搜档网
当前位置:搜档网 › 水利水电工程专业英语——水文与水资源篇

水利水电工程专业英语——水文与水资源篇

水利水电工程专业英语——水文与水资源篇
水利水电工程专业英语——水文与水资源篇

水利水电工程专业英语——水文与水资源篇

1. Hydrological Cycle and Budget

1.水文循环与预算

Hydrology is an earth science. It encompasses the occurrence, distribution, movement, and properties of the waters of the earth and their environmental relations. Closely allied fields include geology, climatology, meteorology and oceanography.

水文学是一门地球科学。它包含地球水资源的发生、分布、运动和特质,以及其环境关系。与之密切相关领域包括地质学,气候学,气象学和海洋学。

The hydrologic cycle is a continuous process by which water is transported from the oceans to the atmosphere to the land and back to the sea. Many sub-cycles exist. The evaporation of inland water and its subsequent precipitation over land before returning to the ocean is one example. The driving force for the global water transport system is provided by the sun, which furnishes the energy required for evaporation. Note that the water quality also changes during passage through the cycle; for example, sea water is converted to fresh water through evaporation.

水文循环是一个连续的过程,在这个过程中水从海洋被运输到大气中,降落到陆地,然后回到海洋。有很多子循环存在。内陆水域的蒸发机器后在回到海洋前在陆地上的将于就是一个例子。全球水运输系统的运行动力由太阳提供,通过蒸发这个过程赋予水运动能量。需要注意的是,水质在水循环通道中也会改变,比如,海水在蒸发后就会转变成淡水。

The complete water cycle is global in nature. World water problems require studies on regional, national, international, continental, and global scales. Practical significance of the fact that the total supply of fresh water available to the earth is limited and very small compared with the salt water content of the oceans has received little attention. Thus waters flowing in one country cannot be available at the same time for use in other regions of the world. Modern hydrologists are obligated to cope with problems requiring definition in varying scales of significant order of magnitude difference. In addition, developing techniques to control weather must receive careful attention, since climatological changes in one area can profoundly affect the hydrology and therefore the water resources of other regions.

完整的水循环在自然界中是全球性的。世界水问题需要在区域,国家,国际,洲际和全球范围的研究。地球上可利用的淡水总量与海洋中的咸水相比是有限的,并且非常少,这个重要的显示尚未得到人们足够关注。因此,在一个国家流动的水源并不能同时在世界的其他区域被利用。现代水文学应该着力解决显著数量级的差异在不同尺度上的定义问题。此外,发展控制天气的技术必须得到密切关注,因为一个地区的气候变化能够深刻地影响到其他地区的水文循环进而影响到其水资源。

Because the total quantity of water available to the earth is finite and indestructible, the global hydrologic system may be looked upon as closed. Open hydrologic system may be looked upon as closed. Open hydrologic subsystems are abundant, however, and these are usually the type analyzed. For any system, a water budget can be developed to account for the hydrologic components.

因为地球上可利用的水量是有限且不可避免的,所以全球的水文循环系统可以被看成是闭合的。开放性的水文循环系统可以被看成是闭合的。开放的水文子系统内容丰富,然而这些系统也是经常被分析到的。对于任何系统,水预算都能够转变到对水文组成的计算。

Figures 1 and 2 show a hydrologic budget for the coterminous United States. These figures illustrate the components of the water cycle with which a hydrologist is concerned. In a practical sense, some hydrologic region is dealt with and a budget for that region is established. Such regions may be topographically defined (watersheds and river basins are examples), politically specified(e.g. country or city limits), or chosen on some other grounds. Watersheds or drainage basins are the easiest to deal with since they sharply define surface water boundaries. These topographically determined areas are drained by a river/stream or system of connecting rivers/streams such that all outflow is discharged through a single outlet. Unfortunately, it is often necessary to deal with regions that are not well suited for tracking hydrologic components. For these areas, the hydrologist will find hydrologic budgeting somewhat of a challenge.

图1和图2展示了美国毗连地区的水文循环。这些图展示了考虑水文的水循环的过程。

从实际意义上讲,一些水文区域被处理并且建立了预算。这些区域可以是在地形上确定(如流域和河流盆地)、在政治上确定(如根据国家或者城市限制),或以其他因素确定。流域或者排水流域是最容易确定的,因为它们明显地限定了地表水的边界。这些地形上确定的区域由一条河流/溪流或者相连的河流/溪流排水,因此所有的出流都从某个单一的出口排出。不幸的是,我们经常会处理到不适合通过跟踪水文组成部分的区域。对于这些区域,水文学家会在不同程度上挑战地进行水文预算。

The primary input in a hydrologic budget is precipitation. Some of the precipitation(e.g. rain, snow, hail) may be intercepted by trees, grass, other vegetation, and structural objects and will eventually return to the atmosphere by evaporation. Once precipitation reaches the ground, some of it may fill depressions (become depression storage), part may penetrate the ground (infiltrate) to replenish soil moisture and groundwater reservoirs, and some may become surface runoff, that is, flow over the earth’s surface to a defined channel such as a stream.

在水文预算中首要的输入是降水。部分降水(如雨、雪、冰雹)会被树木、草地、其它植被以及建筑物截留,并最终会通过蒸发返回大气。若降水到达地面,其中一些会在洼地储存(成为洼地存水),部分会入渗到地下(渗透)补充含水层和地下储水,一些会成为地表径流,即流过地表进入到已有的通道中,比如溪流。

Water entering the ground may take several paths. Some may be directly evaporated if adequate transfer from the soil to the surface is maintained. This can easily occur where a high groundwater table (free water surface) is within the limits of capillary transport to the ground surface. Vegetation using soil moisture or ground water directly can also transmit infiltrated water to the atmosphere by a process known as transpiration. Infiltrated water may likewise replenish soil moisture deficiencies and enter storage provided in groundwater reservoirs, which in turn maintain dry weather stream flow. Important bodies of groundwater are usually flowing so that infiltrated water reaching the saturated zone may be transported for considerable distances before it is discharged. Groundwater movement is subject, of course, to physical and geological constraints.

水进入地表后可能有几个途径(被利用)。如果土壤水到地表的转移能够得到保证,一些可能被直接蒸发。这种现象很容易发生在毛细现象运输到达地表限制水位内的高地下水位情况下。植被直接利用的土壤水或地下水可通过所谓的“蒸腾”过程把如深水转换到大气中去。入渗水同样可以补充不足的土壤水且接入到地下水库提供的容量中,这些水反过来会在干燥天气保持水流运动。重要的地下水体一般都在流动,因此到达饱和区域的入渗水可能会在被运输了相当远的距离后才被排出。地下水的运动自然地会受到物理和地质条件的限制。

Water stored in depressions will eventually evaporate or infiltrate the ground surface. Surface runoff ultimately reaches minor channels (gullies, rivulets, and the like), flows to major streams and finally reaches an ocean. Along the course of a stream, evaporation and infiltration can also occur.

储存在洼地的水会最终蒸发或入渗到地表。地表径流最终到达小的通道(沟渠,溪流等),流向大的溪流,最后到达海洋。在水流动的过程中,蒸发和渗流也同时发生着。2. Unit Hydrographs

2. 单位线

Ways to predict flood peak discharges and discharge hydrographs from rainfall events have been studied intensively since the early 1930s. One approach receiving considerable use is called the unit hydrograph method.

It derives from a method of unit graphs employed by Sherman, in 1932. The unit graph is defined as follows: if a given X-hour rainfall produces a 10cm depth of runoff over the given drainage area, the hydrograph showing the rates at which the runoff occurred can be considered a unit graph for that watershed.

