搜档网
当前位置:搜档网 › 动态信号分析仪简介

动态信号分析仪简介

动态信号分析仪简介
动态信号分析仪简介

Agilent Technologies 35670A Dynamic Signal Analyzer

Product Overview

The Agilent 35670A is a portable two- or four-channel dynamic signal analyzer with the versatility to be several instruments at once. Rugged and portable, it’s ideal for field work. Yet it has the performance and functionality required for demanding R&D applications. Optional features optimize the instrument for troubleshooting mechanical vibration and noise problems, characterizing control systems, or general spectrum and network analysis.

Take the Agilent 35670A

where it’s needed!

Whether you’re moving an instrument around the world or around the lab, portability is a real benefit. Small enough to fit under an airplane seat, the 35670A goes where it’s needed. But there’s more to portability than size. Like a nominal 12- to 28-Volt DC power input and self-contained features

that do not require external

hardware, such as built-in

piezoelectric integrated circuit

power supply, analog trigger and

tachometer inputs, and optional

computed order tracking.

Versatile enough to be

your only instrument for

low frequency analysis

With the 35670A, you carry several

instruments into the field in one

package. Frequency, time, and

amplitude domain analysis are all

available in the standard

instrument. Build on that capability

with options that either add new

measurement capability or enhance

all measurement modes.

Versatile two- or four-channel high-performance

FFT-based spectrum/network analyzer

122 μHz to 102.4 kHz 16-bit ADC

Key Specifications

Frequency Range:102.4 kHz 1 channel

51.2 kHz 2 channel

25.6 kHz 4 channel

Dynamic Range:90 dB typical

Accuracy:±0.15 dB

Channel Match:±0.04 dB and ±0.5 degrees

Real-time Bandwidth: 25.6 kHz/1 channel

Resolution:100, 200, 400 & 800 lines

Time Capture:0.8 to >6 Msamples (option UFC)

Source Types:Random, Burst random,

Periodic chirp, Burst chirp, Pink

noise, Sine, Swept-Sine (option1D2),

Arbitrary (option 1D4)

The Agilent 35670A

shown with four

channels (option AY6)

AY6Add Two Channels (Four Total)

1D0Computed Order Tracking

1D1Real-Time Octave

Measurements

UK4Microphone Adapter and

Power Supply

1D2Swept-Sine Measurements

1D3Curve Fit and Synthesis

1D4Arbitrary Waveform Source

1C2Agilent Instrument BASIC

1001D0 - 1D4 bundle

2

Agilent 35670A

Dynamic Signal Analyzer

Shown with option AY6 - Add Two Channels

Input Channels

?Analog A-weighted fil-ters (switchable)?Transducer sensitivity input

?Engineering units: g, m/s 2, m/s, m, in/s 2, in/s, in, mil, kg, dyn, lb,N, and pascals ?Built-in 4 mA

constant current power supply

(17 cm) display Display area is not compromised by portability

Precision

Measurements ?16-bit ADC

?±0.15 dB spectrum amplitude accuracy ?±0.04 dB, ±0.5degrees channel match (full scale)?90 dB dynamic range (typical)?130 dB dynamic range with swept-sine (option 1D2)?Up/Down autorange ?

Up only autorange

Math Functions

Powerful math and data editing functions to quickly modify meas-urement results. (Curve fit and frequency response

synthesis available with option 1D3.)

Built-In 3.5 inch Flexible Disk Drive Store instrument states,programs, time captured data, waterfall data,trace data, limits, math functions, data tables,and curve fit/synthesis tables.

Supported disk formats are HP-LIF and

MS-DOS. Internal RAM may also be

formatted as storage disk.

Powerful Markers Extract information from measurement data with trace and special markers:?Individual Trace ?Coupled Trace

?Absolute or Relative ?Peak Search ?Harmonic ?Band

?Sideband Power ?Waterfall

?Time Parameter ?

Frequency and Damping

Versatile

Measurement Modes Standard and optional

measurement modes include:?FFT Analysis

?

Real-Time Octave Analysis (option 1D1)

?Order Analysis (option 1D0)?Swept-Sine (option 1D2)?Correlation Analysis ?Histogram Analysis ?

Time Capture

All measurement options may be retrofitted.

RPM Display Read RPM in any measurement mode

Agilent Instrument BASIC (Option 1C2)

Develop a custom

user-interface, integrate several instruments and peripherals into a system using the 35670A as the system controller, or simply automate measurements.

Online Help Applications oriented help is just a few keystrokes away.

Source Types ?Random Noise ?Burst Random Noise ?Periodic Chirp ?Burst Chirp ?Pink Noise ?Fixed Sine ?Arbitrary Waveform Source (Option 1D4)?Swept-Sine Source (Option 1D2) Note: The source is located on the front panel of a standard two-channel 35670A.GPIB Connector

Integrate the

35670A with other

instruments and

peripherals for

system operation

or printing/plotting.

System controller

for GPIB (IEEE-488.1

and 488.2) compati-

ble instrumentation

via Agilent

Instrument BASIC

(option 1C2).

Provides direct con-

trol of GPIB printers,

plotters,

and HP SS80 disk

drives.

Serial Port

Plot to HP-GL

plotters or print to

HP-GL and raster

printers.

Parallel Port

Plot to HP-GL plotters

or print to HP-GL and

raster printers.

DC Power

Accepts 12 to 28 volts

dc (nominal). Use the

35250A power cable for

DC power source con-

nection, or the 35251A

power cable with ciga-

rette-lighter adapter.

Low Noise Fan

Fan may be turned

off for acoustic

applications.

Running speed depends

on

ambient

temperature.

External Monitor

Drive a VGA monitor

for remote viewing by

large groups.

Tachometer

(42 Volt Peak Max)

No external signal

conditioning hardware

required. Reads

frequency (RPM) on

selected levels

between ±20 Volts.

External Trigger

(42 Volt Peak Max)

No external signal

conditioning hardware

required. Triggers on

selected level

between ±10 Volts.

Keyboard

Use a standard PC

keyboard to title data,

edit Agilent Instrument

BASIC programs,

or to operate the

instrument.

Power Select

Switch between

AC and DC power

sources without

interrupting instru-

ment operation.

AC Power

Universal power

supply will operate

with any

combination of

voltage between

100 and 240 VAC

and line frequency

between 47 and

440 Hz. The

maximum power

requirement is

350 VA.

3

4

Laboratory-quality

measurements in the field

Obtain all of the performance of your bench-top analyzer in a portable instrument.

Ease-of-use

Portability, versatility, and perfor-mance are valued attributes, but to be really valuable an instrument must also be easy to use. The 35670A has a friendly front panel,plus online help that’s always

available to answer your questions.An interactive measurement state lets you configure the instrument

setup from a single display.

Two spectrums of road induced vibration measured at different speeds are compared

using the front/back mode

of the Agilent 35670A.

FFT-based spectrum analyzers, such as the 35670A, are ideal for measuring the spectra of low-frequency signals like speech or mechanical vibration. Transient components,usually missed with swept-frequency analyzers, are easily measured and displayed at speeds fast enough to follow trends. The 35670A has both the performance and features required to take full advantage of this technology.

16-Bits for High Performance

With a 16-bit ADC (90 dB typical dynamic range) and a real-time bandwidth of 25.6 kHz, you can be sure nothing will be missed. Resolve signals using 100 to 1600 lines resolution, or for really close-in analysis, use frequency zoom to resolve signals with up to 61 μHz resolution. Use time or RPM arming to develop waterfalls of sequential vibration spectra for trend analysis or for an overview of device vibration.

Power and Linear Spectrums

Match your spectrum measurement mode to the signal being tested. Use linear spectrum analysis to measure both the amplitude and phase of periodic signals such as the spectra of rotating machinery.

Power spectrum analysis is provided for averaging nonrepetitive signals.

Averaging

Various averaging modes let you further refine spectrum analysis measurements. Time averaging extracts repetitive signals out of the noise while rms averaging

reduces the noise to its mean value.Exponential averaging, available for both time and rms averaging, is useful for reducing the noise while following changing signals—tracking the resonance shifts in a fatiguing structure for example.

Spectrum Analysis

5

Time Domain

Use your spectrum analyzer as a

low-frequency oscilloscope or view signals in the time and frequency domains simultaneously. (Note: anti-alias filters can be switched off.) Special markers for time-domain data facilitate extraction of key control system performance parameters: overshoot, rise time,setting time, and delay time.

Data Table

Use a tabular format to keep track of key frequencies in the spectra of rotating machinery. The amplitude and frequency of the signal and a 16-character entry label field are listed for each selected point.

Automatic Units Conversion

Display vibration data in the units of your choice. Select g, m/sec 2, in/sec 2, m/s, in/s, m, mil, inch, Kg, lb, N, dyn,or pascals as appropriate for your application.The instrument automatically converts frequency-domain data from specified input transducer units to the units you select for display. For example, accelerometer data is automatically converted and displayed as mils when mils are selected. Of course, dB, dBV, dBm and volts are available for electrical applications.

