搜档网
当前位置:搜档网 › 数据结构课程设计报告最小生成树Kruskal算法[1]4545

数据结构课程设计报告最小生成树Kruskal算法[1]4545

数据结构课程设计报告最小生成树Kruskal算法[1]4545
数据结构课程设计报告最小生成树Kruskal算法[1]4545

课程设计报告

课程设计名称:数据结构课程设计

课程设计题目:最小生成树Kruskal算法

院(系):

专业:

班级:

学号:

姓名:

指导教师:

目录

1 课程设计介绍 (1)

1.1课程设计内容 (1)

1.2课程设计要求 (1)

2 课程设计原理 (2)

2.1课设题目粗略分析 (2)

2.2原理图介绍 (4)

2.2.1 功能模块图 (4)

2.2.2 流程图分析 (5)

3 数据结构分析 (11)

3.1存储结构 (11)

3.2算法描述 (11)

4 调试与分析 (13)

4.1调试过程 (13)

4.2程序执行过程 (13)

参考文献 (16)

附录(关键部分程序清单) (17)

1 课程设计介绍

1.1 课程设计内容

编写算法能够建立带权图,并能够用Kruskal算法求该图的最小生成树。最小生成树能够选择图上的任意一点做根结点。最小生成树输出采用顶点集合和边的集合的形式。

1.2 课程设计要求

1.顶点信息用字符串,数据可自行设定。

2.参考相应的资料,独立完成课程设计任务。

3.交规范课程设计报告和软件代码。

2 课程设计原理

2.1 课设题目粗略分析

根据课设题目要求,拟将整体程序分为三大模块。以下是三个模块的大体分析:

1.要确定图的存储形式,通过对题目要求的具体分析。发现该题的主要操作是路径的输出,因此采用边集数组(每个元素是一个结构体,包括起点、终点和权值)和邻接矩阵比较方便以后的编程。

2.Kruskal算法。该算法设置了集合A,该集合一直是某最小生成树的子集。在每步决定是否把边(u,v)添加到集合A中,其添加条件是A∪{(u,v)}仍然是最小生成树的子集。我们称这样的边为A的安全边,因为可以安全地把它添加到A中而不会破坏上述条件。

3.Dijkstra算法。算法的基本思路是:假设每个点都有一对标号(d j,p j),其中d是从起源点到点j的最短路径的长度(从顶点到其本身的最短路径是零路(没有弧的路),其长度等于零);p j则是从s到j 的最短路径中j点的前一点。求解从起源点s到点j的最短路径算法的基本过程如下:

1)初始化。起源点设置为:①d s=0,p s为空;②所有其它点:d i=∞,p i=?;

③标记起源点s,记k=s,其他所有点设为未标记的。

2)k到其直接连接的未标记的点j的距离,并设置:

d j=min[d j, d k+l kj]

式中,l kj是从点k到j的直接连接距离。

3)选取下一个点。从所有未标记的结点中,选取d j中最小的一个i:

d i=min[d j, 所有未标记的点j]

点i就被选为最短路径中的一点,并设为已标记的。

4)找到点i的前一点。从已标记的点中找到直接连接到i的点j*,作为前一点,设置:i=j*

5)标记点i。如果所有点已标记,则算法完全推出,否则,记k=i,转到2)再继续。

而程序中求两点间最短路径算法。其主要步骤是:

①调用dijkstra算法。

②将path中的第“终点”元素向上回溯至起点,并显示出来。

2.2 原理图介绍

2.2.1 功能模块图

图2.1功能模块图

2.2.2 流程图分析

1.主函数

图2.2 主函数流程图

2.insertsort函数

3.图2.3 insertsort函数流程图

3.Kruskal函数

图2.4 Kruskal函数流程图

4. dijkstra 函数

图2.5 dijkstra 函数流程图

5. printpath1函数

图2.6 printpath1函数流程图

6. printpath2函数

图2.7 printpath2函数流程图

3 数据结构分析

3.1 存储结构

定义一个结构体数组,其空间足够大,可将输入的字符串存于数组中。struct edges

{int bv;

int tv;

int w;

};

3.2 算法描述

1. Kruskal函数:

因为Kruskal需要一个有序的边集数组,所以要先对边集数组排序。其次,在执行中需要判断是否构成回路,因此还需另有一个判断函数seeks,在Kruskal中调用seeks。

2. dijkstra函数:

因为从一源到其余各点的最短路径共有n-1条,因此可以设一变量vnum作为计数器控制循环。该函数的关键在于dist数组的重新置数。该置数条件是:该顶点是被访问过,并且新起点到该点的权值加上新起点到源点的权值小于该点原权值。因此第一次将其设为:if (s[w]==0&&cost[u][w]+dist[u]

些路径的权值为负。经过分析发现,因为在程序中∞由32767代替。若cost[u][w]==32767,那么cost[u][w]+dist[u]肯定溢出主负值,因此造成权值出现负值。但是如果cost[u][w]==32767,那么dist[w]肯定不需要重新置数。所以将条件改为:if(s[w]==0&&cost[u][w]+dist[u]

3. printpath1函数:

该函数主要用来输出源点到其余各点的最短路径。因为在主函数调用该函数前,已经调用了dijkstra函数,所以所需的dist、path、s 数组已经由dijkstra函数生成,因此在该函数中,只需用一变量控制循环,一一将path数组中的每一元素回溯至起点即可。其关键在于不同情况下输出形式的不同。

4.printpath2函数:

该函数主要用来输出两点间的最短路径。其主要部分与printpath1函数相同,只是无需由循环将所有顶点一一输出,只需将path数组中下标为v1的元素回溯至起点并显示出来。

4 调试与分析

4.1 调试过程

在调试程序时主要遇到一下几类问题:

1.有时函数中一些数组中的数据无法存储。

2.对其进行检验发现没有申请空间大小。

3.在源程序的开头用#define定义数值大小,在使用数组时亦可知道它的空间大小。

4.此函数中有时出现负值。

5.对其进行检验发现在程序中∞由32767代替。若cost[u][w]==32767,那么cost[u][w]+dist[u]肯定溢出主负值,因此造成权值出现负值。

6.但是当cost[u][w]==32767,那么dist[w]肯定不需要重新置数。所以将if(s[w]==0&&cost[u][w]+dist[u]

1.2程序执行过程

系统使用说明:

1. 输入的数据可以是整数,字符串(如1,2,3);