自20世纪30年代早期就已经深入研究了降雨事件中预测洪峰流量和流量过程线的方法。一个应用广泛的方法被称为单位线法。它源于谢尔曼在1932年使用的单位曲线的方法。该单位曲线定义如下:如果在给定的X小时内,给定的流域上产生了10cm深的径流,则在该流域出口断面形成的地面径流过程线即为单位线。

It is incorrect to describe a unit hydrograph without specifying the duration, X of the storm that produced it. An X-hour unit hydrograph is defined as a direct runoff hydrograph having a 10cm. Volume and resulting from an X-hour storm having a steady intensity of 10/X cm/hr. A 2-hr unit hydrograph would be that produced by a 2-hr storm during which 10cm of excess runoff was uniformly generated over the basin. A 1-day unit hydrograph would be produced by a storm having 10cm of excess rain uniformly produced during a 24-hr period. The value X is often a fraction of 1 hr.

如果不指明单位线的降雨历时X,那么描述单位线是不正确的。X小时的单位线被定义为具有10厘米的直接径流的过程线。一个X小时的暴雨有着稳定的10/X厘米/小时的体量和结果。一个2小时的单位线将由在流域内均匀产生10厘米过量径流的2小时暴雨所产生。一个1日单位线将由在24小时期间内均匀产生的具有10厘米过量降雨的暴雨所产生的。X值通常是1小时的几分之一。

Application an X-hour unit graph to design rainfall excess amounts other than 10cm is accomplished simply by multiplying the rainfall excess amount by the unit graph ordinates, since the runoff ordinates for a given duration are assumed to be directly proportional to rainfall excess. A 3-hr storm producing 20 cm of net rain would have runoff rates 2 times the values of the 3-hr unit hydrograph. 5cm in 3 hr would produce flows half the magnitude of the 3-hr unit hydrograph. This assumption of proportional flows applies only to equal duration storms.

采用X小时的单位线来计算并非等于10厘米的径流过程,可简单地用净雨深乘以单位线的纵标,因为对一个给定时段,单位线假定径流与净雨直接成正比。一个产生20厘米净雨的3小时暴雨的径流速率值将是3小时单位线的2倍。3小时内5厘米将会产生3小时单位线一半的量。该成比例径流假设仅适用于相同历时的暴雨。

If the duration of another storm is an integer multiple of X, the storm is treated as a series of end to end X-hour storms. First, the hydrographs from each X increment of rain are determined from the X-hour unit hydrograph. The ordinates are then added at corresponding times to determine the total hydrograph.

如果另一个暴雨的历时是X的整数倍,那么该暴雨就被视作一系列首尾相连的X小时暴雨系列。首先,每个X降雨增量的过程线由X小时单位线确定。然后在相应的时间叠加到纵轴,以确定总的过程线。

Implicit in deriving the unit hydrograph is the assumption that rainfall is distributed in the same temporal and spatial pattern for all storms. This is generally not true; consequently, variations in ordinates for different storm of equal duration can be expected.

在推导单位线隐含的假设是所有暴雨中降雨都按照相同的时间和空间类型而分布。这通常并不是真实的;因此,可以预期对于相同历时的不同暴雨中的纵坐标的变化。

The construction of unit hydrographs for other than integer multiples of the derived duration is facilitated by a method known as the S-hydrograph. The procedure employs a unit hydrograph to form an S-hydrograph resulting from a continuous applied rainfall. The unit hydrograph theory can

be applied

ungauged watersheds by relating unit hydrograph features to watershed characteristics. As a result of the attempted synthesis of data, these approaches are referred to as synthetic unit hydrograph methods. The need to alter duration of a unit hydrograph encouraged studies to define the shortest possible storm duration, that is, an instantaneous unit rainfall. The concept of instantaneous unit hydrograph (IUH) can be used in construction unit hydrographs for other than the derived duration.

对于历时不是整数倍的单位线的建立,引入了一个被称为“S曲线”的方法。该过程引入了一个单位线以组成一个自所引用连续降雨产生的S曲线。单位线理论可以通过将单位线特征与流域特性相关联而应用到无水文资料流域。作为数据的尝试合成的结果,这些方法被称为“综合单位线法”。改变单位线历时的需要鼓励研究确定最短的风暴历时,即,瞬时单位的降雨量。“瞬时单位线”(IUH)的概念可以被用于构建非引用历时的单位线。

Methods of deriving unit hydrographs vary and are subject to engineering judgment. The level of sophistication employed to unravel the problem depends largely on the kind of issue in question. Several methods useful in the determination of unit hydrographs will be discussed. They are subdivided into starting with unit hydrographs obtained from field data and manipulating them by S-hydrograph methods and constructing synthetic unit hydrographs.

获得单位线的方法各异且受工程师判断的影响。用来解开问题的复杂程度在很大程度上取决于所讨论的那种问题。在确定单位线的过程中将讨论很多有用的方法。它们细分为开始从现场数据获得单位线,然后用S曲线方法操作它们并构建综合单位线。

Data collection preparatory to deriving a unit hydrograph for a gauged watershed can be extremely time consuming. To develop a unit hydrograph, it is desirable to acquire as many rainfall records as possible within the study area to ensure that the amount and distribution of rainfall over the watershed is accurately known. Preliminary selection of storms to use in deriving a unit hydrograph for a watershed should be restricted to the following:

1) Storms occurring individually, that is, simple storm structure.

2) Storms having uniform distribution of rainfall throughout the period of rainfall excess.

3) Storms having uniform spatial distribution over the entire watershed.

获得一个有水文资料流域的单位线的数据收集准备会相当地费时。为了建立一个单位线,最好是获得尽可能多的研究区域内的降水记录,以确保准确知晓流域内降雨的数量和分布。要用于流域获得单位线的降雨初步选择应该严格遵循如下:

1)暴雨独立地发生,即,单独的暴雨结构。

2)在整个过量降雨期间,暴雨具有均匀的降雨分布。

3)降雨在整个流域内具有均匀的空间分布。

These restrictions place both upper and lower limits on size of the watershed to be employed. An upper limit of watershed size of approximately 2000km2 is overcautious, although general storms over such areas are not unrealistic and some studies of areas up to 3000 km2have used the unit hydrograph technique. The lower limit of watershed extent depends on numerous other factors and cannot be precisely defined. A general rule of thumb is to assume about 10 km2. Fortunately, other hydrologic techniques help resolve unit hydrographs for watersheds outside this range.

这些约束限制了要应用流域大小的上限和下限。2000平方公里左右的流域大小的上限是过于谨慎的,尽管在这些区域的通常暴雨并非不切实际并且一些面积达到3000平方公里地区的研究也应用了单位线技术。流域范围的下限取决于众多的其他因素,并不能被准确定义。一般的经验是假设约10平方公里。幸运的是,其它过程线技术可以帮助解决在这个范围外的流域单位线。

The preliminary screening of suitable storms for unit hydrograph formation must meet more restrictive criteria before further analysis:

1) Duration of rainfall event should be approximately 10%-30% of the drainage area lag time.

2) Direct runoff for the selected storm should be greater than 5 cm.

3) A suitable number of storms should be analyzed to obtain an average of the ordinates for a selected unit hydrograph duration. Modifications may be made to adjust unit hydrograph durations by means of S-hydrographs of IUH procedures.

4) Direct runoff ordinates for each storm should be reduced so that each event represents 10 cm of direct runoff.

