搜档网
当前位置:搜档网 › 48V-50A开关电源整流模块主电路设计

48V-50A开关电源整流模块主电路设计

48V-50A开关电源整流模块主电路设计
48V-50A开关电源整流模块主电路设计

48V/50A开关电源整流模块主电路设计

高频开关电源系统具有体积小,重量轻,高效节能,输出纹波小,输出杂音电压小和动态响应性能好等很多优点,现已开始逐步地取代整流式电源而成为现代通讯设备的新型基础电源系统[1]。随着电子技术,电力电子技术,自动控制技术和计算机控制技术的发展,高频开关电源系统的性能也越来越好。通信用开关电源系统作为开关式稳压电源的一种形式,它的设计内容和设计方法都具有自己的特殊性。

要设计一套通信用开关电源系统,首先要明白对它的全面要求,然后再设计系统的各个部分。高频开关电源主回路和控制回路所用的电路形式,元器件,控制方式都发展很快。它们的设计具有特殊的内容和方法。

1 设计要求和具体电路设计

通信基础开关电源系统的关键部分是开关电源整流模块。整流模块的规格很多,结合在工

作中遇到的实际情况,提出该模块设计的硬指标如下:

1) 电网允许的电压波动范围

单相交流输入,有效值波动范围:220 V±20%,即176~264 V;频率:45~65 Hz。

2) 直流输出电压,电流

输出电压:标称-48V,调节范围:浮充,43~56 5V;均充,45~58V。

输出电流:额定值:50A。

3) 保护和告警性能

①当输入电压低到170 VAC或高到270 VAC,或散热器温度高到75 ℃时,自动关机。

②当模块直流输出电压高到60 V,或输出电流高到58~60 A时,自动关机。

③当输出电流高到53~55 A时,自动限流,负载继续加大时,调低输出电压。

4) 效率和功率因数

模块的效率不低于88%,功率因数不低于0.99。

5) 其他指标

模块的其他性能指标都要满足“YD/T731”和“入网检验实施细则”等行业标准[2]。

由于模块的输出功率不大,可采用如下的基本方案来设计主电路:

1) 单相交流输入,采用高频有源功率因数校正技术,以提高功率因数;

2) 采用双正激变换电路拓扑形式,工作可靠性高;

3) 主开关管采用 VMOSFET,逆变开关频率取为50 kHz;

4) 采用复合隔离的逆变压器,一只变压器双端工作;

5) 采用倍流整流电路,便于绕制变压器。

依照上述方案,即可设计出主电路的基本形式。

由图可见,二极管D5和D6的峰值电流约为50 A,平均电流为25 A。D5和D6承受的最高反向电压为:

VD=Vidcmax/n=395V/3≈132V

因此,可以选择300∶400 V,50∶60

A的超快软恢复的整流二极管模块,如ST的STTA12004T(V),260 A等。

2)逆变主开关管的选择

开关管的电流ICM等于逆变变压器原边的电流I1,即:

ICM="I1

"=I2/n=25 A/3≈8.3 A

所以,逆变主开关管T1∶T4可以选择(550∶600)V,(20∶30)A的VMOSFET,如IR 的IRFK3FC50等模块。

续流二极管D1∶D4可以选择(550∶600)V,(15∶20)A的快速恢复二极管。

3)滤波电感的计算|

直流输出LC滤波的工作频率为100 kHz,通信开关电源整流模块要求在5%的额定负载下,保证杂音满足指标。额定情况下,最大占空比:

4)滤波电解电容的计算

按照离散杂音的要求,电容上允许的100 kHz下的纹波Δuc=3 mV。通过选择开关电源专用电解电容并和无极性电容并联,将总的ESZ控制在1.5 mΩ以下,则有: C=ΔiLT/(t×ΔVc)≈5 556 μH

2 结语

现代通信设备已开始广泛地采用开关式基础电源系统。本文结合笔者所在的“通信原理试验室”建设情况,设计了开关电源系统整流模块的主电路。该电路已经成功应用于试验室供电系统,完全符合设计要求,达到了预期的目的。