2. 本系统可以建立带权图,并能够用Kruskal算法求改图的最小

生成树。而且能够选择图上的任意一点做根结点。还能够求两点之间的最短距离。

3. 该系统会有菜单提示,进行选项:

1.kruskal

2.shortpath

3.shortpath between two point

4.exit

4.程序实际运行截图

图4.1 输入形式

图4.2 kruskal算法输出

图4.3 最短距离输出

参考文献

[1]《数据结构》(C语言版).严蔚敏,吴伟民.清华大学出版社.2007

[2]《算法设计与分析》.张德富.国防工业出版社.2009

[3]《计算机算法与程序设计》.朱青.清华大学出版社.2009

[4]《C程序设计语言》.徐宝文,李志.机械工业出版社.2004

附录(关键部分程序清单)程序代码

#include"stdio.h"

#define MAXE 100

struct edges

{int bv;

int tv;

int w;

};

typedef struct edges edgeset;

int seeks(int set[],int v)

{

int i;

i=v;

while(set[i]>0)

i=set[i];

return i;

}

void kruskal(edgeset ge[],int n,int e)

{

int set[MAXE],v1,v2,i,j;

for(i=1;i

set[i]=0;

i=1;

j=1;

while(j<=e&&i<=n-1)

{

v1=seeks(set,ge[j].bv);

v2=seeks(set,ge[j].tv);

if(v1!=v2)

{

printf("(%d,%d):%d\n",ge[j].bv,ge[j].tv,ge[j].w);

set[v1]=v2;

i++;

}

j++;

}

}

void insertsort(edgeset ge[],int e)

{

数据结构课程设计

1.一元稀疏多项式计算器 [问题描述] 设计一个一元稀疏多项式简单计算器。 [基本要求] 输入并建立多项式; 输出多项式,输出形式为整数序列:n, c1, e1, c2, e2,……, cn, en ,其中n是多项式的项数,ci, ei分别是第i项的系数和指数,序列按指数降序排序; 多项式a和b相加,建立多项式a+b; 多项式a和b相减,建立多项式a-b; [测试数据] (2x+5x8-3.1x11)+(7-5x8+11x9)=(-3.1x11+11x9+2x+7) (6x-3-x+4.4x2-1.2x9)-(-6x-3+5.4x2-x2+7.8x15)=(-7.8x15-1.2x9-x+12x-3) (1+x+x2+x3+x4+x5)+(-x3-x4)=(x5+x2+x+1) (x+x3)+(-x-x3)=0 (x+x2+x3)+0=(x3+x2+x) [实现提示] 用带头结点的单链表存储多项式,多项式的项数存放在头结点中。 2.背包问题的求解 [问题描述] 假设有一个能装入总体积为T的背包和n件体积分别为w1, w2, …,wn的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1+w2+…+wn=T,要求找出所有满足上述条件的解。例如:当T=10,各件物品的体积为{1,8,4,3,5,2}时,可找到下列4组解:(1,4,3,2)、(1,4,5)、(8,2)、(3,5,2) [实现提示] 可利用回溯法的设计思想来解决背包问题。首先,将物品排成一列,然后顺序选取物品转入背包,假设已选取了前i件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品“太大”不能装入,则弃之而继续选取下一件,直至背包装满为止。但如果在剩余的物品中找不到合适的物品以填满背包,则说明“刚刚”装入背包的那件物品“不合适”,应将它取出“弃之一边”,继续再从“它之后”的物品中选取,如此重复,直至求得满足条件的解,或者无解。 由于回溯求解的规则是“后进先出”因此自然要用到栈。 3.完全二叉树判断 用一个二叉链表存储的二叉树,判断其是否是完全二叉树。 4.最小生成树求解(1人) 任意创建一个图,利用克鲁斯卡尔算法,求出该图的最小生成树。 5.最小生成树求解(1人) 任意创建一个图,利用普里姆算法,求出该图的最小生成树。 6.树状显示二叉树 编写函数displaytree(二叉树的根指针,数据值宽度,屏幕的宽度)输出树的直观示意图。输出的二叉树是垂直打印的,同层的节点在同一行上。 [问题描述] 假设数据宽度datawidth=2,而屏幕宽度screenwidth为64=26,假设节点的输出位置用 (层号,须打印的空格数)来界定。 第0层:根在(0,32)处输出;

最小生成树实验报告

数据结构课程设计报告题目:最小生成树问题 院(系):计算机工程学院 学生姓名: 班级:学号: 起迄日期: 指导教师: 2011—2012年度第 2 学期 一、需求分析

1.问题描述: 在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。存储结构采用多种。求解算法多种。 2.基本功能 在n个城市之间建设网络,只需要架设n-1条线路,建立最小生成树即可实现最经济的架设方法。 程序可利用克鲁斯卡尔算法或prim算法生成最小生成树。 3.输入输出 以文本形式输出最小生成树,同时输出它们的权值。通过人机对话方式即用户通过自行选择命令来输入数据和生成相应的数据结果。 二、概要设计 1.设计思路: 因为是最小生成树问题,所以采用了课本上介绍过的克鲁斯卡尔算法和 prim算法两种方法来生成最小生成树。根据要求,需采用多种存储结构,所以我选择采用了邻接表和邻接矩阵两种存储结构。 2.数据结构设计: 图状结构: ADT Graph{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。 数据关系R:R={VR} VR={|v,w∈V且P(v,w),表示从v到w的弧, 谓词P(v,w)定义了弧的意义或信息} 基本操作: CreateGraph( &G, V, VR ) 初始条件:V是图的顶点集,VR是图中弧的集合。 操作结果:按V和VR的定义构造图G。 DestroyGraph( &G ) 初始条件:图G存在。 操作结果:销毁图G。 LocateVex( G, u ) 初始条件:图G存在,u和G中顶点有相同特征。 操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返 回其它信息。 GetVex( G, v ) 初始条件:图G存在,v是G中某个顶点。