5) The final unit hydrograph of a specific duration for the watershed is obtained by averaging ordinates of selected events and adjusting the result to obtain 10cm of direct runoff.

在进一步分析之前,单位线形成的合适暴雨的初步筛选必须满足以下更加严格的标准:1)降雨事件的历时应该大约是流域面积延迟时间的10%-30%。

2)所选择的暴雨的直接径流应该大于5厘米。

3)应该分析合适数量的暴雨以获得一个所选单位线历时的平均纵标。可以通过IUH 过程的S曲线法来调整修改单位线历时。

4)每场暴雨的直接径流纵标应该被减少,所以每场降雨代表10厘米的直接径流。

5)流域特定历时的最终单位线是通过平均所选择降雨事件的纵标和调整结果以获得10厘米的直接径流而得到的。

Construction the unit hydrograph in this way produces the integrated effect of runoff resulting from a representative set of equal duration storms. Extreme rainfall intensity is not reflected in the determination. If intense storms are needed, a study of records should be made to ascertain their influence upon the discharge hydrograph and actual hydrographs from intense storms.

用这种方式构建单位线产生了径流的综合效应,这来自一个代表系列的相同历时的暴雨。极端暴雨强度不会再决定中反映出来。如果需要强暴雨,就要研究记录以判明它们对流量过程线的影响以及强暴雨的实际过程线。

Essential steps in developing a unit hydrograph for an isolated storm follow:

1) Analyze the stream flow hydrograph to permit separation of surface runoff from groundwater flow.

2) Measure the total volume of surface runoff (direct runoff) from the storm producing the original hydrograph equal to the area under the hydrograph after groundwater base flow has been removed.

3) Divide the ordinates of direct runoff hydrograph by total direct runoff volume in inches and plot these results versus time as unit graph for the basin.

4) Finally, the effective duration of the runoff-producing rain for this unit graph must be found from the hyetograph (time history of rainfall intensity) of the storm used.

建立一个独立暴雨单位线的基本过程如下:

1)分析径流过程线以允许将地表径流和地下径流分离。

2)在移除地下水基流后,测量暴雨产生的地表径流(直接径流)的总量,该暴雨产生了与过程线下该地区相等的原始过程线。

3)以英尺为单位划分直接径流总量的直接径流过程线纵标,并将这些结果和时间绘制成一个流域的单位线。

4)最后,必须从所用暴雨的雨量计图来建立产流降雨的有效历时。

Procedures other than those listed are required for complex storms or in developing synthetic unit graphs when few data are available. Unit hydrographs can also be transposed from one basin to another under certain circumstances.

更复杂的暴雨或者当有很少可用资料情况下建立综合单位线时会需要除上述列出以外的步骤。在某些情况下,也可以将一个流域的单位线移用到另外一个流域。

3. Flood Routing

3.洪水演算

Flood forecasting, reservoir design, watershed simulation, and comprehensive water resources planning generally utilize some form of routing technique. Routing is used to predict the temporal and spatial variations of a flood wave as it traverses a river reach or reservoir, or it can be employed to predict the outflow hydrograph from a watershed subjected to a known amount of precipitation. Routing techniques may be classified into two categories-hydrologic routing and hydraulic routing.

洪水预测、水库设计、流域仿真和水资源综合规划通常应用某种形式的演算技术。演算被用来预测一个洪峰在通过一个河段或水库时的时间和空间变化,或者它可以被用于预测受到一个已知量降水的流域的出流过程线。演算技术可以分为两类:水文演算和水力演算。

Hydrologic routing employs the equation of continuity with either an analytic or an assumed relation between storage and discharge within the system. Hydraulic routing, on the other hand, uses both the equation of continuity and the equation of motion, customarily the momentum equation. This particular form utilizes the partial differential equations for unsteady flow in open channels. It more adequately describes the dynamics of flow than does the hydrologic routing technique.

水文演算应用了连续性方程,表达系统内储蓄和排放之间的一个分析或假设的关系。另一方面,水力演算既应用连续性方程,也应用运动方程,习惯上是动量方程。这种特殊的形式使用偏微分方程来表达明渠的非恒定流。它比水文演算技术更充分地描述水流动力情况。

Applications of hydrologic routing techniques to problems of flood prediction, evaluations of flood control measures, and assessments the effects of urbanization are numerous. Most flood warning systems incorporate this technique to predict flood stages in advance of a severe storm. It is the method most frequently used to size spillways for small, intermediate, and large dams. Additionally, the synthesis of runoff hydrographs from gauged and ungauged watersheds is possible by the use of this approach.

水文演算技术在洪水预测问题、防洪措施评估以及城镇化影响评价中有很多应用。大多数洪水预警系统引入了该项技术以在一场剧烈暴雨之前预测洪水过程。它是确定小型、中型和大型大坝溢洪道尺寸的最常用方法。此外,在可测量和无测量资料的流域中径流水文过程的综合可能使用这种方法。

Hydrologic river routing techniques are all founded upon the equation of continuity

(1)

I?O=dS

dt

where I is the inflow rate to the reach, O is the outflow rate from the reach, d S/d t is the rate of change of storage within the reach.

水文河流演算技术都建立在连续性方程的基础上

I?O=dS

dt

(1)其中I是到达该河段的入流速率,O是河段的出流速率,d S/d t是河段内蓄水的变化速率。

Storage in a stable river reach can be expected to depend primarily on the discharge into and out of a reach and on hydraulic characteristics of the channel section. The storage within the reach at a given time can be expressed as

S=b

a

[XI m/n+(1?X)O m/n](2) Constants a and n reflect the stage discharge characteristics of control sections at each end of the reach, and b and m mirror the stage-volume characteristics of the section. The factor X defines the relative weights given to inflow and outflow for the reach.

稳定河段中的蓄水量主要取决于该河段的入流和出流,以及河流断面的水力特征值。在给定时间点的河段内蓄水量可以被表示为

S=b

a

[XI m/n+(1?X)O m/n](2)常数a和n反映每个河段两端的阶段排放特性,且b和m反映了河段的阶段体积特性。因素X确定了河段入流和出流的相对权重。

The Muskingum method assumes that m/n =1 and lets b/a=K, resulting in

S=K[XI+(1?X)O](3) where K is the storage time constant for the reach, X is a weighting factor that varies between 0 and 0.5.

马斯京根法假设m/n =1 且令b/a=K,得到

S=K[XI+(1?X)O](3)其中K是河段存储时间常数,X是在0-0.5之间的权重因数。

Application of this equation has shown that K is usually reasonably close to the wave travel time through the reach and X averages about 0.2.

该方程的应用已经表明K通常合理地接近于水流通过河段流动的时间,且X平均值约0.2。

Behavior of the flood wave due to changes in the value of weighting factor X is readily apparent. The resulting downstream flood wave is commonly described by the amount of translation, that is , the time lag and by the amount of attenuation or reduction in peak discharge. The value X=0.5 results in a pure translation of the flood wave.

权重因数X的值的变化很明显地影响着洪峰的表现。所得的下游洪峰通常被描述为移动量,即,时间滞后和衰减量或洪峰流量的减少。X=0.5时导致了洪峰的单纯的平移。

Application of Eqs. (1) and (3) to a river reach is a straightforward procedure if K and X are known. The routing procedure begins by dividing time into a number of equal increments, Δt, and expressing Eq. (1) in finite difference form, using subscripts 1 and 2 to denote the beginning and ending times forΔt. This gives

I1+I2 2-O1+O2

2

=S2?S1

2

(4)

如果K和X已知,那么方程(1)和(3)在河段中的应用就是非常简单的流程。演算过程开始于将时间分成一定数量的相同增量,Δt,并将方程(1)表达为有限差分的形式,使用下标1和2表示Δt的开始和结束时间。由此得出

I1+I2 2-O1+O2

2

=S2?S1

2

(4)

The routing time intervalΔt is normally assigned any convenient value between the limits of K/3 and K.