开关电源(整流模块)电路构成

开关电源(整流模块)电路构成 随着全控型电力电子器件的发展与使用,仅工作于器件饱和与截止状态的直流稳压电源应运而生。这种用于电能转换和控制的电力电子器件,以20千赫兹以上的频率在饱和与截止状态间切换,工作于开关状态,因此将这种工作于器件开关状态的电源,称之为高频开关电源。 开关电源结构上由强电主电路与弱电电路构成,强电主电路由电力电子器件为核心的各种电能转换电路构成,完成电能形态转换;弱电电路负责主电路中电力电子器件的驱动与负反馈控制。主电路包括整流电路(AC/DC)、直流变换电路(DC/DC)、功率因数矫正电路、滤波电路等,弱电电路包括PWM波生成电路、控制电路、保护电路和均流电路等,两部分协同工作,实现交流市电转换为所需稳压直流电的目的。各模块构框图如图1所示。 图1 开关电源(整流模块)内部框图 交流电首先进入滤波与入口保护功能电路模块,输入EMI滤波用于滤除来自电网的电磁干扰,以及抑制整流器对电网的电磁干扰,使整流器具有良好的电磁兼容性;软启动电路用于降低整流器开机时的冲击电流,避免整流器开机时对电网造成冲击。当交流输入电压超过整流器的输入电压上、下限值时,输入过、欠压保护电路关闭交流输入,整流器停止工作;当交流输入恢复正常时,自动开启交流输入,使整流器恢复输出。浪涌防护用于抑制由于雷击等造成的浪涌电流。 PFC功率因数校正电路用于减少整流器输入电流中的谐波成分,使整流器的功率因数接近1。PFC校正电路同时对输入电压进行预整流,输出约为400V的直流电压给后级DC-DC 变换电路。PFC输出的约为400V的直流电经DC/DC变换后,按设定值输出稳定的直流电。输出EMI滤波使整流器输出端的杂音电压满足要求,同时抑制输出端的电磁干扰,使整流器具有良好的电磁兼容性。辅助电源电路则为整流器内部各部件提供相应的直流工作电压。 控制及通讯模块的电路属于弱电电路,当整流器与监控单元通信正常时,按照监控单元

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

第3章高频开关型整流器

第3章高频开关型整流器 3.1基础知识 3.1.1高频开关型整流器概述 1.高频开关型整流器的分类 一般所说的高频开关电源,是指由交流配电模块、直流配电模块、监控模块和整流模块等组成的直流供电电源系统,它名称的由来就是因为其具有高频开关型整流器,由于高频开关型整流器目前大都是模块化结构,所以有时也称高频开关型整流器为高频开关整流模块。 高频开关型整流器的分类如下。 ①按开关电源控制方式及开关线路技术,可分为脉冲宽度调制(Pulse Width Modulation,PWM)型和谐振型。PWM型高频开关整流器具有控制简单,稳态直流增益与负载无关等优点,但整流器中的功率开关器件工作在强迫关断和强迫导通方式下,在开关截止和导通期间有一定的开关损耗,而且开关损耗随开关频率的提高而增加,故限制了整流器开关工作频率的进一步提高。谐振型高频开关整流器则可以使其在更高的频率下工作且开关损耗很小。它又分为串联谐振型、并联谐振型和准谐振型三种,目前应用较为普遍的是准谐振型高频开关整流器。 ②按开关电源功率变换电路的结构,可分为不隔离式变换和隔离式变换。在不隔离式变换电路中,根据输出电压与输入电压的关系,又可分为升压型变换电路、降压型变换电路和反相型变换电路。在隔离式变换电路中,根据变换器电路的结构,又可分为单端反激变换器、单端正激变换器、推挽式变换器、半桥式变换器和全桥式变换器。 ③按开关电源所用的开关器件,分为双极型晶体管开关电源、功率金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)开关电源、绝缘栅门极晶体管(Insulated Gate Bipolar Transistor,IGBT)开关电源和晶闸管开关电源等。一般功率MOSFET用于开关频率在100kHz以上的开关电源中,晶闸管用于大功率开关电源中。 ④按功率变换电路的激励方式,可分为自激式和他激式。自激式开关电源在接通电源后功率变换电路自行产生振荡,即对该电路是靠电路本身的正反馈过程来实现功率变换的。自激式电路简单、响应速度快,但开关频率变化大、输出纹波值较大,通常只在小功

美的内部资料-QMN-J33[1].228-2009_电流检测电路设计指引

美的家用空调国内事业部设计规范规范编号:QMN-J33.228-2009 电流检测电路设计指引 (发布日期:2009-04-02) 1范围 本设计指引对电流检测电路的电路原理,各器件的参数计算选择,相关技术要求和实际使用中的有关问题进行了阐述。 本设计指引适用于美的家用空调国内事业部的电流检测电路的设计。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 QMN-J52.053 电流互感器(原标准号05.132) 3定义 无 4总述 在空调整机上,常用到电流互感器检测压缩机工作电流,下面根据常用电流检测电路介绍其工作原理及注意事项。 1

