搜档网
当前位置:搜档网 › 超声波热量表原理及应用

超声波热量表原理及应用

超声波热量表原理及应用
超声波热量表原理及应用

一、超声波热量表原理:

1、基本原理:

热量表是将一对温度传感器分别安装在通过载热流体的上行管和下行管

号,一对温度传感器给出表示温度高低的模拟信号,而积算仪采集来自流量

热水所提供的热量与热水的进回水温差及热水流量成正比例关系。热水流量采用声波时差法原理进行测量,进回水温度则通过铂电阻温度计测量。热能表积算仪将热水流量和进回水温度进行数据运算处理,最后得出所消耗掉的热量,单位为 kWh 、 MWh、MJ 或 GJ。

2、 计算方法:

a 、焓差法(依据供回水温度、流量对水流时间进行积分来计算)

Q = q m ×?h ×d τ= ρ×q v ×??×d ττ1

τ0τ1τ0

Q :系统释放或吸收的热量;

q m :水的质量流量

q v :水的体积流量

?? :供水和回水温度的水的焓值差

b 、热系数法(根据供回水温差、水的累积流量) Q = k ×?θ×dv v 0

v 1

K=ρ???θ

V :水的体积

?θ:供水和回水的温差

k :热系数

(具体密度及焓的取值参见GB/T 32224-2015附录A )

二、 超声波热量表的选用

1、 机械部分

a 、热量表外形尺寸选用:热量表公称口径;公称压力;热量表全长、热量表计算器长度、高度、计算器高度、表接螺纹、流量计表体材质等。保证热量表可以正确安装在设备无干涉、且后期检修方便。

b 、热量表技术数据选用:包含热量表的最小流量、最大流量、过载流量、热量表温度范围、公称流量下的压力损失、最大温差、最小温差、测算精度、热量表防护等级等。

2、 电气及软件部分

热量表供电方式:一般为24V 和230V (具体参见说明书)。

温度传感器类型、传感器导线长度(严禁自行加长、截短或更换导线)、热量表的通讯方式及通讯接口、流量计计量周期、用户M-Bus 抄表系统、

流量计数据存储量。

三、换热机组超声波热量表的应用

1、超声波流量计的应用

a、确保安装位置的管段不会产生气泡,否则会影响测量精度,表头可倾

斜45°安装。

b、热量表安装位置应方便后期拆解维护,热量表上游应安装过滤器。

c、温度传感器红色表示热水端,蓝色表示冷水端。如果传感器安装在护

套中,必须确保插入护套底部。

d、热量表应安装于回水或进水侧管路,并且保证水流方向与热量表测量

管的指示方向一致。

e、热量表宜设置旁通管方便管道的清洗。两端必须有相应的阀门。

2、温度传感器的应用

a、当温度传感器与流量传感器处于同一根管上时,最好安装在流量传感

器的下游。

b、温度传感器不宜安装在管道的较高位置上(可能不充满液体)。

c、确定温度传感器插入管道的深浅,应使其中的温度传感器位于管道中

心并偏下的位置。

d、温度传感器的近旁宜安装标准温度计,方便读数测量。

3、积分仪的应用

a、积分仪上方是否存在排水口、冷凝水等对热量表产生不良影响的因素。

b、计算器安装在流量传感器上,介质温度应在要求的5-90℃内,超出

此温度时,应该分体安装。

c、积分仪与各个部件的连接线、电缆及连接方式,必须安装厂家规定。

d、积分仪与与各个部件的连接线与动力线必须保持距离,放止干扰测

量数据。

4、兰吉尔热量表接线图

5、代傲热量表接线及调试图

四、 热量表初次调试注意事项

1、 开启热能表阀门前应确保循环管路已清洗干净。

2、如果一次侧热水温度小于90℃,积分仪可以直接安装在热表上或者独立安装在墙上;当水温超过90℃时,计算器必须安装于墙上。

3、初次通水调试时务必保证温度传感器热水端和冷水端安装正确。

4、热量表运行时间是由通电时累计的。

5、除远程抄表系统M-Bus 外,可以通过红外读取月历史数据。

超声波焊接原理和应用

超声波焊接原理: 超声波焊接是熔接热塑性塑料制品的高科技技术,各种热塑性胶件均可使用超声波熔接处理,而不需加溶剂,粘接剂或其它辅助品。 其优点是增加多倍生产率,降低成本,提高产品质量及安全生产。 超声波塑胶焊接原理是由发生器产生20KHz(或15KHz)的高压、高频信号,通过换能系统,把信号转换为高频机械振动,加于塑料制品工件上,通过工件表面及在分子间的磨擦而使传递到接口的温度升高,当温度达到此工件本身的熔点时,使工件接口迅速熔化,继而填充于接口间的空隙,当震动停止,工件同时在一定的压力下冷却定形,便达成完美的焊接。 新型的15KHz超声波塑胶焊接机,对焊接较软的PE、PP材料,以及直径超大,长度超长塑胶焊件,具有独特的效果,能满足各种产品的需要,能为用户生产效率以及产品档次贡献。 超声波焊接工艺: 一、超声波焊接: 以超声波超高频率振动的焊头在适度压力下,使二块塑胶的结合面产生磨擦热而瞬间熔融接合,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品带来的不便,实现高效清洁的焊接焊接强度可与本体媲美。 二、铆焊法: 将超声波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。三、埋植: 借着焊头之传导及适当压力,瞬间将金属零件(如螺母、螺杆等)挤入预留的塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。

一、超声波塑料焊接的相容性和适应性: 热塑性塑料,由于各种型号性质不同,造成有的容易进行超声波焊接,有的不易焊接;下表中黑方块的表示两种塑料的相容性好,容易进行超声波焊接;圆圈表示在某些情况下相容,焊接性能尚可;空格表示两种塑料相容性很差,不易焊接。 注意:表中所列仅供参考,因为熟知的变化可导致结果略有差异.

