衡时,向量和等于零,开口电压为零。 当发生一相接地时,向量和等于3线电压,开口电压等于线电压,越限报 警。 当一相高压熔丝熔断时,向量和等于线电压,开口电压等于相电压,越限报警。 将三相按照首尾相连的方式连接好,但是第一相的头和最后一相的尾并不连在一起,形成一个开口,电路三相运行正常时向量和是零,因此开口的电压矢量和为0,而当电路中有接地时,三相电压的向量和不为零了,有电压产生。 图上是一个星形接法,一个开口三角接法

三相电流计算公式

三相电流计算公式 I=P/(U*所以1000W的线电流应该是。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是,电压等于380V时,电流是,以上说的是指的单相的情况。380V 三相的时候,公式是I=P/(U*,电流大小是 三相电机的电流计算I= P/*380* 式中:P是三相功率是根号3) 380 是三相线电压(I 是三相线电流) 是功率因数,这里功率因数取的是,如果功率因数取或者,计算电流还小。电机不是特别先进的都是按计算。按10kW计算:I=10kW/*380* =10kW/ = A 三相电机必须是三相电源,10KW电动机工作时,三根电源线上的工作电流都是 A 实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电流。 三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S。电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 三种功率和功率因素cosΦ是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S。三相负荷中,任何时候这三种功率总是同时存在:S2=P2+Q2 S=√(P2+Q2) 视在功率S= 有功功率P=Φ 无功功率Q=Φ 功率因数cosΦ=P/S 根号3,没有软件写不上,用代替 系统图 Pe:额定功率Pj:计算有功功率Sj:计算视在功率Ij:计算电流Kx:同时系数cosφ:功率因数Pj=Kx*Pe Sj=Pj/cosφ 单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 电气系统图里的符号是有标准的 KM表示交流接触器 KA表示中间继电器, KT表示时间继电器; FR表示热继电器;

开口三角电压保护整定值计算

开口三角电压保护整定 值计算 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

什么是开口三角形 开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。 此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a-x”、“b-x”、“c-x”,开口三角就是“a-x”的x与“b-x”的b相连,“b-x”中的x与“c-x”的c相连,从“a-x”的a与“c-x”x引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x,就是开口三角电压。 正常情况下,开口三角上没有电压,当发生系统单相接地时,电压互感器一次绕组就会有一相上无电压,造成对应的二次绕组上也无电压,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象,这在系统上被称为“接地监察” 本装置电容器组按招标数据单要求,必须具备不平衡电流保护(或不平衡电压保护)功能。根据电容器组单台中性点不接地单星接线方式,本设备采用了“开口三角电压保护”实现不平衡电压保护。开口三角形即将电压互感器一次侧与单星接线的每相电容器并联,将互感器的二次线圈接成三角形,但将三角形的最后一个“角”不联接,构成从原理图上看即构成一个开口的三角形。正常情况下,三角开口上没有电压,而当发电容器发生故障时,将引起相间电压的不平衡,从而在三角的开口上形成电压输出,该电压也称为“零序电压”,该电压可做为电容器的保护动作信号。这种方式的优点是不受系统接地故障和系统电压不平衡

电流 电阻 电压 计算公式

电流电阻电压计算公式 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或。 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小。 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。 5、利用W=UIt计算电功时注意:①式中的W、U、I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6、计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5串联电路: ⑴I=I1=I2 ⑵U=U1+U2 ⑶R=R1+R2 ⑷U1/U2=R1/R2 (分压公式) ⑸P1/P2=R1/R2 6并联电路: ⑴I=I1+I2 ⑵U=U1=U2 ⑶1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] ⑷I1/I2=R2/R1(分流公式) ⑸P1/P2=R2/R1 7定值电阻: ⑴I1/I2=U1/U2 ⑵P1/P2=I12/I22 ⑶P1/P2=U12/U22

功率电压电流公式 功率电压电流公式大全

功率电压电流公式功率电压电流公式大全 1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In 5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方) U:电压,V; I:电流,A; P:有功功率,W; R:电阻

纯电感无功功率Q=I2*Xl(式中2为平方)Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率Q=I2*Xc(式中2为平方)Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为初相。 8、交流电路最大值与在效值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接