美的家用空调国内事业部设计规范规范编号:QMN-J33.228-2009 5电路原理 5.1电路原理图 5.2工作原理简介 在了解电路工作原理之前,首先简单介绍电流互感器CT1的工作原理。电流互感器实际是一个线性变压器。其输入电流(被检测电流)与输出电流跟它的内部线圈匝数成正比关系(均为交流电流量)。这样我们开始叙述电路的工作原理: 假如检测压缩机电流值为Ii,根据电流互感器固定的初级/次级线圈匝数比(常量)C,可确定输出电流(为交流)Io=Ii/C;在选取负载电阻R6(通常为1KΩ、1%)时,其阻值远远小于两分压电阻值。这样,R6的阻值约等于实际的负载电阻值。于是,R6两端的电压Uo=R6*Io=R6*Ii/C;(注:此为交流电压值)。 在经过整流二极管D10半波整流后(由于MCU 的A/D口所需输入电流很小,此处按严格的计算关系),二极管D10的负极与地之间的直流电压V1=1.414/2*Uo=0.707*R6*Ii/C;要减掉二极管上的压降约0.5V。 直流电压V1在分压电阻R14和R13上分压,得出该点的电压值V2=R13/(R13+R14)*V1=R13/(R13+R14)*(0.707*R6*Ii/C-0.5),这就是最终输入到芯片检测口的压缩机电流参数模拟量(该值仍需通过实验最终确定。电流互感器0057W对应不同分压电阻R14时输入到芯片检测口的电压参数表见附录)。 直流电压V2必须经过电解电容E6平滑波形,成为较平稳的电压模拟量输入到芯片A/D口。钳位二极管D9目的是确保输入到芯片口的模拟量不大于5V,以保证芯片的工作可靠性;电阻R12和电容C8滤除输入量的高频成分,减小其对MCU的影响。 5.3各元器件作用 电流互感器CT1——将要求检测的交流电流转化成电压信号(交流); 模拟负载电阻R6——主要是为CT1的磁场转化提供一个偏置电阻,保证CT1内部的转化磁场处 于非饱和状态; 2

300w开关电源设计(图纸)

TND313/D Rev 3, Sep-11 High-Efficiency 305 W ATX Reference Design Documentation Package ? 2011 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this reference design documentation package “AS IS” and the recipient assumes all risk associated with the use and/or commercialization of this design package. No licenses to ON Semiconductor’s or any third party’s Intellectual Property is conveyed by the transfer of this documentation. This reference design documentation package is provided only to assist the customers in evaluation and feasibility assessment of the reference design. The design intent is to demonstrate that efficiencies beyond 80% are achievable cost effectively utilizing ON Semiconductor provided ICs and discrete components in conjunction with other inexpensive components. It is expected that users may make further refinements to meet specific performance goals.

PI开关电源电路设计

PI开关电源设计指引 (发布日期:2011-11) 1范围 本标准描述了开关电源电路硬件控制的实现方法,一般开关电源电路设计者在使用不同型号的开关电源控制IC及不同的开关电源电路方案时可以此为参考,更快、更好地完成特定功能的硬件设计。希望本标准能对硬件可靠性的提升有所帮助。 本标准适用于PI开关电源电路的设计。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 7725 房间空气调节器 GB/T 15184 按能力批准评定质量的电子设备用开关电源变压器分规范 GB/T 14714 微小型计算机系统设备用开关电源通用技术条件 QMK-J33.242 开关变压器设计指引 3硬件接口定义及相关原理图 3.1控制芯片型号——TinySwitch-III系列离线开关IC(TNY276~TNY279); 3.2管脚功能说明如下: EN/UV脚:输入使能信号和输入线电压欠压检测。 1、EN功能:在正常工作时,通过此引脚可以控制功率MOSFET的开关,当从此引脚拉出的 电流大于115μA,MOSFET被关断。当此引脚拉出的电流小于75μA时,MOSFET重新开启。 2、UV功能:在EN/UV引脚和DC电压间连接一个外部电阻可以用来感测输入电压的欠压情况。 如果没有外部电阻连接到此引脚,TinySwitch-III可检测出这情况并禁止输入电压欠压保护功能。 BP/M脚:旁路/多功能控制脚。 1、旁路:一个外部旁路电容连接到这个引脚,用于生成内部5.85 V的供电电源。 2、外部限流点设定:根据所使用电容的容值选择电流限流值。 3、关断功能:在输入掉电时,当流入旁路引脚的电流超过I SD时关断器件,直到BP/M电压下降 到4.9 V之下。还可将一个稳压管从BP/M引脚连接到偏置绕组供电端实现输出过压保护。 D脚:旁路电容充电引脚,同时也是内部功率MOSEFT的漏极(D极)。 S脚:内置功率MOSEFT的源极(S极),同时也是开关电源控制电路的参考点。 3.3参考设计原理图