数据结构课程设计报告模板

课程设计说明书 课程名称:数据结构 专业:班级: 姓名:学号: 指导教师:成绩: 完成日期:年月日

任务书 题目:黑白棋系统 设计内容及要求: 1.课程设计任务内容 通过玩家与电脑双方的交替下棋,在一个8行8列的方格中,进行棋子的相互交替翻转。反复循环下棋,最后让双方的棋子填满整个方格。再根据循环遍历方格程序,判断玩家与电脑双方的棋子数。进行大小判断,最红给出胜负的一方。并根据y/n选项,判断是否要进行下一局的游戏。 2.课程设计要求 实现黑白两色棋子的对峙 开发环境:vc++6.0 实现目标: (1)熟悉的运用c语言程序编写代码。 (2)能够理清整个程序的运行过程并绘画流程图 (3)了解如何定义局部变量和整体变量; (4)学会上机调试程序,发现问题,并解决 (5)学习使用C++程序来了解游戏原理。 (6)学习用文档书写程序说明

摘要 本文的研究工作在于利用计算机模拟人脑进行下黑白棋,计算机下棋是人工智能领域中的一个研究热点,多年以来,随着计算机技术和人工智能技术的不断发展,计算机下棋的水平得到了长足的进步 该程序的最终胜负是由棋盘上岗双方的棋子的个数来判断的,多的一方为胜,少的一方为负。所以该程序主要运用的战术有削弱对手行动战术、四角优先战术、在游戏开局和中局时,程序采用削弱对手行动力战术,即尽量减少对手能够落子的位置;在游戏终局时则采用最大贪吃战术,即尽可能多的吃掉对手的棋子;而四角优先战术则是贯穿游戏的始终,棋盘的四角围稳定角,不会被对手吃掉,所以这里是兵家的必争之地,在阻止对手进角的同时,自己却又要努力的进角。 关键词:黑白棋;编程;设计

最小生成树的Prim算法提高型实验报告

黄冈师范学院 提高型实验报告 实验课题最小生成树的Prim算法 (实验类型:□综合性■设计性□应用性) 实验课程算法程序设计 实验时间 2010年12月24日 学生姓名周媛鑫 专业班级计科 0801 学号 200826140110

一.实验目的和要求 (1)根据算法设计需要, 掌握连通网的灵活表示方法; (2)掌握最小生成树的Prim算法; (3)熟练掌握贪心算法的设计方法; 二.实验条件 (1)硬件环境:实验室电脑一台 (2)软件环境:winTC 三.实验原理分析 (1)最小生成树的定义: 假设一个单位要在n个办公地点之间建立通信网,则连通n个地点只需要n-1条线路。可以用连通的无向网来表示n个地点以及它们之间可能设置的通信线路,其中网的顶点表示城市,边表示两地间的线路,赋于边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以表示一个通信网。其中一棵使总的耗费最少,即边的权值之和最小的生成树,称为最小生成树。 (2)构造最小生成树可以用多种算法。其中多数算法利用了最小生成树的下面一种简称为MST的性质:假设N=(V,{E})是一个连通网,U是顶点集V的一个非空子集。若(u,v)是一条具有最小权值(代价)的边,其中u∈U,v∈V-U,则必存在一棵包含边 (u.v)的最小生成树。 (3)普里姆(Prim)算法即是利用MST性质构造最小生成树的算法。算法思想如下: 假设N=(V,{E})和是连通网,TE是N上最小生成树中边的集合。算法从U={u0}( u0∈V),TE={}开始,重复执行下述操作:在所有u∈U,v∈V-U的边(u, v) ∈E 中找一条代价最小的边(u0, v0)并入集合TE,同时v0并入U,直到U=V为止。此时TE中必有n-1条边,则T=(V,{TE})为N的最小生成树。 四.实验步骤 (1)数据结构的设计: 采用邻接矩阵的存储结构来存储无向带权图更利于实现及操作: 邻接矩阵的抽象数据结构定义: #define INFINITY INT_MAX //最大值 #define MAX_ERTEX_NUM 20 //最大顶点数 typedef enum {DG,DN,UDG,UDN}GraphKind;//{有向图,有向网,无向网,无向图} typedef struct Arc Cell{ VRType adj ; // VRType 是顶点关系的类型。对无权图用1和0表示相邻否;InfoType * info; //该弧相关信息的指针 }ArcCell ,AdjMatrix [ MAX_VERTEX_NUM][MAX_VERTEX_NUM]; Typedef struct { VertexType vexs [ MAX_VERTEX_NUM] ; //顶点向量

最小生成树问题的算法实现及复杂度分析—天津大学计算机科学与技术学院(算法设计与分析)

算法设计与分析课程设计报告 学院计算机科学与技术 专业计算机科学与技术 年级2011 姓名XXX 学号 2013年5 月19 日

题目:最小生成树问题的算法实现及复杂度分析 摘要:该程序操作简单,具有一定的应用性。数据结构是计算机科学的算法理论基础和软件设计的技术基础,在计算机领域中有着举足轻重的作用,是计算机学科的核心课程。而最小生成树算法是算法设计与分析中的重要算法,最小生成树也是最短路径算法。最短路径的问题在现实生活中应用非常广泛,如邮递员送信、公路造价等问题。本设计以Visual Studio 2010作为开发平台,C/C++语言作为编程语言,以邻接矩阵作为存储结构,编程实现了最小生成树算法。构造最小生成树有很多算法,本文主要介绍了图的概念、图的遍历,并分析了PRIM 经典算法的算法思想,最后用这种经典算法实现了最小生成树的生成。 引言:假设要在n个城市之间建立通信联络网,则连接n个城市只需要n-1条线路。这时,自然会考虑这样一个问题,如何在节省费用的前提下建立这个通信网?自然在每两个城市之间都可以设置一条线路,而这相应的就要付出较高的经济代价。n个城市之间最多可以设置n(n-1)/2条线路,那么如何在这些可能的线路中选择n-1 条使总的代价最小呢?可以用连通网来表示n 个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋予边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一个生成树都可以是一个通信网。现在要选择这样一棵生成树,也就是使总的代价最小。这个问题便是构造连通网的最小代价生成树(简称最小生成树)的问题。最小生成树是指在所有生成树中,边上权值之和最小的生成树,另外最小生成树也可能是多个,他们之间的权值之和相等。一棵生成树的代价就是树上各边的代价之和。而实现这个运算的经典算法就是普利姆算法。