I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A; 11、交流电的总功率 P=3的开平方×U线×I线×cosΦ P:总功率,w; U线:线电压,V; I线:线电流,A; Φ:初相角 12、变压器工作原理 U1/U2=N1/N2=I2/I1 U1、U2:一次、二次电压,V; N1、N2:一次、二次线圈圈数; I2、I1:二次、一次电流,A; 13、电阻、电感串联电路 I=U/Z Z=(R2+XL2)和的开平方(式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω 14、电阻、电感、电容串联电路 I=U/Z Z=[R2+(XL-Xc)2]和的开平方(式中2为平方)Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω; Xc:容抗,Ω

开口三角电压

正常时,由于3U 取自PT的变比为//,因此PT开口三角所属 三绕组电压U a =U b =U c =100/3 V, (1)开口三角绕组接反 一相(c相)接反时,3=-2 c ,即3U =66.7V; 两相(b、c)接反时,3 0= a - b - c =2 a ,即3U =66.7V。 (2)二次中性线断线 二次中性线断线时,由于各相二次负载相同,二次三相电压不变,指示为 U a =U b =U c =100/=57.7V;当一次系统发生单相接地时,由于二次三相 电压所构成的电压三角形Δabc为等边三角形,相同的各相二次负载所产生的三相对称电压在二次中性线断口形成57.7V的断口电压,因此二次三相电压仍不变,指示为57.7V,但开口三角电压为100V。 (3)一次一相(两相)断线 由于PT二次相间和各相均有负载,其负载阻抗所形成电路决定断相电压,以及三相磁路系统的影响,断相电压不为0,但要降低,其它相电压正常。 图1 单电源单回线断线运行 一相(C相)断线时,3 0= a + b =- c ,即3U =33.3V;两相(B、C)断 线时,3 0= a ,即3U =33.3V。 (4)二次一相(两相)断线 由于无磁路系统的影响,断相电压比一次断线时要低,其他相正常。 电压互感器二次侧有基本二次侧和辅助二次侧,变比是不同的,一般应为10/0.1/(0.1/√3)。开口三角是辅助二次侧,所以应为10/(0.1/√3)。

一般10kV系统电压互感器的变比应该是10/0.1/(0.1/3). 当高压一相熔丝熔断时,开口三角对应相电压为零,故开口三角侧电压为另外两相电压之相量和,大小与相电压相等,所以是100/3V。 当系统出现接地时,由于10kV系统是中性点不接地系统,所以接地相对地电压为零,而另外两相电压对地电压升高√3倍,而它们的相量和是3倍的相电压,所以开口三角侧为100V。

电流电压功率之间的关系及公式.

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F W=I2乘以R V=IR W=V2/R 电流=电压/电阻 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦 特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 还有P=I2R P=IU R=U/I 最好用这两个;

3、如电动机电能转化为热能和机械能: 电流符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式= 1.732*线电压U*线电流I(星形接法) = 3*相电压U*相电I(角形接法)三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ 星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P P=I2R 4、串联电路 P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时

关于PT辅助开口三角电压的问题

在10kV,35kV中低压配电网中,为了提高供电的可靠性,中性点一般采取不接地的方式,为了监视三相对地电压,变电站母线上接有电压互感器,而且母线上安装的电磁式电压互感器通常是Yo/Yo/开口三角接线。 电压互感器二次额定电压,我国规定接入三相系统中,相与相之间的单相电压互感器二次电压为100V;相与地之间的单相电压互感器,其二次额定电压为 。零序电压绕组二次额定电压,供中性点直接接地用的电压互感器,其零序电压绕组的二次额定电压为100V。供中性点不直接接地用的电压互感器, 其零序电压绕组的二次额定电压为 。 1.单相金属性接地时,PT二次开口三角的电压是多少?