超声波热量表温控一体化系统

《超声波热量表温控一体化系统简介》 连云港腾越电子科技有限公司 2017年10月28日

一、系统概述: 超声波热量表热量表温控一体化热计量系统是一种集按热量表分户热计量 和智能室温调控技术于一体的热计量节能系统方案。 该系统采用户用热量表计量用户的采暖耗热量,用户室内安装室温调控装置,用户根据采暖需要调节供暖室温,采暖控制阀采用通断方式控制室温平衡,实现用户用热计量与节能于一体。 温控一体化采用户用热量表直接计量用户耗热量,避免了热量分摊法、热量分配法带来的不透明性,避免了管理部门与用户的纠纷,给依法管理提供了依据,结合公平合理的收费政策,使供热计量与节能管理达到了和谐统一。 温控一体化集成了计算机技术、通讯技术、信息技术、网络技术、数据库管理技术、自动控制技术、供热水力平衡技术、节能技术等技术于一体,为供热系统运行管理节能和分户热计量提供了系统解决方案。 温控一体化适用于室内供暖系统应为共用立管为双管制的分户独立供暖系统,既可应用于新建集中供热住宅的分户热计量,也可应用于既有建筑供热住宅的热计量节能改造。既适用于散热器采暖系统,也适用地板采暖系统。既适用于集中供热系统,也适用于中央空调系统。 温控一体化方案还同时集成热网能源管理系统方案,包括换热站及热源节能改造方案、供热管网水力平衡改造方案、热网监控调度方案等,最大程度实现供热节能目标。 小口径超声波热量表

热量表温控一体化热计量系统的工作原理是:采暖用户热力入口处安装户用热量表,计量采暖用户的实际耗热量;在采暖用户室内安装室温控制器调节采暖室温,在用户的热力入口安装控制阀控制供热通断时间达到控制室温平衡,实现用热节能目的。 其核心是采用户用热量表法计量用户耗热量,采用室温控制技术调节用户用热,从而实现供热计量与节能的统一。 三、系统结构:

户用超声波热量表

户用超声波热量表 超声波热量表(DN15-40) ◆产品特点 ⊙采用优质换能器和先进的电子测量技术,保证了流量测量的高准确度和稳定度⊙无任何机械运动,无磨损,不受恶劣水质影响,维护费用低 ⊙低始动流量 ⊙可水平安装或竖直安装 ⊙计算器表头可水平0-300°,竖直0-300°任意调整视角,方便读数 ⊙脉冲、M总线和RS485总线输出接口可实现数据远传、集中控制 ⊙自动错误诊断功能,在非正常状态下,有错误信息提示功能,确保安全准确运行⊙电池寿命6年以上 ⊙冷热两用(采暖、制冷均可计量) ⊙进回水管道任选安装,便于施工 (C1)户用超声波式热量表技术参数 型号公称口 径 最大流量 常用流 量 最小流 量 流量传感器接 口尺寸 流量传感器接管尺 寸表体 最小 高度 表体最大 高度 表 体 重 量DN(mm ) qs(m3/h) qp(m3/ h) qi(m3/h ) 无接管 长度 接口螺 纹 带接 管长 度 螺纹 有效 长度 接管螺 纹 L(mm) D(inch) H(m m) L2(m m) D1(inc h) H(m m) H1(mm) kg RC15 15 3 1.5 0.03 130 G3/4B 225 14 R1/2 100 150 0.7 RC20 20 5 2.5 0.05 130 G1B 235 16 R3/4 100 150 0.7 RC25 25 7 3.5 0.07 160 G11/4B 280 18 R1 110 160 1.5 RC32 32 12 6 0.12 180 G11/2B 305 20 R11/4 130 180 1.8 RC40 40 20 10 0.2 200 G2B 328 22 R11/2 140 190 2.5 准确度等级2级或3级 压力损失 最大工作压 力 1.6MPa 热(冷)耗 计算 从0.25K开始 温度范围+4 ~+95℃ 温差范围 3 ~60℃(2 ~60℃需特殊定制) 温度分辨率0.01℃ 环境温度A类+5 ~+55℃ 电池寿命≥ 6年(锂电池) 安装方式水平或垂直安装 热(冷)载 体 H2O

超声波式热量表与电磁式热量表简述

超声波式热量表与电磁式热量表简述 热量表由流量计、温度传感器、积分仪三部分组成。市面上存在超声波式、机械式、电磁式热量表,均是根据测量水流量所使用的技术不同,而来命名各自的热量表,如:采用超声波来测量水流量的热量表叫超声波热量表。由于机械式热量表已经在市场上不多见,所以下面将超声波式热量表和电磁式热量表做几项关键技术阐述:

综上所述,我们不难发现,其实超声波式和电磁式都是可以应用在不同的计量市场,世界上本没有错的东西,只有用错东西的人,单就中央空调市场来说的话,超声波式热量表虽然某个点的计量精度确实没电磁式热量表的高,但是超声波式热量表有足够的宽度,应该是更加适用于流量不够恒定,负荷不够饱满的中央空调市场,就好比一个汽车厂家老是鼓吹自己的百米加速度有多么快,当然这个技术如果你是就赛车手是非常诱人,但是对普罗大众我要的是一辆安全、可靠、稳定能跑的车,如果只有这个技术优势,但是车子本身问题毛病很多,

老熄火,老加不上油,老断轴拥有该车又有何用? 还有就是有人说超声波式的热量表不适用于中央空调不够纯净的水质,这更是无稽之谈,这就好比一个造电动车的企业说,其他车只适用于高速路,国道,省道都不能跑一样的道理,可见可笑至极了,我国早几年就从上之下的在北方供热市场推广应用一户一表的改造,很庆幸的是国家北方各省各市各县都指定用超声波式热量表,如:北京,沈阳、大连,济南等,北方的供热管网的水质相当的复杂和浑浊,有铁锈,染色剂,防臭剂等等物质,比中央空调水质要恶劣的多,所以说出超声波式热量表精度不行、超声波式热量表不适用于中央空调的人或是企业不知道出于何种目的,是自身技艺不精还是存在某种不可告人的目的而为之就不得而知,也许是全球其他人都错了,就他对了吧,我们姑且只能这么认为了,我的观点就是就像造车的企业一样,你只要取得了国家许可,拿到了“准生证”是合格合法的企业,消费者就可以选择和购买,至于你买电动车还是汽油车甚至混合动力车是根据自身需要来定,你不能一个造电动车的企业在市场上指手画脚说汽油车怎么地怎么地了,同理,热量表也是一样,只要你有计量器具生产许可证(CMC),有计量器具型式批准证书(CPI)消费者就可以自由选择,可以选择进口,可以选择国产,可以选择超声波,可以选择电磁式。 只是最后想说一点的就是,为何全球做电磁式流量计的厂家不少,做电磁式热量表的厂家就仅仅只有国产的一家,因为真正负责任的企业知道电磁式供电方式,量程比这两项先天缺陷根本就不适用在中央空调计量市场,负责任的企业都会本着从客户角度出发,为客户着想,替客户负责制造并推荐技术先进,产品可靠,质量有保障的超声波式热量表,这是西方几百年工业革命的经验告诉我们的。