Prim最小生成树算法实验报告材料

算法分析与设计之Prim 学院:软件学院学号:201421031059 :吕吕 一、问题描述 1.Prim的定义 Prim算法是贪心算法的一个实例,用于找出一个有权重连通图中的最小生成树,即:具有最小权重且连接到所有结点的树。(强调的是树,树是没有回路的)。 2.实验目的 选择一门编程语言,根据Prim算法实现最小生成树,并打印最小生成树权值。 二、算法分析与设计 1.Prim算法的实现过程 基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合。算法从U ={u0}(u0∈V)、TE={}开始。重复执行下列操作: 在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最小的边(u0,v0)并入集合TE中,同时v0并入U,直到V=U为止。 此时,TE中必有n-1条边,T=(V,TE)为G的最小生成树。 Prim算法的核心:始终保持TE中的边集构成一棵生成树。 2.时间复杂度 Prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边得数目无关,N 为顶点数,而看ruskal算法的时间复杂度为O(eloge)跟边的数目有关,适合稀疏图。 三、数据结构的设计 图采用类存储,定义如下: class Graph { private: int *VerticesList; int **Edge; int numVertices; int numEdges; int maxVertices; public: Graph(); ~Graph(); bool insertVertex(const int vertex); bool insertEdge(int v1,int v2,int cost); int getVertexPos(int vertex); int getValue(int i); int getWeight(int v1,int v2); int NumberOfVertices();

最小生成树算法分析

最小生成树算法分析 一、生成树的概念 若图是连通的无向图或强连通的有向图,则从其中任一个顶点出发调用一次bfs或dfs后便可以系统地访问图中所有顶点;若图是有根的有向图,则从根出发通过调用一次dfs或bfs亦可系统地访问所有顶点。在这种情况下,图中所有顶点加上遍历过程中经过的边所构成的子图称为原图的生成树。 对于不连通的无向图和不是强连通的有向图,若有根或者从根外的任意顶点出发,调用一次bfs或dfs后一般不能系统地访问所有顶点,而只能得到以出发点为根的连通分支(或强连通分支)的生成树。要访问其它顶点需要从没有访问过的顶点中找一个顶点作为起始点,再次调用bfs 或dfs,这样得到的是生成森林。 由此可以看出,一个图的生成树是不唯一的,不同的搜索方法可以得到不同的生成树,即使是同一种搜索方法,出发点不同亦可导致不同的生成树。 可以证明:具有n个顶点的带权连通图,其对应的生成树有n-1条边。 二、求图的最小生成树算法 严格来说,如果图G=(V,E)是一个连通的无向图,则把它的全部顶点V和一部分边E’构成一个子图G’,即G’=(V, E’),且边集E’能将图中所有顶点连通又不形成回路,则称子图G’是图G的一棵生成树。 对于加权连通图,生成树的权即为生成树中所有边上的权值总和,权值最小的生成树称为图的最小生成树。 求图的最小生成树具有很高的实际应用价值,比如下面的这个例题。

例1、城市公交网 [问题描述] 有一张城市地图,图中的顶点为城市,无向边代表两个城市间的连通关系,边上的权为在这两个城市之间修建高速公路的造价,研究后发现,这个地图有一个特点,即任一对城市都是连通的。现在的问题是,要修建若干高速公路把所有城市联系起来,问如何设计可使得工程的总造价最少。 [输入] n(城市数,1<=n<=100) e(边数) 以下e行,每行3个数i,j,w ij,表示在城市i,j之间修建高速公路的造价。 [输出] n-1行,每行为两个城市的序号,表明这两个城市间建一条高速公路。 [举例] 下面的图(A)表示一个5个城市的地图,图(B)、(C)是对图(A)分别进行深度优先遍历和广度优先遍历得到的一棵生成树,其权和分别为20和33,前者比后者好一些,但并不是最小生成树,最小生成树的权和为19。 [问题分析] 出发点:具有n个顶点的带权连通图,其对应的生成树有n-1条边。那么选哪n-1条边呢?设图G的度为n,G=(V,E),我们介绍两种基于贪心的算法,Prim算法和Kruskal算法。 1、用Prim算法求最小生成树的思想如下: ①设置一个顶点的集合S和一个边的集合TE,S和TE的初始状态均为空集; ②选定图中的一个顶点K,从K开始生成最小生成树,将K加入到集合S; ③重复下列操作,直到选取了n-1条边: 选取一条权值最小的边(X,Y),其中X∈S,not (Y∈S); 将顶点Y加入集合S,边(X,Y)加入集合TE; ④得到最小生成树T =(S,TE)

克鲁斯卡尔算法求最小生成树

目录 1.需求分析 (2) 1.1 设计题目 (2) 1.2 设计任务及要求 (2) 1.3课程设计思想 (2) 1.4 程序运行流程 (2) 1.5软硬件运行环境及开发工具 (2) 2.概要设计 (2) 2.1流程图 (2) 2.2抽象数据类型MFSet的定义 (3) 2.3主程序 (4) 2.4抽象数据类型图的定义 (4) 2.5抽象数据类型树的定义 (5) 3.详细设计 (7) 3.1程序 (7) 4.调试与操作说明 (10) 4.1测试结果 (10) 4.2调试分析 (11) 5.课程设计总结与体会 (11) 5.1总结 (11) 5.2体会 (11) 6. 致谢 (12) 7. 参考文献 (12)

1.需求分析 1.1 设计题目:最小生成树 1.2 设计任务及要求:任意创建一个图,利用克鲁斯卡尔算法,求出该图的最小生成树。 1.3 课程设计思想:Kruskal算法采用了最短边策略(设G=(V,E)是一个无向连通网,令T=(U,TE)是G的最小生成树。最短边策略从TE={}开始,每一次贪心选择都是在边集E中选择最短边(u,v),如果边(u,v)加入集合TE中不产生回路,则将边(u,v)加入边集TE中,并将它在集合E中删去。),它使生成树以一种任意的方式生长,先让森林中的树木随意生长,每生长一次就将两棵树合并,最后合并成一棵树。 1.4程序运行流程: 1)提示输入顶点数目; 2)接受输入,按照项目要求产生边权值的随机矩阵;然后求解最小生成树; 3)输出最小生成树并且退出; 1.5 软硬件运行环境及开发工具:VC 2.概要设计 2.1流程图

图1流程图 2.2抽象数据类型MFSet的定义: ADT MFSet { 数据对象:若设S是MFSet型的集合,则它由n(n>0)个子集Si(i = 1,2...,n)构成,每个子集的成员代表在这个子集中的城市。 数据关系:S1 U S2 U S3 U... U Sn = S, Si包含于S(i = 1,2,...n) Init (n): 初始化集合,构造n个集合,每个集合都是单成员,根是其本身。rank 数组初始化0 Find(x):查找x所在集合的代表元素。即查找根,确定x所在的集合,并路径压缩。 Merge(x, y):检查x与y是否在同一个集合,如果在同一个集合则返回假,否则按秩合并这两个集合并返回真。 }