U A,U B,U C为故障前一次侧相电压,U A’,U B’,U C’为故障后相电压。 C相单相接地后:非故障相电压升高到线电压,故障相电压为0,即U A’= U A -U C,U B’=U B-U C,U C’=0;中性点电压升为相电压即:U N=-Uc;此时|3U0|= |U A’+ U B’|= =| U AC + U BC AC |=3|U A|,即系统零序电压U0为相电压。变换到压变二 次侧开口三角电压即为|3U0’|=|3U0|/n’=3|U A|/n’=100V(以10kV不接地系统为例, n’ /(100/3)为高压侧对低压侧开口三角电压变比) 2.PT高压侧一相熔断时,二次开口三角电压是多少? 高压保险C相完全熔断,对于系统来说,系统电压正常,没有零序电压,但压变高压侧电压变化为Uc=0,Ua=Ua’,Ub=Ub’为相电压,由于高压侧一次绕组中性点接地,所以中性点不会位移,由此3U0=Ua+Ub+Uc=Ua’+Ub’=-Uc’,反映到 压变二次开口三角的电压3U0’=3U0/n’=-Uc’/n’ ’=100/3=33.3V(以 Uc’o Ub’ Ua’ 熔断前 U C N U B U A 正常

电流电压功率的关系及公式

电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电流=电压/电阻 功率=电压*电流*时间 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特)之间的关系是:V=IR,N=IV =I*I*R, 或也可变形为:I=V/R,I=N/V等等.但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用.如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P

就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流= I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流处处相等I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2

常用(电)计算公式

电功率的计算公式 电功率的计算公式,用电压乘以电流,这个公式是电功率的定义式,永远正确,适用于任何情况。 对于纯电阻电路,如电阻丝、灯炮等,可以用“电流的平方乘以电阻”“电压的平方除以电阻”的公式计算,这是由欧姆定律推导出来的。 但对于非纯电阻电路,如电动机等,只能用“电压乘以电流”这一公式,因为对于电动机等,欧姆定律并不适用,也就是说,电压和电流不成正比。这是因为电动机在运转时会产生“反电动势”。 例如,外电压为8伏,电阻为2欧,反电动势为6伏,此时的电流是(8-6)/2=1(安),而不是4安。因此功率是8×1=8(瓦)。 另外说一句焦耳定律,就是电阻发热的那个公式,发热功率为“电流平方乘以电阻”,这也是永远正确的。 还拿上面的例子来说,电动机发热的功率是1×1×2=2(瓦),也就是说,电动机的总功率为8瓦,发热功率为2瓦,剩下的6瓦用于做机械功了。 电工常用计算公式 一、利用低压配电盘上的三根有功电度表,电流互感器、电压表、电流表计算一段时间内的平均有功功率、现在功率、无功功率和功率因数。 (一)利用三相有功电度表和电流互感器计算有功功率 式中 N——测量的电度表圆盘转数 K——电度表常数(即每kW·h转数) t——测量N转时所需的时间S CT——电流互感器的变交流比

(二)在三相负荷基本平衡和稳定的情况下,利用电压表、电流表的指示数计算视在功率 (三)求出了有功功率和视在功率就可计算无功功率 (四)根据有功功率和现在功率,可计算出功率因数 例1某单位配电盘上装有一块500转/kW·h电度表,三支100/5电流互感器,电压表指示在400V,电流表指示在22A,在三相电压、电流平衡稳定的情况下,测试电度表圆盘转数是60S转了5圈。求有功功率、现在功率、无功功率、功率因数各为多少? [解]①将数值代入公式(1),得有功功率P=12kW ②将数值代入公式(2);得视在功率S=15kVA ③由有功功率和视在功率代入公式(3),得无功功率Q=8l kVar ④由有功功率和现在功率代入公式(4),得功率因数cosφ= 0.8 二、利用秒表现场测试电度表误差的方法 (一)首先选定圆盘转数,按下式计算出电度表有N转内的标准时间 式中 N——选定转数 P——实际功率kW K——电度表常数(即每kW·h转数) CT——电流互感器交流比 (二)根据实际测试的时间(S)。求电度表误差 式中 T——N转的标准时间s t——用秒表实际测试的N转所需时间(s)