Markers

Markers streamline analysis by helping you select and display specific data. Marker functions include marker to peak, next right peak, and coupled markers for selecting points in multiple data displays. Markers readouts are absolute or relative to your selected reference.

Special Markers

Three special marker functions facilitate analysis of your spectral data. Sideband markers aid analysis of modulation signals. Use this

function to quickly locate sidebands in the complicated spectra of rotating machines. A band-power marker reads the total power in a selected band of frequencies and a total harmonic distortion marker lets you calculate total harmonic distortion without including the effects of noise.

Measurement results at key frequencies can be labeled and listed using data table.

Harmonic markers are used to calculate the THD of a signal without including the effects of noise.

Simultaneous

display of frequency and time domain data facilitates analysis of gear mesh vibration.

6

The 35670A has the flexibility to make measurements of both electrical networks and mechanical devices. FFT-based network analysis is fast enough to allow real-time adjustments of circuit parameters while the swept-sine option provides exacting measurements over more than six frequency decades, and a 130 dB dynamic range.

Source

Select the optimum stimulus for each application—random noise,periodic chirp, pink noise, fixed sine, burst random, and burst chirp.For zoomed network analysis

measurements, the source is band-translated to match the zoom span at frequencies up to 51.2 kHz. An optional arbitrary source lets you test your product using real-world signals. A ±10 Volt DC source offset facilitates tests of control systems.

Impact Testing

Force and exponential windows allow impact testing for modal and structural analysis. Quality measurements are ensured using preview and accept/reject during averaging. A 4 mA constant current transducer power supply is built-in for true portability.

Frequency Response

Measurements

Limits are used for go/no go testing in production. The response of an accelerometer is being checked in

this example.

Characteristics of a selected resonance are automatically calculated from an impact measurement using the frequency and damping marker.

Limits

Test network measurements against preset limits. Up to 800 separate line segments are available for setting upper and lower limits.Limits are also used for testing spectrum measurements.

Four Channels (option AY6)

Test up to three devices

simultaneously with a four-channel 35670A. Channel one is the common reference channel and two, three,and four are the response channels.Alternatively, select channels one and three as reference channels for two totally independent network measurements. See option AY6 description for more information.

7

Markers

A frequency and damping marker provides the resonant frequency and the damping ratio of single-degree-of-freedom frequency response measurements.

Gain and phase margin markers extract key frequency-domain stability data from frequency response measurements of control systems.

Signal Injection for Control Loops

Use one of three Agilent signal injection devices for testing control loops. The 35280A summing junction provides convenient DC to 1 MHz signal injection for most control loops. Use the 35281A clip-on transformer when it is not possible to temporarily open the loop, or use the 35282A signal injection transformer when secondary voltages are up to 600 Vpk.

Capture transient events or time histories for complete analysis in any measurement mode (except swept-sine). Use either the entire time-capture record or a selected region of interest for repetitive analysis in the FFT, octave, order track, correlation or histogram instrument modes.

Standard 16 Mbytes of memory for deep time-capture capability.

Time Capture

An interval of time-capture data has been selected for analysis in the octave mode.

8

Taking the measurement is only half the job. Raw measurement data must be stored, recalled, printed,plotted, integrated with other data for analysis, and reported. The 35670A has a variety of tools to help you finish the job.

Enhanced Data Transfer Utilities for PCs

Standard Data Format (SDF)

Utilities, provided with the 35670A,allow you to easily move data from the instrument to wherever it’s needed:

Using Measurement Results

Self-contained—no ratio synthesizer or tracking filter required Order Maps Order Tracking RPM or Time Trigger Display RPM Profile

Track Up to Five Orders/Channel Up to 200 Orders Composite Power RPM Measurements

Order tracking facilitates evaluation of spectra from rotating machines by displaying vibration data as a function of orders (or harmonics)rather than frequency.All measurement spectra is normalized to the shaft RPM.

Now you can have order tracking without compromising portability.Traditional analog order tracking techniques require external tracking filters and ratio synthesizers. With Agilent’s computed order tracking algorithm, external hardware is gone.

Because order tracking is

implemented in the software, data is more precise and your job is easier. Compared to traditional analog

order tracking techniques, computed order tracking offers:

Computed Order Tracking

(Option 1D0)

The slice marker feature is used to select and display an order or suborder from an order map.

?For general digital signal processing

and filtering , translate data files to formats compatible with MATLAB and MATRIX X , Data Set 58, or ASCII for use in popular spreadsheets.?For specific applications, use

application software that reads SDF files directly, such as STARModal and STARAcoustics from SMS and CADA-PC from LMS.

?Transfer data to and from the 35665A, 3566A, 3567A, 3562A,3563A.

?Use the viewdata feature to display data on your PC or to convert to the HP-GL format for transfer to Microsoft’s Word for Windows or Lotus’ AMI PRO word processing software.

?Convert between HP-LIF and MS-DOS ?formats.

?Read data files into a program.

Documented Results

The 35670A supports a variety of GPIB, serial and parallel printers and plotters for direct hardcopy output.The internal 3.5 inch flexible disk drive stores data, instrument states,HP-GL plots and Agilent Instrument BASIC programs in HP-LIF or MS-DOS formats for future recall or use on HP workstations or a personal computer.

Entire display screens can be import-ed directly into your word processing program by plotting HP-GL files to your named DOS file. HP-GL files are interpreted and displayed directly by Microsoft’s Word for Windows and AMI PRO from Lotus Development Corp.?Improved dynamic range at

high orders

?More accurate tracking of rapidly changing shaft speeds

?Accurate RPM labeled spectra with exact RPM trigger arm ?Wide 64:1 ratio of start to stop RPMs

Order Map

Use order maps for an overview of vibration data versus RPM or time.Display the amplitude profile of individual orders and suborders using the slice marker function. Alternatively, use trace markers to select individual traces for display.

MS-DOS and Microsoft are U.S. registered trademarks of Microsoft Corp.

9

Order Tracking

Measure only the data you need.Order tracking lets you measure the amplitude profile of up to five orders plus composite power simultaneously on each channel. Up to four orders or three orders and composite power can be dis-played simultaneously.

RPM Profile

Use RPM profile to monitor the variation of RPM with time during order tracking measurements.

Composite Power

Composite power provides the total signal power in a selected channel as a function of RPM.

Run-Up and Run-Down Measurements

Run-up and run-down measurements of any order are made using external trigger as the phase reference.Display the results as bode or polar plots; both are available.

Markers allow convenient notation of important shaft speeds.

Orbits

Obtain oscilloscope-quality orbit measurements with your 35670A.Unlike traditional FFT analyzers, the 35670A equipped with computed order tracking displays a selected number of loops (usually one) as the

shaft RPM is varied.

Order tracking is used to simultaneously display up to four orders or a combination of orders,composite power and RPM profile.

Markers are used to annotate shaft speeds at selected points in a run-up measurement.

Oscilloscope-quality orbit diagrams mean you carry only one instrument onto the shop floor.

10

Real-Time Third Octave to 40 kHz ANSI S1.11-1986 Filter Shapes Microphone Inputs and Power A-Weighted Overall SPL

RPM or Time-Triggered Waterfalls Eliminate the expense and inconvenience of multiple instruments in the field. With optional real-time octave analysis,and the optional microphone

adapter and power supply, you have a complete real-time octave analyzer added to your 35670A at a fraction of the cost of a second instrument.Now you can carry both your FFT and real-time octave analyzers to the job site in the same hand.

Real-Time 1/3-Octave to 40 kHz on One Channel

With two input channels of

1/3-octave real-time measurements at frequencies up to 20 kHz, you get all of the information you’ll ever need to understand the noise performance of your product. No misinterpreted measurements

because transient components were missed. When the frequency range requirement is 10 kHz or less, use four channels to characterize spatial variations. For those exceptional circumstances, use 1/3-octave resolution at frequencies up to 40 kHz on a single channel.

Resolutions of 1/1- and 1/12-octave are also available.

Real-Time Octave Measurements (Option 1D1)

Microphone Adapter and Power Supply (Option UK4)

Overall sound pressure level and A-weighted sound pressure level can be displayed with the octave bands individually, together, or not at all.A fan-off mode lets you use the instrument in the sound field being measured.

ANSI S1.11-1986

All octave filters comply with filter shape standards ANSI S1.11-1986(Order 3, type 1-D), DIN 45651, and IEC 225-1966. An 80 dB dynamic range for the audio spectrum

provides the performance required by acousticians. Switchable analog A-weighting filters in the input channels comply fully with both

ANSI S1.4-1983 and IEC 651-1979 Type 0.

Advanced Analysis

Use waterfall displays of octave data for an overview of device noise versus time or RPM. Display individual frequency bands as a function of RPM or time using the slice marker function. Alternatively,use trace markers to select individual traces for display.

A pink noise source is available for testing electro-acoustic devices.

Sound Level

Meter Measurements

Peak hold, impulse, fast, slow, and L eq are all provided with optional Real-time Octave Measurements. All measurements conform to

IEC 651-1979 Type 0 - Impulse.