数据结构课程设计报告

《数据结构课程设计》报告 题目:课程设计题目2教学计划编制 班级:700 学号:09070026 姓名:尹煜 完成日期:2011年11月7日

一.需求分析 本课设的任务是根据课程之间的先后的顺序,利用拓扑排序算法,设计出教学计划,在七个学期中合理安排所需修的所有课程。 (一)输入形式:文件 文件中存储课程信息,包括课程名称、课程属性、课程学分以及课程之间先修关系。 格式:第一行给出课程数量。大于等于0的整形,无上限。 之后每行按如下格式“高等数学公共基础必修6.0”将每门课程的具体信息存入文件。 课程基本信息存储完毕后,接着给出各门课程之间的关系,把每门课程看成顶点,则关系即为边。 先给出边的数量。大于等于0的整形。 默认课程编号从0开始依次增加。之后每行按如下格式“1 3”存储。此例即为编号为1的课程与编号为3的课程之间有一条边,而1为3的前驱,即修完1课程才能修3课程。 例: (二)输出形式:1.以图形方式显示有向无环图

2.以文本文件形式存储课程安排 (三)课设的功能 1.根据文本文件中存储的课程信息(课程名称、课程属性、课程学分、课程之间关系) 以图形方式输出课程的有向无环图。 拓展:其显示的有向无环图可进行拖拽、拉伸、修改课程名称等操作。 2.对课程进行拓扑排序。 3.根据拓扑排序结果以及课程的学分安排七个学期的课程。 4.安排好的教学计划可以按图形方式显示也可存储在文本文件里供用户查看。 5.点击信息菜单项可显示本人的学好及姓名“09070026 尹煜” (四)测试数据(见六测设结果)

二.概要设计 数据类型的定义: 1.Class Graph即图类采用邻接矩阵的存储结构。类中定义两个二维数组int[][] matrix 和Object[][] adjMat。第一个用来标记两个顶点之间是否有边,为画图服务。第二个 是为了实现核心算法拓扑排序。 2.ArrayList list用来存储课程信息。DrawInfo类是一个辅助画图的类,其中 包括成员变量num、name、shuxing、xuefen分别代表课程的编号、名称、属性、 学分。ArrayList是一个DrawInfo类型的数组,主要用来在ReadFile、DrawG、DrawC、SaveFile、Window这些类之间辅助参数传递,传递课程信息。 3.Class DrawInfo, 包括int num;String name;String shuxing;float xuefen;四个成员变量。 4.Class Edge包括int from;int to;double weight;三个成员变量。 5.Class Vertex包括int value一个成员变量。 主要程序的流程图: //ReadFile.java

数据结构课程设计

《数据结构》 课程设计报告 学号 姓名 班级 指导教师 安徽工业大学计算机学院 2010年6月

建立二叉树和线索二叉树 1.问题描述: 分别用以下方法建立二叉树并用图形显示出来: 1)用先序遍历的输入序列 2)用层次遍历的输入序列 3)用先序和中序遍历的结果 2.设计思路: 分三个方式去实现这个程序的功能,第一个实现先序遍历的输入数列建立二叉树;第二个是用层次遍历的方法输入序列;第三个是用先序和后序遍历的结果来建立二叉树;三种方法建立二叉树后都进行输出。关键是将这三个实现功能的函数写出来就行了;最后对所建立的二叉树进行中序线索化,并对此线索树进行中序遍历(不使用栈)。 3.数据结构设计: 该程序的主要目的就是建立二叉树和线索二叉树,所以采用树的存储方式更能完成这个程序; 结点的结构如下: typedef struct bnode { DataType data; int ltag,rtag; struct bnode *lchild, *rchild; } Bnode, *BTree; 4.功能函数设计: BTree CreateBinTree() 用先序遍历的方法讲二叉树建立; BTree CREATREE() 用队列实现层次二叉树的创建; void CreatBT(); 用先序和中序遍历的结果建立二叉树; void InThread(BTree t,BTree pre) 中序线索化; 5.编码实现: #include #include #define max 100 typedef struct bnode { char data; int ltag,rtag; struct bnode *lchild,*rchild; }Bnode,*BTree; BTree Q[max]; BTree CREATREE() { char ch; int front=1,rear=0;

最小生成树的Kruskal算法实现

#include #include #define M 20 #define MAX 20 typedef struct { int begin; int end; int weight; }edge; typedef struct { int adj; int weight; }AdjMatrix[MAX][MAX]; typedef struct { AdjMatrix arc; int vexnum, arcnum; }MGraph; void CreatGraph(MGraph *);//函数申明 void sort(edge* ,MGraph *); void MiniSpanTree(MGraph *); int Find(int *, int ); void Swapn(edge *, int, int); void CreatGraph(MGraph *G)//构件图 { int i, j,n, m; printf("请输入边数和顶点数:\n"); scanf("%d %d",&G->arcnum,&G->vexnum); for (i = 1; i <= G->vexnum; i++)//初始化图{ for ( j = 1; j <= G->vexnum; j++) { G->arc[i][j].adj = G->arc[j][i].adj = 0; } } for ( i = 1; i <= G->arcnum; i++)//输入边和权值

{ printf("请输入有边的2个顶点\n"); scanf("%d %d",&n,&m); while(n < 0 || n > G->vexnum || m < 0 || n > G->vexnum) { printf("输入的数字不符合要求请重新输入:\n"); scanf("%d%d",&n,&m); } G->arc[n][m].adj = G->arc[m][n].adj = 1; getchar(); printf("请输入%d与%d之间的权值:\n", n, m); scanf("%d",&G->arc[n][m].weight); } printf("邻接矩阵为:\n"); for ( i = 1; i <= G->vexnum; i++) { for ( j = 1; j <= G->vexnum; j++) { printf("%d ",G->arc[i][j].adj); } printf("\n"); } } void sort(edge edges[],MGraph *G)//对权值进行排序{ int i, j; for ( i = 1; i < G->arcnum; i++) { for ( j = i + 1; j <= G->arcnum; j++) { if (edges[i].weight > edges[j].weight) { Swapn(edges, i, j); } } } printf("权排序之后的为:\n"); for (i = 1; i < G->arcnum; i++) {