引起电容器开口三角电压保护跳闸故障的主要因素

引起电容器开口三角电压保护跳闸故障的主要因素 【摘要】套式电容器开关柜一旦投入电网就将连续在满负荷下运行,夏季经常出现开口三角电压保护动作跳闸,针对这一故障现象,研究引起该故障产生的主要原因并提出相应的解决办法,无疑将大大提高电力电容器在电网中运行的可靠性和使用寿命。 【关键词】开口三角电压保护;温度;过电压和过电流;谐波 一、故障现象 我公司某变电站成套式电容器开关柜于2012年8月投入使用,2013年夏季(环境温度30℃左右),经常发生跳闸,投送时开口三角电压保护启动,电压继电器立即动作跳闸。开口三角电压整定为3V,最初我们技术人员处理时将开口三角电压整定值调至 3.5V,强行投送后正常使用一个星期,电容器再次跳闸,并且出现单台熔断器熔断现象。于是我们判断电容器组内部出现故障。 二、故障处理 1.在故障柜合闸的同时测量其开口三角电压,值为4.5V,已超出后整定的3.5V,说明电容器已经加大了损坏的程度。 2.将故障电容器充分放电后,测量其容量,A、B、C三相电容值分别为2 3.4μF、2 4.2μF、28.7μF。经计算三相电容器两端子间的最大与最小电容的比值为1.23,超出使用说明书给出的1.08。观察外观电容值高的C相有明显涨肚现象。 3.测量开关柜内电容器箱壳最热点温度为,50℃,室内环境温度42℃,超出名牌给出的-40/A℃。 4.取电容值与A、B相接近的电容器更换C相。 5.更换新的熔断器。 6.投运时测量开口三角电压,其值为2.5V,在整定范围内,电容正常运行。 三、原因分析与措施 如果某相或两相电容容量有变化后,电容端子的电压会和其它相的电压不一致,当电容量变化超过一定值后,该相电容端子的电压会变化很大,则在三角开口处产生的电压只要超过整定值时保护便会动作,并且使电容器和电抗器的匹配发生变化,易引起串联谐振或放大高次谐波电流。而引起电容器容量发生变化的主要原因有一下几点:

电流计算公式

有一个餐厅使用, 220V 用电器风扇排气扇风机照明冰柜微波炉抽油烟机等,额定功率共123KW 380V 用电器炒炉蒸包炉空调等额定功率共119KW 怎样计算负荷电流??要选择多大的电缆??? 最好列出公式,谢谢!!我来帮他解答插入图片插入地图您还可以输入9999 个字 您提交的参考资料超过50字,请删除 参考资料:提交回答 网友推荐答案2012-1-13 18:42 sycw100 | 五级123+119=242KW 按全部负荷同时运行、功率因数为1计算,且三相负荷分布均匀,负荷电流=242/1.732/380=367.7A 电缆选择与型号有关,如果选聚氯乙烯绝缘的不考虑电压降估计得用185平方的铜芯电缆实际工作情况是不可能同时工作、三相不可能完全平衡、功率因数不可能为1,还有环境温度等等、所以电缆选型会有差别追问123+119=242KW 不同电压,两者功率能相加的吗??回答功率可以相加的 你这实际上是一个电压等级。380v用电器是三相供电,220v用电器是单相供电。380是三相电的线电压,220是三相电的相电压赞同0| 评论(1) 其他答案共4条2010-8-5 00:35 排忧解难尊者| 一级 单相乘 4.5,三相乘 2.前提功率必须是千瓦[提问者认可] | 赞同0| 评论2010-8-4 10:54 东南第一帅| 七级 I=P/U. P是功率,U是电压赞同0| 评论2012-1-14 08:48 qlzfwxl | 四级 这样大的负载,一定要用三相电380V接入,接入单相负荷时三相尽量均匀分配,按每千瓦2A估算赞同0| 评论2012-1-15 10:37 三里店村| 十三级 220V 用电器风扇排气扇风机照明冰柜微波炉抽油烟机等,额定功率共123KW (电器三相尽量均布)每相大约:123/3=41KW 380V 用电器炒炉蒸包炉空调等额定功率共:P=119KW+41=160KW 总负荷电流:I=160/(1.732*0.38*0.7)=347A 选用总铜导线面积:S=347/2=174平方毫米 根据导线规格应选用:3*185+2*120的铜电缆赞同1| 评论