Real-time 1/3-octave measurements at frequencies

up to 40 kHz.

T his waterfall display of a flyover test can be analyzed trace-by-trace or by selecting time slices along the

z-axis.

Agilent 35670A with option UK4 microphone adapter and power supply.

11

130 dB Dynamic Range Logarithmic or Linear Sweeps “Auto” Frequency Resolution While FFT-based network analysis is fast and accurate, swept-sine measurements are a better choice when the device under test has a wide dynamic range or covers

several decades of frequency https://www.sodocs.net/doc/631313329.html,e swept-sine measurements to extend the network measurement capabilities of the 35670A.

Network Analysis Over a 130 dB Range

With traditional swept-sine, the 35670A is optimally configured to measure each individual point in the frequency response. The result is a 130 dB dynamic range. With FFT-based network analysis, all frequency points are stimulated simultaneously and the instrument configures itself to measure the

highest amplitude response—thereby limiting the dynamic range.

Characterize Nonlinear Networks

Use the auto-level feature to hold the input or output amplitude constant during a sweep. This provides the device response for a specific signal amplitude. With FFT-based network analysis using random noise, the random

amplitudes of the stimulus tend to “average out” the non-linearities and therefore does not capture the

dependency of the response on the stimulus amplitude.

Logarithmic Sweep

Test devices over more than six decades of frequency range using logarithmic sweep. In this mode,the frequency is automatically adjusted to provide the same resolution over each decade of

frequency range. With FFT-network analysis, resolution is constant—not a problem when measuring over narrow frequency ranges.

Flexible

Make the measurement your way.Independently select logarithmic or linear sweep, sweep up or down,automatic or manual sweep, and autoresolution.

Automatic Frequency Resolution

Use autoresolution to obtain the fastest sweep possible without sacrificing accuracy. With autoresolution, the 35670A

automatically adjusts the frequency step according to the device

response. High rates of amplitude and phase change are matched with small frequency steps. Low rate-of-change regions are quickly measured with larger frequency steps.

Test Multiple Devices Simultaneously

Increase throughput in production.Swept-sine measurements up to 25.6 kHz can be made on three devices simultaneously using swept-sine on a four-channel 35670A. Channel one is the common reference channel for these measurements.

Alternatively, channels one and three can be designated as

independent reference channels for two totally independent swept-sine measurements.

Swept-Sine Measurements

(Option 1D2)

The stability of a control loop is quickly character-ized using the gain and phase margin marker function.

12

Agilent Instrument BASIC (Option 1C2)

Realize the advantages of using your instrument with a computer without sacrificing portability. Agilent Instrument BASIC provides the power of a computer inside your 35670A.

Keystroke Recording

Most program development begins with keystroke recording. Each keystroke is automatically saved as a program instruction as you set up your measurement using the front panel. The recorded sequence can be used as the core of a

sophisticated program or run as an automatic sequence.

Program entry and editing Program debugging Memory allocation Relation operators General math Graphics control Graphics plotting Graphics axes and labeling Program control

Binary functions Trigonometric operations String operations Logical operators GPIB control Mass storage Event initiated branching Clock and calendar General device I/O Array operations

Over 200 Agilent Instrument

BASIC Commands

13

Add Two Channels (Option AY6)

Curve Fit and Synthesis (Option 1D3)

51.2 kHz Frequency Range On One and Two Channels 25.6 kHz Frequency Range On Four Channels

One or Two Reference Channels Enhance your productivity by adding two additional input

channels to your portable analyzer.Having four channels often means the difference between solving a problem in the field and having to schedule time in a test bay.

Monitor four signals simultaneously or use channel one as the

reference channel for up to three simultaneous cross-channel measurements. Two totally independent cross-channel measurements are made by selecting channels one and three as independent reference channels.All channels are sampled https://www.sodocs.net/doc/631313329.html,e triaxial measurements to simul-taneously characterize the motion of mechanical devices in three axes. For control systems, simultaneously measure several points in a single loop.

20 Poles/20 Zeros Curve Fitter Frequency Response Synthesis Pole/Zero, Pole/Residue and Polynomial Format

Use curve fit and synthesis in the 35670A to take the guesswork out of your design process. The 20-pole and 20-zero multiple-degree-of-freedom curve fitter calculates a mathematical model of your system or circuit from measured frequency response data.The model can be expressed in pole/zero, pole/residue, or

polynomial format.

Curve fit provides an exact mathematical model of your circuit or device.

Transfer the circuit model to the synthesis function to experiment with design modifications. Add and delete poles and zeros, change gain factors, time delays, or frequency scaling, then synthesize the frequen-cy response from the modified model. Design modifications are tested without ever touching a sol-dering iron.

14

Standard 16 Mbytes RAM

Arbitrary Waveform Source (Option 1D4)

Expand the data storage and time-capture capacity of your 35670A.

Frequency or Time Domain Entry Data Edit

Store Up to Eight Arbitrary Waveforms

Test your products using real-world signals. Measure a signal in either the time or frequency domain, then output it via the arbitrary waveform source. Use math functions and data edit to obtain precisely the output waveform you need. An arbitrary waveform may be output once or repeatedly.

Standard source types can be

optimized for specific applications.For example, random noise can be shaped to improve the effective

dynamic range of your measurement.Alternatively, you can use data edit and math functions to create an arbitrary waveform.

Use time capture as a digital tape recorder, then playback captured signals through the arbitrary

waveform source.

Math functions are used to optimize a burst chirp signal for a frequency response measurement.

Expand the data storage and time-capture capacity of your 35670A.

Number of Spectra Stored Per Channel

Standard 16 Mbyte

FFT - 1 Channel 11400FFT- 2 Channels 2600FFT - 4 Channels 33001/3-Octave Spectra 448000Time Capture 1

>6 MSamples

Standard 2 Mbyte Nonvolatile RAM

Use the 2 Mbyte nonvolatile RAM in environments too harsh for the 3.5inch flexible disk drive. The memory functions as a high-speed disk for storage of the following information.

?Instrument Setup States ?Trace Data

?User Math Definitions ?Limit Data

?Time Capture Buffers

?Agilent Instrument BASIC Programs ?Waterfall Display Data ?Curve Fit/Synthesis Tables ?Data Tables

Information stored in nonvolatile RAM is retained when the power is off.

1

Conditions: Preset with instrument mode switched to 1 channel.2Conditions: Preset

3

Conditions: Preset with instrument mode switched to 4 channels.

4

Conditions: Preset with instrument mode switched to octave.

Agilent 35670A Ordering Information

Agilent 35670A

Dynamic Signal Analyzer Standard Configuration:

?1.4 Mbyte, 3.5-in. flexible disk drive ?12+ Mbytes user RAM

?2 Mbytes nonvolatile RAM

?Impact Cover

?Standard Data Format Utilities

?AC Power Cord

?Operating manual set including: Operator’s Guide

Quick Start Guide

Installation and Verification Guide GPIB Programming with the 35670A GPIB Commands: Quick Reference GPIB Programmer’s Guide ?Standard one-year warranty

Options for the 35670A

Opt.Description

AY6 Add Two Channels (four total)

1D0Computed Order Tracking

1D1Real-Time Octave

Measurements

UK4Microphone Adapter and

Power Supply

1D2Swept-Sine Measurements

1D3Curve Fit and Synthesis

1D4Arbitrary Waveform Source

1C2Agilent Instrument BASIC

1F0PC-style Keyboard

AX4Rack Mount Without Handles

100Software Bundle 1D0-1D4

UK5Carrying Case (for shipping)

0B1Additional Manual Set

0BU Additional Agilent Instrument BASIC Manual Set

0B3Add Service Manual

UK6Commercial Calibration with test data

W30Two Year Extended Service Contract W50Four Year Extended Service Contract 1BP Military Calibration

(meets MIL 45662A)

W30Two Year Extended

Service Contract To Upgrade Your 35670A

To add an option to your 35670A, order

35670U followed by the option number.

Options AY6 and AN2 must

be installed by Agilent Technologies.

Option UE2 is available to upgrade

instrument firmware to latest version,

as appropriate.

Accessories

DC Power Cables

The 35250A is a three meter cable

terminated with lugs for connecting to

most DC power sources. The 35251A is a

three meter cable terminated with an

adapter that plugs into a cigarette lighter.

For Testing Control Systems

The 35280A summing junction provides

convenient DC to 1 MHz signal injection

for most control loops. Use the 35281A

clip-on transformer when it is not possible

to temporarily open the loop, or use the

35282A signal injection transformer when

secondary voltages are up to 600 Vpk.