最小生成树经典算法

最小生成树的两种经典算法的分析及实现 摘要:数据结构是计算机科学的算法理论基础和软件设计的技术基础,在计算机领域中有着举足轻重的作用,是计算机学科的核心课程。构造最小生成树有很多算法,本文主要介绍了图的概念、图的遍历,并分析了PRIM和KRUSKAL的两种经典算法的算法思想,对两者进行了详细的比较,最后用这两种经典算法实现了最小生成树的生成。 关键词:连通图,赋权图,最小生成树,算法,实现 1 前言 假设要在n个城市之间建立通信联络网,则连接n个城市只需要n-1条线路。这时,自然会考虑这样一个问题,如何在节省费用的前提下建立这个通信网?自然在每两个城市之间都可以设置一条线路,而这相应的就要付出较高的经济代价。n个城市之间最多可以设置n (n-1)/2条线路,那么如何在这些可能的线路中选择n-1 条使总的代价最小呢?可以用连通网来表示n 个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋予边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一个生成树都可以是一个通信网。现在要选择这样一棵生成树,也就是使总的代价最小。这个问题便是构造连通网的最小代价生成树(简称最小生成树)的问题。一棵生成树的代价就是树上各边的代价之和。 2图的概念 2.1 定义 无序积 在无序积中, 无向图,其中为顶点(结点)集,为边集,,中元素为无向边,简称边。 有向图,其中为顶点(结点)集,为边集,,中元素为有向边,简称边。 有时,泛指有向图或无向图。 2.2 图的表示法

有向图,无向图的顶点都用小圆圈表示。 无向边——连接顶点的线段。 有向边——以为始点,以为终点的有向线段。 2.3 概念 (1)有限图——都是有限集的图。 阶图——的图。 零图——的图。特别,若又有,称平凡图。 (2)关联 (边与点关系)——设边(或),则称与(或)关联。 无环 孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所对应的边叫悬挂边。 (3)平行边——关联于同一对顶点的若干条边称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。 简单图——不含平行边和环的图。 2.4 完全图 设为阶无向简单图,若中每个顶点都与其余个顶点相邻,则 称为阶无向完全图,记作。 若有向图的任一对顶点,既有有向边,又有有向边,则 称为有向完全图。 例如:

数据结构课程设计

一、高校社团管理 在高校中,为了丰富学生的业余生活,在学校的帮助下,会成立许多社团,少则几个,多则几十个。为了有效管理这些社团,要求编写程序实现以下功能:1.社团招收新成员; 2.修改社团相应信息 3.老成员离开社团 4.查询社团情况; 5.统计社团成员数; 二、简单文本编辑器 设计一个文本编辑器,允许将文件读到内存中,也就是存储在一个缓冲区中。这个缓冲区将作为一个类的内嵌对象实现。缓冲区中的每行文本是一个字符串,将每行存储在一个双向链表的结点中,要求设计在缓冲区中的行上执行操作和在单个行中的字符上执行字符串操作的编辑命令。 基本要求: 包含如下命令列。可用大写或小写字母输入。 R:读取文本文件到缓冲区中,缓冲区中以前的任何内容将丢失,当前行是文件的第一行; W:将缓冲区的内容写入文本文件,当前行或缓冲区均不改变。 I:插入单个新行,用户必须在恰当的提示符的响应中键入新行并提供其行号。 D:删除当前行并移到下一行; F:可以从第1行开始或从当前行开始,查找包含有用户请求的目标串的第一行; C:将用户请求的字符串修改成用户请求的替换文本,可选择是仅在当前行中有效的还是对全文有效的。 Q:退出编辑器,立即结束; H:显示解释所有命令的帮助消息,程序也接受?作为H的替代者。 N:当前行移到下一行,也就是移到缓冲区的下一行; P:当前行移到上一行,也就是移到缓冲区的上一行;

B:当前行移到开始处,也就是移到缓冲区的第一行; E:当前行移到结束处,也就是移到缓冲区的最后一行; G:当前行移到缓冲区中用户指定的行; V:查看缓冲区的全部内容,打印到终端上。 三、电话客户服务模拟 一个模拟时钟提供接听电话服务的时间(以分钟计),然后这个时钟将循环的 自增1(分钟)直到达到指定时间为止。在时钟的每个"时刻",就会执行一次检查来看看对当前电话服务是否已经完成了,如果是,这个电话从电话队列中删除,模 拟服务将从队列中取出下一个电话(如果有的话)继续开始。同时还需要执行一个检查来判断是否有一个新的电话到达。如果是,其到达时间被记录下来,并为其产生一个随机服务时间,这个服务时间也被记录下来,然后这个电话被放入电话队列中,当客户人员空闲时,按照先来先服务的方式处理这个队列。当时钟到达指定时间时,不会再接听新电话,但是服务将继续,直到队列中所偶电话都得到处理为止。 基本要求: (1)程序需要的初始数据包括:客户服务人员的人数,时间限制,电话的到达速率,平均服务时间 (2)程序产生的结果包括:处理的电话数,每个电话的平均等待时间 四、停车场管理 设停车场是一个可停放n辆车的狭长通道,且只有一个大门可供汽车进出。在停车场内,汽车按到达的先后次序,由北向南依次排列(假设大门在最南端)。若停车场内已停满n辆车,则后来的汽车需在门外的便道上等候,当有车开走时,便道上的第一辆车即可开入。当停车场内某辆车要离开时,在它之后进入的车辆必须先退出停车场为它让路,待该辆车开出大门后,其他车辆再按原次序返回车场。每辆车离开停车场时,应按其停留时间的交费(从进入便道开始计时)。在这里假设汽车从便道上开走时不收取任何费用 基本要求: (1)汽车的输入信息格式为(到达/离去的标识,汽车牌照号码,到达/离去的时间)

课程设计---克鲁斯卡尔算法求最小生成树

课程设计报告 课程名称:数据结构课程设计 设计题目:克鲁斯卡尔算法求最小生成树 系别:计算机系 专业:软件技术 学生姓名:陈浩学号:2011304040133 日期: 2013年1月5日-2013年1月11日