集合式并联电容器开口三角电压保护的一种实用公式

集合式并联电容器开口三角电压保护的一种实用公式 一、前言 集合式并联电容器一般是采用若干具有内熔丝的元件封装在一个注油的铁壳内,构成电容器单元,再由数台电容器单元先并后串,再封装在一个浸满油的铁箱内组成。其一次接线大都采用单星形接线,如果该电容器采用六个瓷套引出,它的内部故障、继电保护必然采用开口三角电压保护方式。 但我们在实际工作中,发现一部分用户,对集合式并联电容器开口三角电压保护的整定计算存在模糊概念,甚至由于概念不清,把放电线圈仅作放电之用。不用它的二次线圈作为开口三角电压保护的采样电路,而误认为电容器回路中设置了过流及速断保护就可以了。这致使集合式并联电容器的安全经济运行,产生了隐患及不合格因数。 因此,本文力图抓住一些主要因数,而忽略一些不起主导作用的因数,推导其整定公式,澄清概念,以得出一个实用性的整定公式供参考使用。 集合式并联电容器的电容器单元内的元件,通常采用全并联方式,但也有采用具有二段串联的电容器单元。本文仅讨论前一种情况。 二、实用公式的推导 假设集合式并联电容器的A相作为故障相,每个电容器单元内的并联元件数为m,每个串联段的电容器单元并联数为M,每相串联段数为N,元件电容量为Cy,串联电抗器感抗和电容器容抗的百分比为A,如图所示。则当A相中,某串联段有k只元件因介质击穿,内熔丝熔断而退出运行,则有 电路示意图 A相容抗 (1) A相阻抗

(2) 健全相阻抗 (3) 设三相电源电压对称,则 (4) 其中a、a2为单位向量算子,分别为: (5) 根据电路理论节点电压法,中性点零序电压为: (6) 将(4)、(5)式代入上式,并合并同类项 (7) 将(2)、(3)式再代入上式,整理后得 (8) 由于故障相某串联段部份元件击穿,内熔丝熔断,使部分元件退出运行,使故障相电容量减小,容抗增大,故障相电压降增加,并且主要是由于故障相故障段电压降增加引起。因此,只要使故障相故障段上完好电容器单元及元件不超过电容器规定的1.1倍长期过电压值,并且选择该电压值作为开口三角电压保护的相应整定值,就能使集合式并联电容器在不致于扩大故障的前提下安全经济运行。 因此,当故障相故障段中有k只元件切除后的故障电压计算如下: 故障相的电压

三相电流计算公式

三相电流计算公式 I=P/(U*1.732)所以1000W的线电流应该是1.519A。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是4.545A,电压等于380V时,电流是2.63A,以上说的是指的单相的情况。380V三相的时候,公式是I=P/(U*1.732),电流大小是1.519A 三相电机的电流计算I= P/(1.732*380*0.75) 式中:P是三相功率(1.732是根号3) 380 是三相线电压(I是三相线电流) 0.75是功率因数,这里功率因数取的是0.75 ,如果功率因数取0.8或者0.9,计算电流还小。电机不是特别先进的都是按0.75计算。按10kW计算:I=10kW/(1.732*380*0.75) =10kW/493.62 =20.3 A 三相电机必须是三相电源,10KW电动机工作时,三根电源线上的工作电流都是20.3 A 实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电留。 三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S。电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 三种功率和功率因素cosΦ是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S。三相负荷中,任何时候这三种功率总是同时存在:S2=P2+Q2S=√(P2+Q2) 视在功率S=1.732UI 有功功率P=1.732UIcosΦ无功功率Q=1.732UIsinΦ功率因数cosΦ=P/S 根号3,没有软件写不上,用1.732代替 系统图 Pe:额定功率Pj:计算有功功率Sj:计算视在功率Ij:计算电流Kx:同时系数cosφ:功率因数Pj=Kx*Pe Sj=Pj/cosφ单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 电气系统图里的符号是有标准的 KM表示交流接触器 KA表示中间继电器, KT表示时间继电器;

PT开口三角电压异常分析

厦门ABB 开关有限公司 ABB Xiamen Switchgear Co., Ltd. 三峡浸水湾35kv PT 开口三角侧电压偏低 原因分析及处理建议 文 件 号: Q-500065246-A01 页 码: 共 6页 起草: 刘志祥 审 核: 批 准: 日 期: 2010-08-30 一、项目概述 长江三峡浸水湾变电站35kv项目,采用UnigearZS3.2开关柜,对应ABB工程号500065246,数量10台;该项目于2009年12月底正式送电,一直处于空载运行状态;主母线电流1250A 。 二、问题概况 2010年7月2日传真函(如下) 7月24日传真函(如下)