演算时间间隔Δt通常被指定为K /3和K的界限之间的任何方便的值。

The storage change in the river reach during the routing interval from Eq.(3) is

S2?S1=K[X(I2?I1)+(1?X)(O2?O1)](5) and substituting this into Eq.(4) results in the Muskingum routing equation

O2=C0I2+C1I1+C2O1(6) In which

C0=

?KX+0.5Δt K?KX+0.5Δt

C1=

KX+0.5Δt K?KX+0.5Δt

C2=

K?KX?0.5Δt

Note that K andΔt must have the same time units and also that the three coefficients sum to 1.0.

方程(3)中演算间隔中河段内的蓄水变化为马斯京根方程

S2?S1=K[X(I2?I1)+(1?X)(O2?O1)](5)将此式带入方程(4)中得到

O2=C0I2+C1I1+C2O1(6)其中

C0=

?KX+0.5Δt K?KX+0.5Δt

C1=

KX+0.5Δt K?KX+0.5Δt

C2=K?KX?0.5Δt K?KX+0.5Δt

注意K和Δt必须有相同的单位且三个系数和为1.0。

Theoretical stability of the numerical method is accomplished ifΔt falls between the limits 2KX and 2K(1-X). The theoretical value of K is the time required for an elemental (kinematic) wave to traverse the reach. It is approximately the time interval between inflow and outflow peaks, if data are available. If not, the wave velocity can be estimated for various channel shapes as a function of average velocity V for any representative flow rate Q. Velocity for steady uniform flow can be estimated by either the Manning or Chezy equation.

如果Δt在2KX和2K(1-X)之间,那么数值计算方法就满足理论稳定性。K的理论值是一个元素(运动)峰穿过河段所需的时间。如果可以获得数据,那么它大约是流入及流出峰值之间的时间间隔。如果不是,波速可以对不同的渠道形状作为代表性流量Q的平均速率的函数来估算。稳定均匀流的速度可以通过曼宁或谢才公式来估算

Since, I1 and I2 are known for every time increment, routing is accomplished by solving Eq. (6) successive time increments using each O2 as O1 for the next time increment.

因此,I1和I2是已知的每个时间增值,并通过将O2作为下个时间增量的O1来解决方程(6)的连续的时间增量,从而完成演算。

4. Water Quality Models

4.水质模型

Because water quality is inextricably linked to water quantity, it is important for the hydrologist to understand the significance of developing modeling techniques that can accommodate both features.

由于水质与水量密不可分,因此了解开发能够适用于两个特性的建模技术对水文学家来说是很重要的。

A water quality model is a mathematical statement or set of statements that equate water quality at a point of interest to causative factors. In general, water quality models are designed to (1) accept as input, constituent concentration versus time at points of entry to the system, (2) simulate the mixing and reaction kinetics of the system, and (3) synthesize a time-distributed output at the system outlet.

水质模型是一个或一系列的数学表达,描述了所关注点的诱发因素的水质。通常来讲,水质模型被设计于(1)作为输入条件,在系统入口处浓度与时间的关系,(2)模拟混合及系统的动力学反应,以及(3)综合为一个系统出口处随时间分布的输出。

Either stochastic (containing probabilistic elements) or deterministic approaches may be taken in developing methods for predicting pollutional loads. The former technique is based on determining the likelihood(frequency) of a particular output quality response by statistical means. This is similar to frequency analysis of floods or low flows. Water quality records should be available for at least 5 years (and preferably much longer) if estimates of return periods for infrequent events are to be reliable.

随机(包含概率元素)或确定性方法都可能被用于开发预测污染负荷的方法。前者技术基于通过统计方法确定的一个特定的输出质量响应的可能性(频率)。这类似于洪水或低流量的频率分析。如果要求可靠的偶发事件重现期的估计,那么就要至少获得5年(最好更长)的水质记录。

The deterministic approach (output explicitly determined for a given input) requires that a model be developed to relate water quality loading to a known or assumed hydrologic input. Such a model can range from an empirical concentration discharge relation to a physical equation representing the hydrochemical cycle. The ultimate modeling technique is that which best defines the actual mechanism triggering the water quality response. The cause of a given state of pollution can then be specifically identified.

确定性方法(对于给定的输入明确地确定输出)要求一个模型被开发于将水质负荷与一个已知的或假设的水文输入关联起来。这样的一个模型可以从一个浓度流量的经验关系到一个物理方程,描述水化学循环。最终的建模技术最好地定义了触发水质响应的实际机制。随后即可具体确定给定污染状态的起因。

Water quality models vary in their complexity. Their nature depends on the application to be made of the model, the availability of data, and the level of understanding of the hydrochemical and hydrobiological processes involved. Unfortunately, the complexities of these processes, which are great, make the difficulties associated with hydrological modeling seem small in comparison.

水质模型的复杂性各有不同。其本质取决于作为模型的应用、数据的可获得性以及对于所涉及的水化学和水生物学过程的理解程度。可惜,这些过程巨大的复杂性使得与水文模拟相关联的复杂性看起来相对较小。

In general, water quality models should permit acceptance of inputs in terms of pollutant (constituent) concentration versus time at points of entry into the system, description of the mixing

and reaction

xxx水利工程业主汇报材料

XXXXXXXXXXXXXXX 饮水安全工程 竣工验收汇报材料(建设管理单位) XXXXXXXXXXXXXXX 2011 年11 月23 日

XXXXXXXX移民区饮水安全工程 建设管理单位竣工验收报告 各位领导、各位专家、大家好! 现在我代表XXXXXXX移民区饮水安全工程建设管理处对本工程的建设情况作简要汇报。 一、项目概况 1、工程概况 XXXXXXXXXX移民区饮水安全工程项目区位于XXXXX镇境内,该项工程与当地移民安置及新农村建设规划相辅相承。 2、工程总体布置 该供水工程由截伏流工程、大口井、加压泵站、高位蓄水池、输配水管道工程组成。截伏流工程位于暖水川内,采用河床下集取渗水,把水引至XXXXXXXXX村附近大口井,通过加压泵站加压和消毒,输水到曹阳线32公里处高位蓄水池,然后通过重力进行供水,分别送往XXXXXXXXXXXXXXX城渠三个规划新村。 3、主要技术经济指标 该供水工程工程类型为Ⅲ型,主要建筑物3级,次要建筑物4级。 工程供水范围为XXXXX、XXXX、XXXXX17个自然村,4413户居民,17643人口和18691头(只)牲畜饮水安全。供水能力为1344m3/d,日变化系数为1.3,年平均供水量为38万m3。