超声波检测技术及应用

超声波检测技术及应用 刘赣 (青岛滨海学院,山东省青岛市经济开发区266000) 摘要:无损检测(nondestructive test)简称NDT。无损检测就是不破坏和不损伤受检物体,对它的性能、质量、有无内部缺陷进行检测的一种技术。本文主要讲的是超声波检测(UT)的工作原理以及在现在工业中的应用和发展。 关键词:超声波检测;纵波;工业应用;无损检测 1.超声波检测介绍 1.1超声波的发展史 声学作为物理学的一个分支, 是研究声波的发生、传播、接收和效应的一门科学。在1940 年以前只有单晶压电材料, 使得超声波未能得到广泛应用。20 世纪70 年代, 人们又研制出了PLZT 透明压电陶瓷, 压电材料的发展大大地促进了超声波领域的发展。声波的全部频率为10- 4Hz~1014Hz, 通常把频率为2×104Hz~2×109Hz 的声波称为超声波。超声波作为声波的一部分, 遵循声波传播的基本定律, 1.2超声波的性质 1)超声波在液体介质中传播时,达到一定程度的声功率就可在液体中的物体界面上产生强烈的冲击(基于“空化现象”)。从而引出了“功率超声应用技术“例如“超声波清洗”、“超声波钻孔”、“超声波去毛刺”(统称“超声波加工”)等。2)超声波具有良好的指向性 3)超声波只能在弹性介质中传播,不能再真空中传播。一般检测中通常把空气介质作为真空处理,所以认为超声波也不能通过空气进行传播。 4)超声波可以在异质界面透射、反射、折射和波型转化。 5)超声波具有可穿透物质和在物质中衰减的特性。 6)利用强功率超声波的振动作用,还可用于例如塑料等材料的“超声波焊接”。 1.2超声波的产生与接收 超声波的产生和接收是利用超声波探头中压电晶体片的压电效应来说实现的。由超声波探伤仪产生的电振荡,以高频电压形式加载于探头中压电晶体片的两面电极上时,由于逆压电效应的结果,压电晶体片会在厚度方向上产生持续的伸缩变形,形成了机械振动。弱压电晶体片与焊件表面有良好的耦合时,机械振动就以超声波形式传播进入被检工件,这就是超声波的产生。反之,当压电晶体片收到超声波作用而发生伸缩变形时,正压电效应的结果会使压电晶体片两面产生不同极性的电荷,形成超声频率的高频电压,以回波电信号的形势经探伤仪显示,这就是超声波的接收。 1.3超声波无损检测的原理 超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种

超声波的原理与应用

新疆大学课程大作业 题目:超声波的原理与应用姓名:xx xx 学院:电气工程学院 专业:电气工程及其自动化班级:电气xx-x班 完成日期:2012年11月27日

超声波的原理与应用 概述: 超声波是一种机械波。声的发生是由于发声体的机械振动,引起周围弹性介质中质点的振动由近及远的传播,这就是声波。人耳所能听闻的声波其频率在20~20000Hz之间,频率在20~20000Hz以外的声波不能引起声音的感觉。频率超过20000Hz的叫做超声波,频率低于20Hz的叫做次声波。超声波的频率可以高达911Hz,而次声波的频率可以低达9-8Hz。 早在1830年,F·Savart曾用齿轮,第一次产生24000HZ的超声,1876年F·Galton用气哨产生30000Hz 的超声。1912年4月10日,泰坦尼克号触冰山沉没,引起科学界注意,希望可以探测到水下的冰山。直到第一次世界大战中,德国大量使用潜艇,击沉了协约国大量舰船,探测潜艇的任务又提到科学家的面前[1]。当时的科学家郎之万和他的朋友利用当时已出现的功率很大的放大器和石英压电晶体结合起来,能向水下发射几十千赫兹的超声波,成功的将超声波应用到实际中。 现在,超声波测试把超声波作为一种信息载体,它已在海洋探测与开发、无损检测、医学诊断等领域发挥着不可取代的独特作用。例如:在海洋应用中,超声波可以用来探测鱼群和冰山,可以用于潜艇导航或传送信息、地形地貌测绘和地质勘探等。在检测中,利用超声波检测固体材料内部缺陷、材料尺寸测量、物理参数侧量等。在医学中,可以利用超声波进行人体内部器官的组织结构扫描和血流速度的测量等。 超声波工作原理 这次做机器人用到了超声波,才开始看它的工作原理,感觉还很简单,但是调试到最后,发现了很多问题,该碰到的都碰到了。赶紧写出来分享给大家。 先把超声波的工作原理贴出来:

超声波热量表

超声波热量表 使 用 说 明 书 地址:唐山市路北区创业服务中心211号 电话: 传真: 网址: E-mail:

一、概述 超声波热量表是参考欧洲标准EN1434 和OIML-R75号国际规程开发设计的高性能、低功耗电子式测量仪表,用来测量和显示载热(冷)液体流经冷热交换系统释放(吸收)热量。 超声波热量表由流量传感器、微处理器和配对温度传感器组成。微处理器通过流量传感器得到流量信号,从测温电路得到出口和入口水温信号,根据标准热量计算公式计算出系统交换的能量。 用户可选用具有M-BUS通信接口或无线传输通信接口的RLB-C型超声波热量表,超声波热量表可和采集器、集中器以及配套软件组成远传抄表管理系统,管理部门可以随时抄取表中数据,方便对用户用热量的管控。 超声波热量表符合国家建设部颁布的CJ128-20XX《热量表》产品标准。M-BUS接口或无线接口通讯协议符合建设部CJ/T188-20XX《户用计量仪表数据传输技术条件》的要求;无线数传模块符合工信部无[20XX]423号《微功率(短距离)无线电设备的技术要求》。 二、性能特点 1、低电压报警。 2、自动数据纠错技术。 3、温度传感器断路和短路报警。 4、高清晰度宽温度型LCD显示。 5、流量分8段校准,准确度高。 6、超低功耗(静态功耗小于7uA)。 7、管段为直通一体结构采用锻压工艺制造而成。 8、测量机构无运动部件,永无磨损,计量精度不受使用周期影响。