三、现场调查 接到客户反馈后, ABB售后服务人员立即赶赴现场对故障情况进行检查。 PT型号及参数:JDZX11-35R;大连一互;1S1,2S2 0.2级,额定输出45VA;da,dn 6P级 额定输出100VA,极限输出600VA ; 检查PT手车二次线及接地,接线正确。随后分步排查,模拟B相断线,抽出高压保险,拆除PT二次回路负载,摇进PT手车,从端子上测量三相电压,显示A相59V,B相0V,C相 59V,开口三角34V ; 进一步恢复A、B、C三相二次接线,保留开口三角接线断开,测量电压显示A相59V,B相0V,C相59V,开口三角34V,属正常;再恢复开口三角,只拆除消谐电阻接线,再次测 量,电压显示A相59V,B相0V,C相59V,开口三角34V;最后再恢复消谐电阻接线,测量 显示为A相59V,B相50V,C相58V,开口三角6V 。 初步结论: PT二次电压异常是由于开口三角并联的消谐电阻引起,属正常现象。 四、 原因分析及处理建议 4.1 对现场反馈“缺相PT二次侧电压下降较少,开口三角电压抬升较低”的原因分析: ●电网三相电压平衡运行时,根据PT变比可知,PT二次侧的各相电压为57.7V, 线电压为 100V ; PT二次侧开口三角绕组头尾相连(单独绕组电压为100/3 =33.3V),电压矢量和 为0V ; 当电压互感器一次熔丝出现熔断或缺相,就会导致三相电压不平衡,引起开口三 角电压抬高; ●为何缺A相PT对应二次侧Y形绕组出口电压会有50V ? 这是由于A相PT熔丝被拿掉(缺 相)会导致二次绕组开口三角的平衡被打破;此时正常运行的另外2相PT的三角接法绕 组可以等效为一个电压源,将矢量叠加的电压施加到消谐电阻R1和缺相PT的三角接法绕

电机转矩、功率、转速、电压、电流之间的关系及计算公式

电机转矩、功率、转速之间的关系及计算公式 电动机输出转矩: 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生 一定程度的扭转变形,故转矩有时又称为扭矩。 转矩与功率及转速的关系:转矩(T)=9550*功率(P)/转速(n) 即:T=9550P/n—公式【1】 由此可推导出: 转矩=9550*功率/转速《===》功率=转速*转矩/9550,即P=Tn/9550——公式【2】 方程式中: P—功率的单位(kW); n—转速的单位(r/min); T—转矩的单位(N.m); 9550是计算系数。 电机扭矩计算公式T=9550P/n 是如何计算的呢? 分析: 功率=力*速度即P=F*V---————公式【3】转矩(T)=扭力(F)*作用半径(R) 推出F=T/R---——公式【4】 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30---——公式【5】 将公式【4】、【5】代入公式【3】得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位N.m, n分=每分钟转速单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n 30000/3.1415926*P=T*n 9549.297*P=T*n 这就是为什么会有功率和转矩*转速之间有个9550的系数关系。。。 电动机转矩、转速、电压、电流之间的关系 由于电功率P=电压U*电流I,即 P=UI————公式【6】 由于公式【2】中的功率P的单位为kw,而电压U的单位是V,电流I的单位是A,而UI乘积的单位是V.A,即w,所以将公式【6】代入到公式【2】中时,UI需要除以1000以统一单位。 则: P=Tn/9550=UI/1000————公式【7】