高压开关电源概念及分类

高压开关电源概念及分类 一、概念 高压开关电源是利用现代电力电子技术,控制高压开关管开通和关断的时间比率,维持不乱输出电压的一种电源,高压开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。高压开关电源和线性电源比拟,二者的本钱都跟着输出功率的增加而增长,但二者增长速率各异。线性电源本钱在某一输出功率点上,反而高于高压开关电源,这一点称为本钱反转点。跟着电力电子技术的发展和立异,使得高压开关电源技术也在不断地立异,这一本钱反转点日益向低输出电力端移动,这为高压开关电源提供了广阔的发展空间。 高压开关电源高频化是其发展的方向,高频化使高压开关电源小型化,并使高压开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外高压开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。高压开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。SCR在高压开关电源输入整流电路及软启动电路中有少量应用,GTR驱动难题,高压开关频率低,逐渐被IGBT和MOSFET 取代。 二、3个前提 1、高压开关:电力电子器件工作在高压开关状态而不是线性状态 2、高频:电力电子器件工作在高频而不是接近工频的低频 3、直流:高压开关电源输出的是直流而不是交流 三、高压开关电源的分类: 人们在高压开关电源技术领域是边开发相关电力电子器件,边开发高压开关变频技术,两者相互促进推动着高压开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。高压开关电源可分为AC/DC 和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及出产工艺在海内外均已成熟和尺度化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,碰到较为复杂的技术和工艺制造题目。以下分别对两类高压开关电源的结构和特性作以阐述。 四、接地 高压开关电源比线性电源会产生更多的干扰,对共模干扰敏感的用电设备,应采取接地和屏蔽措施,按ICE1000、EN61000、FCC等EMC限制,高压开关电源均采取EMC电磁兼容措施,因此高压开关电源一般应带有EMC电磁兼容滤波器。如利德华福技术的HA系列高压开关电源,将其FG端子接大地或接用户机壳,方能知足上述电磁兼容的要求。 五、保护电路 高压开关电源在设计中必需具有过流、过热、短路等保护功能,故在设计时应首选保护功能齐备的高压开关电源模块,并且其保护电路的技术参数应与用电设备的工作特性相匹配,以避免损坏用电设备或高压开关电源。

ZZG22A高频开关整流器使用说明书

ZZG22A 高频开关整流器 使 用 说 明 书

1概述 ZZG22A系列高频开关整流器是我公司集多年生产电力操作电源的经验,采用软开关变换技术专为电力操作电源开发的开关型整流模块,可单台或多台并联运行向直流负荷供电,并同时对电池组充电,满足电力操作电源对整流器的要求。可广泛应用于发电厂、变电站,亦可作为一般的直流稳压、稳流电源使用。 2 使用条件 2.1环境温度:-5℃~+40℃; 2.2大气压力:80kPa~110kPa; 2.3相对湿度:最湿月的平均最大相对湿度为95%,同时该月的平均最低温度为25℃; 2.4使用地点应有防御雨、雪、风、沙的设施。 3 型号说明 标称直流输出电压:110V、220V 额定输出电流:5A、10A、20A 系列号:三相交流输入 高频开关整流器装置 本系列高频开关整流模块总共有以下几种规格: ?ZZG22A-10220:输出标称直流电压为220V,额定电流为10A ?ZZG22A-05220:输出标称直流电压为220V,额定电流为5A ?ZZG22A-10110:输出标称直流电压为110V,额定电流为10A ?ZZG22A-20110:输出标称直流电压为110V,额定电流为20A 4 产品外形 4.1 ZZG22A系列产品外形如图1、2、3所示

图1 图2 图3 4.2产品重量:整机重量不大于10kg。4.3 端子功能定义见表1:

表1 5 主要功能和特点 5.1稳压限流运行功能:整流模块能以设定的电压值或限流值长期对电池组充电并带负载运行。当输出电流大于限流值时模块自动进入稳流运行状态,输出电流小于限流值时模块自动进入稳压运行状态。 5.2 输出电压、输出电流本机调节功能:同时按下“▲”,“▼”两键一次,进入“H-1”界面,调节“▲”或“▼”可设定整流模块输出直流电压值,按“V/A”确定后有效,输出直流电压为180V~290V连续可调;同时按下“▲”,“▼”两键两次,进入“H-2”界面,调节“▲”或“▼”可调节该整流模块最大限流点, 按“V/A”确定后有效,最大限流点为0.2Ie~1.1Ie连续可调。 5.3具有LED显示功能:单按面板上的“V/A”键,显示整流模块当前输出的电压、电流值。 5.4并机功能:多台同型号的整流模块可以并联运行并自动均流。其中某台故障时自动退出,不影响其它整流模块正常运行。 5.5热插拔功能:正在机架上并联工作的多台整流模块,不停电状态下可以任意插拔其中一台模块使其接入系统或脱离系统而不影响其他模块的正常工作。 5.6散热方式:强迫风冷。设计了独立的风道,提高了可靠性和改善了工作环境。 5.7保护及报警功能 5.7.1输入保护:若整流模块的交流输入电源出现过压、欠压时,整流模块即停机,无输出电压,面板上“保护ALM”黄灯亮。当交流输入电源恢复正常后,面板上“保护ALM”黄灯灭,整流模块自动启动,正常运行。交流输入过、欠压保护值见表二。 5.7.2 过流保护:无论何种原因引起过流,整流模块都将保护停机,面板上“保护ALM”黄灯亮。过一段时间后,可自动启动,进入正常运行。多台整流模块在并机运行时,若