目录 1. 需求分析 (2) 1.1 设计题目 (2) 1.2 设计任务及要求 (2) 1.3课程设计思想 (2) 1.4 程序运行流程: (2) 1.5软硬件运行环境及开发工具 (2) 2.概要设计 (2) 2.1流程图 (2) 2.2抽象数据类型MFSet的定义 (3) 2.3主程序 (3) 2.4抽象数据类型图的定义 (4) 2.5抽象数据类型树的定义 (6) 3. 详细设计 (8) 3.1程序 (8) 4.调试与操作说明 (11) 4.1测试结果 (11) 4.2调试分析 (12)

5.课程设计总结与体会 (12) 5.1总结 (12) 5.2体会 (12) 6. 致谢 (13) 7. 参考文献 (13) 1.需求分析 1.1 设计题目:最小生成树 1.2 设计任务及要求:任意创建一个图,利用克鲁斯卡尔算法,求出该图的最小生成树。 1.3 课程设计思想:Kruskal算法采用了最短边策略(设G=(V,E)是一个无向连通网,令T=(U,TE)是G的最小生成树。最短边策略从TE={}开始,每一次贪心选择都是在边集E中选择最短边(u,v),如果边(u,v)加入集合TE中不产生回路,则将边(u,v)加入边集TE中,并将它在集合E中删去。),它使生成树以一种任意的方式生长,先让森林中的树木随意生长,每生长一次就将两棵树合并,最后合并成一棵树。 1.4程序运行流程: 1)提示输入顶点数目; 2)接受输入,按照项目要求产生边权值的随机矩阵;然后求解最小生成树; 3)输出最小生成树并且退出; 1.5 软硬件运行环境及开发工具:VC 2.概要设计

最小生成树(Prim、Kruskal算法)整理版

一、树及生成树的基本概念 树是无向图的特殊情况,即对于一个N个节点的无向图,其中只有N-1条边,且图中任意两点间有且仅有一条路径,即图中不存在环,这样的图称为树,一般记为T。树定义有以下几种表述: (1)、T连通、无圈、有n个结点,连通有n-1条边;(2)、T无回路,但不相邻的两个结点间联以一边,恰得一个圈;(3)、T连通,但去掉任意一边,T就不连通了(即在点集合相同的图中,树是含边数最少的连通图);(4)、T的任意两个结点之间恰有一条初等链。 例如:已知有六个城市,它们之间要架设电话线,要求任 意两个城市均可以互相通话,并且电话线的总长度最短。若用 六个点v1…v6代表这六个城市,在任意两个城市之间架设电话 线,即在相应的两个点之间连一条边。这样,六个城市的一个 电话网就作成一个图。任意两个城市之间均可以通话,这个图 必须是连通图,且这个图必须是无圈的。否则,从圈上任意去 掉一条边,剩下的图仍然是六个城市的一个电话网。图5-6是 一个不含圈的连通图,代表了一个电话线网。 生成树(支撑树) 定义:如果图G’是一棵包含G的所有顶点的树,则称G’是G的一个支撑树或生成树。例如,图5-7b是图5-7a的一个支撑树。 定理:一个图G有生成树的条件是G是连通图。 证明:必要性显然; 充分性:设图G是连通的,若G不含圈,则按照定义,G是一个树,从而G是自身的一个生成树。若G含圈,则任取G的一个圈,从该圈中任意去掉一条边,得到图G的一生成子图G1。若G1不含圈,则G1是G的一个生成树。若G1仍然含圈,则任取G1的一个圈,再从圈中任意去掉一条边,得到图G的一生成子图G2。依此类推,可以得到图G的一个生成子 图G K,且不含圈,从而G K是一个生成树。 寻找连通图生成树的方法: 破圈法:从图中任取一个圈,去掉一条边。再对剩下的图 重复以上步骤,直到不含圈时为止,这样就得到一个生成树。 取一个圈(v1,v2,v3,v1),在一个圈中去掉边e3。在剩下的图 中,再取一个圈(v1,v2,v4,v3,v1),去掉边e4。再从圈(v3,v4,v5,v3) 中去掉边e6。再从圈(v1,v2,v5,v4,v3,v1)中去掉边e7, 这样,剩下的图不含圈,于是得到一个支撑树,如图所示。 避圈法:也称为生长法,从图中某一点开始生长边,逐步扩展成长为一棵树,每步选取与已入树的边不构成圈的那些边。

数据结构课程设计报告

数据结构课程设计报告 题目:5 班级:计算机1102 学号:4111110030 姓名:陈越 指导老师:王新胜

一:需求分析 1.运行环境 TC 2.程序所需实现的功能 几种排序算法的演示,要求给出从初始开始时的每一趟的变化情况,并对各种排序算法性能作分析和比较: (1)直接插入排序; (2)折半插入排序; (3)冒泡排序; (4)简单选择排序; (5)快速排序; (6)堆排序; (7)归并排序. 二:设计说明 1.算法设计的思想 1)、直接插入排序 排序过程:整个排序过程为n-1趟插入,即先将序列中第1个记录看成是一个有序子序列,然后从第2个记录开始,逐个进行插入,直至整个序列有序。 2)、折半插入排序 排序过程:用折半查找方法确定插入位置的排序叫折半插入排序。 3)、冒泡排序

排序过程:将第一个记录的关键字与第二个记录的关键字进行比较,若为逆序r[1].key>r[2].key,则交换;然后比较第二个记录与第三个记录;依次类推,直至第n-1个记录和第n个记录比较为止——第一趟冒泡排序,结果关键字最大的记录被安置在最后一个记录上。对前n-1个记录进行第二趟冒泡排序,结果使关键字次大的记录被安置在第n-1个记录位置。重复上述过程,直到“在一趟排序过程中没有进行过交换记录的操作”为止 4)、简单选择排序 排序过程:首先通过n-1次关键字比较,从n个记录中找出关键字最小的记录,将它与第一个记录交换。再通过n-2次比较,从剩余的n-1个记录中找出关键字次小的记录,将它与第二个记录交换。重复上述操作,共进行n-1趟排序后,排序结束。 5)、快速排序 基本思想:通过一趟排序,将待排序记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录进行排序,以达到整个序列有序。 排序过程:对r[s……t]中记录进行一趟快速排序,附设两个指针i和j,设枢轴记录rp=r[s],x=rp.key。初始时令i=s,j=t。首先从j所指位置向前搜索第一个关键字小于x的记录,并和rp交换。再从i所指位置起向后搜索,找到第一个关键字大于x的记录,和rp交换。重复上述两步,直至i==j为止。再分别对两个子序列进行快速排序,直到每个子序列只含有一个记录为止。 6)、堆排序 排序过程:将无序序列建成一个堆,得到关键字最小(或最大)的记录;输