关于电压互感器开口三角接线正确性的探讨

关于电压互感器开口三角接线正确性的探讨 【摘要】通过一个电压互感器开口三角接线错误引起的保护误动的案例来说明电压互感器开口三角接线正确性对电网安全运行的重要性,最后提出了验证电压互感器开口三角回路正确性需要注意的一些问题。 【关键词】电压互感器开口三角接线 为了保证电力系统的安全稳定运行,确保电力设备在发生电网故障、自然灾害如雷击过电压等故障时能快速隔离故障,电网设备都需要装设各式各样的保护装置。而利用检测电压互感器开口三角的电压,就能知道电网运行是否正常,对于快速切除故障,提高运行稳定性是很重要的一个判断条件。 1 电压互感器的基本知识 1.1 电压互感器的作用 电压互感器将高电压按比例转换成低电压,即100V或57.7V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式。 1.2 电压互感器的开口三角 (1)电压互感器三相一般有三个二次绕组,一组用作保护电压,一组用作计量电压,另外一组用作开口三角电压,开口三角电压绕组由三个二次绕组:A 相“a-x”、B相“b-x”、C相“c-x”组成。开口三角就是A相“a-x”的x与B相“b-x”的b相连,“b-x”中的x与C相“c-x”的c相连,从A相“a-x”的a与C相“c-x”x引出线,测得的电压就是所谓的二次侧开口三角电压。 (2)正常情况下,开口三角上电压为0,当发生系统单相接地时,电压互感器一次绕组就会有一相上有电压降,造成对应的二次绕组上也有电压降,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象。 2 电压互感器开口三角接线 2.1 电压互感器开口三角接线的要求 为了便于测量各相开口电压,电压互感器的三相绕组a-x、b-x、c-x应分别用电缆引至PT端子箱,然后首尾短接,即:A相“a-x”的x与B相“b-x”的b相连,“b-x”中的x与C相“c-x”的c相连。如下图1所示。这样构成的L601-N600即为电压互感器的开口三角电压。

电路中相关计算公式

一、欧姆定律 导体中的电流I和导体两端的电压U成正比,和导体的电阻R成反比,即I=U/R 这个规律叫做欧姆定律。如果知道电压、电流、电阻三个量中的两个,就可以根据欧姆定律求出第三个量,即I=U/R,R=U/I,U=IR在交流电路中,欧姆定律同样成立,但电阻R应该改成阻抗Z,即I =U/Z 二、功率因数 1、电源的总功率中应包括电阻的有功功率和电感的无功功率,这个总功率称为视在功率,符 号为S,单位是V?A(伏安)。视在功率与有功功率和无功功率的大小关系是:S=√P2+Q2L 有功功率占视在功率中的比例称为功率因数,符号为cosΦ,cosΦ=P÷S=UR÷U=R÷Z。cosΦ的值从0到1,值越大说明有功功率占视在功率的份额越大,也说明电能的利用率越高。由于无功功率只是与电源交换能量,而不是将电能转换为其它可用能量,但交换能量的电流在电路中流动,会在电路的电阻上转化为热能而消耗掉一部分电能,因此,无功功率越小越好。 2、功率因数的提高,电感性电路中电流的相位落后于电压,角度在0°~90°之间。其中电阻的成分越大,电流落后于电压的角度越小,cosΦ值越大;电阻的成分越小,电流落后于电压的角度越大,cosΦ值越小。由于电感的无功功率占有电源的容量,并在线路上消耗一定的能量,在生产中,希望电感的无功功率越小越好。电容在电路中,流过电容的电流比电压越前90°,恰好与电感电路中电流电压的相位关系相反,也就是说两者与电源交换能量的时间不同。电感从电源吸取能量转变为磁能时,正好是电容将其储备的电能返还电源的时候,如果把这两个组件接在一起,电感所需能量可由电容提供一部分,而电容充电时所需电能也恰好能由电感提供,一部分无功电能将在电容与电感之间转换,而不再通过电源。对电源来讲,负担电感的部分能量将减少,意味着电路的功率因数cosΦ提高。 如果把电容与线圈串联,线圈两端的电压就不再是原来所加的电压。为了使线圈接电容前后所加电压相同,必须把电容与线圈相并联。所以实际生产中提高功率因数的方法,是在电感性电路两端并联一个合适的电容。 三、电功率与电能 负载在电路中消耗电能,一个负载在单位时间内所消耗的电能,叫做电功率,电功率的单位是瓦特,简称瓦,符号为W,电功率的量符号为P。 负载工作一段时间所消耗的电能量叫做电能,电能的单位是KW.h(千瓦时)。1 KW.h电能就是平常所说的1度电。 四、三相交流电路

相关主题