按键和LED复用电路设计指引

电控设计规范按键和LED复用电路设计指引 1总述 在空调整机上,常常用到按键和LED显示电路,但由于芯片口资源有限,需要按键和LED复用芯片口,下面根据常用按键和LED复用电路介绍其工作原理及注意事项。 2电路原理 2.1电路原理图 2.2工作原理简介 74LS164芯片(以下简称164芯片):8位串入并出移位寄存器。 如图所示,数码管与LED采用共阳极驱动,164芯片Q0-Q7需输出低电平才能点亮与其对应的数码管字段或LED灯;164芯片输出口作为SEG口输出信号,主芯片口作为COM口, 且数码管和LED 的显示采用COM口逐一点亮,SEG口一次全亮的方式;由于数码管个位、十位和LED等的点亮时序不同,所以他们之间不会相互干扰; 由于数码管与LED显示用了3个COM口,建议按键扫描程序每隔8 ms左右进入一次,连续四次检测到按键输入就确定,如此可消除按键抖动,增强抗干扰; 由于按键扫描频率为8ms,远小于人眼能感知的闪烁频率12ms,因此数码管和LED灯看起来都是没有闪烁的。 2.3各元器件作用 第 1 页

在电路中,164芯片输出口Q0-Q7作为SEG口输出信号,包括数码管、LED显示信号及按键扫描信号; Q1、Q2分别控制数码管个位,十位的显示与否,Q3控制LED的显示与否; 电阻R28,R39,R40确保三极管Q1,Q2,Q3可靠导通与截止; 二极管D2-D9,D20-D26利用其单向导通的特性,起隔离作用,确保按键不相互干扰。 2.4各元器件的选型 该电路中各元器件可选择性较大,出于通用性和标准化考虑,经实际应用验证,各元器件选型标准要求如下: 5.4.1选择三极管Q1, Q2, Q3 一般选取三极管KTC9012 5.4.2选择二极管D2-D9,D20-D26 一般选取二极管1N4148 5.4.3选择电阻R8-R10,R38-R40,R11-R12 一般选取电阻2K,5% 5.4.4选择电阻R33,R34 一般选择电阻10K,5% 5.4.5选择电阻R16-R23 一般选择电阻330欧,5%。 5.5 LED或按键驱动电路的扩展 在实际应用中,如须用到更多的LED或者按键,可采用如下方式进行扩展: 5.5.1 扩展SEG口,可将164芯片换成移位串行输入-输出口更多的芯片,可任意扩展; 5.5.2 扩展COM口,可将主芯片I/O口作为新的COM口成组扩展,但不可任意扩展,否则时序难以错开,最大COM口数量与芯片运算能力有关。 第 2 页