9、具备光电接口,采用红外工具可以实现抄表。 10、安装极为方便,水平或垂直安装。 11、数据传输采用M-BUS或无线传输通信接口,通信距离远。 三、使用方法 1、超声波热量表一直循环显示: 累积热量:累积 XXX kW·h 累积流量:累积 XXX。XX m3 瞬时流量:瞬时 XXX。XXX m3/h 温度:入口 XX。X 出口 XX。X ℃ 温差:温差X。X K 累积工作时间:累积 XXX h 2、数据通讯(不带数据通讯的仪表无此功能) 用户可选用具有M-BUS通信接口或无线传输通信接口的RLB-C型超声波热量表,配合采集器、集中器、管理软件等可实现远程抄表。不同数据通讯接口的仪表选配相应采集器。使用前在上位机建立地址档案,表地址出厂时已设定(仪表ID号为12位数字编码),由热量表、集中器、采集器、上位机等组成的集中抄表系统组建完成后,管理部门就可以随时抄取表中数据。

超声波原理应用

超声波的产生 声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。 超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。但是超声波的波长很短,只有几厘米,甚至千分之几毫米。与可听声波比较,超声波具有许多奇异特性: 传播特性──超声波的波长很短,通常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。 功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。声波功率就是表示声波做功快慢的物理量。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。 空化作用──当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,起到了很好的搅拌作用,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。 超声波的两个主要参数 超声波的两个主要参数:频率:F≥20KHz;功率密度:p=发射功率(W)/发射面积(cm2);通常p≥0.3w/cm2; 在液体中传播的超声波能对物体表面的污物进行清洗,其原理可用“空化”现象来解释:超声波振动在液体中传播的音波压强达到一个大气压时,其功率密度为0.35w/cm2,这时超声波的音波压强峰值就可达到真空或负压,但实际上无负压存在,因此在液体中产生一个很大的压力,将液体分子拉裂成空洞一空化核。此空洞非常接近真空,它在超声波压强反向达到最大时破裂,由于破裂而产生的强烈冲击将物体表面的污物撞击下来。这种由无数细小的空化气泡破裂而产生的冲击波现象称为“空化”现象。太小的声强无法产生空化效应。 超声清洗的原理 由超声波发生器发出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质---清洗溶剂中,超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的直径为50-500μm的微小气泡,存在于液体中的微小气泡在声场的作用下振动。这些气泡在超声波纵向传播的负压区形成、生长,而在正压区,当声压达到一定值时,气泡迅速增大,然后突然闭合。并在气泡闭合时产生冲击波,在其周围产生上千个大气压,破坏不溶性污物而使他们分散于清洗液中,当团体粒子被油污裹着而黏附在清洗 件表面时,油被乳化,固体粒子及脱离,从而达到清洗件净化的目的。在这种被称之为“空化”效应的过程中,气泡闭合可形成几百度的高温和超过1000个气压的瞬间高压,连续不断地产生瞬间高压就象一连串小“爆炸”不断地冲击物件表面,使物件的表面及缝隙中的污垢迅速剥落,从而达到物件表面清洗净化的目的。

超声波热量表原理及应用

一、超声波热量表原理: 1、基本原理: 热量表是将一对温度传感器分别安装在通过载热流体的上行管和下行管 号,一对温度传感器给出表示温度高低的模拟信号,而积算仪采集来自流量 热水所提供的热量与热水的进回水温差及热水流量成正比例关系。热水流量采用声波时差法原理进行测量,进回水温度则通过铂电阻温度计测量。热能表积算仪将热水流量和进回水温度进行数据运算处理,最后得出所消耗掉的热量,单位为 kWh 、 MWh、MJ 或 GJ。

2、 计算方法: a 、焓差法(依据供回水温度、流量对水流时间进行积分来计算) Q =∫q m ×?h ×d τ=∫ρ×q v ×??×d ττ1 τ0τ1τ0 Q :系统释放或吸收的热量; q m :水的质量流量 q v :水的体积流量 ?? :供水和回水温度的水的焓值差 b 、热系数法(根据供回水温差、水的累积流量) Q =∫k ×?θ×dv v0 v1 K=ρ???θ V :水的体积 ?θ:供水和回水的温差 k :热系数 (具体密度及焓的取值参见GB/T 32224-2015附录A ) 二、 超声波热量表的选用 1、 机械部分 a 、热量表外形尺寸选用:热量表公称口径;公称压力;热量表全长、热量表计算器长度、高度、计算器高度、表接螺纹、流量计表体材质等。保证热量表可以正确安装在设备无干涉、且后期检修方便。 b 、热量表技术数据选用:包含热量表的最小流量、最大流量、过载流量、热量表温度围、公称流量下的压力损失、最大温差、最小温差、测算精度、热量表防护等级等。 2、 电气及软件部分 热量表供电方式:一般为24V 和230V (具体参见说明书)。 温度传感器类型、传感器导线长度(严禁自行加长、截短或更换导线)、热量表的通讯方式及通讯接口、流量计计量周期、用户M-Bus 抄表系统、