Instrument Modes

FFT Analysis Histogram/Time

Correlation Analysis Time Capture

Measurement

Frequency Domain

Frequency Response Power Spectrum

Linear Spectrum Coherence

Cross Spectrum Power Spectral

Density

Time Domain (oscilloscope mode)

Time Waveform Autocorrelation

Cross-Correlation Orbit Diagram

Amplitude Domain

Histogram, PDF, CDF

Trace Coordinates

Linear Magnitude Unwrapped Phase

Log Magnitude Real Part

dB Magnitude Imaginary Part

Group Delay Nyquist Diagram

Phase Polar Plot

Trace Units

Y-axis Amplitude: combinations of units, unit

value, calculated value, and unit format

describe y-axis amplitude

Units: volts, g, meters/sec2, inches/sec2,

meters/sec, inches/sec, meters, mils, inches,

pascals, Kg, N, dyn, lb, user-defined EUs

Unit Value:rms, peak, peak-to-peak

Calculated Value:V, V2, V2/Hz, V/√Hz, V2s/Hz,

(ESD)

Unit Format:linear, dB’s with user selectable dB

reference, dBm with user selectable imped-

ance.

Y-Axis Phase:degrees, radians

X-Axis:Hz, cpm, order, seconds, user-defined

Display Formats

Single

Quad

Dual Upper/Lower Traces

Small Upper and Large Lower

Front/Back Overlay Traces

Measurement State

Bode Diagram

Waterfall Display with Skew, -45 to 45 Degrees

Trace Grids On/Off

Display Blanking

Screen Saver

Display Scaling

Autoscale Selectable Reference

Manual Scale Linear or Log X-Axis

Input Range Tracking Y-Axis Log

X & Y Scale Markers with Expand and Scroll

Marker Functions

Individual Trace Markers

Coupled Multi-Trace Markers

Absolute or Relative Marker

Peak Search

Harmonic Markers

Band Marker

Sideband Power Markers

Waterfall Markers

Time Parameter Markers

Frequency Response Markers

Summary of Features

on Standard Instrument

15

Signal Averaging (FFT Mode)

Average Types (1 to 9,999,999 averages) RMS Time Exponential RMS Exponential Peak Hold

Time

Averaging Controls

Overload Reject

Fast Averaging On/Off

Update Rate Select

Select Overlap Process Percentage

Preview Time Record

Measurement Control

Start Measurement

Pause/Continue Measurement

Triggering

Continuous (Freerun)

External (Analog or TTL Level)

Internal Trigger from any Channel

Source Synchronized Trigger

GPIB Trigger

Armed Triggers

Automatic/Manual

RPM Step

Time Step

Pre- and Post-Trigger Measurement Delay Tachometer Input:

±4V or ±20V range

40 mV or 200 mV resolution

Up to 2048 pulses/rev

Tach hold-off control

Source Outputs

Random Burst Random Periodic Chirp Burst Chirp

Pink Noise Fixed Sine

Note: Some source types are not available for use in optional modes. See option description for details.

Input Channels

Manual Range Anti-alias Filters On/Off Up-Only Auto Range AC or DC Coupling Up/Down Auto Range LED Half Range and

Overload Indicators Floating or Grounded A-Weight Filters On/Off Transducer Power Supplies

(4 ma constant current)

Frequency

20 Spans from 195 mHz to 102.4 kHz

(1 channel mode)

20 Spans from 98 mHz to 51.2 kHz

(2 channel mode)

Digital zoom with 244 mHz resolution throughout the 102.4 kHz frequency range. Resolution

100, 200, 400, 800 and 1600 lines

Windows

Hanning Uniform

Flat Top Force/Exponential Math

+,-,*, /Conjugate Magnitude Real and Imaginary Square Root FFT, FFT-1

LN EXP

*jw or /jw PSD Differentiation A, B, and C weighting Integration Constants K1 thru K5

Functions F1 thru F5Analysis

Limit Test with Pass/Fail

Data Table with Tabular Readout

Data Editing

Time Capture Functions

Capture transient events for repeated analysis

in FFT, octave, order, histogram, or correlation

modes (except swept-sine). Time-captured

data may be saved to internal or external disk,

or transferred over GPIB. Zoom on captured

data for detailed narrowband analysis. Up to

750K samples of data can be saved in the stan-

dard unit.

Data Storage Functions

Built-in 3.5 in., 1.44 Mbyte flexible disk also

supports 720 KByte disks, and 2 Mbyte of

NVRAM disk. Both MS-DOS and HP-LIF

formats are available. Data can be formatted as

either ASCII or Binary (SDF). The 35670A pro-

vides storage and recall from the internal disk,

internal RAM disk, internal NVRAM disk, or

external GPIB disk for any of the following

information:

Instrument Setup States Trace Data

User-Math Limit Data

Time Capture Buffers Agilent Instrument

BASIC Programs

Waterfall Display Data Curve Fit/Synthesis

Data Tables Tables

Interfaces

GPIB (IEEE-488.1 and 488.2)

Parallel

RS-232C Serial

Hard-Copy Output

To Serial or Parallel HP-GL Plotters

To Raster Printers

To Serial or Parallel HP-GL Printers

To Disk File (Supports Raster Printer,

HP-GL Plotter, and HP-GL Printer)

Time Stamp

GPIB Capabilities

Listener/Talker (Direct control of plotters, print-

ers, disk drives)

Conforms to IEEE 488.1/488.2

Conforms to SCPI 1992

Controller with Agilent Instrument Basic option

Standard Data Format (SDF) Utilities

Exchange data between virtually all

Agilent Dynamic Signal Analyzers

Easy data transfer to spreadsheets

Data transfer to MATRIX X and Matlab

SDF utilities run in an external PC

Calibration & Memory

Single or Automatic Calibration

Built-In Diagnostics & Service Tests

Nonvolatile Clock with Time/Date

Time/Date Stamp on Plots and Saved Data Files

Online Help

Access to Topics via Keyboard or Index

Fan

On/Off

Agilent Technologies’ Test and Measurement

Support, Services, and Assistance

Agilent Technologies aims to maximize the value

you receive, while minimizing your risk and prob-

lems. We strive to ensure that you get the test and

measurement capabilities you paid for and obtain

the support you need. Our extensive support

resources and services can help you choose the

right Agilent products for your applications and

apply them successfully. Every instrument and

system we sell has a global warranty. Support is

available for at least five years beyond the

production life of the product. Two concepts under-

lie Agilent's overall support policy: "Our Promise"

and "Your Advantage."

Our Promise

Our Promise means your Agilent test and

measurement equipment will meet its advertised

performance and functionality. When you are

choosing new equipment, we will help you with

product information, including realistic performance

specifications and practical recommendations from

experienced test engineers. When you use Agilent

equipment, we can verify that it works properly, help

with product operation, and provide basic measurement

assistance for the use of specified capabilities, at no

extra cost upon request. Many self-help tools are

available.

Your Advantage

Your Advantage means that Agilent offers a wide

range of additional expert test and measurement

services, which you can purchase according to your

unique technical and business needs. Solve prob-

lems efficiently and gain a competitive edge by

contracting with us for calibration, extra-cost

upgrades, out-of-warranty repairs, and onsite

education and training, as well as design, system

integration, project management, and other

professional engineering services. Experienced

Agilent engineers and technicians worldwide can

help you maximize your productivity, optimize the

return on investment of your Agilent instruments

and systems, and obtain dependable measurement

accuracy for the life of those products.

https://www.sodocs.net/doc/631313329.html,/find/emailupdates

Get the latest information on the products and

applications you select.

Agilent T&M Software and Connectivity

Agilent's Test and Measurement software and

connectivity products, solutions and developer

network allows you to take time out of connecting

your instruments to your computer with tools based

on PC standards, so you can focus on your tasks,

not on your connections. Visit

https://www.sodocs.net/doc/631313329.html,/find/connectivity

for more information.

For more assistance with your test & measurement

needs or to find your local Agilent office go to

https://www.sodocs.net/doc/631313329.html,/find/assist

Product specifications and descriptions in this

document subject to change without notice.