(完整word版)实验5 最小生成树算法的设计与实现(报告)

实验5 最小生成树算法的设计与实现 一、实验目的 1、根据算法设计需要, 掌握连通图的灵活表示方法; 2、掌握最小生成树算法,如Prim、Kruskal算法; 3、基本掌握贪心算法的一般设计方法; 4、进一步掌握集合的表示与操作算法的应用。 二、实验内容 1、认真阅读算法设计教材和数据结构教材内容, 熟习连通图的不同表示方法和最小生成树算法; 2、设计Kruskal算法实验程序。 有n个城市可以用(n-1)条路将它们连通,求最小总路程的和。 设计测试问题,修改并调试程序, 输出最小生成树的各条边, 直至正确为止。 三、Kruskal算法的原理方法 边权排序: 1 3 1 4 6 2 3 6 4 1 4 5 2 3 5 3 4 5 2 5 6 1 2 6 3 5 6 5 6 6 1. 初始化时:属于最小生成树的顶点U={}

不属于最小生成树的顶点V={1,2,3,4,5,6} 2. 根据边权排序,选出还没有连接并且权最小的边(1 3 1),属于最小生成树 的顶点U={1,3},不属于最小生成树的顶点V={2,4,5,6}

3. 根据边权排序,选出还没有连接并且权最小的边(4 6 2),属于最小生成树的顶点U={{1,3},{4,6}}(还没有合在一起,有两颗子树),不属于最小生成树的顶点V={2,5} 4. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,3,4,6}(合在一起),不属于最小生成树的顶点V={2,5}

5. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,6},,不属于最小生成树的顶点V={5} 6. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,5,6}此时,最小生成树已完成

数据结构课程设计报告(完结)

《数据结构》课程设计手册 一、 栈的使用 (一)需求分析 本程序通过java 语言完成栈的构造,对堆栈的数据进行基本的存储操作。具体包括,数据的入栈、出栈、读取等。 入栈操作:要求用户从键盘出入要进栈的数值或字符,对栈满的情况作出提示。 出栈操作:删除栈顶元素,并将删除的数据或字符在运行结果中显示。对栈空的情况作出提示。 读取操作:在插入和删除的任意阶段都可讲栈中的元素读取出来,能够实现对栈中的数据元素个数进行统计。 (二)概要设计 1.为了实现上述程序功能,需要定义栈的数据类型有: static int MAX=5; static String[] item =new String[MAX]; static int top; 2.本程序包含4个函数 Push() 初始条件:栈未满 操作结果:往栈中插入数据; Pop() 初始条件:存在非空栈 操作结果:将栈中的数据删除; Get() 初始条件:存在非空栈 操作结果:显示非空栈中的所有元素; Main() 操作结果:调用以上函数。 程序流程图: Main() Pop() Push() Get()

(三)详细设计 具体代码见Stack.java 基本操作: Stack()构造一个空的栈,初始状态top的指针为-1; 入栈方法public static void push()。该方法中,首先判断是否栈满(top>=MAX-1),如果栈满,则输出提示语“栈满 ,栈中最多能容纳5个元素”,否则从键盘输入数据,并且top指针加1。 出栈方法public static void pop()。首先判断是否栈空(top<0),如果栈空,则输出提示信息“栈空 ,没有可操作的元素”,否则删除栈顶元素。Top指针减1。

PRIM算法求最小生成树

xx学院 《数据结构与算法》课程设计 报告书 课程设计题目 PRIM算法求最小生成树 院系名称计算机科学与技术系 专业(班级) 姓名(学号) 指导教师 完成时间

一、问题分析和任务定义 在该部分中主要包括两个方面:问题分析和任务定义; 1 问题分析 本次课程设计是通过PRIM(普里姆)算法,实现通过任意给定网和起点,将该网所对应的所有生成树求解出来。 在实现该本设计功能之前,必须弄清以下三个问题: 1.1 关于图、网的一些基本概念 1.1.1 图图G由两个集合V和E组成,记为G=(V,E),其中V是顶点的有穷非空集合,E是V中顶点偶对的有穷集,这些顶点偶对称为边。通常,V(G)和E(G)分别表示图G的顶点集合和边集合。E(G)也可以为空集。则图G只有顶点而没有边。1.1.2 无向图对于一个图G,若边集E(G)为无向边的集合,则称该图为无向图。1.1.3 子图设有两个图G=(V,E)G’=(V’,),若V’是V的子集,即V’?V ,且E’是E的子集,即E’?E,称G’是G的子图。 1.1.4 连通图若图G中任意两个顶点都连通,则称G为连通图。 1.1.5 权和网在一个图中,每条边可以标上具有某种含义的数值,该数值称为该边的权。把边上带权的图称为网。如图1所示。 1.2 理解生成树和最小生成树之间的区别和联系 1.2.1 生成树在一个连通图G中,如果取它的全部顶点和一部分边构成一个子图G’,即:V(G’)= V(G)和E(G’)?E(G),若边集E(G’)中的边既将图中的所有顶点连通又不形成回路,则称子图G’是原图G的一棵生成树。 1.2.2 最小生成树图的生成树不是唯一的,把具有权最小的生成树称为图G的最小生成树,即生成树中每条边上的权值之和达到最小。如图1所示。 图1.网转化为最小生成树 1.3 理解PRIM(普里姆)算法的基本思想 1.3.1 PRIM算法(普里姆算法)的基本思想假设G =(V,E)是一个具有n个顶点的连通网,T=(U,TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集,U和TE的初值均为空集。算法开始时,首先从V中任取一个顶点(假定取V0),将它并入U中,此时U={V0},然后只要U是V的真子集,就从那些其一个端点已在T中,另一个端点仍在T外的所有边中,找一条最短(即权值最小)边,假定为(i,j),其中V i∈U,V j∈(V-U),并把该边(i,j)和顶点j分别并入T的边集TE和顶点集U,如此进行下去,每次往生成树里并入一个顶点和一条边,直到n-1次后就把所有n个顶点都并入到生成树T的顶点集中,此时U=V,TE中含有n-1条边,T就是最后得到的最小生成树。可以看出,在普利姆算法中,是采用逐步增加U中的顶点,常称为“加点法”。为了实现这个算法在本设计中需要设置一个辅助数组

相关主题