4、工程项目立项、批复 (1)可研批复:X市发改委、市水利局联合发文(X发改农字[2008]269号)报批,自治区发改委(XX发改农字[2009]1858号)批复。 (2)初设批复:XXX水利局(X水字[2009]65号)上报市水利局; 市水利局(XXX水字[2009]141号)转报自治区水利厅;自治区水利厅(X农水[2009]63号)批复同意初步设计。 (幻灯片显示为招标现场和可行性研究报告及批复初步设计报告及批复原件) 5、招投标及合同签订 本工程的招标采用了公开招标的方式,XXXXXXXXXX移民区饮水安全工程建设管理处委托内蒙古XXXX水利水电工程招标代理有限公司进行招标代理,通过公开招标方式选定施工企业。XXX自治区水利厅、XXXX市水利局、XXXXX纪检委进行了全过程监督管理。 施工单位为:XXXXX水利水电工程建设有限公司 PVC-U管材采购:XXXXXX水器材有限公司 钢骨架PE管采购:XXXXX宏实业有限公司 合同签订:土建施工合同2009年7月15日 监理合同2009年7月16日 PVC-U管材采购合同2009年7月20日 钢骨架PE管采购合同2009年7月14日 (幻灯片图片显示为施工合同及监理合同等)

安全工程专业英语部分翻译

Unit 1 safety management system Accident causation models 事故致因理论 Safety management 安全管理Physical conditions 物质条件 Machine guarding 机械保护装置 House-keeping 工作场所管理 Top management 高层管理人员 Human errors 人因失误Accident-proneness models 事故倾向模型 Munitions factory 军工厂Causal factors 起因Risking taking 冒险行为Corporate culture 企业文化Loss prevention 损失预防Process industry 制造工业Hazard control 危险控制Intensive study 广泛研究Organizational performance 企业绩效 Mutual trust 相互信任Safety officer 安全官员 Safety committee 安全委员会Shop-floor 生产区Unionized company 集团公司Seniority 资历、工龄Local culture 当地文化 Absenteeism rate 缺勤率Power relations 权力关系Status review 状态审查 Lower-level management 低层管理者 Business performance 组织绩

效 Most senior executive 高级主管 Supervisory level 监督层Safety principle 安全规则Wall-board 公告栏Implement plan 执行计划Hazard identification 危险辨识 Safety performance 安全性能 One comprehensive definition for an organizational culture has been presented by Schein who has said the organizational culture is “a pattern of basic assumptions – invented, discovered, or developed by a given group as it learns to cope with its problems of external adaptation and internal integration –that has worked well enough to be considered valid and, therefore, to be taught to new members as the correct way to perceive, think, and feel in relation to those problems” 译文:Schein给出了组织文化的广泛定义,他认为组织文化是由若干基本假设组成的一种模式,这些假设是由某个特定团体在处理外部适应问题与内部整合问题的过程中发明、发现或完善的。由于以这种模式工作的有效性得到了认可,因此将它作为一种正确的方法传授给新成员,让他们以此来认识、思考和解决问题[指适应外部与整合内部的过程中的问题]。 The safety culture of an organization is the product of individual and group values, attitudes, perceptions, competencies, and patterns of behavior that determine the commitment to, and the style and proficiency of , an organization’s health and safety management. 译文:组织的安全文化由以下几项内容组成:个人和群体的价值观、态度、观念、能力和行为方式。这种行为方式决定了个人或团体对组织健康安全管理的责任,以及组织健康安全管理的形式和熟练程度。 Unit 2 System Safety Engineering System safety engineering 系统安全工程By-product 附带产生的结果

土木工程专业英语全部

Lesson 1 Compression Members New Words 1. achieve achievement 2. eccentricity center, 中心; ec centric 偏心的;ec centricity 偏心,偏心距 3. inevitable evitable 可避免的avoidable; in evitable 不可避免的unavoidable 4. truss 桁架triangular truss, roof truss, truss bridge 5. bracing brace 支柱,支撑;bracing, 支撑,撑杆 6. slender 细长,苗条;stout; slenderness 7. buckle 压曲,屈曲;buckling load 8. stocky stout 9. convincingly convince, convincing, convincingly 10. stub 树桩,短而粗的东西;stub column 短柱 11. curvature 曲率;curve, curvature 12. detractor detract draw or take away; divert; belittle,贬低,诽谤; 13. convince 14. argument dispute, debate, quarrel, reason, 论据(理由) 15. crookedness crook 钩状物,v弯曲,crooked 弯曲的 16. provision 规定,条款 Phrases and Expressions 1. compression member 2. bending moment shear force, axial force 3. call upon (on) 要求,请求,需要 4. critical buckling load 临界屈曲荷载critical 关键的,临界的 5. cross-sectional area 6. radius of gyration 回转半径gyration 7. slenderness ratio 长细比 8. tangent modulus 切线模量 9. stub column 短柱 10. trial-and-error approach 试算法 11. empirical formula 经验公式empirical 经验的 12. residual stress 残余应力residual 13. hot-rolled shape 热轧型钢hot-rolled bar 14. lower bound 下限upper bound 上限 16. effective length 计算长度 Definition (定义) Compression members are those structural elements that are subjected only to axial compressive forces: that is, the loads are applied along a longitudinal axis through the centroid of the member cross section, and

2020水文与水资源工程专业大学排名一览表

2020水文与水资源工程专业大学排 名一览表 水文与水资源工程是一门由陆地水文学,水资源管理与利用,水文地质学三学科合并形成的交叉型学科。培养具有较扎实自然科学知识,能在水利、能源、交通、城市建设、农林、环境保护等部门从事水文、水资源及环境保护方面勘测、规划设计、预测预报、管理、技术经济分析以及教学和基础理论研究的高级工程技术人才。一起来看一下水文与水资源工程专业大学排名吧! 水文与水资源工程专业 排名 高校名称 开此专业学校数 1河海大学562武汉大学563四川大学564长安大学565中国地质大学(北京)566西安理工大学567郑州大学568中国地质大学(武汉)569华北水利水电大学5610南京大学5611济南大学5612西北农林科技大学5613三峡大学5614华北电力大学5615吉林大学5616新疆农业大学5617长沙理工大学5618扬州大学5619南京信息工程大学5620太原理工大学56 专业解析

水文与水资源工程是国民经济基础产业――水利中的重要 专业领域之一。随着社会的发展,水资源的自然资源基础作用已越来越明显,我国已确立了水资源三大战略资源之一的地位。区域人口增长、社会经济发展使得水资源供需矛盾已成为全球性普遍问题。中国作为发展中大国,水资源开发利用和管理中存在着许多问题,诸如水资源短缺对策、水资源持续利用、水资源合理配置、水灾害防治以及水污染治理、水生态环境功能恢复及保护等已成为亟待研究和解决的问题。而水文与水资源工程正是水资源开发利用和管理中的这一门重要的工程技术学科。 水文与水资源工程是一门具有潜力且发展迅速的科学,它涉及到对水文水资源的勘察、评价、开发、利用、规划、管理与保护,是指导水文水资源业务的理论基础;同时它还研究在社会和经济发展中水资源供求关系及其解决的科学途径,探求在变化的环境中如何保持对水资源的可持续利用的途径。 培养要求 该专业学生主要学习水文水资源及环境信息的采集及处理、水旱灾害预测及防治、水资源规划、水环境保护、水利工程规划与设计、水利工程运行与管理、水政管理等方面基本理论和基本知识,受到工程制图、运算、实验、测试等方面基本训练,具有应用所学专业分析解决实际问题、科学研究、组织管理的基本能力。

水利工程汇报材料简易版

The Short-Term Results Report By Individuals Or Institutions At Regular Or Irregular Times, Including Analysis, Synthesis, Innovation, Etc., Will Eventually Achieve Good Planning For The Future. 编订:XXXXXXXX 20XX年XX月XX日 水利工程汇报材料简易版