?Agilent Technologies, Inc. 2003

Printed in USA February 26, 2003

5966-3063E

用频谱分析仪测量通信信号

用频谱分析仪测量通信信号 一、GSM信号的测量 现代高度发达的通信技术可以让人们在地球的任意地点控制频谱分析仪,因此就更要懂得不同参数设置和不同信号条件对显示结果的影响。 典型的全球移动通信系统(GSM)的信号测量如图1所示,它清楚地标明了重要的控制参数设置和测量结果。IFR2399型频谱分析仪利用彩色游标来加亮测量区域,此例中,被加亮的测量区域是占用信道和上下两个相邻信道的中心50kHz频带。 显示的水平轴(频率轴)中心频率为900MHz,扫频频宽为1MHz,而每一小格代表l00kHz。顶部水平线表示0dBm,垂直方向每一格代表10dB。信号已经被衰减了10dB,测量显示的功率电平已考虑了此衰减。 图1 GSM信道带宽显示和功率测量 GSM是以两个25MHz带宽来传送的:从移动发射机到基站采用890MHz到915MHz,从基站到移动接收机采用935MHz到960MHz。这个频带被细分为多个200kHz信道,而第50个移动发送信道的中心频率为900MHz,如图1所示。该信号很明显是未调制载波,因为它的频谱很窄。实际运用中,一个GSM脉冲串只占用200kHz稍多一点的信道带宽。 按照GSM标准,在发送单个信道脉冲串时,时隙持续0.58ms,而信道频率以每秒217次的变化速率进行慢跳变,再加上扫频仪1.3s的扫描时间,根据这些条件可以判定这是一个没有时间和频率跳变的静态测试,没有迹象表明900阳z的信号是间断信号。 为了保证良好的清晰度,选用1kHz的分辨带宽(RBW)滤波器。较新的频谱分析仪中的模拟滤波器的形状系数(3dB:60dB)为11,意思是60dB时滤波器带宽(从峰值衰减60dB)是3dB时滤波器带宽(从峰值衰减3dB)的11倍,即11kHz比1kHz。 与此相比,数字滤波器的形状系数还不到5。例如一个3dB带宽为50kHz的带通滤波器,其60dB带宽只有60kHz,这几乎是矩形通带。它保证在计算平均功率时只含有50kHz以外区域很小一点的功率。作为对比,如果分辨带宽RBW50kHz,使用前面提及的模拟滤波器而不是数字滤波器,其60dB带宽将为550kHz。 标记1处的信号电平是4.97dBm。为了使噪声背景出现在屏幕上,显示轨迹线已向上偏移了10dB(在图中不易察觉),这是由于信号峰值被预先衰减10dB使其不超过顶部水平线,这也是信号峰值读数比参考电平高的原因。 图中,主信道功率(CHP)读数为7.55dBm,与峰值(标记1处)的读数4.978m不一致,其原因就是主信道功率是在50kHz测量带宽内计算的,而标记1的读数是峰值。公式1定义了在整个带宽内计算主信道功率的方法。 其中, CHPwr:信道功率,单位dBm CHBW:信道带宽 Kn:噪声带宽与分辨带宽之比 N:信道内象素的数目 Pi:以1mW为基准的电平分贝数(dBm)

网络分析仪工作原理及使用要点

网络分析仪工作原理及使用要点 本文简要介绍41所生产的AV362O矢量网络分析的测量基本工作原理以及正确使用矢量网络分析测量电缆传输及反射性能的注意事项。 1.DUT对射频信号的响应 矢量网络分析仪信号源产生一测试信号,当测试信号通过待测件时,一部分信号被反射,另一部分则被传输。图1说明了测试信号通过被测器件(DUT)后的响应。 图1DUT 对信号的响应 2.整机原理: 矢量网络分析仪用于测量器件和网络的反射特性和传输特性,主要包括合成信号源、S 参数测试装置、幅相接收机和显示部分。合成信号源产生30k~6GHz的信号,此信号与幅相接收机中心频率实现同步扫描;S参数测试装置用于分离被测件的入射信号R、反射信号A 和传输信号B;幅相接收机将射频信号转换成频率固定的中频信号,为了真实测量出被测网络的幅度特性、相位特性,要求在频率变换过程中,被测信号幅度信息和相位信息都不能丢失,因此必须采用系统锁相技术;显示部分将测量结果以各种形式显示出来。其原理框图如图2所示: 图2矢量网络分析仪整机原理框图 矢量网络分析内置合成信号源产生30k~6GHz的信号,经过S参数测试装置分成两路,一路作为参考信号R,另一路作为激励信号,激励信号经过被测件后产生反射信号A和传输信号B,由S参数测试装置进行分离,R、A、B三路射频信号在幅相接收机中进行下变频,产生4kHz的中频信号,由于采用系统锁相技术,合成扫频信号源和幅相接收机同在一个锁相环路中,共用同一时基,因此被测网络的幅度信息和相位信息包含在4kHz的中频信号中,此中频信号经过A/D模拟数字变换器转换为数字信号,嵌入式计算机和数字信号处理器

实时频谱仪—工作原理

实时频谱分析仪(RTSA),这是基于快速傅利叶(FFT)的仪表,可以实时捕获各种瞬态信号,同时在时域、频域及调制域对信号进行全面分析,满足现代测试的需求。 一、实时频谱分析仪的工作原理 在存在被测信号的有限时间内提取信号的全部频谱信息进行分析并显示其结果的仪器主要用于分析持续时间很短的非重复性平稳随机过程和暂态过程,也能分析40兆赫以下的低频和极低频连续信号,能显示幅度和相位。 傅里叶分析仪是实时式频谱分析仪,其基本工作原理是把被分析的模拟信号经模数变换电路变换成数字信号后,加到数字滤波器进行傅里叶分析;由中央处理器控制的正交型数字本地振荡器产生按正弦律变化和按余弦律变化的数字本振信号,也加到数字滤波器与被测信号作傅里叶分析。正交型数字式本振是扫频振荡器,当其频率与被测信号中的频率相同时就有输出,经积分处理后得出分析结果供示波管显示频谱图形。正交型本振用正弦和余弦信号得到的分析结果是复数,可以换算成幅度和相位。分析结果也可送到打印绘图仪或通过标准接口与计算机相连。 二、实时频谱分析仪中的数字信号处理技术 1. IF 数字转换器 一般会数字化以中间频率(IF)为中心的一个频段。这个频段或跨度是可以进行实时分析的最宽的频率范围。在高IF 上进行数字转换、而不是在DC 或基带上进行数字转换,具有多种信号处理优势(杂散性能、DC抑制、动态范围等),但如果直接处理,可能要求额外的计算进行滤波和分析。 2. 采样 内奎斯特定理指出,对基带信号,只需以等于感兴趣的最高频率两倍的速率取样 3. 具有数字采集的系统中触发 能够以数字方式表示和处理信号,并配以大的内存容量,可以捕获触发前及触发后发生的事件。数字采集系统采用模数转换器(ADC),在深内存中填充接收的信号时戳。从概念上说,新样点连续输送到内存中,最老的样点将离开内存。

频谱分析仪和信号分析仪的区别

在实验室和车间最常用的信号测试仪器是电子示波器。人的思维对时间概念比较敏感,每时每刻都与时域事件发生联系,但是信号往往以频率形式出现,用示波器观察最简单的调幅载波信号也不方便,往往显示载波时看不清调制仪,屏幕上获得的是三条谱线,即载频和在载频左右的调制频。调制方式越复杂,电子示波器越难显示,频谱分析器的表达能力强,频谱分析仪是名副其实的频域仪器的代表。沟通时间一频率的数字表达方法就是傅里叶变换,它把时间信号分解成正弦和余弦曲线的叠加,完成信号由时间域转换到频率域的过程。 早期的频谱分析仪实质上是一台扫频接收机,输入信号与本地振荡信号在混频器变频后,经过一组并联的不同中心频率的带通滤波器,使输入信号显示在一组带通滤波器限定的频率轴上。显然,由于带通滤波器由无源元件构成,频谱分析器整体上显得很笨重,而且频率分辨率不高。既然傅里叶变换可把输入信号分解成分立的频率分量,同样可起着滤波器类似的作用,借助快速傅里叶变换电路代替低通滤波器,使频谱分析仪的构成简化,分辨率增高,测量时间缩短,扫频范围扩大,这就是现代频谱分析仪的优点了。 矢量信号分析仪是在预定,频率范围内自动测量电路增益与相应的仪器,它有内部的扫频频率源或可控制的外部信号源。其功能是测量对输入该扫频信号的被测电路的增益与相位,因而它的电路结构与频谱分析仪相似。频谱分析仪需要测量未知的和任意的输入频率,矢量信号分析仪则只测量自身的或受控的已知频率;频谱分析仪只测量输入信号的幅度(标量仪器),矢量信号分析仪则测量输入信号的幅度和相位(矢量仪器)。由此可见,矢量信号分析仪的电路结构比频谱分析仪复杂,价位也较高。现代的矢量信号分析仪也采用快速傅里叶变换,以下介绍它们的异同。 频谱分析议和FFT颁谱分析议 传统的频谱分析仪的电路是在一定带宽内可调谐的接收机,输入信号经下变频后由低通滤器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘出坐标图,就是输入信号的频谱图。由于变频器可以达到很宽的频率,例如30Hz-30GHz,与外部混频器配合,可扩展到100GHz以上,频谱分析仪是频率覆盖最宽的测量仪器之一。无论测量连续信号或调制信号,频谱分析仪都是很理想的测量工具。 但是,传统的频谱分析仪也有明显的缺点,首先,它只适于测量稳态信号,不适宜测量瞬态事件;第二,它只能测量频率的幅度,缺少相位信息,因此属于标量仪器而不是矢量仪器;第三,它需要多种低频带通滤波器,获得的测量结果要花费较长的时间,因此被视为非实时仪器。 既然通过傅里叶运算可以将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果,出现基于快速傅里叶变换(F盯)的频谱分析仪。这种新型的频谱分析仪采用数字方法直接由模拟/数字转换器(ADC)对输入信号取样,再经FFT处理后获得频谱分布图。据此可知,这种频谱分析仪亦称为实时频谱分析仪,它的频率范围受到ADC采集速率和FFT运算速度的限制。