专题实验-超声波测试原理及应用

实验一、超声波的产生与传播 实验方案 1. 直探头延迟的测量 参照附录A 连接JDUT-2型超声波实验仪和示波器。超声波实验仪接h 直探头,并把探 头放在CSK-IB 试块的正面,仪器的射频输出与示波器第1通道相连,触发与示波器外触发 相连,示波器采用外触发方式,适半设置超声波实验仪衰减器的数值和示波器的电圧范用与 时间范闱,使示波器上看到的波形如图1.7所示。 在图1.7中,S 称为始波,t 0对应于发射超声波的初始时刻;Bl 称为 图1.7 直探头延迟的测虽 试块的1次底面回波,h 对应于超声波传播到试块底面,并被发射回来后,被超声波探头接 收到的时刻,因此h 对应于超声波在试块内往复传播的时间:B 2称为试块的2次底面冋波, 它対应于超声波在试块内往复传播到试块的上表面后,部分超声波被上表面反射,并被试块 底面再次反射,即在试块内部往复传播两次后被接收到的超声波。依次类推,右3次、4次 和多次底面反射回波。 从示波器上读出传播h 和t2,则直探头的延迟为 (1-6) 2. 脉冲波频率和波长的测量 调节示波器时间范闱,使试块的1次底面回波出现在示波屏的中央,脉冲波的振幅小于 IVO 测量两个振动波峰之间的时间间隔,则得到一个脉冲周期的振动时间t,则脉冲波的频 率为^1/t :已知铝试块的纵波声速为6.32InInUS,贝IJ 脉冲波在铝试块中的波长为l=6.32t β 3. 波型转换的观察与测最 号时间范悅改变探头的入射角,并在改变的过程中适当移动探头的位宜,使每一个入射角 对应的R 2圆弧面的反射回波最 人。則在探头入射角由小变人的过 程中,我们町以先后观察到回波 B 1. B 2和B3;它们分别对应于纵 波反射回波、横波反射回波和表面 波反射回波。 让探头靠近试块背而,通过调节入 射角调,使能够同时观测到回波 BI 和(如图1.9),且它们的幅 度基本相等:再让探头逐步靠近试 块正面,则又会在Bl 前面观测到一个回波bl , 参照附录B 给出铝试块的纵波声速与横波声速,通过简单测量和计算,可以确定b 、Bl 和氏对应的波型和反射面。 4. 折射角的测量 确定Bi 、B?的波型后,町以分别测量纵波和横波的折射角。参照图Llo 首先让把探头 的纵波声束对正(回波幅度最人时为正对位宜)CSK-IB 试块 把超声波实验 仪换上町变角探头, 参照图1-8把探头 放在试块上,并使探 头靠近试块背面,使 探头的斜射声束只 打在 R2圆弧而上。 适当 设置超声波实 验仪衰减器的数值 和示波器 的电压范阖 CT ? V V R2 -C I ? 图1.8观察波型转换现彖

新超声波热量表说明书

新超声波热量表说明书 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

HFRB-C系列超声波热量表 说明书 沈阳航发热计量技术有限公司 目录 一、工作原理 二、产品组成 三、产品特点 四、技术参数 五、安装说明 六、使用说明 七、常见故障判断及处理方法 HFRB-C系列超声波热量表安装使用说明书版权归沈阳航发热计量技术有限公司所有,如有变动恕不另行通欢迎您选用沈阳航发热计量技术有限公司生产的HFRB-C系列(DN15~ DN300)超声波热量表产品。 一、工作原理 该产品通过测量超声波在管道内流动介质中的传播时间来测量流体流量,并依据测量得到的用户进回水管道中介质的温度差进而计算出用户使用的热量。 超声波沿流体流动方向的传播时间t+:t+=L/(C+V) 超声波逆流体流动方向的传播时间t-:t-=L/(C-V) 时间差Δt:Δt=t+-t-=2LV/(C2-V2)≈2LV/C2 (由于超声波的速度远远大于介质的流速,所以将V2舍去) 流体流速V:V=C2Δt/2L 体积流量q v:q v=KVS 式中,C——超声波在水中的传播速度; K——仪表系数; S——管道横截面积。 L——超声波发生器的距离 用户使用热量Q:Q=∫ρ·q v·Δh·dt 式中,ρ——介质的密度(kg/m3) △h——和用户进回水温度相对应的载热液体焓值差(J/kg) t———时间(h) Q——释放的热量(J) 二、产品组成 航发HFRB-C系列超声波热量表由超声波测量管段、配对温度传感器和计算器三大部分组成。 三、产品特点 ?圆柱形反射板压损小,抗堵塞; ?特殊流道设计,流场稳定,测量精度高;

超声波电机的原理与应用

超声波电机的原理与应用 周传运 超声波电机(Ultrasonic Motor ,USM )是国外近20年发展起来的一种新型电机。事实上,在超声波电机问世之前,已有以压电效应驱动的电机,但其频率并不局限于超声波范围。早在1948年,威廉和布朗就申请了“压电马达”的美国专利;1964年,前苏联基辅理工学院设计了第一个压电旋转电机;1970~1972年,西门子公司和松下公司发明了压电步进电机,不过因无法达到较大的输出转矩而没能实际应用。1980年,日本的指田年生研制成超声波压电电动机(即现代意义上的超声波电动机),克服了传统压电电动机转换效率低和变位微小的缺陷,使压电电动机进入工业实用阶段。 一、超声波电机的原理和结构超声波电机的原理 超声波电机利用压电材料的逆压电效应①产生超声波振动,把电能转换为弹性体的超声波振动,并把这种振动通过摩擦传动的方式驱使运动体回转或直线运动。磁极和绕组,它一般由振动体②和移动体③组成,为了减少振动体和移动体之间相对运动产生的磨损,通常在二者间加一层摩擦材料。当在振动体的压电陶瓷(PZT )上施加20KHz 以上超声波频率的交流电压时,赫的超声波振动,使振动体表面起驱动作用的质点形成一定运动轨迹的超声波频率的微观振动(振幅一般为数微米),如椭圆、李萨如轨迹等,该微观振动通过振动体和移动体之间的摩擦作用使移动体沿某一方向做连续宏观运动。因此,超声波电机是将弹性材料的微观形变通过共振放大和摩擦耦合转换成转子或滑块的宏观运动。根据这一思想,日、德等国近几年相继研发出多种超声波电机,如环形行波USM 、步进USM 、多自由度USM 等,且行波型USM 已有较成熟的设计。下面以行波型USM 的 旋转说明其工作原理。 行波型USM 要旋转,需具备两个条件:与转子相接触的定子表面质点须做椭圆运动,定子、转子之间的接触面须有摩擦力。图1中的弹性体为定子,其上部为转子,定子、转子间夹一层摩擦材料。摩擦材料一般粘接在转子表面上。利用电能激励压电陶 瓷复合振子,使之产生超声振动,并在弹性体内产生 行波。当电信号频率调整到与定子(弹性体)的机械共振频率一致时,定子的振动幅度最大,并形成行波。在行波的弯曲传播过程中,定子表面的质点就会形成椭圆振动轨迹。当无数个这样的粒子都以同相位振动时,就会在定子表面形成力矩,力矩方向与行波传播方向相反。该力矩依靠定子、转子间的摩擦力驱动转子运动。转子的运动速度由定子表面质点的振幅和频率决定,振幅大则速度快;另外,加大定子、转子间压力,增加其间的摩擦力,也会增大转子受到的力矩。 图1 定子表面质点的椭圆运动轨迹 环形行波型超声波电机的结构 图2为环形行波型USM 的结构示意图。主要部件为定子和转子。定子由弹性环、压电陶瓷环和粘接在其上的带有凸齿的弹性金属环组成,弹性环由不锈钢、硬铝或铜等金属制成。凸齿的作用是放大定子表面振动的振幅,使转子获得较大的输出能量。压电陶瓷环采用的是施加交变电压后能够产生机械谐振位移的“硬性”压电陶瓷材料,其质量好坏直接影响电机性能。粘接剂多用高温固化的环氧树脂胶。 图2 环形行波型USM 的结构示意图 转子由转动环和摩擦材料构成。转动环一般用 不锈钢、硬铝或塑料等制成。摩擦材料必须牢固地粘接在转子的接触表面,从而增加定子、转子间的摩 ? 63?现代物理知识