水利工程汇报材料简易版 温馨提示:本报告文件应用在个人或机构组织在定时或不定时情况下进行的近期成果汇报,表达方式以叙述、说明为主,内容包含分析,综合,新意,重点等,最终实现对未来的良好规划。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 一、凝心聚力,真抓实干,今年以来水利 工作取得明显成效 (一)水利工程建设实现新突破。今年全 县已完成水利投资2.6539亿元,同比增长 33%。一是完工项目明显增多,已完成113个水 利项目,特别是县城防洪工程的竣工,在抵御 莫拉克台风期间有效发挥了抵御外江潮水的作 用,内外江水位差最高达1.6米;加固山塘水 库除险44座,占年度计划的129.41%;新建和 改建饮用水工程68处,解决农村饮水不安全人 口5.17万人,超市定目标一倍多。二是在建项 目加快推进,完成投资1.92亿元,其中桥下西

溪二期防洪工程完成1300万元,占年度计划的108.33%,明年汛前能顺利完工;西向供水工程应急水管工程有望年底完成,解决桥头镇应急供水问题;楠溪江供水工程提前90天基本完成拦河闸左岸一期工程,进入二期施工。三是重大项目前期工作加快推进,永嘉排涝应急工程、瓯北三江片标准堤塘、乌牛新闸和桥下西溪三期防洪工程明年可全部开工建设。 (二)防汛防台工作获得新成效。一是预案完善到位,在及时完善县、乡镇、村三级预案的基础上,针对地质灾害、屋顶山塘下游村居安全、道路受淹后的警示和管制、城镇淹水后车辆停放调度和引导等重点和薄弱环节,修编完善了专门的工作预案,实行一“点”一方案、每“点”有人员,并发出整改意见55份,

安全工程专业外语翻译

Unit 1 Safety Management Systems 安全管理体系 1.Accident Causation Models 1.事故致因理论 The most important aim of safety management is to maintain and promote workers' health and safety at work. Understanding why and how accidents and other unwanted events develop is important when preventive activities are planned. Accident theories aim to clarify the accident phenomena,and to explain the mechanisms that lead to accidents. All modem theories are based on accident causation models which try to explain the sequence of events that finally produce the loss. In ancient times, accidents were seen as an act of God and very little could be done to prevent them. In the beginning of the 20th century,it was believed that the poor physical conditions are the root causes of accidents. Safety practitioners concentrated on improving machine guarding, housekeeping and inspections. In most cases an accident is the result of two things :The human act, and the condition of the physical or social environment. 安全管理系统最重要的目的是维护和促进工人们在工作时的健康和安全。在制定预防性计划时,了解为什么、怎样做和其他意外事故的发展是十分重要的。事故致因理论旨在阐明事故现象,和解释事故的机理。所有现代理论都是基于试图解释事件发生、发展过程和最终引起损失的事故致因理论。在古老的时期,事故被看做是上帝的行为并且几乎没有预防的方法去阻止他们。在20世纪开始的时候,人们开始相信差的物理条件是事故发生的根源。安全从业人员集中注意力在提高机器监护、维护和清理上。在大多数情况下,一件事故的发生主要有两个原因:人类的行为和物理或者社会环境。 Petersen extended the causation theory from the individual acts and local conditions to the management system. He concluded that unsafe acts, unsafe conditions,and accidents are all symptoms of something wrong in the organizational management system. Furthermore, he stated that it is the top management who is responsible for building up such a system that can effectively control the hazards associated to the organization’s operation. The errors done by a single person can be intentional or unintentional. Rasmussen and Jensen have presented a three-level skill-rule-knowledge model for describing the origins of the different types of human errors. Nowadays,this model is one of the standard methods in the examination of human errors at work. 彼得森根据管理体系中个人的行为结合当地的环境扩充了事故致因理论。他的结论是像不安全行为、不安全情况是一些错误的组织管理系统导致事故的征兆。另外,他指出,高层管理人员负责建立一个能够有效控制危险源有关组织。一个人出现的错误可能是有意的或者是无意的。拉斯姆森和杰森已经提出了三个层次的技能规则知识模型来描述不同种类的人错误的起源。如今,这种模式已经成为在工作中检验人的错误的标准之一。 Accident-proneness models suggest that some people are more likely to suffer anaccident than others. The first model was created in 1919,based on statistical examinations in a mumilions factory. This model dominated the safety thinking and research for almost 50 years, and it is still used in some organizations. As a result of this thinking, accident was blamed solely

2020年水利工程安全检查汇报材料

水利工程安全检查汇报材料 根据县安委会关于xxxx年全县安全生产工作的总体要求,今年以来,我们精心组织,以“安全第一,预防为主”为主题,加强安全教育,落实安全责任,明确工作重点,集中排查和整治水利安全隐患,取得了一定成效。现将今年水利安全生产工作情况汇报如下。 一、高度重视,切实加强组织领导 安全工作,关系到人民生命财产安全,关系到全县社会经济的健康、有序发展,关系到构建和谐社会和社会稳定的大局,切不可有丝毫的麻痹和松懈。为此,我们充分认识安全工作的特殊重要性,认真贯彻落实水利部和省市有关部门关于加强水利安全工作的意见,落实《安全生产法》,对全县水利安全工作进行具体的安排。我们成立了水利安全生产工作领导小组,完善机构,确定了人员,落实了责任,对20xx年全县水利安全工作作了详细的部署。在水利工程建设和管理的各个环节,时时讲安全,处处抓安全,使安全观念深入人心,增强了广大干部群众的水利安全意识,从思想上和认识上为水利安全工作打下了基础。我们年初与各股站室和基层单位签订了安全管理目标责任书,与乡村签订水利安全生产施工协议书,细化安全内容,明确了安全责任。 二、明确重点,集中排查和整治安全隐患 按照我县水利安全工作的实际,我们认真研究,分析形势,有针对性、有重点地开展水利安全工作。 (一)以防汛安全为中心,做好防汛抗洪工作

从5月份开始,我们在全县范围内开展了一次防汛隐患集中排查和整治工作。。检查中发现以下主要问题: 1、部分乡镇和单位干部群众对防汛安全重要性的认识仍然不到位,水患意识比较淡薄,从思想上还未引起重视,对可能发生的汛情估计不足。近年来,由于我县连续干旱,大部分乡村社未受过局地暴雨袭击,洪水造成的损失较小,致使部分乡村社干部群众存在麻痹思想和侥幸心理,在生产、生活中放松了对暴雨洪灾的防范。 2、对苦水镇30座水库、塘坝进行了拉网式的检查,水库、塘坝存在较大安全隐患。目前有苦水大东湾、护儿湾等水库、塘坝不同程度存在渗水问题,要尽快进行除险加固,排除隐患,确保水库、塘坝安全运行。 3、有些沟道、洪道垃圾淤积还未彻底清除。红城镇塔儿砂沟的废弃塘坝,没有排洪沟,严重影响行洪安全,造成排洪不畅,给防汛工作带来了极大的隐患。城关小砂沟沟道内倾倒建筑垃圾,造成洪道堵塞,影响洪水正常排泄。312国道火车站涵洞淤积比较严重。影响行洪安全,需及时清淤。除此之外,还有如洪道内搭建的民宅、县城低洼地段排水不畅等问题。对于在这次检查中发现的问题,我们已责成有关乡(镇)和单位限期整改。要求各部门各单位、乡(镇)务必从现在开始,进入防汛临战状态,做好一切防汛抗洪准备工作,对查出的问题和隐患必须彻底清除,不留后患。对病险水库、塘坝责令限期泄水,实行空库运行。对苦水大东湾水库通过多次充分的论证,制定了除险加固方案,争取在年内完成水库除险加固。对大通河连城段铁成水电