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

200kV高压开关电源研制_周长庚

第23卷第3期强激光与粒子束Vol.23,No.3 2011年3月H IGH POWE R LASE R AND PARTICLE BEAMS M ar.,2011  文章编号: 1001-4322(2011)03-0761-04 200kV高压开关电源研制* 周长庚, 李 彦, 娄本超, 伍春雷, 胡永宏 (中国工程物理研究院核物理与化学研究所,四川绵阳621900) 摘 要: 采用软开关电源技术和叠层式倍压器方法,研制成一台200kV高压发生器,介绍了其工作原理 和结构。高压开关电源主要由功率变换器、中频升压变压器和高压倍压器组成。其主要技术指标为:高压200 kV,输出电流10mA,工作频率20kH z,电压稳定度1%,纹波系数2%,连续工作时间为8h。测试结果表明, 该高压开关电源的性能指标达了设计要求。 关键词: 功率变换; 倍压; 高压; 中频; 连续工作时间 中图分类号: T L503.5 文献标志码: A doi:10.3788/HP LP B20112303.0761 200kV以上的高压电源是氘离子加速器的关键设备之一。与线形高压电源相比,高压开关电源(也称高压发生器)[1-3],采用中频逆变技术,具有体积小、重量轻、稳定度高等特点。但目前国内许多科研单位研制生产的高压开关电源主要应用于医疗设备、高压材料和设备的绝缘性能检测等领域,工作连续时间一般不超过1 h,由于工作频率只有7kH z左右,整体体积偏大,满负载运行时噪音较大[4-6],不适合在专用氘离子加速器方面的应用和发展。为此,我们采用软开关电源技术和叠层式倍压器方法,研制成一台200kV高压发生器,采用空气绝缘,其高压部分不必放置在绝缘油内,维修方便。 1 高压开关电源的原理和结构 如图1所示,高压开关电源主要由功率变换器、中频升压变压器和高压倍压器组成。高压开关电源工作过程为:AC/DC电路把交流220V电压转换成直流电压,功率变换器中的桥式开关电路将直流电压变换成幅值约为220V的中频脉冲电压信号,中频变压器把脉冲电压转换成正弦波,并将正弦波峰值升至9kV,经过中频高压整流、中频滤波和12级倍压,形成大于200kV直流高压,当加满负载时,保证输出电压为200kV。 Fig.1 Principle block diagram of200kV high voltage switch pow er supply 图1 200kV高压开关电源原理方框图 2 功率变换器 功率变换器是高压开关电源关键部件。如图2所示,功率变换器是由整流器、滤波器、过流保护电路、全桥开关、取样电路、电源控制器和驱动器等组成。其工作原理是:交流220V电压经整流、滤波后形成+220V和-220V的直流电压,通过过流保护电路加到全桥开关。电源控制器产生的脉冲调制信号通过驱动器控制全桥开关的导通和截止,从而输出幅度约为220V的中频脉冲功率信号。图3为全桥开关电路原理图。电源控制器采用UC3875开关电源移相PWM控制集成电路。对IGBT开关管S1~S4组成的全桥开关电路进行移相控制,S1,S3为超前臂,S2,S4为滞后臂。借助开关管的输出电容C1~C4充放电,在输出电容放电结束(电压为0V)的状态下完成开关管零电压导通,功率损耗最小,这就是软开关过程。软开关过程使整个高压开关电 *收稿日期:2010-06-21; 修订日期:2010-11-11 基金项目:中国工程物理研究院预研基金项目 作者简介:周长庚(1956—),男,博士,研究员,从事核技术及应用研究;zh ou changg@https://www.sodocs.net/doc/6d4379311.html,。

ZZG22高频开关整流器说明书

ZZG22 高频开关整流器 使 用 说 明 书

目录 1 概述--------------------------------------------------2 2 使用条件----------------------------------------------2 3 型号说明----------------------------------------------2 4 产品外形----------------------------------------------3 5 主要功能和特点----------------------------------------4 6 工作原理----------------------------------------------5 7 技术参数----------------------------------------------6 8 使用说明----------------------------------------------7 9 运输、贮存-------------------------------------------10 10开箱及检查------------------------------------------10 11 随机文件及附件--------------------------------------10 12 担保和服务------------------------------------------10

1概述 ZZG22系列高频开关整流器是我公司集多年生产电力操作电源的经验,采用软开关变换技术专为电力操作电源开发的开关型整流模块,可单台或多台并联运行向直流负荷供电,并同时对电池组充电,满足电力操作电源对整流器的要求。可广泛应用于发电厂、变电站,亦可作为一般的直流稳压、稳流电源使用。 2 使用条件 2.1环境温度:-5℃~40℃; 2.2大气压力:80kPa~110kPa; 2.3相对湿度:最湿月的平均最大相对湿度为95%,同时该月的平均最低温度为25℃; 2.4使用地点应有防御雨、雪、风、沙的设施。 3 型号说明 ZZG 22- □□ 标称直流输出电压:110V、220V 额定输出电流:5A、10A、20A 系列号:三相交流输入 高频开关整流器装置 本系列高频开关整流模块总共有以下几种规格: ?ZZG22-10220:输出标称直流电压为220V,额定电流为10A ?ZZG22-05220:输出标称直流电压为220V,额定电流为5A ?ZZG22-10110:输出标称直流电压为110V,额定电流为10A ?ZZG22-20110:输出标称直流电压为110V,额定电流为20A 4 产品外形

超声波电路设计指导

超声波电路设计指导 1.超声波发射电路 τ 图1 发射电路 T IRFP840 耐压500V以上,额定功率10W以上的场效应管 U1 IR4426 电源电压用12V 注1:若使用IR4427,当注意其输入输出波形不反相,故须正 脉冲输入。 注2:U1极忌长时间导通。在U1与T之间可以插入限流电 阻保护U1,电阻不宜大,否则输出脉冲边沿会变得过缓;在 正常工作状态,U1只在极短时内导通,即使无限流电阻也不 致损坏。 R1 50K~1MΩ电阻取值与两次发射的最小间隔时间有关,间隔越长则回路充 放电时间可越长,R1可以越大。 建议设法取1MΩ,以便减小250V电源的输出电流。 C1 1000pF/1000V 高压瓷片电容 RL 510Ω 简要工作原理如下: 当T截止时,250V电压源通过R1和RL向C1充电。一般认为,持续充电时间大于5倍的回路充放电常数,则C1两端电压能基本达到250V,为驱动超声波发射做好准备。 当T瞬时导通,T、C1和RL构成放电回路。超声波传感器的阻抗约为50Ω,故C1中的电荷被快速释放,在超声波传感器上形成一个负向冲击脉冲,脉冲宽度约为0.5~1.5us。