超声波热量表的安装

超声波热量表 超声波热量表的安装及注意事项: 配置:超声波热量表、测温球阀、电动温控阀、热量表配套活接、过滤器、手动球阀(或锁闭阀)。 (1)热量表、测温球阀、电动温控阀安装示意图 (2)施工条件 A)系统及过滤器杂质排除干净,管道系统中无杂质; B)安装热量表的环境中无漏水情况,相对空气湿度不超过85% 。 C)超声波热量表调试,必须要从过滤器排污,排污时将热量表用塑料袋套住,防止排污泄水导致热量表进水损坏。 (3) 热量表安装 1.安装位置:热量表按设计安装在进水管(供水管)。电动温控阀安装在回水管测温球阀后。 A,热量表要安装在合适的位置,以便于操作、读取与维护维修。 B,热量表上的铅封不能损坏。 C,安装时应严格要求,谨慎操作,防止人为损坏。

D,超声波热量表可水平或垂直安装,垂直安装时,应使进水方向由下进水; E,热量表禁止安装在管道的最上端,防止局部管道集气造成计量不准; F,安装热量表前,应先确认区分供、回水管以及水流方向;热量表壳体上箭头所指方向为水流方向,不得装反; 2.安装环境: a.热量表要求使用环境相对干燥,湿度较低为宜. b.安装在管道井内,管道井地面应有防水处理; c.热量表安装时应避免在表的上方有各种供回水管道,防止漏水造成热量表损坏; d.同一个管井安装多块热量表时,应使热量表安装位置在垂直方向错开(相互平行或并排),避免上下叠加的安装方式造成上面漏水下面进水的结果;3.热量表的搬运及拿放: 热量表属于比较贵重精密仪表,拿起放下时必须小心 a.轻拿轻放,避免碰撞; b.禁止提拽表头、传感器线;禁止挤压测温探头; c.严禁靠近较高温度热源如电气焊,防止电池爆炸伤人以及损坏仪表; 4. 热量表温度传感器的安装方式: 热量表的温度传感器共有两只(进水和回水),安装时应将红色标签的温度传感器安装在进水管上(通常在表体测温孔内),另一只蓝色标签的温度传感器安装在回水管上,安装温度传感器的步骤为: a)取下温度传感器上的防水胶圈塞进测温座孔内; b)再将温度传感器装进测温座孔并上紧(以防止漏水或未经许可的人员打

超声波提取原理、特点与应用介绍

超声波提取原理、特点与应用介绍 超声波指频率高于20KHz,人的听觉阈以外的声波。 超声波提取在中药制剂质量检测中(药检系统)已广泛应用。《中华人民共和国药典》中,应用超声波处理的有232个品种,且呈日渐增多的趋势。 近年来,超声波技术在中药制剂提取工艺中的应用越来越受到关注。超声波技术用于天然产物有效成分的提取是一种非常有效的方法和手段。作为中药制剂取工艺的一种新技术,超声波提取具有广阔的前景。 超声波提取是利用超声波具有的机械效应,空化效应和热效应,通过增大介质分子的运动速度、增大介质的穿透力以提取生物有效成分。 1、提取原理 (1)机械效应超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传播,这就是超声波的机械效应。超声波在传播过程中产生一种辐射压强,沿声波方向传播,对物料有很强的破坏作用,可使细胞组织变形,植物蛋白质变性;同时,它还可以给予介质和悬浮体以不同的加速度,且介质分子的运动速度远大于悬浮体分子的运动速度。从而在两者间产生摩擦,这种摩擦力可使生物分子解聚,使细胞壁上的有效成分更快地溶解于溶剂之中。 (2)空化效应通常情况下,介质内部或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散(rectieddiffvsion)而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。这种气泡在闭合时会在其周围产生几千个大气压的压力,形成微激波,它可造成植物细胞壁及整个生物体破裂,而且整个破裂过程在瞬间完成,有利于有效成分的溶出。 (3)热效应和其它物理波一样,超声波在介质中的传播过程也是一个能量的传播和扩散过程,即超声波在介质的传播过程中,其声能不断被介质的质点吸收,介质将所吸收的能量全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高,增大了药物有效成分的溶解速度。由于这种吸收声能引起的药物组织内部温度的升高是瞬间的,因此可以使被提取的成分的生物活性保持不变。 此外,超声波还可以产生许多次级效应,如乳化、扩散、击碎、化学效应等,这些作用也促进了植物体中有效成分的溶解,促使药物有效成分进入介质,并于介质充分混合,加快了提取过程的进行,并提高了药物有效成分的提取率。 2、超声波提取的特点 (1)超声波提取时不需加热,避免了中药常规煎煮法、回流法长时间加热对有效成分的不良影响,适用于对热敏物质的提取;同时,由于其不需加热,因而也节省了能源。 (2)超声波提取提高了药物有效成分的提取率,节省了原料药材,有利于中药资源的充分利用,提高了经济效益。 (3)溶剂用量少,节约了溶剂。 (4)超声波提取是一个物理过程,在整个浸提过程中无化学反应发生,不影响大多数药物有效成分的生理活性。 (5)提取物有效成分含量高,有利于进一步精制。 3、超声波技术在天然产物提取方面的应用 与水煎煮法对比,采用超声波法对黄芩的提取结果表明,超声波法提取与常规煎煮法相比,提取时间明显缩短,黄芩苷的提取率升高;超声波提取10、20、40、60min均比煎煮法提取3h的提取率高。 应用超声波法对槐米中主要有效成分芦丁的提取结果表明,超声波处理槐米30min所