安全工程专业英语Unit1-9翻译

安全工程专业英语 Unit1 1. Because of the very rapid changes in these jobs and professions, it is hard for students to learn about future job opportunities. It is even more difficult to know about the type of preparation that is needed for a particular profession-or the qualities and traits that might help individuals succeed in it. 由于这些工作和职业的飞速变更,其变化之快使得学生们很难了解未来有什么样的工作机会,更不知道为未来的具体职业生涯做出怎样的准备,也就是说学生们很难知道掌握何种知识、具备何种能力才能成功适应未来的社会。 2. The purpose of this article is to provide in depth information about the safety profession that should help students considering a career in this challenging and rewarding field. 这篇文章将提供较为深入的安全专业方面的具体信息,它应该能够为安全专业的学生们在这个充满挑战也蕴含着发展机遇的职业中获得良好的发展而提供帮助。 3. While these efforts became more sophisticated and widespread during the twentieth century, real progress on a wide front did not occur in the U.S. until after Word War Ⅱ. 尽管这些专业手段在20世纪已经发展的较为成熟,也具有一定的广泛适应性,但在美国,这些都是第二次世界大战以后才取得的突破性进展。 4. This legislation was important because it stressed the control of workplace hazards. This, in turn, defined a clear area of practice for the previously loosely organized safety profession. Other legislation passed during the next twenty years has increased the scope of safety practice into areas of environmental protection, product safety, hazardous materials management and designing safety into vehicles, highways, process plants and buildings. 这部法律很重要,因为它强调工作场所的危险控制,同时这部法律也为以前不成体系的安全业务划定了工作范围。此后20年中通过的一

土木工程专业英语词汇(整理版)

第一部分必须掌握,第二部分尽量掌握 第一部分: 1 Finite Element Method 有限单元法 2 专业英语Specialty English 3 水利工程Hydraulic Engineering 4 土木工程Civil Engineering 5 地下工程Underground Engineering 6 岩土工程Geotechnical Engineering 7 道路工程Road (Highway) Engineering 8 桥梁工程Bridge Engineering 9 隧道工程Tunnel Engineering 10 工程力学Engineering Mechanics 11 交通工程Traffic Engineering 12 港口工程Port Engineering 13 安全性safety 17木结构timber structure 18 砌体结构masonry structure 19 混凝土结构concrete structure 20 钢结构steelstructure 21 钢-混凝土复合结构steel and concrete composite structure 22 素混凝土plain concrete 23 钢筋混凝土reinforced concrete 24 钢筋rebar 25 预应力混凝土pre-stressed concrete 26 静定结构statically determinate structure 27 超静定结构statically indeterminate structure 28 桁架结构truss structure 29 空间网架结构spatial grid structure 30 近海工程offshore engineering 31 静力学statics 32运动学kinematics 33 动力学dynamics 34 简支梁simply supported beam 35 固定支座fixed bearing 36弹性力学elasticity 37 塑性力学plasticity 38 弹塑性力学elaso-plasticity 39 断裂力学fracture Mechanics 40 土力学soil mechanics 41 水力学hydraulics 42 流体力学fluid mechanics 43 固体力学solid mechanics 44 集中力concentrated force 45 压力pressure 46 静水压力hydrostatic pressure 47 均布压力uniform pressure 48 体力body force 49 重力gravity 50 线荷载line load 51 弯矩bending moment 52 torque 扭矩53 应力stress 54 应变stain 55 正应力normal stress 56 剪应力shearing stress 57 主应力principal stress 58 变形deformation 59 内力internal force 60 偏移量挠度deflection 61 settlement 沉降 62 屈曲失稳buckle 63 轴力axial force 64 允许应力allowable stress 65 疲劳分析fatigue analysis 66 梁beam 67 壳shell 68 板plate 69 桥bridge 70 桩pile 71 主动土压力active earth pressure 72 被动土压力passive earth pressure 73 承载力load-bearing capacity 74 水位water Height 75 位移displacement 76 结构力学structural mechanics 77 材料力学material mechanics 78 经纬仪altometer 79 水准仪level 80 学科discipline 81 子学科sub-discipline 82 期刊journal ,periodical 83文献literature 84 ISSN International Standard Serial Number 国际标准刊号 85 ISBN International Standard Book Number 国际标准书号 86 卷volume 87 期number 88 专着monograph 89 会议论文集Proceeding 90 学位论文thesis, dissertation 91 专利patent 92 档案档案室archive 93 国际学术会议conference 94 导师advisor 95 学位论文答辩defense of thesis 96 博士研究生doctorate student 97 研究生postgraduate 98 EI Engineering Index 工程索引 99 SCI Science Citation Index 科学引文索引 100ISTP Index to Science and Technology Proceedings 科学技术会议论文集索引 101 题目title 102 摘要abstract 103 全文full-text 104 参考文献reference 105 联络单位、所属单位affiliation 106 主题词Subject 107 关键字keyword 108 ASCE American Society of Civil Engineers 美国土木工程师协会 109 FHWA Federal Highway Administration 联邦公路总署

水文与水资源专业实习总结范文

《浙江大学优秀实习总结汇编》 水文与水资源岗位工作实习期总结 转眼之间,两个月的实习期即将结束,回顾这两个月的实习工作,感触很深,收获颇丰。这两个月,在领导和同事们的悉心关怀和指导下,通过我自身的不懈努力,我学到了人生难得的工作经验和社会见识。我将从以下几个方面总结水文与水资源岗位工作实习这段时间自己体会和心得: 一、努力学习,理论结合实践,不断提高自身工作能力。 在水文与水资源岗位工作的实习过程中,我始终把学习作为获得新知识、掌握方法、提高能力、解决问题的一条重要途径和方法,切实做到用理论武装头脑、指导实践、推动工作。思想上积极进取,积极的把自己现有的知识用于社会实践中,在实践中也才能检验知识的有用性。在这两个月的实习工作中给我最大的感触就是:我们在学校学到了很多的理论知识,但很少用于社会实践中,这样理论和实践就大大的脱节了,以至于在以后的学习和生活中找不到方向,无法学以致用。同时,在工作中不断的学习也是弥补自己的不足的有效方式。信息时代,瞬息万变,社会在变化,人也在变化,所以你一天不学习,你就会落伍。通过这两个月的实习,并结合水文与水资源岗位工作的实际情况,认真学习的水文与水资源岗位工作各项政策制度、管理制度和工作条例,使工作中的困难有了最有力地解决武器。通过这些工作条例的学习使我进一步加深了对各项工作的理解,可以求真务实的开展各项工作。 二、围绕工作,突出重点,尽心尽力履行职责。 在水文与水资源岗位工作中我都本着认真负责的态度去对待每项工作。虽然开始由于经验不足和认识不够,觉得在水文与水资源岗位工作中找不到事情做,不能得到锻炼的目的,但我迅速从自身出发寻找原因,和同事交流,认识到自己的不足,以至于迅速的转变自己的角色和工作定位。为使自己尽快熟悉工作,进入角色,我一方面抓紧时间查看相关资料,熟悉自己的工作职责,另一方面我虚心向领导、同事请教使自己对水文与水资源岗位工作的情况有了一个比较系统、全面的认知和了解。根据水文与水资源岗位工作的实际情况,结合自身的优势,