图2 超声波传感器上信号波形示意2.超声波接收电路 限幅限幅放大检波后级放大比较 或1N60 图3 接收电路 图3中: (1)R1、R2取值一般为100~300Ω,与后级放大器输入阻抗大小有关。 (2)Ci不宜太大,否则超声波发射后电路会有一段时间无法正常接收回波信号,故一般可小于0.1uF; 也不宜太小,否则信号损耗会比较大。 (3)通路上放大器的总增益应大于50dB,大于60dB则更佳。 (4)检波电路时间常数的选取要得当,太大则造成包络展宽,太小则单个回波脉冲会被检测成多个脉冲。可根据超声波工作频率确定,并通过观测检波输出波形加以矫正。 3.脉冲间隔测量电路 请参考并分析ultrasonic.ddb中图纸。 4.声波传导耦合剂 实验中,使用超声波传感器探头探测实验样块。样块与探头的接触面、多个样块层叠时样块之间的接触面,可能因不平整而有空气间隙,影响声波传导,带来较严重的界面衰耗,故建议实验中使用清水在接触面涂抹填充,作为耦合剂,并压实接触面,减小声波传导损耗。 有些同学选择将样块完全浸没在一个盛水容器中。这种做法当十分小心操作,防止将探头完全浸没造成损毁!探头的前部为密封构造,故可局部浸入水中,但后部并不密封。 医学B超常用凡士林作耦合剂,若有条件使用,则效果或许更理想。

电气自动化+PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。 图1-1 PWM型开关电源原理框图

开关电源各模块原理实图讲解

开关电源原理 一、 开关电源的电路组成: PWM ① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及

杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。 为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间, 由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2 导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大, Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体 表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输 5

电子电路课程设计指导word文档

电子技术基础课程设计 (I) (基础训练部分) 张淑琴编撰 于枫校审 吉林大学电子信息工程2007年 9月

第一篇课程设计的基础知识 电子技术基础课程设计包括选择课题、电子电路设计、组装、调试和编写总结报告等教 学环节。本篇介绍课程设计的有关知识。 l-l 电子电路的设计方法 在设计一个电子电路系统时,首先必须明确系统的设计任务,根据任务进行方案选择, 然后对方案中的各部分进行单元电路的设计、参数计算和器件选择,最后将各部分连接在一 起,画出一个符合设计要求的完整的系统电路图。 一、明确系统的设计任务要求 对系统的设计任务进行具体分析,充分了解系统的性 08、指标、内容及要求,以便明确 系统应完成的任务。 二、方案选择

这一步的工作要求是,把系统要完成的任务分配给若干个单元电路,并画出一个能表示各 单元功能的整机原理框图。 方案选择的重要任务是根据掌握的知识和资料,针对系统提出的任务、要求和条件,完 成系统的功能设计。在这个过程中要敢于探索,勇于创新,力争做到设计方案合理、可靠、 经济、功能齐全、技术先进。并且对方案要不断进行可行性和优缺点的分析;最后设计出一 个完整框图。框图必须正确反映系统应完成的任务和各组成部分的功能,清楚表示系统的基 本组成和相互关系。 三、单元电路的设计、参数计算和器件选择 根据系统的指标和功能框图,明确各部分任务,进行各单元电路的设计、参数计算和器 件选择。 1.单元电路设计 单元电路是整机的一部分,只有把各单元电路设计好才能提高整体设

计水平。

每个单元电路设计前都需明确本单元电路的任务,详细拟定出单元电路的性能指标,与前 后级之间的关系,分析电路的组成形式。具体设计时,可以模仿成熟的先进的电路,也可以 进行创新或改进,但都必须保证性能要求。而且,不仅单元电路本身要设计合理,各单元电 路间也要互相配合,注意各部分的输入信号、输出信号和控制信号的关系。 2.参数计算 (1) 元器件的工作电流、电压、频率和功耗等参数应能满足电路指标的要求; (2) 元器件的极限参数必须留有足够裕量,一般应大于额定值的 1.5倍; (3) 电阻和电容的参数应选计算值附近的标称值。 3.器件选择 (1) 阻容元件的选择:电阻和电容种类很多,正确选择电阻和电容是很重要的。不同 1