网络分析仪的使用

一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB压缩点(Compression point)等。 基本原理 电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则c=λ×f,其中c为光速3×108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长λ=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。 光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。 用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(Γ Reflection coefficient)及穿透系数(Τ Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。 重要的向量系数 反射特性 在此,我们重点介绍几个重要的向量系数︰首先,我们从反射系数来定义,其中Vrefect为反射波、Vinc为入射波,两者皆为向量,亦即包含振幅及相位的信息,而反射系数代表入射与反射能量的比值,经过理论的演算,可以从传输线的特性阻抗ZO(Characteristic Impedance)得到待测组件的负载阻抗ZL,亦即,在网络分析中,一般使用史密斯图(Smith Chart)来标示不同频率下的阻抗值。另外,反射系数也可以使用极坐标表示:,其中为反射系数的大小,φ则表示入射与反射波的相位差值。

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

水质在线分析仪检测原理

. . 铬:在酸性溶液和一定的温度及压力下,试样中各种价态和形态的铬被过硫酸钾或高锰 酸钾氧化成六价铬。六价铬与二苯碳酰二肼(DPC)反应生成紫红色 Cr-苯基偶氮碳酰肼配合物,于波长 540nm 处进行分光光度测定。在一定浓度范围内符合 Lambert-Beer 定律,吸光度是和水样中 Cr(VI)的浓度成正比。 铅:在碱性条件下,水样中的的铅与显色剂生成橙黄色络合物,该颜色的变化与样液中的铅含量成正比,仪器在466nm波长处检测其吸光度,从而计算出样液中的铅浓度。 镉:在碱性条件下,水样中的的镉与显色剂生成橙黄色络合物,该颜色的变化与样液中的镉含量成正比,仪器在434nm波长处检测其吸光度,从而计算出样液中的镉浓度。 铜:在弱碱性条件下,水样中的铜和双环己酮草酰二腙反应生成蓝色化合物,于波长600nm处检测反应后混合液的吸光度,通过朗伯—比尔定律换算得出水样中铜的含量。加上相应的消解装置,可以测量总铜的浓度。 锌:在碱性溶液中,水样中的锌与锌试剂生成蓝色的络合物,其颜色深度与水样中锌的浓度成正比,在波长620nm处检测反应后溶液的吸光度从而换算出水样中锌的浓度。 砷:先用过硫酸钾在加热条件下还原水或废水中的砷,冷却后加入显色剂会形成蓝色化合物,分析仪检测此颜色变化,通过程序换算得到其浓度值。 镍:在氨溶液中碘存在下,镍与丁二酮肟作用形成酒红色可溶性络合物,于波长530nm 处进行分光光度检测,通过程序运算得出镍的浓度值。 汞:在乙醇存在条件下,汞离子与汞试剂反应生成橙红色螯和物,在558nm波长处有最大吸收,可以定量检测。 总氮:在60℃以上的水溶液中过硫酸钾按如下反应式分解,生成氢离子和氧。 K2S2O8+H2O == 2KHSO4+1/2O2 KHSO4 == K++HSO4- HSO4- == H++SO42- 加入氢氧化钠以中和氢离子,使过硫酸钾分解完全。 在120℃~124℃的碱性介质条件下,用过硫酸钾作氧化剂,不仅可将水样中的氨氮和亚硝酸盐氮氧化为硝酸盐,同时将水样中大部分有机氮化合物氧化为硝酸盐,之后加入硫酸肼将硝酸盐还原为亚硝酸盐的形式,后与盐酸萘乙二胺反应生成紫红色络合物,在540nm波长下进行检测。 氯化物:氯离子与硫酸氰贡反应,交换出硫酸氢根离子与三价铁离子反应生成红色硫氰酸铁络合物,于波长460nm处进行分光光度测定。

频谱分析仪和信号分析仪有什么区别呢

频谱分析仪:测量在仪器的整个频率范围内输入信号幅度随频率进行变化的情况。其最主要的用途是测量已知和未知信号的频谱功率。可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。 信号分析仪:它一方面集成了频谱分析仪的功能,另一方面测量在仪器的中频带宽内输入信号在单一频率上的幅度和相位。测量信号更加丰富如振动信号、声学信号等。 频谱分析仪和信号分析仪这两个术语多数情况下可以相互使用。但用信号分析仪描述更贴切,可进行更全面的频域、时域和调制域信号分析。 我们通过比较两款典型的频谱分析仪和信号分析仪来更深入对定义的理解。 安捷伦Agilent35670a是一种有二通道或四通道(选件AY6)的FFT类型频谱分析仪。这种标准仪器可在直流至100KHz左右的范围内进行频谱、网络、时域及幅度域测量。 晶钻仪器CoCo-80X是新一代手持一体化的动态信号分析仪与数据采集仪。四至八个通道数,最高150dB的动态范围,102.4kHz的采样率,进行各类频谱分析、结构分析、倍频程分析与声级计、旋转机械阶次跟踪等。另外,它支持多种语言动态切换,有英语、中文、日文、法语和西班牙语。

从上面两款仪器比较我们可以了解,外观上台式频谱分析仪有20Kg,而手持式动态信号分析仪只有2Kg。信号分析仪从可操作性、便携性、功能上都具有明细的优越性。功能上来说,频谱分析仪主要对FFT频谱信息分析,起到信号调节的功能。而动态信号分析仪除了继承频谱分析功能外,增加了振动结构分析、声学分析、转子动力学分析等功能,这些功能都是在频谱分析功能基础上增加的分析功能。 杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,负责产品销售、技术支持与产品维护,是机械状态监测、振动噪声测试、动态信号分析、动态数据采集、应力应变测试等领域的供应商,提供手持一体化动态信号分析系统、多通道动态数据采集系统、振动控制系统、多轴振动控制系统、三综合试验系统和远程状态监测系统等。

音频信号分析仪(A题一等奖)

题目名称:音频信号分析仪(A题) 华南理工大学电子与信息学院参赛队员:陈旭张洋林士明 摘要:本音频信号分析仪由32位MCU为主控制器,通过AD转换,对音频信号进行采样,把连续信号离散化,然后通过FFT快速傅氏变换运算,在时域和频域对音频信号各个频率分量以及功率等指标进行分析和处理,然后通过高分辨率的LCD对信号的频谱进行显示。该系统能够精确测量的音频信号频率范围为20Hz-10KHz,其幅度范围为5mVpp-5Vpp,分辨力分为20Hz和100Hz两档。测量功率精确度高达1%,并且能够准确的测量周期信号的周期,是理想的音频信号分析仪的解决方案。 关键词:FFT MCU频谱功率 Abstract:The audio signal analyzer is based on a32-bit MCU controller,through the AD converter for audio signal sampling,the continuous signal discrete,and then through the FFT fast Fourier transform computing,in the time domain and frequency domain of the various audio frequency signal weight and power,and other indicators for analysis and processing,and then through the high-resolution LCD display signals in the spectrum.The system can accurately measure the audio signal frequency range of20Hz-10KHz,the range of5-5Vpp mVpp,resolution of20Hz and100Hz correspondent.Power measurement accuracy up to1%,and be able to accurately measuring the periodic signal cycle is the ideal audio signal analyzer solution. Keyword:FFT MCU Spectrum Power

DH5922N动态信号测试分析系统技术参数

DH5922N动态信号测试分析系统 1、概述 DH5922N为通用型动态信号测试分析系统,应用范围广,可完成应力应变、振动(加速度、速度、位移)、冲击、声学、温度(各种类型热电偶、铂电阻)、压力、流量、力、扭矩、电压、电流等各种物理量的测试和分析。 2、应用范围 2.1 可完成全桥、半桥、1/4桥(120Ω三线制自补偿)状态的应力应变的测试和分析; 2.2 配合桥式传感器,实现各种物理量的测试和分析; 2.3 配合IEPE(ICP)压电式传感器,实现振动加速度、振动速度、振动位移(模拟二次积分可选)的测试和分析; 2.4 配合压电式传感器,实现振动加速度、振动速度、振动位移(模拟二次积分可选)及压力、自由场的测试和分析; 2.5 电压输入,与热电偶、电涡流传感器、磁电式速度传感器及各种变送器配合,对多种物理量进行测试和分析; 2.6 各种热电阻(如铂电阻、铜电阻等)温度传感器和热电阻适调器配合,对温度进行测试和分析。 3、特点 3.1 实现多通道并行同步高速长时间连续采样(多通道并行工作时,256kHz/通道); 3.2 高度集成:模块化设计的硬件,每个模块有16、32或64通道机箱形式;