人力资源水利水电工程质量监督汇报材料范文

** 水利水电工程质量监督汇报材料(范文) 1工程概况 1.1 工程位置及主要建设内容 1.2 工程设计及批复情况 1.3 工程参建单位 项目法人: 监理单位: 设计单位: 施工单位: 运管单位(如有): 2质量监督工作 2.1组织机构及人员配备 *年*月*日,**水利水电工程项目业主与** 水利水电工程质量与安全监督站(以下简称“我站”)签订了《**工程质量与安全监督书》。 根据该工程的建设规模和实施情况,我站成立了工程质量与安全监督项目站(组),共由*名监督员组成,同时明确了现场责任监督员。项

目质量与安全监督人员情况见附件1。 2.2施工准备阶段质量监督 我站根据《安徽水利水电工程建设质量与安全监督实施细则》和 安徽水利水电工程建设质量与安全监督工作指南》和** 工程的特点,制定了《** 工程质量与安全监督计划》,并以*水质监〔**** 〕** 号文印发项目法人、施工、监理等单位,明确了本工程的质量监督方式以巡查和抽查为主,明确了重要隐蔽单元工程和关键部位单元工程的监督到位点,明确了开展监督工作的具体要求。同时对各参建单位的质量管理体系和质量行为提出了具体要求。 2.3施工过程中质量监督 2.3.1 质量管理体系检查 工程开工初期,我站组织了对项目法人、现场管理机构、监理单位、施工单位的监督交底,对参建各方的质量管理体系的建立和运行情况进行监督检查,主要检查内容有:是否建立了质量管理机构并配备专职质量管理人员,主要管理人员(监理单位总监理工程师和副总监理工程师,现场监理人员;施工单位项目经理、技术负责人、质量管理员)与投标是否一致、人员是否持证上岗等。通过检查,发现了 *** 问题,并对所发现问题提出了整改意见。 2.3.2 质量检查 ** 工程建设过程中,我站在根据工程进度开展日常监督工作的基础上,多次对工程建设质量进行全面检查,对原材料进行抽检,对工 程实体质量进行监督检测。通过检查,发现了*** 问题。检查结果及存在问题均以书面形式通知项目法人,由项目法人统一落实整改,并将整改结果报我站备案。 2.3.3 工程验收 我站按照监督工作计划,派员对重要隐蔽单元工程和关键部位单元工程验收进行了现场监督(如有),派员参加了大型水利枢纽工程主要建筑物的分部工程、单位工程、外观工程质量验收(评定)工作

安全工程专业英语词汇及翻译(司鹄版)

Unit6 Industry hygiene工业卫生physical hazard物理危害、物质危害nonionizing radiation非电离辐射adverse effects副作用loud noise嘈杂的声音chemical bum化学烧伤live electrical circuits 带电电路confined space密闭空间hearing loss听力丧失physical or mental disturbance身体或精神障碍annoyance烦恼power tools电动工具impulse脉冲sound level meter噪声计jet engine喷气式发动机time-weighted average时间加权平均heat stress热应力、热威胁shivering 颤抖hard labor辛苦工作fatigued疲劳的living tissue活组织plastic sealer塑料密封机biological hazard生物危害potable water饮用水sewage污水physical contact身体接触allergic reaction 过敏反应severe pain剧烈疼痛manual handing手工处理airborne空中的on a daily basis每天hazard communication standard危害通识规定stipulation规定、条款trade name商标名 工业卫生被定义为:“致力于预测、识别、评估和控制环境因素或压力的科学与技术,这些压力产生或来自与工作场所,能够造成疾病、损害人们的幸福安康、或是工程或社区居民的工作效率不高,并使他们感觉到很不舒服。(P67) 当噪音导致暂时或永久的听力丧失,使身体或精神发生紊乱,对语言交流产生干扰,或对工作、休息、放松、睡觉产生干扰时,它是一种非常严重的危害。噪音是任何不被期望的声音,它通常是一种强度变化但不包括任何信息的声音。他干扰人们对正常声音的辨别,可能是有害的,能使人烦恼,并干扰人们说话。(P68) Unit9 Accident investigation事故调查after-the-fact事实背后的take an investigation进行调查fact-finding process寻找事实的过程insurance carrier保险公司/承保人plance blame推卸责任permanent total disability永久全部劳动力丧失for simplicity为简单起见accident prevention 事故预防investigation procedures调查过程fact finding寻找事实operating procedures flow diagrams操作过程流程图maintenance chart维修图表bound notebook活页笔记本physical or chemical law物理或化学定律table of contens 目录narrative叙事的counter-measure干预措施 调查人员在调查过程中从各方面收集证据,从证人、旁观者及一些相关报道中得到信息,在事故发生后尽快的找目击证人谈话,在事故现场遭到改变前进行检查,对事故场景进行拍照并绘制草图,记录与地形相关的所有数据,并将所有的报道复印保存。记录常规的操作流程图、维修图表或对困难、异常现象的报告等非常有用。在活页笔记本中完整准确地记录。记录事故发生前的环境、事故顺序及事故发生后的环境情况等。另外,记录伤者、证人、机械能量来源和危害物质的位置。(P119) Unit10 Safety electricity安全用电electrical equipment电力设备fuse puller保险丝夹break contact断开接点/触电hot side高压端load side 负荷端line side线路/火线端groundfault circuit Interrupt 漏电保护器ground fault接地故障receptacle电源插座hot bubs热水澡桶underwater lighting水底照明fountains 人工喷泉ungrounded(hot)conductor 未接地(高压)单体/火线neutral conductor中性导体fault current载荷中心panelboard 配电板branch-circuit分支电路CB一种多功能插座plug-in插入式 上锁/挂牌成套设备也是可用的。上锁/挂牌套件中包含有必须满足OSHA上锁/挂牌标准的组件。上锁/挂牌套件中包含有可重复使用的危险标签、临时悬挂标志、各种闭锁、锁、磁性标志、及与上锁/挂牌相关的信息。无论什么原因停下工作或当天不能完成工作时,在返回

土木工程专业英语

non-destructive test 非破损检验 non-load—bearingwall 非承重墙 non—uniform cross—section beam 变截面粱 non—uniformly distributed strain coefficient of longitudinal tensile reinforcement 纵向受拉钢筋应变不均匀系数 normal concrete 普通混凝土 normal section 正截面 notch and tooth joint 齿连接 number of sampling 抽样数量 O obligue section 斜截面 oblique—angle fillet weld 斜角角焊缝 one—way reinforced(or prestressed)concrete slab “单向板” open web roof truss 空腹屋架, ordinary concrete 普通混凝土(28) ordinary steel bar 普通钢筋(29) orthogonal fillet weld 直角角焊缝(61) outstanding width of flange 翼缘板外伸宽度(57) outstanding width of stiffener 加劲肋外伸宽度(57) over-all stability reduction coefficient of steel beam·钢梁整体稳定系数(58) overlap 焊瘤(62) overturning or slip resistance analysis 抗倾覆、滑移验算(10) P padding plate 垫板(52) partial penetrated butt weld 不焊透对接焊缝(61) partition 非承重墙(7) penetrated butt weld 透焊对接焊缝(60) percentage of reinforcement 配筋率(34) perforated brick 多孔砖(43) pilastered wall 带壁柱墙(42) pit·凹坑(62) pith 髓心(?o) plain concrete structure 素混凝土结构(24) plane hypothesis 平截面假定(32) plane structure 平面结构(11) plane trussed lattice grids 平面桁架系网架(5) plank 板材(65) plastic adaption coefficient of cross—section 截面塑性发展系数(58) plastic design of steel structure 钢结构塑性设计(56) plastic hinge·塑性铰(13) plastlcity coefficient of reinforced concrete member in tensile zone 受拉区混凝土塑性影响系数

相关主题