开关电源防雷电路设计1

防雷电路开关电源防雷电路设计方案上网时间: 2010-08-30防雷电路开关电源防雷电路设计方案 雷击浪涌分析 最常见的电子设备危害不是由于直接雷击引起的,而是由于雷击发生时在电源和通讯线路中感应的电流浪涌引起的。一方面由于电子设备内部结构高度集成化(VLSI芯片),从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。浪涌电压可以从电源线或信号线等途径窜入电脑设备,我们就这两方面分别讨论: 1)电源浪涌 电源浪涌并不仅源于雷击,当电力系统出现短路故障、投切大负荷时都会产生电源浪涌,电网绵延千里,不论是雷击还是线路浪涌发生的几率都很高。当距你几百公里的远方发生了雷击时,雷击浪涌通过电网光速传输,经过变电站等衰减,到你的电脑时可能仍然有上千伏,这个高压很短,只有几十到几百个微秒,或者不足以烧毁电脑,但是对于电脑内部的半导体元件却有很大的损害,正象旧音响的杂音比新的要大是因为内部元件受到损害一样,随着这些损害的加深,电脑也逐渐变的越来越不稳定,或有可能造成您重要数据的丢失。 美国GE公司测定一般家庭、饭店、公寓等低压配电线(110V)在10000小时(约一年零两个月)内在线间发生的超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000V 的就有300余次。这样的浪涌电压完全有可能一次性将电子设备损坏。 2)信号系统浪涌 信号系统浪涌电压的主要来源是感应雷击、电磁干扰、无线电干扰和静电干扰。金属物体(如电话线)受到这些干扰信号的影响,会使传输中的数据产生误码,影响传输的准确性和传输速率。排除这些干扰将会改善网络的传输状况。 基于以上的技术缺陷和状况,本文根据实际使用设计了一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌的开关电源电路。 防雷击浪涌电路的设计 本文所设计的是一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路,并将其应用到仪表的开关电源上。整个电路包括防雷电路和开关电源电路,其中防雷电路采用3个压敏电阻和一个陶瓷气体放电管组成复合式对称电路,共模、差摸全保护。与经典的开关电源电路组成防雷仪表的电源电路,采用压敏电阻并联,延长使用寿命,在压敏电阻短路失效后与开关电源电路分离,不会引起失火。 为了实现上述目的所采取的设计方案是:将压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路应用到仪表的电源上。主要分为防雷电路部分和开关电源电路部分,电路简单,采用复合式对称电路,共模、差摸全保护,可以不分L、N端连接。使压敏电阻RV1位于贴片整流模块前端分别与电源L、N并联,主要来钳位L、N线间电压,压敏电阻RV0、RV2与陶瓷气体放电管FD1串联后接地,RV0与FD1串联主要是泄放L线上感应雷击浪涌电流,RV2与FD1串联主要是泄放由信号口串人24V参考电位上的能量,RV0、RV2短路失效后,FD1可将其与电源电路分离,不会导致失火现象。 RV1前端线路上串联了一个线绕电阻,当此RV1短路失效时,线绕电阻可起到保险丝的作用,将短路电路断开,压敏电阻属电压钳位型保护器件,其钳位电压点即压敏电阻参数选择相对比较重要(选压敏电压高一点的,通流量大一些的更安全、耐用,故障率低);根据通流容量要求选择外形尺寸和封装形式,本电路中采用561k-10D的压敏电阻与陶瓷气体放电

开关电源整流桥的基础知识整理

开关电源整流桥的基础知识整理 50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波电容得到直流高压U1。在理想情况下,整流桥的导通角本应为180°(导通范围是从0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电压处的很短时间内,才有输入电流流经过整流桥对C 充电。50Hz交流电的半周期为10ms,整流桥的导通时间tC≈3ms,其导通角仅为54°(导通范围是36°~90°)。因此,整流桥实际通过的是窄脉冲电流。桥式整流滤波电路的原理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c)所示。 最后总结几点: (1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。(2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频率就等于交流电网的频率(50Hz)。 (3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管(例如1N4007) 与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢复时间trr≈250ns。 2)整流桥的参数选择 隔离式开关电源一般采用由整流管构成的整流桥,亦可直接选用成品整流桥,完成桥式整流。全波桥式整流器简称硅整流桥,它是将四只硅整流管接成桥路形式,再用塑料封装而成的半导体器件。它具有体积小、使用方便、各整流管的参数一致性好等优点,可广泛用于开关电源的整流电路。硅整流桥有4个引出端,其中交流输入端、直流输出端各两个。 硅整流桥的最大整流电流平均值分0.5~40A等多种规格,最高反向工作电压有50~1000V等多种规格。小功率硅整流桥可直接焊在印刷板上,大、中功率硅整流桥则要用螺钉固定,并且需安装合适的散热器。 整流桥的主要参数有反向峰值电压URM(V),正向压降UF(V),平均整流电流 Id(A),正向峰值浪涌电流IFSM(A),最大反向漏电流IR(霢)。整流桥的反向击穿电压URR应满足下式要求:

相关主题