3.3 每台计算机可控制多通道以上同步并行采样,满足多通道、高精度、高速动态信号的测量需求; 3.4 每通道独立电压放大器,24位A/D转换器,低通滤波器,抗混滤波器,消除通道间串扰影响,提高系统的抗干扰能力; 3.5 准确的采样速率:先进的DDS数字频率合成技术产生高精度、高稳定度的采样脉冲,保证了多通道采样速率的同步性、准确性和稳定性; 3.7 数字磁带机信号记录功能:实现长时间实时、无间断记录多通道信号; 3.8 进口雷莫接插件:输入接插件采用了进口高性能雷莫头,大大提高了小信号输入的可靠性,操作也十分方便; 3.9 信号适调器:配套各种可程控的信号适调器,通道自动识别,输入灵敏度实现归一化数据; 3.10 转速/计数器通道:可接各种脉冲/频率输出型传感器或计数器,用于转速、脉冲计数或频率的测量; 3.11 信号源输出通道:多通道输出互不相关,可输出多种信号,包括:正弦、正弦扫频、随机、伪随机、猝发随机、半正弦、方波、磁盘输出等,可与多种实验设备配合使用; 3.12 运行于Win2000/XP/7/8操作系统,用户界面友好、操作简便灵活; 3.13 计算机通过USB3.0接口与仪器通讯,对采集器进行参数设置(量程、传感器灵敏度、采样速率等)、清零、采样、停止等操作,并实时传送采样数据。 4、系统连接图 4.1 仪器与多种传感器的连接,如图1所示

Spider-20动态信号分析仪公司推荐

Spider-20是一款紧凑而强大的无线动态信号分析仪和数据采集仪。它提供4个24位高精确高保真输入通道,和一个独特的软件可选的转速计输入信号源输出通道(使用传统的BNC连接器)。每个输入可单独编程接受AC或DC电压或从一个内置电子IEPE(ICP)传感器输出。Spider20 的尺寸为13.5*10.9*3.25cm,可充电,内置闪卡,内置WIFI接口。 使用iPAD可以设置、查看或记录历史信号,以及执行频谱分析、测量频率响应函数FRF和相干函数。将它连接到笔记本或PC电脑还可享受我们EDM软件提供的全部软件功能,包括1/N倍频程声学功能、旋转机械阶次跟踪,冲击响应谱测试或专用的数字滤波器等。 Spider-20 完全脱离PC操作,只需用手进入黑盒操作模式,利用我们灵活的自动测试计划和阈值检测软件使Spider-20变成一个智能化无人监控能够响应数据条件或网络指令,通过邮件向您发送通知。是有线款动态信号分析仪和数据采集仪,用有线以太网连接取代了Wi-Fi,与Spider-20 技术指标和功能相同。 Spider-20特点 超便携易用性:重量只有560g 高精度性:24位分辨率,100dB动态输入

范围内置WIFI,4G闪存,电池保证6小时续航4个输入通道,1个转速输出通道,最高采样率102.4KHz 脱离PC,黑匣子工作模式支持iPAD、笔记本、PC电脑连接操作。 Spider-20功能 实时数据记录,瞬态捕捉转速、相位、轴心轨迹实时数据滤波阶次跟踪倍频程分析与声级计实时算数运算报警监测正弦扫频FRF分析时域统计分析冲击响应谱自动阈值检测任意波形输出传感器校准系统前端校准自功率谱、互功率谱、相干与传递函数。 Spider-20应用 动态信号分析振动测试汽车动力学机械故障诊断模态分析过程监控自动阈值检测声学研究NVH应用机械现场监测全身振动远程监测路谱试验数据采集。

矢量信号分析仪原理

矢量信号分析仪原理 矢量信号分析仪是常用的进行雷达和无线通讯信号分析的仪器。 模拟扫描调谐式频谱分析仪使用超外差技术覆盖广泛的频率范围; 从音频、微波直到毫米波频率。快速傅立叶变换(FFT) 分析仪使用数字信号处理(DSP) 提供高分辨率的频谱和网络分析。如今宽带的矢量调制( 又称为复调制或数字调制) 的时变信号从FFT 分析和其他DSP 技术上受益匪浅。VSA 提供快速高分辨率的频谱测量、解调以及高级时域分析功能,特别适用于表征复杂信号,如通信、视频、广播、雷达和软件无线电应用中的脉冲、瞬时或调制信号。 图1 显示了一个简化的VSA 方框图。VSA 采用了与传统扫描分析截然不同的测量方法; 融入FFT 和数字信号处理算法的数字中频部分替代了模拟中频部分。传统的扫描调谐式频谱分析是一个模拟系统; 而VSA 基本上是一个使用数字数据和数学算法来进行数据分析的数字系统。VSA 软件可以接收并分析来自许多测量前端的数字化数据,使您的故障诊断可以贯穿整个系统框图。 图1. 矢量信号分析过程要求输入信号是一个被数字化的模拟信号,然后使用DSP 技术处理 并提供数据输出; FFT 算法计算出频域结果,解调算法计算出调制和码域结果。 VSA 的一个重要特性是它能够测量和处理复数数据,即幅度和相位信息。实际上,它之所以被称为“矢量信号分析”正是因为它采集复数输入数据,分析复数数据,并输出包含幅度和相位信息的复数数据结果。矢量调制分析执行测量接收机的基本功能。在下一篇“矢量调制分析基础”中,您将了解到矢量调制与检波的概念。 在使用适当前端的情况下,VSA 可以覆盖射频和微波频段,并能提供额外的调制域分析能力。这些改进可以通过数字技术来实现,例如模拟- 数字转换,以及包含数字中频(IF) 技术和快速傅立叶变换(FFT) 分析的DSP。 因为要分析的信号变得越来越复杂,最新一代的信号分析仪已经过渡到数字架构,并且往往

频谱分析仪介绍

频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。 但需注意的是,频谱仪测量的是高频信号,其高灵敏度也就决定了,要注意被测信号的幅度范围,以免损坏高频头,在2.24uv-1V之间,超过其范围应另加相应的衰减器。 AT5010频谱分析仪频率范围在0.15~1000MHz(1G),其系列还有3G、8G、12G等产品。 AT5010频谱分析仪可同时测量多种(理论上是无数个)频率

及幅度,Y轴表示幅度,X轴表示频率,因此能直观的对信号的组成进行频率幅度和信号比较,这种多对比件的测量,示波器和频率计是无法完成的。 2.性能指标 (1)频率 频率范围:0.15—1050MHz 中心频率显示精度:士lOOkHz 频率显示分辨率:lOOkHz 扫频宽度:100kHz/格—100MHz/格 中频带宽(一3dB):400kHz和20kHz 扫描速度:43Hz (2)幅度 幅度范围:一100~+13dBm 屏幕显示范围:80dBm(10dB/格) 参考电平:一27-13dBm(每级10dB) 参考电平精度:±2dD 平均噪声电平:一99dBm (3)输入。 输入阻抗:50n 插座:BNC 衰减器:0~40dB 输入衰减精度:±1dDm

频谱分析仪的使用方法

电磁干扰测量与诊断 当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。本文要介绍有关电磁干扰测量和判断干扰发生源的方法。 1.测量仪器 谈到测量电信号,电气工程师首先想到的可能就是示波器。示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。但是示波器并不是电磁干扰测量与诊断的理想工具。这是因为: A. 所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。因此测试得到的结果无法直接与标准比较。为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。 B. 电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器是无法进行测量。 C. 示波器的灵敏度在mV级,而由天线接收到的电磁干扰的幅度通常为V级,因此示波器不能满足灵敏度的要求。 测量电磁干扰更合适的仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。 对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器。而用频谱分析仪可以直接显示出信号的各个频谱分量。 1.1 频谱分析仪的原理 频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 图1 频谱分析仪的原理框图

在线水中油分析仪使用说明书用户手册

BQSY-3010型 水中油 在 线 分 析 仪

声明 在开箱、安装和操作此设备之前,请完整地阅读本手册。特别要注意所有的危险警告和注意事项。否则,可能会对操作者造成严重的人身伤害,或者对设备造成损坏。要确保本设备所提供的防护措施不受破坏,请不要使用本手册规定之外的方法来安装或者使用本设备。

目录 第一章安全事项 (5) 1.1 电气安全 (5) 1.2 腐蚀性安全 (5) 第二章系统概述 (6) 2.1 主要特点 (6) 2.2技术参数 (7) 2.3 主要零配件清单 (7) 第三章仪器安装 (9) 3.1 拆箱和检查 (9) 3.2 外观及尺寸 (9) 3.3 位置要求 (10) 3.4 机械安装 (10) 3.5 管道连接 (12) 3.5 电气连接 (14) 3.6 通信连接 (15) 第四章标准溶液配置 (16) 4.1 注意事项 (16) 4.2 配置试剂 (17) 4.2.1 所需药品 (17) 4.2.2 所需器皿 (17) 4.2.3 标准溶液配置 (17) 4.2.4 试剂瓶放置 (17) 第五章使用入门 (18) 5.1 认识在线分析仪 (18) 5.2 工作原理 (18)