超声波的检测原理反射折射

超声波的检测原理反射折射

2超声波及超声检测原理 2. 1超声波的基本性质 通常人耳能听到声音的频率范围在 20}20KHz 之间,把超过20KHz 的声波 称为超 声波。超声波在本质上是一种机械波,所以它的产生必须依赖两个条件, 一是有机械振动的声源,二是有能够传播振动的弹性介质。 波的种类是根据介质质点的震动方向和波动传播方向的关系来区分的。超 声波在介 质中传播的波形有许多种,有纵波、横波、表面波等。 2.1.1超声场的特征量 充满超声波的空间叫做超声场。声压、声强度、声阻抗是描述超声场 特征的几 个重要物理量。 a. 声压 超声场中某一点在某一瞬间所具有的压强与没有超声场存在时的静态 压强之差 被称为声压,常用 P 表示,单位为帕。超声波在介质中传播时,介质 中每一点的声压随着时间t 、距离x 而变化,其公式为: X p =「 Awpsi nw(t ) = pcv c 式中P 为介质的密度、必为介质的角频率 C 为超声波在介质中的波速, v 为介 质质点的振动速度。可见声压的绝对值与波速以及角频率成正比。 b. 声强度 在垂直于超声波方向上的单位面积内通过的声能量被称为声强度,也 称声强。 式中A 为超声波的振幅。从公式可见声强与质点振动的位移振幅的平方成 正比,与 质点振动的角频率的平方成正比。 C.声阻抗 从声压的公式可见,在同一声压下辉越大,质点振动速度就越小,反之亦 然,它反 映了声学特性,故将声的乘积作为介质的声阻抗,以符号 Z 表示。 2. 1. 2超声波的速度及波长 超声波在介质中的传播速度与介质的弹性模量及介质的密度有关,对 一定的介 质其弹性模量和密度为常数,故声速也是常数。不同的介质有不同的 声速。超声波的频率、波长和声谏之间的关系如下 : 其中入超声波的波长、c 为超声波的速度、f 为超声波的频率。 p cA 2 a)2 2 2 pc

超声波应用原理

超声波清洗在工农业应用中的原理 原理:超声波清洗机由超声波发生器发出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质,清洗溶剂中超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的微小气泡,存在于液体中的微小气泡在声场的作用下振动,当声压达到一定值时,气泡迅速增大,然后突然闭合,在气泡闭合时产生冲击波,在其周围产生上千个大气压,破坏不溶性污物而使他们分散于清洗液中,当团体粒子被油污裹着而黏附在清洗件表面是,油被乳化,固体粒子及脱离,从而达到清洗件净化的目的。 超声波清洗是基於空化作用,即在清洗液中无数气泡快速形成并迅速内爆。由此产生的冲击将浸没在清洗液中的工件内外表面的污物剥落下来。随着超声频率的提高,气泡数量增加而爆破冲击力减弱,因此,高频超声特别适用於小颗粒污垢的清洗而不破环其工件表面。 空化作用:空化作用就是超声波以每秒两万次以上的压缩力和减压力交互性的高频变换方式向液体进行透射。在减压力作用时,液体中产生真空核群泡的现象,在压缩力作用时,真空核群泡受压力压碎时产生强大的冲击力,由此剥离被清洗物表面的污垢,从而达到精密洗净目的。超声波清洗是利用超声波在液体中的社会化作用、加速度作用及直进流作用对液体和污物直接、间接的作用,使污物层被分散、乳化、剥离而达到清洗目的。目前所用的超声波清洗机中,空化作用和直进流作用应用得更多。 理化效应:超声的机械效应和温热效应均可促发若干物理化学变化。实践证明一些理化效应往往是上述效应的继发效应。TS-C型治疗机通过理化效应继发出下列五大作用: A.弥散作用:超声波可以提高生物膜的通透性,超声波作用后,细胞膜对钾,钙离子的通透性发生较强的改变。从而增强生物膜弥散过程,促进物质交换,加速代谢,改善组织营养。 B.触变作用:超声作用下,可使凝胶转化为溶胶状态。对肌肉,肌腱的软化作用,以及对一些与组织缺水有关的病理改变。如类风湿性关节炎病变和关节、肌腱、韧带的退行性病变的治疗。 C.空化作用:空化形成,或保持稳定的单向振动,或继发膨胀以致崩溃,细胞功能改变,细胞内钙水平增高。成纤维细胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,胶原张力增加。 D.聚合作用与解聚作用:水分子聚合是将多个相同或相似的分子合成一个较大的分子过程。大分子解聚,是将大分子的化学物变成小分子的过程。可使关节内增加水解酶和原酶活性增加。 E.消炎,修复细胞和分子:超声作用下,可使组织PH值向碱性方面发展。缓解炎症所伴有的局部酸中毒。超声可影响血流量,产生致炎症作用,抑制并起到抗炎作用。使白细胞移动,促进血管生成。胶原合成及成熟。促进或抑制损伤的修复和愈合过程。从而达到对受损细胞组织进行清理、激活、修复的过程。

超声波定位系统的原理与应用

超声波定位系统的原理与应用 Pr i nc iple and Appl ica tion of Superson ic L oca tion Syste m ●王富东 W ang Fudong 1 基本原理 已经获得广泛应用的无线电定位系统的基本原理是通过接收几个固定位置的发射点的无线电波,从而得到主体到这几个发射点的距离,经计算后即可得到主体的位置。超声波定位的原理与此相仿,只不过由于超声波在空气中的衰减较大,它只适用于较小的范围。 超声波在空气中的传播距离一般只有几十米。短距离的超声波测距系统已经在实际中有所应用,测距精度为厘米级。超声波定位系统可用于无人车间等场所中的移动物体定位。其具体实现可有两种方案。 方案1:在三面有墙壁的场所,利用装在主体上的反射式测距系统可以测得主体到三面墙壁的距离。如果以三面墙壁的交点为原点建立直角坐标系,则可直接得到主体的三个直角坐标如图1所示 。 图1 利用三面垂直的墙壁进行定位 这种方案在实际应用中要受到某些限制。首先,超声波传感器必须与墙面基本保持垂直。其次墙壁表面必须平整,不能有凸出和凹进。传感器与墙壁之间也不能有其它物体。这 在很大程度上影响了其实际使用的效果。方案2:在空间的某些固定位置上设立超声波发射装置,主体上设立接收器(反之亦可)。分别测量主体到各发射点的距离,经过计算后便可得到主体的位置。由于超声波的传播具有一定的发散性及绕射作用,这种方法所受到的空间条件限制较少。即使在主体与发射点之间有障碍物,只要不完全阻断超声波的传播系统仍然可以工作。故本文重点介绍这种方法。发射点的位置通常按直角方位配置。以三维空间为例,可在坐标原点及(X ,0,0),(0,Y ,0)三个位置布置发射点如图2所示 。 图2 距离与坐标换算 主体坐标(x ,y ,z )到三个发射点的距离分别为L 1,L 2,L 3,由距离计算坐标的原理如下: 由图2可得如下三角关系: X 2+Y 2+Z 2=L 1 2 (1) (X -x )2+Y 2+Z 2=L 2 2 (2) X 2+(Y -y )2+Z 2=L 3 2 (3) 求解上列方程可得: x = (L 22-L 12+X 2) 2Y (4)王富东,现在苏州大学工学院工作。 地址:苏州市干将东路178号38信箱 邮政编码:215021收稿日期:1997年12月29日(磁盘来稿)

超声波原理与应用

超声波提取原理与特点 超声波提取是利用超声波具有的机械效应,空化效应和热效应,通过增大介质分子的运动速度、增大介质的穿透力以提取生物有效成分。 机械效应 超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传播,这就是超声波的机械效应。超声波在传播过程中产生一种辐射压强,沿声波方向传播,对物料有很强的破坏作用,可使细胞组织变形,植物蛋白质变性;同时,它还可以给予介质和悬浮体以不同的加速度,且介质分子的运动速度远大于悬浮体分子的运动速度。从而在两者间产生摩擦,这种摩擦力可使生物分子解聚,使细胞壁上的有效成分更快地溶解于溶剂之中。 空化效应 通常情况下,介质内部或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散(rectieddiffvsion)而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。这种气泡在闭合时会在其周围产生几千个大气压的压力,形成微激波,它可造成植物细胞壁及整个生物体破裂,而且整个破裂过程在瞬间完成,有利于有效成分的溶出。 热效应 和其它物理波一样,超声波在介质中的传播过程也是一个能量的传播和扩散过程,即超声波在介质的传播过程中,其声能不断被介质的质点吸收,介质将所吸收的能量全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高,增大了药物有效成分的溶解速度。由于这种吸收声能引起的药物组织内部温度的升高是瞬间的,因此可以使被提取的成分的生物活性保持不变。 此外,超声波还可以产生许多次级效应,如乳化、扩散、击碎、化学效应等,这些作用也促进了植物体中有效成分的溶解,促使药物有效成分进入介质,并于介质充分混合,加快了提取过程的进行,并提高了药物有效成分的提取率。 超声波提取的特点 超声波提取时不需加热,避免了中药常规煎煮法、回流法长时间加热对有效成分的不良影响,适用于对热敏物质的提取;同时,由于其不需加热,因而也节省了能源。 超声波提取提高了药物有效成分的提取率,节省了原料药材,有利于中药资源的充分利用,提高了经济效益。 溶剂用量少,节约了溶剂。

超声波热量表安装原则

一、管段式超声热量表安装原则 1.直管段要求 热量表的安装位置、被测管道的状态均对测量精度有影响,因此选择满足下列条件的场所。 ?上游侧10D,下游侧5D以上的直管段;若安装管道遇到缩管、扩管、弯头等阻流连接件时,请选择合适的安装位置。 ?上游侧30D以内,确保无扰动流动的因素(泵、阀、节流孔等)。 最短直管段长度表(D为公称直径)

2.建议安装位置 ?首选液体向上(或斜向上)流动的竖直管道,其次是水平管道,尽量避开液体向下(或斜向下)流动的管道,防止液体不满管。 ?安装位置不要选在管道走向的最高点,防止管道内因有气泡聚集而造成测量不正常(如下图所示)。 安装位置示意图 ?热量表在水平管道上安装时,仪表面板要保持水平,特殊情况需要倾斜时,倾斜角度不超过30°。 ?管段式超声热量表具体安装方法因热表种类而有区别,热表及热表温度传感器具体安装方法可参考热表厂家说明书。

二、户用超声热量表安装原则 1.户用超声热量表安装在液体向上(或斜向上)流动的竖直管道,其次是水平管道,尽量避开液体向下(或斜向下)流动的管道,防止液体不满管。 2.安装位置不要选在管道走向的最高点,防止管道内因有气泡聚集而造成测量不正常。 3.传感器在水平管道上安装时,仪表面板要保持水平,特殊情况需要倾斜时,倾斜角度不超过30°。 4. 安装时注意管道水流方向与表具上的箭头指示方向一致。 5. 表具进水口前必须安装过滤器及表前阀门;过滤器必须定期进行清洗维护,以避免杂质堵塞影响正常使用。 6. 注意表具的供水口必须保证不小于管径10倍长度的直管道,回水口必须有不小于管径5倍长度的直管道。

相关主题