第六章软件操作 (19) 6.1 初始登录 (19) 6.1.1 主界面 (19) 6.1.2 操作登录 (19) 6.1.3 功能菜单 (20) 6.2 系统设置 (20) 6.2.1 功能概述 (20) 6.2.2 操作说明 (21) 6.3 系统状态 (27) 6.3.1 功能概述 (27) 6.3.2 操作说明 (27) 6.4 数据管理 (28) 6.4.1 功能概述 (28) 6.4.2 操作说明 (28) 6.5 功能测试 (30) 6.5.1 功能概述 (30) 6.5.2 操作说明 (31) 第七章维护 (32) 7.1 维护安排 (32) 7.2 系统清洗 (32) 7.3 系统报警与故障处理 (33) 第八章保修 (34)

5.8 数字信号分析仪的工作原理及简介

数字信号分析仪的工作原理及简介

一、噪声与平均技术 在数字信号的采集和处理过程中,都有不同程度的被噪声污染的问题,如电噪声、机械噪声等。这种噪声可能来自试验结构本身,可能来自测试仪器的电源及周围环境的影响等等。 通常采用平均技术来减小噪声的影响,一般的信号分析仪都具有多种平均处理功能。可以根据研究的目的和被分析信号的特点,选择适当的平均类型和平均次数。

1.谱的线性平均 A ( f )可代表自谱、互谱、有效值谱、频响函数、相干函数等频域函数,i 为被分析记录的序号,n d 为平均次数。 对于平稳随机过程的测量分析,增加平均次数可减小相对标准偏差。 ) ()(f n n f n A d i i d A n ΔΔ∑== 1 1这是一种最基本的平均类型。 n=0,1,…N-1

2.时间记录的线性平均 时间记录的线性平均也称为时域平均。 ) (1 )(1 t k x n t k x n d i i d ΔΔ∑= =n d 为平均次数,对于n d 个时间记录的数据,按相同的序号样点进行线性平均。 k=0,1,…N—1 然后对平均后的时间序列再做FFT 和其它处理,时域平均应有一个同步触发信号。 随机过程的测量,不能采用时域平均。

转轴振动信号的同步触发时域平均 u(t)—键相同步触发信号;x(t)—转轴(或轴承)振动信号;T—平均周期 冲击瞬态过程的自信号同步触发时域平均

二、数字信号分析仪的一般原理和功能 整个过程是通过数字运算来完成频谱分析的过程称为数字信号分析。 数字信号分 析的基本过 程如图所示 抗混滤波在输入信号进行数模转换前先由一个模拟式低通滤波器进行抗混滤波。然后再进行采样数据处理。

多功能虚拟信号分析仪使用说明书

多功能虚拟信号分析仪使用说明书(U(User ser G uide 1.1.33.1.166 uide)) 1.1. 仪星电子科技 2011-3-29

目录 1.1.分析仪功能介绍 分析仪功能介绍………………………………………………………………12.2.软件中基本操作简介 软件中基本操作简介..................................................................22.1鼠标拖动、鼠标跟踪和区域选择切换鼠标拖动、鼠标跟踪和区域选择切换 (2) 22.2水平缩放水平缩放 (2) 22.3水平移动水平移动 (2) 22.4垂直缩放垂直缩放 (2) 22.5垂直移动垂直移动 (2) 22.6鼠标跟踪鼠标跟踪 (2) 22.7区域放大区域放大 (2) 23.3.函数发生器的使用 函数发生器的使用……………………………………………………………33.3.11声卡使用说明声卡使用说明……………………………………………………………… ………………………………………………………………33.2USB 模块使用说明模块使用说明……………………………………………………………………………………………………………………43.3.33波形文件输出波形文件输出………………………………………………………………………………………………………………………………44.4.示波器的使用 示波器的使用…………………………………………………………………54.4.11示波器分析流程示波器分析流程…………………………………………………………… ……………………………………………………………54.4.22属性设置属性设置…………………………………………………………………… ……………………………………………………………………64.2.1声卡属性声卡属性…………………… ………………………………………………………………………64.2.2USB 模块属性模块属性……………… …………………………………………………………………74.2.3仿真模式属性仿真模式属性………………… …………………………………………………………………74.2.3串口捕获属性串口捕获属性………………… …………………………………………………………………74.4.33数据抓帧数据抓帧…………………………………………………………………………………………………………………………………………84.4.44波形处理波形处理…………………………………………………………………… ..............................................................................84.4.1分析视图管理 (8) 4.4.2波形视图 (9) 4.4.3频率频率/ /相关视图...............................................................94.4.4李萨茹视图 (10) 4.5滤波器文件滤波器文件……………………………………………………………… (10)

三角波信号参数分析仪

目录 一.总体方案 (1) 1.总体设计框图 2.方案论证与比较 二.理论分析与计算 (2) 1.频率测量理论误差分析 2.三角波斜率变换测量理论以及pwm调制输出 四.主要电路设计 (32) 1.三角波幅值测量电路 2.三角波—方波变换电路 3.斜率—脉冲宽度转换电路 五.软件设计流程 (14) 1.软件流程介绍 2.软件流程图 六.系统测试与误差分析 (15) 1.测量仪器与环境 2.测量数据 3.误差分析 七.经验和心得 (16) 八.参考文献 (16)

简易三角波信号参数分析仪 电子科技大学白云碎了 【摘要】本系统采用SOC单片机C8051F020为数据处理核心,以波形变换、PWM 脉冲宽度调制为测量前端处理思想,由三角波波形发生、三角波—方波转换、频率测量、幅度测量、液晶显示部分组成。系统使用T法并引用等精度的思路来实现对频率的测量。前端通过比较器构成的峰值检波电路实现对幅度的测量。斜率的测量则采用将三角波变换为一定占空比的方波,再采用PWM脉冲宽度调制输出一定的电压值,从而将三角波斜率转化为不同的电压值来测量。整体系统架构集中在单片机和模拟前端上实现了题目要求的各种功能。 【关键词】C8051F020 波形变换等精度测频脉冲宽度调制 【Abstract】The system uses a C8051F020 single chip SOC for core data processing to waveform transformation, PWM pulse width modulation for the measurement of front-end thinking, by the occurrence of triangular waveform, the triangular wave - square wave conversion, frequency measurement, magnitude measurement, liquid crystal display components. T system, such as law and invoked the idea of accuracy to achieve the measurement of frequency. Front-end device by comparing the composition of the peak detector circuit of the measurement range. Measurement of the slope of the triangular wave is used to transform the square wave for a certain duty cycle, and then the use of pulse width modulation PWM output a certain voltage value, thus the slope of the triangular wave voltage into a different value to measure. The overall system architecture on the MCU and analog front-end to achieve the title of various functions required by. 【Keywords】C8051F020 Waveform Transform equal—precision measurement Pulse width modulation 一、总体方案设计 1.总体设计框图 图1 系统设计框图

水质总锌在线分析仪

系统概述: 待测样品被送入到消解反应池后加入强氧化剂,随后进行紫外加热消解,再紫外光的照射下各种有机干扰物质被快速分解,同时所有形态的锌被统一氧化成二价锌,接着加入还原剂反应完过量的氧化剂,再调节溶液的酸度后加入特性显色剂进行显色反应,颜色的深浅与水样中的总锌含量成正比,通过光度法测量反应产物的吸光度值,从而得到水样中的总锌含量。T8000-Zn水质总锌在线分析仪是对各种行业水中锌浓度进行实时连续监测的仪器。 技术参数: 测量方法:高温酸化消解,将所有形态的锌转化成同一价态,在掩蔽掉其他干扰离子后显色测量地表水和工业废水中各种锌的总含量; 测量范围:(0.1—10)mg/L; 测量准确度:准确度: <3%; 重复性:<3%; 零点漂移:±0.05mg/L; 量程漂移:±10%; MTBF(无故障运行时间):≥720 h/次; 实际水样比对误差值:±10%; 测量方式:可实现多种选择; 测量耗时:15—60min可任意设定,短时间为15min; 消解方式:可定制慕迪科技独有的紫外消解技术,通过该技术可缩短测量时间; 消解时间:5—30min,可任意设定; 校正方式:自动定时校正或手动校正; 试剂消耗:每次测量过程中每种试剂仅消耗1mL; 仪器内部取样:采用注射泵; 仪器外部取样:分别供应潜水泵和自吸泵两种方式; 预处理装置:多台产品可同时共用一个预处理装置; 二次污染:所用化学试剂均回收,不存在对外直接排放。 数据传输:供应4—20 mA、RS232、RS485、GPRS等多种数据传输接口;器。 环境温度:+5°C到+40°C; 机械尺寸:500 mm x 780 mm x 320 mm; 重量:约30kg; 电源:(220±20) VAC /(50±0.5) Hz; 功耗:约100 W; 系统特点: 紫外消解技术,极大的缩短了样品的测量时间同时去除了干扰物质,单次测量耗时不超过5min; 化学反应时间可以调整,测定过程及结果满足相关国家标准; 水质总锌在线分析仪可调定量取样装置,确保仪器通过调整试剂用量和取样量来准确测量各种水样; 试剂取用采用非接触式注射泵,避免试剂直接腐蚀试剂泵,可大大延长核心部件寿命、降低用户使用成本; 全进口器件及分析流路设计和试剂配方保证了极高的测量重现性,目前测量重现性可达到5%;

相关主题